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Abstract

In this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and
arbitarily large errors. This is a fundamental problem in many estimation-related applications such as fault detection, state
estimation in lossy networks, hybrid system identification, robust estimation, etc. The problem is hard because it exhibits
some intrinsic combinatorial features. Therefore, obtaining an effective solution necessitates relaxations that are both solvable
at a reasonable cost and effective in the sense that they can return the true parameter vector. The current paper discusses a
nonsmooth convex optimization approach and provides a new analysis of its behavior. In particular, it is shown that under
appropriate conditions on the data, an exact estimate can be recovered from data corrupted by a large (even infinite) number
of gross errors.
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1 Introduction

1.1 Problem and motivations

We consider a linear measurement model of the form

yt = x⊤
t θ

o + ft + et (1)

where yt ∈ R is the measured signal, xt ∈ R
n the regres-

sion vector, {et} a sequence of zero-mean and bounded
errors (e.g., measurement noise, model mismatch, un-
certainties, etc.) and {ft} a sequence of intermittent and
arbitrarily large errors. Assume that we observe the se-

quences {xt}Nt=1 and {yt}Nt=1 and would like to compute
the parameter vector θo from these observations. We are
interested in doing so without knowing any of the se-
quences {ft} and {et}. We do however make the follow-
ing assumptions:
• {et} is a bounded sequence.

⋆ This paper was not presented at any IFAC meeting. Cor-
responding author L. Bako. Tel.: +33 472 186 452.

Email addresses: laurent.bako@ec-lyon.fr (Laurent
Bako), ohlsson@berkeley.edu (Henrik Ohlsson).

• {ft} is a sequence containing zeros and intermittent
gross errors with (possibly) arbitrarily large magni-
tudes.

This is an important estimation problem arising in many
situations such as fault detection [30,11], hybrid system
identification [16], subspace clustering [40,2], error cor-
rection in communication networks [7]. The case when
{ft} is zero and {et} is a Gaussian process has been
well-studied in linear system identification theory (see,
e.g., the text books [23,38]). A less studied, but very
relevant scenario in the system identification commu-
nity, is when the additional perturbation {ft} in (1) is
nonzero and contains intermittent and arbitrarily large
errors [7,37,26,42]. It is worth noticing the difference
with the problem studied in the field of compressive sens-
ing [7,13,10]. In compressive sensing, the sought param-
eter vector is assumed sparse and the measurement noise
{et}, often Gaussian or bounded. Here, no assumptions
are made concerning sparsity of θo. We will, in this con-
tribution, study essentially the case when the data is
noise-free (i.e., et = 0 for all t) and {ft} is a sequence
with intermittent gross errors. We will derive conditions

Preprint submitted to Automatica June 15, 2018

http://arxiv.org/abs/1402.1899v4


for perfect recovery and point to effective algorithms for
computing θo. In the second part of the paper, the model
assumption is relaxed to allow both et and ft to be si-
multaneously nonzero. Note that this might be a more
realistic scenario since most applications have measure-
ment noise.
For illustrative purposes, let us discuss briefly some ap-
plications where a model of the form (1) is of interest.

Switched linear system identification. A discrete-
time Multi-Input Single-Output (MISO) Switched Lin-
ear System (SLS) can be written in the form

yt = x⊤
t θ

o
σt

+ et, (2)

where xt ∈ R
n is the regressor at time t ∈ Z+ defined by

xt =
[
yt−1 · · · yt−na

u⊤
t u⊤

t−1 · · · u⊤
t−nb

]⊤
, (3)

where ut ∈ R
nu and yt ∈ R denote respectively the

input and the output of the system. The integers na

and nb in (3) are the maximum output and input lags
(also called the orders of the system). σt ∈ {1, . . . , s} is
the discrete mode (or discrete state) indexing the active
subsystem at time t; it is in general assumed unobserved.
θoσt

∈ R
n, n = na + nbnu, is the parameter vector (PV)

associated with the mode σt. For θo ∈ {θo1, . . . , θos}, the
Switched Auto-Regressive eXogenous (SARX) model (2)
can be written in the form (1), with unknown ft of the
following structure ft = x⊤

t (θ
o
σt
− θo). For a background

on hybrid system identification, we refer to the references
[32,16,41,1,25,31,28].

Identification from faulty data. A model of the form
(1) also arises when one has to identify a linear dynamic
system which is subject to intermittent sensor faults.
This is the case in general when the data are transmit-
ted over a communication network [7,30]. Model (1) is
suitable for such situations and the sequence {ft} then
models occasional data packets losses or potential out-
liers. More precisely, a dynamic MISO system with pro-
cess faults can be directly written in the form (1). In the
case of sensor faults, the faulty model might be defined
by {

ȳt = x̄⊤
t θ

o + et
yt = ȳt + wt

where yt ∈ R is the observed output which is affected by
the fault wt (assumed to be nonzero only occasionally) ;
x̄t is defined as in (3) from the known input ut and the un-
observed output ȳt. We can rewrite the faulty model ex-

actly in the form (1) with ft = wt−
[
wt−1 · · · wt−na

]
θo.

Sparsity of {wt} induces sparsity of {ft} but in a lesser
extent.

State estimation in the presence of intermittent
errors. Considering a MISO dynamic system with state
dynamics described by zt+1 = Azt + But and observa-
tion equation ỹt = C⊤zt + ft, (A,B,C) being known

matrices of appropriate dimensions, and {ft} a sparse
sequence of possibly very large errors, the finite horizon
state estimation problem reduces to the estimation of
the initial state z0 = θ. We get a model of the form (1)
by setting yt = ỹt − C⊤∆tūt and xt = (At)⊤C, with

∆t =
[
At−1B · · · AB B

]
, ūt =

[
u⊤
0 · · · u⊤

t−1

]⊤
. Ex-

amples of relevant works are those reported in [3,15]. In
this latter application, it can however be noted that the
dataset {xt} may not be generic enough. 1

Connection to robust statistics. Indeed, the prob-
lem of identifying the parameters from model (1) under
the announced assumptions can be viewed as a robust
regression problem where the nonzero elements in the se-
quence {ft} are termed outliers. As such, it has received
a lot of attention in the robust statistics literature (see,
e.g., [21,35,24] for an overview). Examples of methods to
tackle the robust estimation problem include the least
absolute deviation [20], the least median of squares [34],
the least trimmed squares [35], the M-estimator [21], etc.
Most of these estimators come with an analysis in terms
of the breakdown point [19,36], a measure of the (asymp-
totic) minimum proportion of points which cause an esti-
mator to be unbounded if they were to be arbitrarily cor-
rupted by gross errors. The current report focuses on the
analysis of a nonsmooth convex optimization approach
which includes the least absolute deviation method as a
particular case corresponding to the situation when the
output in (1) is a scalar. The analysis approach taken in
the current paper is different in the following sense.
• In robust statistics the quality of an estimator is mea-

sured by its breakdown point. The higher the break-
down point, the better. The available analysis is there-
fore directed to determining a sort of absolute robust-
ness: how many outliers (expressed in proportion of
the total number of samples) cause the estimator to
become unbounded.

• Here, the question of robust performance of the es-
timator is posed differently. We are interested in
estimating the maximum number of outliers that
a nonsmooth-optimization-based estimator can ac-
commodate while still returning the exact value one
would obtain in the absence of any outlier. This is
more related to the traditional view developed in
compressive sensing.

Contributions of this paper. One promising method
for estimating model (1) is by nonsmooth convex opti-
mization as suggested in [7,37,1,26,42]. More precisely,
inspired by the recent theory of compressed sensing
[7,13,10], the idea is to minimize a nonsmooth (and non
differentiable) sum-of-norms objective function involv-

1 In this paper, the term genericity for a dataset character-
izes a notion of linear independence. For example, a set of
N > n data points in general linear position in R

n is more
generic than a set of data points contained in one subspace.
We will introduce different quantitative measures of data
genericity in the sequel (see Definition 2 and Theorem 11).
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ing the fitting errors. Under noise-free assumption, such
a cost function has the nice property that it is able to
provide the true parameter vector in the presence of ar-
bitrarily large errors {ft} provided that the number of
nonzero errors is small in some sense. Of course, when
the data are corrupted simultaneously by the noise {et}
and the gross errors {ft}, the recovery cannot be exact
any more. It is however expected (as Proposition 17 and
simulations tend to suggest) that the estimate will still
be close to the true one.
The current paper intends to present a new analysis
of the nonsmooth optimization approach and provide
some elements for further understanding its behavior.
The line of analysis goes from a full characterization of
the nonsmooth optimization based estimator (both for
SISO and MIMO systems) to the study of robustness to
outliers including in the presence of dense noise. With
respect to relevant works [7,37,1,26,42], we derive new
bounds on the number of outliers (in the least favorable
situations) that the estimator is capable to accommo-
date. It is emphasized that a quite broad spectrum of
such bounds can be derived based on the basic char-
acterization of the nonsmooth identifier. Note however
that evaluating numerically the tightest of these bounds
is a high computational process while less tight bounds
have a more affordable complexity. Some of the bounds
developed in this contribution meet both relative tight-
ness requirement and computability in polynomial time
(see the bound based on ξ(X) in Theorem 11). Finally,
the paper show how the results derived in the first part
for ℓ1-norm estimator when applied to the estimation
of SISO systems are generalizable to multivariable sys-
tems.

Outline of this paper. The outline of the paper is
as follows. We start in Section 2.1 by viewing the nons-
mooth optimization as the convex relaxation of a (ideal)
combinatorial ℓ0-"norm" formulation. We then derive in
Section 2.2 necessary and sufficient conditions for opti-
mality. Based on those conditions we establish in Section
2.4 new sufficient conditions for exact recovery of the
true parameter vector in (1). The noisy case is treated
in Section 3.2. Section 4 presents a generalization of the
earlier discussions to multi-output systems. Finally, nu-
merical experiments are described in Section 5 and con-
cluding remarks are given in Section 6.

1.2 Notations
Let I = {1, . . . , N} be the index set of the measure-
ments. For any θ ∈ R

n, define a partition of the set of
indices I by I

−(θ) =
{
t ∈ I : θ⊤xt − yt < 0

}
, I

+(θ) ={
t ∈ I : θ⊤xt − yt > 0

}
, I0(θ) =

{
t ∈ I : θ⊤xt − yt = 0

}
.

Cardinality of a finite set. Throughout the paper, when-
ever S is a finite set, the notation |S| will refer to the
cardinality of S. However, for a real number x, |x| will
denote the absolute value of x.
Submatrices and subvectors. Let X =

[
x1 x2 · · · xN

]
∈

R
n×N be the matrix formed with the available regres-

sors {xt}Nt=1. If I ⊂ I, the notation XI denotes a matrix

in R
n×|I| formed with the columns of X indexed by I.

Likewise, with y =
[
y1 y2 · · · yN

]⊤ ∈ R
N , yI is the

vector in R
|I| formed with the entries of y indexed by

I. We will use the convention that XI = 0 ∈ R
n (resp.

yI = 0 ∈ R) when the index set I is empty.
Vector norms. ‖·‖p, p = 1, 2, . . . ,∞, denote the
usual p-norms for vectors defined for any vector z =[
z1 · · · zN

]⊤ ∈ R
N , by ‖z‖p = (|z1|p + · · ·+ |zN |p)1/p.

Note that ‖z‖∞ = maxi=1,...,N |zi|. The ℓ0 "norm" of z
is defined to be the number of nonzero entries in z, i.e.,
‖z‖0 = |{i : zi 6= 0}|.
Matrix norms. The following matrix norms will be used:
‖·‖p, p = 1, 2, . . . ,∞, ‖·‖2,col, ‖·‖2,∞. They are defined

as follows: for a matrix A =
[
a1 · · · aN

]
∈ R

n×N with

ai ∈ R
n,

‖A‖p = sup
x∈RN ,‖x‖

p
=1

‖Ax‖p , ‖A‖2,col =
N∑

i=1

‖ai‖2 ,

‖A‖2,∞ = max
i=1,...,N

‖ai‖2 .

2 Nonsmooth optimization for the estimation
problem

2.1 Sparse optimization

The main idea for identifying the parameter vector θo

from (1) is by solving a sparse optimization problem,
that is, a problem which involves the minimization of
the number of nonzeros entries in the error vector. To be
more specific, assume for the time being that the error
sequence {et} is identically equal to zero. Consider a
candidate parameter vector θ ∈ R

n and let

φ(θ) = y −X⊤θ,

where y =
[
y1 · · · yN

]⊤
, X =

[
x1 · · · xN

]
, be the fit-

ting error vector induced by θ on the experimental data.
Then the vector θo can naturally be searched for by min-
imizing an ℓ0 objective function,

minimize
θ∈Rn

‖φ(θ)‖0 (4)

where ‖·‖0 denotes the ℓ0 pseudo-norm which counts the
number of nonzero entries. Because problem (4) aims at
making the error φ(θ) sparse by minimizing the number
of nonzero elements (or maximizing the number of ze-
ros), it is sometimes called a sparse optimization prob-
lem [1]. As can be intuitively guessed, the recoverability
of the true parameter vector θo from (4) depends nat-
urally on some properties of the available data. This is
outlined by the following lemma.
Lemma 1 (A sufficient condition for ℓ0 recovery)
Assume that {et} is equal to zero and let f =[
f1 · · · fN

]⊤
. Assume that for any I ⊂ I with |I| > n,

fI /∈ im(X⊤
I ) whenever fI 6= 0, with im(·) referring here
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to range space. Then provided
∣∣I0(θo)

∣∣ > n, it holds that

θo ∈ argmin
θ

‖φ(θ)‖0 . (5)

PROOF. We proceed by contradiction. Assume that
(5) does not hold, i.e., minθ ‖φ(θ)‖0 < ‖φ(θo)‖0. Then,
by letting θm be any vector in argminθ ‖φ(θ)‖0, the

above inequality translates into
∣∣I0(θm)

∣∣ >
∣∣I0(θo)

∣∣ > n.

It follows that fI0(θm) 6= 0 because
∣∣I0(θo)

∣∣ =
|{t ∈ I : ft = 0}| is the exact (largest) number of zero

elements in the sequence {ft}Nt=1. Note also that we

have necessarily
∣∣I0(θm)

∣∣ > n. On the other hand, with

yI0(θm) = X⊤
I0(θm)θ

m = X⊤
I0(θm)θ

o + fI0(θm), it can be

seen that fI0(θm) = X⊤
I0(θm) (θ

m − θo) ∈ im(X⊤
I0(θm)).

This, together with fI0(θm) 6= 0, constitutes a contradic-
tion to the assumption of the Lemma. Hence, (5) holds
as claimed. 2

Lemma 1 specifies a condition involving both X and f
and under which θo lies in the solution set but it does
not ensure that θo will be recovered uniquely from data.
Before proceeding further, we recall from [1] a sufficient
condition under which θo is the unique solution to (4).
Definition 2 ([1] An integer measure of genericity)
Let X ∈ R

n×N be a data matrix satisfying rank(X) = n.
The n-genericity index of X denoted νn(X), is defined as
the minimum integer m such that any n×m submatrix
of X has rank n,

νn(X) = min
{
m : ∀S ⊂ I with |S| = m, rank(XS) = n

}
.

(6)
Theorem 3 ([1] Sufficient condition for ℓ0 recovery)
Assume that the sequence {et} in (1) is identically equal
to zero. If the sequence {ft} in (1) contains enough zero
values in the sense that

∣∣I0(θo)
∣∣ =

∣∣{t ∈ I : ft = 0
}∣∣ ≥ N + νn(X)

2
, (7)

then θo is the unique solution to the ℓ0-norm minimiza-
tion problem (4).
In other words, if the number of nonzero gross errors
{ft} affecting the data generated by (1) does not exceed
the threshold (N − νn(X))/2, then θo can be exactly
recovered by solving (4). Unfortunately, this problem is
a hard combinatorial optimization problem. A tractable
solution can be obtained by relaxing the ℓ0-norm into
its best convex approximant, the ℓ1-norm. Doing this
substitution in (4) gives

minimize
θ∈Rn

‖φ(θ)‖1 (8)

with ‖φ(θ)‖1 =
∑N

t=1

∣∣yt − θ⊤xt

∣∣. The latter problem is
termed a nonsmooth convex optimization problem [27,
Chap. 3] because the objective function is convex but

non-differentiable. Compared to (4), problem (8) has
the advantage of being convex and can hence be effi-
ciently solved by many existing numerical solvers, e.g.,
[18]. Note further that it can be written as a linear pro-
gramming problem. The ℓ1 relaxation process has been
intensively used in the compressed sensing literature [14]
for approaching the sparsest solution of an underdeter-
mined set of linear equations. In the robust statistics
literature as surveyed above, (8) corresponds to a well-
known estimator referred to as the least absolute devia-
tion estimator [34]. As will be shown next, the underly-
ing reason why problem (8) can obtain the true param-
eter vector despite the presence of gross perturbations
{ft} is related to its nonsmoothness.

2.2 Solution to the ℓ1 problem

There is a wealth of analysis in the literature of com-
pressed sensing investigating under which conditions
some problems 2 of similar structure as (4) and (8) can
yield the same solution. This analysis is mainly based
on the concepts of mutual coherence [14] and the Re-
stricted Isometry Property [8]. Here, we shall propose a
parallel but different analysis for the robust estimation
problem. We start by characterizing the solution to the
ℓ1-norm problem (8).
Theorem 4 (Solution to the ℓ1 problem) A vector
θ⋆ ∈ R

n solves the ℓ1-norm problem (8) if and only if
any of the following equivalent statements hold:
S1. There exist some numbers λt ∈ [−1, 1], t ∈ I

0(θ⋆),
such that 3

∑

t∈I+(θ⋆)

xt −
∑

t∈I−(θ⋆)

xt =
∑

t∈I0(θ⋆)

λtxt. (9)

S2. For any η ∈ R
n,

∣∣∣
∑

t∈I+(θ⋆)

η⊤xt −
∑

t∈I−(θ⋆)

η⊤xt

∣∣∣ ≤
∑

t∈I0(θ⋆)

∣∣η⊤xt

∣∣.

(10)
S3. The optimal value of the optimization problem

min
α

‖α‖∞ subject to z = XI0(θ⋆)α, (11)

where z =
∑

t∈I+(θ⋆) xt − ∑
t∈I−(θ⋆) xt, α ∈

R
|I0(θ⋆)|, is less than or equal to 1.

Moreover, the solution θ⋆ is unique if and only if any of
the following statements is true:

2 Those problems look for the sparsest solution to an under-
determined set of linear equations. As such they are similar
but different to the problem studied in the current paper.
Note that the process of converting problems (4) and (8) into
the format treated in compressed sensing yields a system of
linear equations which is much less underdetermined.
3 Eq. (9) should be understood here with the implicit con-
vention that any of the three terms is equal to zero whenever
the corresponding index set is empty.
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S1’. (9) holds and rank(XS) = n where

S =
{
t ∈ I

0(θ⋆) : |λt| < 1
}
.

S2’. (10) holds with strict inequality symbol for all η ∈
R

n, η 6= 0.

PROOF. Proof of S1. Since ‖φ(θ)‖1 is a proper con-

vex function, it has a non empty subdifferential [33]. The
necessary and sufficient condition for θ⋆ to be a solution
of (8) is then

0 ∈ ∂ ‖φ(θ⋆)‖1 , (12)

where the notation ∂ refers to subdifferential with re-
spect to θ. Indeed, using additivity of subdifferentials, it
is straightforward to write

∂ ‖φ(θ⋆)‖1 =
∑

t∈I+(θ⋆)

xt −
∑

t∈I−(θ⋆)

xt +
∑

t∈I0(θ⋆)

conv {−xt, xt}

(13)
where conv refers to the convex hull. Here, the addition
symbol is meant in the Minkowski sum sense. It follows
that 0 ∈ ∂ ‖φ(θ⋆)‖1 is equivalent to the existence of a set
of numbers λt in [−1, 1], t ∈ I

0(θ⋆), such that (9) holds.

Proof of S2. Define two functions q, h : R
n →

R≥0 by q(θ) =
∑

t/∈I0(θ⋆)

∣∣yt − θ⊤xt

∣∣ and h(θ) =∑
t∈I0(θ⋆)

∣∣yt − θ⊤xt

∣∣. Then ‖φ(θ)‖1 = q(θ) + h(θ) and

q is differentiable at θ⋆. It follows that ∂ ‖φ(θ⋆)‖1 =
∇q(θ⋆) + ∂h(θ⋆), where ∇q(θ⋆) is the gradient of q at
θ⋆. We can hence write

θ⋆ minimizes ‖φ(θ)‖1 ⇔ 0 ∈ ∂ ‖φ(θ⋆)‖1
⇔ −∇q(θ⋆) ∈ ∂h(θ⋆).

Note from (13) that ∂h(θ⋆) =
∑

t∈I0(θ⋆) conv {−xt, xt}
so that −∇q(θ⋆) ∈ ∂h(θ⋆) if and only if ±∇q(θ⋆) ∈
∂h(θ⋆) and this in turn is equivalent to g⊤(θ − θ⋆) ≤
h(θ)−h(θ⋆) ∀ θ, for g ∈ {−∇q(θ⋆),+∇q(θ⋆)}. It follows
that θ⋆ minimizes ‖φ(θ)‖1 if and only if

∣∣∇q(θ⋆)⊤(θ − θ⋆)
∣∣ ≤ h(θ)−h(θ⋆) =

∑

t∈I0(θ⋆)

∣∣(θ − θ⋆)⊤xt

∣∣

(14)
for all θ. The last equality is obtained by using the fact
that yt − x⊤

t θ
⋆ = 0 for all t in I

0(θ⋆). Finally the result
follows by setting η = θ − θ⋆ and noting that ∇q(θ⋆) =∑

t∈I+(θ⋆) xt −
∑

t∈I−(θ⋆) xt.

S1⇔S3. The proof of the last equivalence is immediate.

Uniqueness. For convenience, we first prove S2’.
Along the lines of the proof of S2 (see Eq. (14) and
preceding arguments), we can see that strict inequality
in (10) is equivalent to the following strict inequal-
ity −∇q(θ⋆)⊤(θ − θ⋆) < h(θ) − h(θ⋆) ∀ θ 6= θ⋆. On
the other hand, ∇q(θ⋆)⊤(θ − θ⋆) ≤ q(θ) − q(θ⋆) ∀ θ.

Summing the two yields

‖φ(θ⋆)‖1 = q(θ⋆)+h(θ⋆) < q(θ)+h(θ) = ‖φ(θ)‖1 ∀θ 6= θ⋆.

Hence S2’ is proved.
For the proof of S1’, we proceed in two steps.
Sufficiency. Assume rank(XS) = n. Then for any
nonzero vector η ∈ R

n there is at least one t0 ∈ S such
that η⊤xt0 6= 0. Recall that |λt0 | < 1 by definition of
S. It follows that by multiplying (9) on the left by η⊤

with η ∈ R
n an arbitrary nonzero vector, and taking the

absolute value yields (10) with strict inequality symbol.
We can therefore apply the proof of S2’ to conclude that
θ⋆ is unique.
Necessity. Assume rank(XS) < n. Then pick any
nonzero vector η in ker(X⊤

S ). Set η1 = νη with ν 6= 0.
Indeed ν can be chosen sufficiently small such that
x⊤
t (θ

⋆ + η1) − yt has the same sign as x⊤
t θ

⋆ − yt for
t ∈ I

−(θ⋆) ∪ I
+(θ⋆). For such values of ν we have

I
+(θ⋆) ⊂ I

+(θ⋆ + η1) and I
−(θ⋆) ⊂ I

−(θ⋆ + η1). More-
over, since η1 ∈ ker(X⊤

S ), x⊤
t (θ

⋆ + η1) − yt = η⊤1 xt = 0
∀ t ∈ S, so that S ⊂ I

0(θ⋆ + η1). Finally, it re-
mains to re-assign the indices t contained in I

0(θ⋆) \ S
for which λt = 1. We get the following partition
I
+(θ⋆ + η1) = I

+(θ⋆) ∪
{
t ∈ I

0(θ⋆) : η⊤1 xt > 0
}
,

I
−(θ⋆ + η1) = I

−(θ⋆) ∪
{
t ∈ I

0(θ⋆) : η⊤1 xt < 0
}
,

I
0(θ⋆ + η1) = S ∪

{
t ∈ I

0(θ⋆) : η⊤1 xt = 0
}
. It follows

that θ⋆ + η1 6= θ⋆ also satisfies (9) with the sequence
{λt}t∈S and is therefore a minimizer. In conclusion, if
rank(XS) < n, the minimizer cannot be unique. 2

A number of important comments follow from Theorem
4.
• One first consequence of the theorem is that θo can be

computed exactly from a finite set of erroneous data
(by solving problem (8)) provided it satisfies the con-
ditions S1’ or S2’ of the theorem. Note that there is
no explicit boundedness condition imposed on the er-
ror sequence {ft}. Hence the nonzero errors in this se-
quence can have arbitrarily large magnitudes as long
as the optimization problem makes sense, i.e., pro-
vided ‖φ(θ⋆)‖1 remains finite.

• Second, the true parameter vector θo can be exactly re-
covered in the presence of, say, infinitely many nonzero
errors ft (see also Proposition 6). For example, if the
regressors {xt} satisfy

∑

t∈I+(θo)

xt −
∑

t∈I−(θo)

xt = 0,

and rank(XI0(θo)) = n, then by condition S2’ θo is
the unique solution to problem (8) regardless of the
number of errors affecting the data.

• Third, if problem (8) admits a solution θ⋆ that sat-
isfies yt − x⊤

t θ
⋆ 6= 0 for all t = 1, . . . , N , then θ⋆ is

non-unique. In effect, I0(θ⋆) = ∅ in this case and so,
rank(XI0(θ⋆)) = 0 < n which, by Theorem 4, implies
non-uniqueness. Indeed this is typically the case when-
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ever the noise {et} is nonzero.
Another immediate consequence of Theorem 4 can be
stated as follows.
Corollary 5 (On the special case of affine model)
If the model (1) is affine in the sense that the regressor
xt has the form xt = [x̃⊤

t 1]⊤, with x̃t ∈ R
n−1, then a

necessary condition for θ⋆ to solve problem (8) is that

∣∣∣
∣∣I+(θ⋆)

∣∣−
∣∣I−(θ⋆)

∣∣
∣∣∣ ≤

∣∣I0(θ⋆)
∣∣ . (15)

Here, the outer bars | · | refer to absolute value while the
inner ones which apply to sets refer to cardinality.

PROOF. The proof is immediate by considering the
condition (10) and taking η = [0⊤ 1]⊤ ∈ R

n. 2

Eq. (15) implies that if the measurement model is affine
and all the ft’s have the same sign, i.e., if one of the
cardinalities |I+(θo)| or |I−(θo)| is equal to zero, then
problem (8) cannot find the true θo whenever more than
50% of the elements of the sequence {ft} are nonzero.
Next, we discuss a special case in which the true pa-
rameter vector θo in (1) can, in principle, be obtained
asymptotically in the presence of an infinite number of
nonzero errors ft’s.
Proposition 6 (Infinite number of outliers) Assume
that the error sequence {et} in (1) is identically equal

to zero. Assume further that the data {(xt, yt)}Nt=1 are
generated such that:
• There is a set I0 ⊂ I with

∣∣I0
∣∣ ≥ n, such that for any

t ∈ I0, ft = 0 and rank(XI0) = n,
• For any t /∈ I0, ft is sampled from a distribution which

is symmetric around zero.
• The regression vector sequence {xt} ⊂ R

n is drawn
from a probability distribution having a finite first mo-
ment.

Then

lim
N→∞

argmin
θ∈Rn

1

N

N∑

t=1

∣∣yt − x⊤
t θ

∣∣ = {θo} (16)

with probability one.

PROOF. Under the conditions of the proposition, we
have Prob(yt − x⊤

t θ
o < 0) = Prob(yt − x⊤

t θ
o > 0) =

1/2, where Prob denotes probability measure. It follows
that |I+(θo)| and |I−(θo)| go jointly to infinity as the
total number of samples N tends to infinity. Hence, the
expressions 1

|I+(θo)|

∑
t∈I+(θo) xt and 1

|I−(θo)|

∑
t∈I−(θo) xt

are both sample estimates for the expectation of the
process {xt}. By the law of large numbers, as N → ∞,
the two quantities converge to the true expectation of
the process {xt} with probability one, so that

lim
N→∞

[ 1

|I+(θo)|
∑

t∈I+(θo)

xt −
1

|I−(θo)|
∑

t∈I−(θo)

xt

]
= 0.

As a consequence, θo satisfies condition S1’ of Theorem
4 asymptotically with λt = 0 for any t ∈ I

0(θo) = I0.
Hence the solution of the ℓ1 minimization problem tends
to θo with probability one as the number of samples
approaches infinity. 2

2.3 Worst-case necessary and sufficient conditions

The conditions (9)-(11) derived in Theorem 4 character-
ize completely the solution to the ℓ1-problem. However
such conditions depend on which data points (xt, yt) are
affected by the gross errors and on the sign of the f ′

ts. We
wish now to find necessary and sufficient conditions that
depend solely on the number of gross errors (or, equiv-
alently on the number of zero elements in the sequence
{ft}).
Corollary 7 (Necessary and sufficient conditions)
Let d be an integer. Then the following statements are
equivalent:
(i)

∀ θ ∈ R
n, ∀y ∈RN , |I0(θ)| ≥ d

⇒ θ ∈ argmin
w∈Rn

‖φ(w)‖1 (17)

(ii)

max
(I,Ic):
|I|=d

max
η∈Rn

{∥∥X⊤
Icη

∥∥
1
s. t.

∥∥X⊤η
∥∥
1
= 1

}
≤ 1/2 (18)

(iii)

max
(I,Ic):
|I|=d

max
h∈{±1}|Ic|

min
α∈R|I|

{
‖α‖∞ s. t. XIch = XIα

}
≤ 1

(19)
In (18)-(19) and similar equations in the paper, the left-
most maximum is taken over the set of those partitions
(I, Ic) of I that satisfy |I| = d. Eq. (19) should be read
with the implicit assumption that the inequality fails to
hold whenever the optimization problem is not feasible.

PROOF. [of Corollary 7] That (ii) and (iii) are equiv-
alent is a statement that results directly from the equiv-
alence of (10) and (11) in Theorem 4. To see this, let
θ ∈ R

n be a solution to problem (8) and set Ic =

I
−(θ) ∪ I

+(θ), I = I
0(θ), hIc ∈ {−1,+1}|I

c|
such that

hi = +1 if i ∈ I
+(θ) and hi = −1 if i ∈ I

−(θ). Then Eq.
(10) can be written as

∣∣η⊤XIchIc

∣∣ ≤
∥∥X⊤

I η
∥∥
1

∀η ∈ R
n

⇔max
η∈Rn

{ ∣∣η⊤XIchIc

∣∣+
∥∥X⊤

Icη
∥∥
1
s. t.

∥∥X⊤η
∥∥
1
= 1

}
≤ 1.

(20)
Similarly Eq. (11) reads as

min
αI

{
‖αI‖∞ s. t. XIchIc = XIαI

}
≤ 1. (21)

The equivalence (ii) ⇔ (iii) then follows by applying
the chains of maximums max(I,Ic):|I|=d maxhIc∈{±1}|Ic|
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to each of the equations (20) and (21) and noting that
maxhIc∈{±1}|Ic|

∣∣η⊤XIchIc

∣∣ = ‖X⊤
Icη‖1.

We shall now establish the equivalence (i) ⇔ (ii). Let θ ∈
R

n and y ∈ R
N be any vectors such that I =

∣∣I0(θ)
∣∣ = d.

The so-defined I can be any subset of I provided |I| = d.
Hence any θ satisfying this cardinality constraint solves
problem (8) if and only if (20) holds for any partition

(I, Ic) of I with |I| = d and for any hIc ∈ {−1,+1}|I
c|.

This is equivalent to Eq. (18).
Finally, let us observe that

max
(I,Ic):|I|=d

max
η∈Rn

{∥∥X⊤
Icη

∥∥
1
s. t.

∥∥X⊤η
∥∥
1
= 1

}

is a decreasing function of d so that if (18) holds for some
d0, it holds also for any d ≥ d0. It follows that (i) ⇔ (ii),
hence completing the proof. 2

It should be mentioned that the equivalence (i) ⇔ (ii)
was also obtained in earlier papers, see e.g., [42,43].
Uniqueness of the solution follow in a similar way as in
the proof of Corollary 7 by invoking conditions S1’ and
S2’ of Theorem 4.
Corollary 8 (Uniqueness) Let d be an integer. Then
the following statements are equivalent.
(i’)

∀ θ ∈ R
n, ∀y ∈RN , |I0(θ)| ≥ d

⇒ argmin
w∈Rn

‖φ(w)‖1 =
{
θ
} (22)

(ii’) Eq. (18) holds with strict inequality.

(iii’)

max
(I,Ic):
|I|=d

max
h∈{±1}|Ic|

min
α

{
‖α‖∞ s. t.

XIch = XIα,

∃S ⊂ I, rank(XS) = n, ‖αS‖∞ < 1
}
≤ 1

(23)

Remark 9 Corollaries 7 and 8 imply the follow-
ing. If there exists an integer d such that (18) or
(19) holds and {θ ∈ R

n : ‖φ(θ)‖0 ≤ N − d} 6= ∅, then
argminθ ‖φ(θ)‖0 ⊂ argminθ ‖φ(θ)‖1. It follows under
these conditions that whenever θo solves the ℓ0 prob-
lem (4), it also solves the ℓ1 problem (8). In particular
argminθ ‖φ(θ)‖1 = {θo} ⇒ argminθ ‖φ(θ)‖0 = {θo}.
It should be noted that when the data are noise-free,
there always exists a d such that (17)-(19) hold. For
example d = N is the maximum possible value that
satisfies these conditions. Let us denote by πo(X) the
minimum integer d such that the conditions (17)-(19)
hold, that is,

πo(X) = min
{
d ∈ I s. t. Eq. (18) is true

}
. (24)

Such a number πo(X) depends only on the matrix X .
It can be viewed as a measure of the richness properties
of the regressor matrix X . Recoverability of the true
parameter vector θo by the least ℓ1-norm estimator (8)

in the face of gross errors is enhanced when πo(X) is
small. We may hence say that the smaller πo(X), the
richer (or more generic) the regressors in X are.
Computing πo(X) directly from the definition (24) is a
hard combinatorial problem with a complexity compara-
ble to that of the ℓ0 problem (4). An algorithm of slightly
reduced complexity but still combinatorial has been de-
rived in [37] for this purpose. Here, we ask the question
of whether πo(X) can be more cheaply estimated in a
somewhat efficient way. Such estimates are most likely
over-estimates and lead to sufficient conditions for exact
recoverability of the parameter vector θo in the presence
of gross errors sequence {ft}.

2.4 Sufficient conditions of recoverability by convex op-
timization

We start by introducing the following notations :

v1(k) = max
(I,Ic):|I|=k≥νn(X)

∥∥X⊤
I (XIX

⊤
I )−1XIc

∥∥
∞

(25)

v2(k) = max
(I,Ic):|I|=k

∥∥X⊤
Ic(XX⊤)−1X

∥∥
1
, (26)

where the maximum is taken over the set of those parti-
tions (I, Ic) of I that satisfy |I| = k. In addition, let

k1(X) = min
k∈I,k≥νn(X)

{
k : v1(k) ≤ 1

}
(27)

and
k2(X) = min

k∈I

{
k : v2(k) ≤ 1/2

}
. (28)

Assuming that rank(X) = n, it can be seen that the
numbers ki(X), i = 1, 2, are well-defined. First, note
that νn(X) ≤ N so that the condition ki(X) ≥ νn(X) is
achievable. Moreover, by considering the trivial partition
(I, Ic) with I = I and Ic = ∅, we see that a possible (the
largest indeed) value for ki(X) is N .
Theorem 10 (Sufficient condition for exact recovery)
Assume rank(X) = n. Then the numbers k1(X) and
k2(X) satisfy

∀θ ∈ R
n, ∀y ∈ R

N
∣∣I0(θ)

∣∣ ≥ min(k1(X), k2(X))

⇒ θ ∈ argmin
w∈Rn

‖φ(w)‖1 (29)

where φ(w) = y − X⊤w. If in addition all the in-
equalities involved in the definition of k1(X) and
k2(X) are strict, then the second part of (29) becomes
argminw∈Rn ‖φ(w)‖1 = {θ}, that is, θ is the unique
minimizer of (8).

PROOF. To prove the first statement, we just need to
show that

min
(
k1(X), k2(X)

)
≥ πo(X). (30)
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Part 1: k1(X) ≥ πo(X).
Define

v0(k) = max
(I,Ic):
|I|=k

max
h∈{±1}|Ic|

min
α∈R|I|

{
‖α‖∞ s. t. XIch = XIα

}

that is, v0(k) corresponds to the left hand side of (19)
(with d replaced by k). By making use of Corollary 7
and the definitions (25) and (27), it is enough to show
that v0(k) ≤ v1(k). For this purpose, let (I, Ic) be an
arbitrary partition of I such that |I| ≥ νn(X). Consider
the problem

min
α∈R|I|

{
‖α‖∞ : XIch = XIα

}
, (31)

where h ∈ {−1,+1}|I
c| but otherwise arbitrary. Let

p∗(h) be the optimal value of problem (31) and pose

α∗(h) = argmin
α∈R|I|

{
‖α‖2 s.t. XIch = XIα

}
.

Since α∗(h) is a feasible point for problem (31), it must
hold that p∗(h) ≤ ‖α∗(h)‖∞. The so-defined α∗(h) is the
well-known least Euclidean-norm solution to an under-
determined system of linear equations [4]; α∗(h) can be
analytically expressed as α∗(h) = X⊤

I (XIX
⊤
I )−1XIch

for all h ∈ {−1,+1}|I
c|. As a consequence,

max
h∈{±1}|Ic|

p∗(h) ≤ max
h∈{±1}|Ic|

∥∥X⊤
I (XIX

⊤
I )−1XIch

∥∥
∞

≤ max
h∈{±1}|Ic|

∥∥X⊤
I (XIX

⊤
I )−1XIc

∥∥
∞

‖h‖∞

=
∥∥X⊤

I (XIX
⊤
I )−1XIc

∥∥
∞

.

The last equality uses ‖h‖∞ = 1. It follows that if
v0(k) ≤ v1(k) hence proving that k1(X) ≥ πo(X).
Part 2: k2(X) ≥ πo(X)
Proceeding from Corollary 7 and the definitions (26) and
(28), we just need to show that

max
(I,Ic):|I|=k

max
η∈Rn

{∥∥X⊤
Icη

∥∥
1
s. t.

∥∥X⊤η
∥∥
1
= 1

}
≤ v2(k).

To this end, set b = X⊤η. Then b ∈ im(X⊤) and η =
(XX⊤)−1Xb. It follows that

max
η∈Rn

{∥∥X⊤
Icη

∥∥
1
s. t.

∥∥X⊤η
∥∥
1
= 1

}

= max
b∈im(X⊤)

{∥∥X⊤
Ic(XX⊤)−1Xb

∥∥
1
s. t. ‖b‖1 = 1

}

≤
∥∥X⊤

Ic(XX⊤)−1X
∥∥
1
.

Taking now the maximum over all partitions (I, Ic) of I,
|I| = d, the result follows.

Uniqueness. This is a straightforward consequence of
Corollary 8. 2

Evaluating numerically k1(X) and k2(X) is still a
combinatorial problem. Next we investigate some over-
estimates of πo(X) which are free from the maximiza-
tion over sets (I, Ic). The new thresholds have the
important advantage of being more easily computable.
Theorem 11 (Another sufficient condition) Assume
that νn(X) ≤ N − 1 and define the following numbers

r(X) = max
k∈I

∣∣xk(XX⊤)−1xk

∣∣ (32)

ξ(X) = max
k∈I

min
γk∈RN−1

{
‖γk‖∞ s. t. xk = X 6=kγk

}
(33)

where X 6=k , XI\{k} is the matrix obtained from X by
removing its k-th column. Then the following statement

is true: ∀p ∈
{

1
r(X) , 1 +

1
ξ(X)

}
,

∀θ ∈ R
n, ∀y ∈ R

N ,
∣∣I0(θ)

∣∣ > N − p

2
⇒ argmin

w∈Rn

‖φ(w)‖1 = {θ} . (34)

PROOF. The proof is decomposed into two cases.
Case 1: p = 1/r(X). From Theorem 10, it is known that∥∥X⊤

Ic(XX⊤)−1X
∥∥
1
< 1/2, Ic = I \ I0(θ), is a sufficient

condition for θ to be the unique minimizer of (8). Now we
use the fact that the 1-norm of a matrix is the maximum
of the 1-norms of its columns:

∥∥X⊤
Ic(XX⊤)−1X

∥∥
1
= max

t=1,...,N

∥∥X⊤
Ic(XX⊤)−1xt

∥∥
1

= max
t=1,...,N

∑

k∈Ic

∣∣x⊤
k (XX⊤)−1xt

∣∣

≤ |Ic| r(X).

Therefore a sufficient condition for θ to be the unique
solution of (8) is that |Ic| r(X) < 1/2. The conclusion
follows immediately.
Case 2: p = 1 + 1/ξ(X).
Since νn(X) ≤ N − 1, each xk, k ∈ I, can be written as
a linear combination of the columns of X 6=k. Let γk ∈
R

N−1 be any vector satisfying xk = X 6=kγk. It follows
that for any η ∈ R

n,

∣∣x⊤
k η

∣∣ ≤
∑

t6=k

|γk,t|
∣∣x⊤

t η
∣∣ ≤ ‖γk‖∞

(∥∥X⊤η
∥∥
1
−
∣∣x⊤

k η
∣∣)

with γk,t denoting the entry of γk ∈ R
N−1 indexed by

t. Since this holds for any γk such that xk = X 6=kγk, it
holds also for

γ⋆
k = argmin

γ∈RN−1

{
‖γ‖∞ s. t. xk = X 6=kγ

}
.
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Hence,

∣∣x⊤
k η

∣∣ ≤ ξ(X)
(∥∥X⊤η

∥∥
1
−
∣∣x⊤

k η
∣∣) ∀k ∈ I, ∀η ∈ R

n

or, equivalently,

∣∣x⊤
k η

∣∣ ≤ ξ(X)

1 + ξ(X)

∥∥X⊤η
∥∥
1

∀k ∈ I, ∀η ∈ R
n.

Summing over the set Ic yields

max
η 6=0

∥∥X⊤
Icη

∥∥
1

‖X⊤η‖1
≤ ξ(X)

1 + ξ(X)
|Ic| (35)

In virtue of (18), it appears that for θ to be the unique

minimizer of (8), it is sufficient that
ξ(X)

1 + ξ(X)
|Ic| < 1/2

from which we see that |Ic| < 1/2(1 + 1/ξ(X)) is a
sufficient condition. 2

It should be noted that the numbers r(X) and ξ(X) de-
fined in (32) and (33) are both computable from matrix
X . r(X) is less expensive to evaluate numerically than
ξ(X) but leads in general to a more pessimistic bound
than ξ(X) on the number of tolerable outliers. Com-
puting ξ(X) literally from the definition (33), for ex-
ample by interior point methods, requires solving about
N linear programs having each a worst-case complexity
bounded by O(

√
N ln(1/ǫ)) where ǫ refers to the preci-

sion demanded [17]. Empirical evidence tend to suggest
that the bound obtained from ξ(X) on the number of
correctable outliers is very close to N − πo(X) (see Sec-
tion 5.4). As it turns out, while the computational com-
plexity (polynomial) of ξ(X) is lower than that of the al-
gorithm developed in [37] for estimating directly πo(X),
it still provides a competitive bound.
Remark 12 ξ(X) can be approximated at a cheaper
computational cost by replacing the infinity norm with

the 2-norm. This provides an over-estimate ξ̂(X) ≥ ξ(X)
defined by

ξ̂(X) = max
k∈I

min
γ∈RN−1

{
‖γ‖2 s. t. xk = X 6=kγ

}

= max
k∈I

∥∥X⊤
6=k(X 6=kX

⊤
6=k)

−1xk

∥∥
2
.

We conclude this section with a few technical remarks
concerning some interesting properties of the numbers
r(X) and ξ(X).
Lemma 13 (Some properties of r(X)) Under the
assumption that νn(X) ≤ N − 1, r(X) and ξ(X) satisfy:

max
{ 1

r(X)
, 1 +

1

ξ(X)

}
≤ N − νn(X) + 1, (36)

N − 1

2r(X)
≥ k2(X) ≥ πo(X). (37)

PROOF. Proof of (36):
First case: 1/r(X) ≤ N − νn(X) + 1 . We know from
the proof of Theorem 11 (see also Part 2 in the proof of
Theorem 10) that

r(X) ≥ 1

|I|
∥∥X⊤

I (XX⊤)−1X
∥∥
1
≥ 1

|I| max
η 6=0

∥∥X⊤
I η

∥∥
1

‖X⊤η‖1

for any I ⊂ I. A special case is when the subset I is a sin-
gleton of the form I = {q}. For any η ∈ R

n, let T (η) =
supp

(
X⊤η

)
=

{
t ∈ I : x⊤

t η 6= 0
}
. When η 6= 0, consider

an index q(η) such that q(η) ∈ argmaxk∈T (η)

∣∣x⊤
k η

∣∣.
Then by applying the above inequality with I = {q(η)},
we get

r(X) ≥ max
η 6=0

∣∣x⊤
q(η)η

∣∣
∥∥X⊤

T (η)η
∥∥
1

≥ max
η 6=0

1∣∣T (η)
∣∣

with
∣∣T (η)

∣∣ standing for the cardinality of T (η). When

η 6= 0, the smallest value
∣∣T (η)

∣∣ can take isN−νn(X)+1
where νn(X) is the number defined by Eq. (6). It can
therefore be concluded that r(X) ≥ 1/(N − νn(X)+ 1).
Second case: 1 + 1/ξ(X) ≤ N − νn(X) + 1. The second
case follows by a similar reasoning as in the first one. In
effect, according to [6], the following equality holds,

min
γk∈RN−1

{
‖γk‖∞ s. t. xk = X 6=kγk

}

= max
η∈Rn

{
x⊤
k η s. t.

∥∥X⊤
6=kη

∥∥
1
= 1

}

= max
η 6=0

{ |x⊤
k η|∥∥X⊤
6=kη

∥∥
1

s. t. x⊤
k η ≥ 0

}
.

For a given η 6= 0, pick q1(η) such that

q1(η) ∈ argmax
k∈I

{
x⊤
k η : x⊤

k η ≥ 0
}
.

By exploiting the equalities above and using the notation
T (η) defined earlier we get that

ξ(X) ≥ max
η 6=0

|x⊤
q1(η)

η|
∥∥X⊤

6=kη
∥∥
1

.

Now the conclusion can be reached by arguing similarly
as in the first case.
Proof of (37): Let (I, Ic) be a partition of I and set
k = N − 1/ (2r(X)). First note that

|I| ≥ k ⇒ |Ic| r(X) ≤ 1/2.
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On the other hand, we know (from the proof of Theorem
11) that

∥∥X⊤
Ic

(
XX⊤

)−1
X
∥∥
1
≤ |Ic| r(X).

It follows that |I| ≥ k ⇒
∥∥X⊤

Ic

(
XX⊤

)−1
X
∥∥
1
≤ 1/2

and hence v2(k) ≤ 1/2. By invoking the definition of
the number k2(X) in (28), it can be concluded that k ≥
k2(X). 2

Remark 14 For any nonsingular matrix T ∈ R
n×n,

r(TX) = r(X), ξ(TX) = ξ(X), ki(TX) = ki(X), i =
1, 2. It follows that the numbers r(X), ξ(X) and ki(X),
i = 1, 2, depend only on the subspace spanned by the rows
of the regressor matrix X.

3 Some implementation aspects

3.1 Enforcing recoverability by iterative re-weighting

The parameter vector θo from the model (1) can be
uniquely recovered by solving the convex problem (8) if
θo satisfies, for example, condition (34) of Theorem 11.
In case this condition is not naturally satisfied, an inter-
esting question is how we can process the data in order
to promote it. In this section we discuss an algorithmic
strategy for enhancing the recoverability of θo by ℓ1 min-
imization. Our discussion is inspired by [9]. The idea is
to solve a sequence of problems of the type (8) with dif-
ferent weights computed iteratively [9,1]. The iterative
scheme can be defined for a fixed number r

max
of itera-

tions as follows. At iteration r = 0, . . . , r
max

, compute

θ(r) = argmin
θ∈Rn

N∑

t=1

w
(r)
t

∣∣yt − θ⊤xt

∣∣ , (38)

with weights defined, for all t, by w
(0)
t = 1/N , and

w
(r)
t =

ξ
(r)
t∑N

t=1 ξ
(r)
t

, if r ≥ 1,

where

ξ
(r)
t =

1∣∣yt − x⊤
t θ

(r−1)
∣∣ + δ

,

with δ > 0 a small number whose role is to prevent di-
vision by zero and r is the iteration number. Note that
there are many other reweighting strategies which can
be used in (38), see e.g., [12,44,22]. Since we are dealing
here with a sequence of convex optimization problems,
they can be numerically implemented using any convex
solver. In particular the CVX software package [18] solves
efficiently this category of problems in a Matlab envi-
ronment.

3.2 On the treatment of the noise {et}
The formulations (4) and (8) are convenient when the
noise {et} is equal to zero. Nevertheless, they are ex-
pected to work in the presence of a moderate amount of

noise. To take explicitly the noise {et} into account, we
propose to compute estimates ê ∈ R

N and ϕ ∈ R
N (of

e and f respectively) by minimizing a cost of the form
‖ê‖22 + λ‖ϕ‖0 under an equality constraint of the form
(1). In other words, we consider the problem

minimize
(θ,ϕ)∈Rn×RN

[1
2

∥∥y −X⊤θ − ϕ
∥∥2

2
+ λ

∥∥ϕ
∥∥
0

]
(39)

and its convex relaxation,

minimize
(θ,ϕ)∈Rn×RN

[1
2

∥∥y −X⊤θ − ϕ
∥∥2
2
+ λ

∥∥ϕ
∥∥
1

]
. (40)

where λ ≥ 0 is a regularization parameter.
Lemma 15 A pair (θ⋆, ϕ⋆) ∈ R

n × R
N solves (40) if

and only if it satisfies

XX⊤θ⋆ −X
(
y − ϕ⋆

)
= 0 (41)

X⊤θ⋆ −
(
y − ϕ⋆

)
= −λs(ϕ⋆), (42)

where s(ϕ⋆) is a vector in R
N whose entries st(ϕ

⋆), t =
1, . . . , N , are defined by: st(ϕ

⋆) = sign(ϕ⋆
t ) if ϕ⋆

t 6= 0 and
st(ϕ

⋆) ∈ [−1, 1] if ϕ⋆
t = 0.

PROOF. Let l(θ, ϕ) =
1

2

∥∥y − X⊤θ − ϕ
∥∥2
2
+ λ

∥∥ϕ
∥∥
1

be the objective function of the problem (40). Then l
is a proper convex function which is differentiable with
respect to variable θ on R

n and admits a subdifferential
at any variable ϕ ∈ R

N . (θ⋆, ϕ⋆) minimizes l(θ, ϕ) iff
0 = ∇θl(θ

⋆, ϕ⋆) and 0 ∈ ∂ϕl(θ
⋆, ϕ⋆). These conditions

translate immediately into XX⊤θ⋆ − X(y − ϕ⋆) = 0
and −

(
y − ϕ⋆ −X⊤θ⋆

)
+ λs(ϕ⋆) = 0, where s(ϕ⋆) ∈

∂ ‖ϕ⋆‖1 is a subgradient of ‖ϕ‖1 at ϕ⋆. 2

It is interesting to note that (41)-(42) imply Xs(ϕ⋆) = 0,
which is very similar to (9). The following lemma char-
acterizes the uniqueness of the solution of (40).
Lemma 16 (Uniqueness of solution to (40)) A
pair (θ⋆, ϕ⋆) is the unique solution to problem (40) if
and only if both of the following statements are true

(i) (θ⋆, ϕ⋆) satisfies conditions (41)-(42) for some s(ϕ⋆) ∈
∂ ‖ϕ⋆‖1

(ii) rank(X) = n and rank(ΨSc) = |Sc|.
Here, Ψ = IN − X⊤(XX⊤)−1X, with IN being the
identity matrix of orderN ,ΨSc is a matrix formed with
the columns of Ψ indexed by Sc defined by Sc = I \ S,
with S = {t ∈ I : |st(ϕ⋆)| < 1}.

The expression of (θ⋆, ϕ⋆) is then given by:

θ⋆ = (XX⊤)−1X
(
y − ϕ⋆

)
, (43)

If |Sc| = 0, then ϕ⋆ = 0, otherwise

ϕ⋆
Sc =

(
Ψ⊤

ScΨSc

)−1
Ψ⊤

Sc

(
Ψy − λs(ϕ⋆)

)
, ϕ⋆

S = 0.
(44)

10



PROOF. l(θ, ϕ) is a quadratic function of θ. For a fixed
ϕ⋆, the minimizer θ⋆ of l(θ, ϕ⋆) is unique if and only if X
has full row rank, i.e., rank(X) = n. The unique value
of θ⋆ is expressed in function of ϕ⋆ by (43). Plugging the
expression (43) of θ⋆ in the objective gives

l̃(ϕ) , l(θ⋆, ϕ) =
1

2
‖Ψy −Ψϕ‖22 + λ ‖ϕ‖1 .

The rest of the proof then boils down to showing that the
minimizer ϕ⋆ of l̃(ϕ) is unique if and only if rank(ΨSc) =
|Sc|. To begin with, let us point out the following (see

also 4 [39]). If ϕ⋆ and ξ⋆ are two minimizers of l̃(ϕ), then
we have necessarily

Ψϕ⋆ = Ψξ⋆ (45)

s(ϕ⋆) = s(ξ⋆). (46)

The relation (45) follows from the strict convexity of l̃(ϕ)
as a function of Ψϕ. In effect, by changing the optimiza-

tion variable into δ = Ψϕ, l̃(ϕ) becomes 1
2 ‖Ψy − δ‖22 +

λ
∥∥Ψ†δ + v

∥∥
1
, with v a vector in ker(Ψ) and † referring

to generalized inverse. This last function is strictly con-
vex with respect to δ. As a consequence, its minimizer is
unique and equal to δ⋆ = Ψϕ⋆. To see why the relation
(46) holds, plug the expression (43) of θ⋆ into (42). We
get λs(ϕ⋆) = Ψy−Ψϕ⋆. Combining this with (45) (i.e.,
the uniqueness of Ψϕ⋆) yields immediately (46).
Let us examine first the case where |Sc| = 0. This is
indeed equivalent to S = I and so, ϕ⋆ = 0. Would there
exist another minimizer ξ⋆ of l̃(ϕ), it should obey (46),
which implies that ξ⋆ is necessarily equal to zero.
Now consider the case |Sc| > 0.
Sufficiency. Assume that rank(ΨSc) = |Sc|. As argued

above, any two minimizers ϕ⋆ and ξ⋆ of l̃(ϕ) obey (45)-
(46). From (46) we get that S ⊂ {t ∈ I : ξ⋆t = 0}, which
implies that Sc ⊃ supp(ξ⋆). As a consequence, we can
write (45) in the following reduced form ΨSc(ϕ⋆

Sc −
ξ⋆Sc) = 0. With rank(ΨSc) = |Sc|, this implies that

ϕ⋆ = ξ⋆ and that the minimizer of l̃(ϕ) is unique.
Necessity. Assume that rank(ΨSc) < |Sc|. Consider a
nonzero vector η ∈ R

N such that ηS = 0 and ηSc ∈
ker(ΨSc). Let η1 = νη, with ν 6= 0. It is straightforward
to verify that Ψϕ⋆ = Ψ(ϕ⋆ + η1). Note that ν can be
chosen sufficiently small such that ϕ⋆

t and ϕ⋆
t + η1,t have

the same sign whenever ϕ⋆
t 6= 0. Following a similar

path as in the proof of Theorem 4, we can establish that
s(ϕ⋆) = s(ϕ⋆ + η1). Finally, with Ψϕ⋆ = Ψ(ϕ⋆ + η1),
s(ϕ⋆) = s(ϕ⋆ + η1) and the fact that ϕ⋆ is an optimal
solution (hence satisfying (42)), it is easy to check that
ϕ⋆+η1 also satisfies (42). By Lemma 15, ϕ⋆+η1 (6= ϕ⋆)
solves (40). Hence, the solution is not unique.

4 It is to be noted that the analysis in [39] provides only a
sufficient condition.

Derivation of Eqs (43)-(44). These relations result from
simple rearrangements of (41)-(42). 2

From Lemma 16, it appears that the true vector f can
be found by problem (40) if and only if there is a vector

θ̂ ∈ R
n such that (θ̂,f) satisfies the conditions (i)-(ii)

of Lemma 16. In particular, (θ̂,f) must satisfy (42). A
necessary condition for this is thatΨe = λs(f). And this
implies that the regularization parameter must verify
λ ≥ ‖Ψe‖∞ when f = 0, and λ = ‖Ψe‖∞ when f 6= 0.
Note further that if e = 0 and f 6= 0, then λ must be
equal to zero! However, if λ is set to zero in (40), then
the solution set is

{
(θ, ϕ) : θ = (XX⊤)−1X(y − ϕ), ϕ ∈ y + im(X⊤)

}
.

Since this set contains infinitely many elements, we con-
clude that it is unlikely to get exactly the true f by solv-
ing (40) irrespective of the value of the regularization
parameter λ.
In any case, the estimation error can be bounded as fol-
lows.
Proposition 17 Assume that the conditions of Lemma
16 are satisfied and denote with (θ⋆, ϕ⋆) the solution to
problem (40). Then

‖θ⋆ − θo‖2 ≤ (K1ε+λK2)+K1M

√
|J ∩ I

c(θo)|
|J | (47)

where ε = maxt∈I |et|, M = maxt∈I |ft|,

K1 = max
|J|≥νn(X)

√
|J |

∥∥(XX⊤)−1(In + EJ + 2E2
J + E3

J )XJ

∥∥
2

(48)

K2 = max
|J|≥νn(X)

√
|J |

∥∥(XJX
⊤
J )−1XJ

∥∥
2

(49)

with EJ =
(
XJcX⊤

Jc

) (
XJX

⊤
J

)−1
, J ⊂ I. In (47) In

is the identity matrix of order n ; the set J denotes the
maximizing argument of (48) and I

c(θo) = I \ I0(θo).

PROOF. The idea of the proof consists in deriving first
an expression of θ⋆ − θo and then working out a bound
on its norm. From (43) and the data model (1), we have

θ⋆ = (XX⊤)−1X
(
X⊤θo + e+ f − ϕ⋆

)

This, by noting that ϕ⋆
S = 0, can be written as

(XX⊤) (θ⋆ − θo) = XS (eS + fS)+XSc (eSc + fSc − ϕ⋆
Sc)

Using formula (44) and manipulating a little, we arrive
at

(XX⊤) (θ⋆ − θo) =[
XS −XSc(Ψ⊤

ScΨSc)−1Ψ⊤
ScΨS

]
(eS + fS)

+ λXSc(Ψ⊤
ScΨSc)−1Ψ⊤

Scs(ϕ⋆).
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Further calculations using the Woodbury’s matrix iden-
tity and exploiting the relation Xs(ϕ⋆) = 0, yield

(XX⊤) (θ⋆ − θo) =
(
In + ES + 2E2

S + E3
S

)
XS (eS + fS)

− λ (I + ES)XSs(ϕ
⋆
S)

with ES =
(
XScX⊤

Sc

) (
XSX

⊤
S

)−1
. The result fol-

lows by multiplying with (XX⊤)−1, remarking that

(XX⊤)−1 =
(
XSX

⊤
S

)−1
(In + ES)

−1 and taking the
euclidean norm.

It is interesting to notice that the numbers K1, K2 and
|J | depend solely on the data matrix X . Moreover, when
the sequence {ft} contains only a few nonzero elements
(but otherwise arbitrarily large), the last term in (47)
is likely to vanish. As a consequence, even though the
bound M can be large in principle, the bound on the
estimation error can be kept at a reasonable level.

4 Extension to multivariable systems

We consider now the multivariable analogue of model
(1) written in the form

yt = Aoxt + ft + et, (50)

where yt ∈ R
m is the output vector at time t, {ft} ⊂

R
m is the sequence of errors, {et} ⊂ R

m is the noise
sequence, Ao ∈ R

m×n is the parameter matrix.
The question of interest is how to recover the matrix Ao

from measurements corrupted by a vector sequence of
sparse errors {ft}. The sparse optimization approach is
still applicable to this case, that is, we can formulate the
estimation problem as

minimize
A∈Rm×n

∣∣∣
{
t : yt −Axt 6= 0

}∣∣∣ (51)

with | · | standing for cardinality. It can be easily verified
that Theorem 3 applies to (51) as well.
The convex relaxation takes the form of a nonsmooth
optimization with a cost functional consisting of a sum-
of-norms of errors [29,11],

minimize
A∈Rm×n

N∑

t=1

‖yt −Axt‖2 (52)

with ‖·‖2 referring to the Euclidean norm.
Theorem 18 A matrix A⋆ ∈ R

m×n solves the sum-of-
norms problem (52), if and only if any of the following
equivalent statements holds:
T1. There exists a sequence of vectors {βt}t∈I0(A⋆) ⊂

B2(0, 1) such that

∑

t/∈I0(A⋆)

v⋆t x
⊤
t +

∑

t∈I0(A⋆)

βtx
⊤
t = 0, (53)

where v⋆t = (yt − A⋆xt)/ ‖yt −A⋆xt‖2. Here,
B2(0, 1) ⊂ R

m is the Euclidean unit ball of Rm.
T2. For any matrix Λ ∈ R

m×n,

∣∣∣
∑

t/∈I0(A⋆)

v⋆t
⊤Λxt

∣∣∣ ≤
∑

t∈I0(A⋆)

∥∥Λxt

∥∥
2
. (54)

T3. The optimal value of the problem

min
Z∈Rm×p

‖Z‖2,∞ subject to V ⋆X⊤
Ic(A⋆) = ZX⊤

I0(A⋆)

(55)
p =

∣∣I0(A⋆)
∣∣ and V ⋆ being a matrix formed with the

unit 2-norm vectors v⋆t , for t ∈ I \ I0(A⋆),
is smaller than 1.

Moreover, the solution A⋆ is unique if and only if any of
the following assertions is true:
T1’. (53) holds and rank(XT ) = n where T ={

t ∈ I
0(A⋆) : ‖βt‖2 < 1

}
.

T2’. (54) holds with strict inequality symbol for all Λ ∈
R

m×n, Λ 6= 0.

PROOF. The proof is similar to that of Theorem 4. It
is therefore omitted here.

It is interesting to note that based on Theorem 18, the
analysis carried out in the previous sections can be eas-
ily generalized to the multivariable case. In particular,
Proposition 6 and Theorems 10-11 can be restated for
the multivariable model (50) with only some slight mod-
ifications. For illustration purpose, we just state below
the multivariable counterpart of Corollary 7.
Corollary 19 Let d be an integer. Then the following
three statements are equivalent.
(j)

∀ A ∈ R
m×n, ∀Y ∈ R

m×N ,
∣∣I0 (A)

∣∣ ≥ d

⇒ A ∈ argmin
W∈Rm×n

‖Y −WX‖2,col (56)

(jj)

max
(I,Ic):
|I|=d

max
Λ∈Rm×n

{
‖ΛXIc‖2,col s. t. ‖ΛX‖2,col = 1

}
≤ 1/2

(57)
(jjj)

max
(I,Ic):
|I|=d

max
V ∈Bm×|Ic|

min
Z∈Rm×|I|

{
‖Z‖2,∞ s. t.

XIcV ⊤ = XIZ
⊤
}
≤ 1

(58)

with B
m×q =

{[
b1 · · · bq

]
∈ R

m×q, bi ∈ B2(0, 1)
}
.

PROOF. The proof is similar to that of Corollary 7.
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(jj) ⇔ (jjj) : We exploit the equivalence between (54)
and (55). First by letting I = I

0(A⋆), Ic = I
c(A⋆), VIc

be a matrix collecting all the vectors v⋆t ∈ B
m, t ∈ Ic,

(54) can equivalently be written as

max
Λ∈Rm×n

[∣∣ tr
(
V ⊤
IcΛXIc

)∣∣+ ‖ΛXIc‖2,col s. t. ‖ΛX‖2,col = 1
]

≤ 1

Maximizing over all the sets (I, Ic) satisfying |I| = d and
over all V ∈ B

m×|Ic| yields (57) after remarking that
maxVIc∈Bm×|Ic|

∣∣ tr
(
V ⊤
IcΛXIc

)∣∣ = ‖ΛXIc‖2,col. Proceed-

ing similarly from (55), yields (58). Hence (jj) ⇔ (jjj).
(j) ⇔ (jj) : By Theorem 18 and the first part of the
proof, any matrix A with

∣∣I0(A)
∣∣ = d minimizes the ob-

jective ‖Y −WX‖2,col (with variable W ) if and only if

(57) holds. The conclusion is obtained by observing that

max
(I,Ic):
|I|=d

max
Λ∈Rm×n

{
‖ΛXIc‖2,col s. t. ‖ΛX‖2,col = 1

}

is decreasing as a function of d. 2

An analogue of Corollary 8 can be obtained similarly. It
is interesting to note that the statement (34) of Theorem
11 holds unchanged in the multivariable case with p =
ξ(X).
Remark 20 (Geometric median) In the special case
where n = 1, the matrix Ao in (50) reduces to a vector
ao ∈ R

m. Assuming xt = 1 for all t, the problem (52)
then becomes

minimize
a∈Rm

N∑

t=1

‖y(t)− a‖2 . (59)

This is the so-called geometric median problem.
By applying (54), we can see that ao solves (59) if
|I0(ao)|/N ≥ 1/2.

5 Numerical illustration

5.1 Static models subject to intermittent gross errors

In our first experiment we consider static linear and
affine models of the form (1) with n = 4 and N = 500.
The affine model refers to the case where the regressor
xt has the form xt = [x̃⊤

t 1]⊤. The goal is to estimate
the probability of exact recovery of the true parame-
ter vector by problem (8) in function of the number of
nonzero elements in the sequence {ft}. For this purpose,
the noise {et} is set to zero. The nonzero elements of {ft}
are drawn from a Gaussian distribution with mean 100
and variance 10002. For each level of sparsity (i.e., pro-
portion of nonzeros), a Monte Carlo simulation of size
100 is carried out with randomly generated static/affine
models and 500 data samples at each run. Repeating this
for four situations (linear/affine and linear/affine with
positive ft’s), we obtain the results depicted in Figure 1.

We observe that in the linear case, problem (8) provides
the true parameter vector when the output is affected
by up to 80% of nonzero gross errors. This is because
the data {xt} which were sampled from a Gaussian dis-
tribution are very generic. In the case of affine models,
the performance is a little less good. If we set all ft’s to
have the same sign, then as suggested by condition (15),
the percentage of outliers that can be corrected by the
optimization problem (8) cannot exceed 50%.

5.2 Static models with both noise and gross errors

Consider now the case of static models of the form (1)
in the presence of both {et} and {ft} sampled from
Gaussian distributions N (0, σ2

e) and N (100, 10002) re-
spectively. The variance σ2

e is selected so as to achieve
a certain signal to noise ratio before the gross error
sequence is added to the output. Again, by carrying
out a Monte-Carlo simulation of size 100 with differ-
ent sparsity levels and randomly generated models at
each run, we obtain the average errors plotted in Fig-
ure 2. It turns out that the results returned by prob-
lems (8) and (40) with λ = 0.10 are almost the same for
an SNR in {10 dB, 20 dB}. The performance can be as-
sessed by comparing with an "oracle" estimate i.e., the
least squares estimate one would obtain if the locations
of zeros in the sequence {ft} were known. The results in
Figure 2 tend to suggest that the proposed approach per-
forms very well. For the current numerical experiment,
our results are very close to the ideal estimate when the
proportion of nonzeros is less than 70%.

5.3 Dynamic linear models subject to sensor intermit-
tent faults

In the case when (1) represents a dynamic ARX model
subject to gross errors, it can be observed (see Fig. 3)
that the probabilities of exact recovery are much smaller
than in the static case studied in Section 5.1. This dif-
ference is related to the richness (or genericity) of the
regression vectors (columns of X) involved in each case.
In the static example above, the vectors {xt} are freely
sampled in any direction of Rn by following a Gaussian
distribution. In the dynamic system case however, the
data vectors {xt} constructed as in (3) are constrained
to lie on a manifold. As a result, the data matrix X gen-
erated by the dynamic system is less generic. According
to conditions of the paper, and (34) in particular, there
is a threshold depending on the richness of the data such
that exact recovery is guaranteed whenever the number
of zero entries in f is larger than this threshold. So, the
more generic the data contained in X are, the more out-
liers can be removed by problem (8). Note that the lack
of sufficient genericity can be compensated (to some ex-
tent) by implementing the iterative sparsity enhancing
technique (ℓ1 reweighted algorithm) described in Section
3.1. This leads, for only two iterations, to significantly
improved results as represented in Figure 4.

5.4 Numerical evaluation of sufficient bounds

This subsection presents a numerical evaluation of the
estimates of number of outliers that can be corrected
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(a) Linear static model

10 20 30 40 50 60 70 80 90 100
0

0.25

0.5

0.75

1

Proportion of nonzeros [%]

P
ro

ba
bi

lit
y 

of
 e

xa
ct

 re
co

ve
ry

 

 

affine
affine:f≥ 0

(b) Affine static model

Figure 1. Estimates of probabilities of exact recovery when noise {et} is equal to zero. From a numerical point of view, the

recovery is said to be exact if
∥

∥θ̂ − θo
∥

∥

2
≤ 10−5 and inexact otherwise, with θ̂ being the estimated parameter vector.
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(a) Static model: SNR = 20 dB
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(b) Static model: SNR = 10 dB

Figure 2. Average relative estimation error versus sparsity level.
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(a) Linear dynamic model

10 20 30 40 50 60 70 80 90 100
0

0.25

0.5

0.75

1

Proportion of nonzeros [%]

Pr
ob

ab
ilit

y 
of

 e
xa

ct
 re

co
ve

ry

 

 

affine dynamic
affine dynamic:f≥ 0

(b) Affine dynamic model

Figure 3. Estimates of probabilities of exact recovery when noise {et} is equal to zero. Results of a Monte-Carlo simulation of
size 100 with randomly generated linear ARX systems of order na = nb = 2.
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Figure 4. Estimates of probabilities of exact recovery by
reweigthed ℓ1 minimization when noise {et} is equal to
zero. Results of a Monte-Carlo simulation of size 100
with randomly generated linear ARX systems with orders
na = nb = 2.

by the nonsmooth optimization-based estimator. Note
that the numbers ki(X), i = 1, 2 from Theorem 10
are hard to compute numerically because this would
require a combinatorial optimization. To be more spe-
cific, the complexity of evaluating literally ki(X), i =

1, 2, is about
∑ki(X)

k=1

(
N
k

)
Ci(N,n, k) where

(
N
k

)
refers to

the binomial coefficient, C1(N,n, k) = O
(
n3 + kn(N +

2n− k)
)

and C2(N,n, k) = O
(
(n2 + nN)(N + n − k)

)

denote the complexity induced by the computation of
‖X⊤

I (XIX
⊤
I )−1XIc‖∞ and ‖X⊤

Ic(XX⊤)−1X‖1 respec-
tively with I and Ic being some sets such that |I| = k ≤
N and |Ic| = N − k.
Therefore we just compare those bounds which are easier
to compute. More specifically, four thresholds are com-
pared:
• The bounds 1/(2r(X)) and 1/2+1/(2ξ(X)) obtained

in Theorem 11.
• The mutual coherence-basedbound 1/2 (1 + 1/µ(PX))

with PX = IN − X⊤
(
XX⊤

)−1
X obtained in [5,1].

Here µ represents the so-called mutual coherence.
• The bound T (X) [37] which is used as a reference

since it corresponds indeed to a direct computation of
N − πo(X) + 1 (assuming the inequality in (18) is re-
placed with a strict one), see Eq. (24). Recall that com-
puting such a bound has a combinatorial complexity
in the dimensions (n,N) of the matrix X . Therefore,
to make it feasible at a reasonable time on a standard
computer, we have to set n = 2 and N ≤ 200.

Figure 5 compares the sufficient thresholds in the case of
static data drawn from a Gaussian distribution N (0, I3).
Figure 6 compares the same thresholds for dynamic data
in the form (3). The generating system in this case is an
ARX model defined by yt = −0.40yt−1 − 0.15ut−1 and
driven by a normally distributed input sequence. In all
cases, the data matrix X is normalized so as to have unit
‖·‖ΣX

-norm columns before being processed. Here, the

norm ‖·‖ΣX
is defined by ‖x‖ΣX

= (x⊤Σ−1
X x)1/2 with

ΣX = XX⊤. The plots in Figure 5 and Figure 6 draw

the average values obtained over 100 independent runs
in term of percentage with respect to the total number
of data. The results suggest three interesting facts :
• All the bounds are very loose that is, they largely

underestimate the number of admissible gross errors.
For example Figure 1 shows that exact recovery can
be achieved in the face a relatively large proportion
(more than 70%) of corrupted data while the sufficient
bounds in Figure 5 indicate a value around 20. This
is normal since the bounds reflect worst-case distri-
butions of the outliers and their signs (see Theorem 4
and Corollary 7).

• The bound based on ξ(X) approaches the bound T (X)
[37] while still enjoying less numerical complexity. The
other bounds based respectively on mutual-coherence
and r(X) are overall very close. These two last bounds
seem to be more sensitive to the richness of the data
and probably to their magnitudes also. This fact is
more apparent when the data are not normalized.

• As could be intuitively expected, the dynamic data
generated by a linear system are less generic. The
bounds obtained in this case are smaller. The ques-
tion as to which type of dynamic system can generate
more generic data is open.
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Figure 5. Comparison of sufficient bounds on the number of
gross errors for exact recovery : static data drawn from a
Gaussian distribution.

Comparison of execution times. Evaluating the r-
based and µ-based bounds defined above is clearly very
cheap as compared to the two other bounds. Therefore
we shall only compare the execution times for the bounds
T (X) [37] and 1/2(1+1/ξ(X)) (see Theorem 11) forX ∈
R

n×N . This is done by measuring the average time over
10 runs. 5 The results reported in Table 1 show that for a

5 The computation is performed in a Matlab environment
(version 2013a,64-bit), on a computer equipped with a pro-
cessor Intel(R) Core(TM) i7-3630QM CPU@2.4Ghz, RAM
16Go. Only 10 runs have been considered because the com-
putation time for T (X) grows very quickly beyond the ca-
pacity of the computer. Indeed T (X) is computed only once
when n = 5 because the algorithm takes too long to com-
plete (about 2 hours for each run in this case). Note that
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Figure 6. Comparison of sufficient bounds on the number of
gross errors for exact recovery : dynamic data generated by
an ARX model.

given numberN of data points, the computation time for
the algorithm in [37] is small forn ≤ 3 but grows very fast
(at a combinatorial rate) when n increases. In contrast,
the cost associated with the evaluation of the ξ-based
bound grows only at a logarithmic rate. This numerical
experiment confirms that the proposed ξ-based bound
is algorithmically cheaper to compute than T (X). For
example, for X ∈ R

5×200 (see last column of Table 1),
computing T (X) takes nearly 2 hours while the ξ-based
bound derived in the current paper is obtained in less
than 27 seconds.

n 2 3 4 5

T (X) [sec.] 0.02 1.40 101.82 5.62× 103

ξ-based [sec.] 22.70 24.56 25.44 26.80

Table 1
Empirical comparison of the numerical complexities associ-
ated with evaluating T (X) [37] and the ξ-based bound (see
Theorem 11) in term of execution times. Here the number
N of data points is fixed and equal to 200.

6 Conclusion

In this paper we have discussed the potential of nons-
mooth convex optimization for addressing the problem
of robust estimation. Considering in particular the prob-
lem of inferring an unknown parameter vector from mea-
surements which are subject to possibly large gross er-
rors, we have shown that an exact recovery is possible
regardless of the number of gross errors provided cer-
tain conditions of genericity hold. Then we investigated
worst-case conditions which depend solely on the num-
ber of gross errors affecting the data. Necessary and suf-
ficient conditions have been derived in this case. Since
such conditions are numerically expensive to test di-
rectly, we have relaxed them into some sufficient but rel-
atively tight conditions for exact recovery. Simulations

what matters in this experiment is not the numerical values
of the execution times but the trend they exhibit.

results reveal that the proposed worst-case conditions
for exact recovery are somewhat pessimistic when com-
pared to the potential of the nonsmooth estimator in
practice. Concerning the identification problem, future
work will consider the problem of designing the excita-
tion of a dynamic system so as to achieve such strong
genericity properties on the regressor matrix.
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