
A DECOMPOSITION METHOD FOR LARGE SCALE MILPS, WITH

PERFORMANCE GUARANTEES AND A POWER SYSTEM APPLICATION

ROBIN VUJANIC, PEYMAN MOHAJERIN ESFAHANI, PAUL GOULART, SÉBASTIEN MARIÉTHOZ,
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Abstract. Lagrangian duality in mixed integer optimization is a useful framework for prob-
lems decomposition and for producing tight lower bounds to the optimal objective, but in

contrast to the convex counterpart, it is generally unable to produce optimal solutions directly.
In fact, solutions recovered from the dual may be not only suboptimal, but even infeasible.

In this paper we concentrate on large scale mixed–integer programs with a specific structure

that is of practical interest, as it appears in a variety of application domains such as power
systems or supply chain management. We propose a solution method for these structures, in

which the primal problem is modified in a certain way, guaranteeing that the solutions pro-

duced by the corresponding dual are feasible for the original unmodified primal problem. The
modification is simple to implement and the method is amenable to distributed computations.

We also demonstrate that the quality of the solutions recovered using our procedure improves

as the problem size increases, making it particularly useful for large scale instances for which
commercial solvers are inadequate. We illustrate the efficacy of our method with extensive

experimentations on a problem stemming from power systems.

1. Introduction

In this paper we investigate mixed-integer optimization problems in the form
minimize

x

∑
i∈I

c>i xi

subject to
∑
i∈I

Hixi ≤ b
xi ∈ Xi ∀i ∈ I.

(P)

We refer to b ∈ Rm as the resource vector, and to the sets Xi as the subsystems. We assume that
each of the sets Xi is a non-empty, compact, mixed-integer polyhedral set that can be written
as

Xi =
{
x ∈ Rri × Zzi

∣∣ Aix ≤ di} ,
with Ai ∈ Rmi×ni and di ∈ Rmi . We further assume that the problem P is feasible and that the
total number of subsystems |I| is greater than the length m of the resource vector. Our principal
interest is in large-scale optimization problems, i.e. those for which |I| � m, while remaining
finite.

Problem P can be viewed generically as modeling any problem for which a large number of
subproblems defined on the domains Xi, whose description can include integer variables, are
coupled through a small number of complicating constraints

∑
i∈I Hixi ≤ b. These coupling

constraints determine the limits on the available resources to be shared among the subsystems.
Simple examples of problems in this form include classical combinatorial programs such as the
multidimensional knapsack problem, in which Xi = {0, 1}, and ci ≥ 0, Hi ≥ 0 [WHS08].
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More complicated instances of problems in the form P, with more detailed models for the
subsystems Xi, arise in a variety of contexts. In power systems, scheduling operations of power
generation plants [Yam04] is a decision problem in which the subsystems are the generating
units, integer variables in the local models arise due to, e.g., start-up and shut-down costs,
and the coupling constraints are related to the requirement that generation must match load.
In supply chain management, models fitting P appear in the problem of partial shipments
[DGT06, VEGM14b]. Portfolio optimization for small investors, for which mixed-integer models
have been proposed, is another example application [BT13]. Finally, some sparse problems
that do not naturally possess the structure of P can be reformulated to fit our framework by
appropriately permuting rows and columns of the constraints matrix; [BCF+11] proposes a
method to automate this procedure.

A direct solution of P is typically problematic when the problem is very large, since the problem
amounts to a mixed-integer linear program of possibly very large size. As a result, the Lagrange
dual of P is often taken as a useful alternative, because the resulting dual problem is separable in
the subsystems despite the presence of the complicating constraints. When this dual problem is
solved by an iterative method, e.g. using the subgradient method [Ber99], a candidate (primal)
solution to P can be computed at each iteration.

One of the major drawbacks of this approach is that, for problems affected by a non-zero duality
gap such as P, any guarantee about the properties of these candidate primal solutions is lost.
Even at the dual optimal solution, the associated candidate primal solutions may be suboptimal
and can even be infeasible.

The principal goal of this paper is to propose a new solution method for problem P that preserves
the attractive features of solution via the Lagrange dual, while at the same time protecting the
recovered primal solutions from infeasibilty.

Literature. Lagrangian relaxation for mixed integer programs was first introduced by [HK70],
and many of its theoretical properties were described in [Geo74]. Properties of the inner solutions
in the convex case are well known [Roc97, Thm. 28.1]. It is also well known that in general
these properties are lost in the mixed-integer case [Ber99, Section 5.5.3]. Because of this, primal
recovery methods based on Lagrangian duality are often two-phase schemes in which an infeasible
solution is found through duality in the first stage, and in the second stage it is rectified into a
feasible one using heuristics, see, e.g., [BLSP83, RC99].

Duality for problems specifically in the form P has been studied at least as early as in [AE76],
where some of its special features were first characterized. In particular, it was noted that the
duality gap for this program structure decreases in relative terms as the problem increases in
size, as measured by the cardinality of I. We will show that the mechanism behind this vanishing
gap effect can also be used to recover “good” primal solutions for the mixed-integer program P
directly from the dual, in a way that resembles the convex (zero gap) case.

In practical applications, this behaviour of the duality gap has been observed in [BLSP83] in the
context of unit commitments for power systems. In this case it is exploited in an algorithm that
provides solutions to the extended master problem, but no connection to the solutions of the inner
problem is provided. It also appears in the multistage stochastic integer programming literature
[BD96, CS99], where it is used to gauge the strength of the Lagrangian relaxation, but in which
no relations to primal solutions are drawn. Another domain in which diminishing gap has been
used is in communications, more precisely in optimization of multicarrier communication systems
[YL06]. However, in this case non-convexity is in the objective function rather than due to the
presence of integer variables.
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Current Contribution. In this paper we further investigate duality for programs structured
as P and focus on the primal solutions recovered at the dual optimum.

• We provide a new relation between the optimizers of a convexified form of P and the
solutions obtained from the dual problem. This relation holds under mild conditions
that are commonly satisfied in practice.

• In light of this relation, we propose a new solution method that is guaranteed to produce
feasible solutions.

• We also provide a performance bound of the solutions recovered, which indicates that
their quality improves as the problem size increases. For particular structures, arising
e.g. from underlying physical networks, we refine our theoretical results to improve the
performance of the method.

From a practical point of view, we note that our proposed procedure is straightforward to
implement and is amenable to distributed computations. The performance bound indicates that
the method is particularly attractive for the larger problem instances, for which generic purpose
solvers may be inadequate. We show that the theoretical results are effective in practice via
extensive numerical experiments on difficult problems stemming from the field of power systems
control. Our method substantially outperforms commercial solvers on these problems. The
limitations of the proposed method, as well as ideas to mitigate them, are also discussed in the
paper.

Structure of the Paper. The paper is structured as follows: in Section 2 we review some of
the known results concerning duality for the specific structure of P, and we provide a new result
related to the primal solutions recovered from the dual. In Section 3 we propose a new method
for primal solution recovery, and provide performance bounds for these solutions. We also give
some results on how to further improve the solutions’ quality in some special cases. In Section
4 we verify the efficacy of our proposed method on a difficult optimization problem stemming
from power systems, and in Section 5 we conclude the paper.

Notation. Given some optimization problem A, we denote with J?A its optimal objective and
with JA(x) the performance of the solution x with respect to the objective of A. For a given set
X, we denote by conv(X) its convex hull and by vert(X) the set of vertices of conv(X). With
“≥” we always intend component-wise inequalities (between vectors or matrices), and with ⊗ we
indicate the cartesian product of sets. The support of a vector supp(x) is the set of indexes of
the non-zero elements: supp(x) = {i : xi 6= 0}, while (x)+ is the projection of x onto the positive
orthant, i.e., (x)+ .

= max(0, x). For the specific structure of P, we use the overbar symbol to
indicate quantities related to the contracted version of P, as introduced in Section 3. Thus, for
instance, P is the contracted form of P and D is its dual. We use parenthesis to avoid confusing
the sub- and superscripts, e.g., we denote by (xP)i the part of xP related to subproblem i ∈ I
of problem P. Finally, we use the superscript Hk to denote the k–th row of matrix H.

2. Duality for Problem P

Consider the dual function d : Rm → R of problem P, defined as

d(λ)
.
= min
x∈X

(∑
i∈I

c>i xi + λ>(
∑
i∈I

Hixi − b)
)
,

3



Decomposition of Large Scale MILPs, with Performance Guarantees & Power System Application

and then associate to this function the optimization problem{
sup
λ
−λ>b+

∑
i∈I

min
xi∈Xi

(
c>i xi + λ>Hixi

)
s.t. λ ≥ 0.

(D)

We call D the dual problem of P, and we refer collectively to the minimizations within D, i.e.,

min
xi∈Xi

(
c>i xi + λ>Hixi

)
, (1)

as the inner problem. There is substantial practical interest in understanding the properties
of the solutions to the inner problem (1) because they are obtained by solving |I| independent
(and lower dimensional) minimization problems, in contrast to the single large coupled problem
P. Additionally, they are usually obtained as by-products of methods used to solve D (e.g. the
subgradient method). These solutions, in particular those attained at the vertices of conv(Xi),
are the central object of this paper:

Definition 2.1 (inner problem solutions). For a given multiplier λ ≥ 0, the set Xi(λ) ⊆ Rni is
defined as the set of inner solutions that are attained at the vertices of Xi, i.e.

Xi(λ)
.
= vert(Xi) ∩ arg min

xi∈Xi

(
c>i xi + λ>Hixi

)
. (2)

Furthermore, we denote by x(λ) any selection from the set X (λ), and refer to it as an inner
solution.

Fact 2.2. The sets Xi(λ), i ∈ I, are non-empty for any λ ≥ 0.

Proof. See Appendix A.1. �

2.1. Bound on Duality Gap. For a general mixed integer linear program, the inner solutions
x(λ?) ∈ X (λ?), in which λ? is an optimizer of D, do not possess any “nice” property in general:
they can be non-unique, suboptimal and even infeasible. In this paper we show that inner
solutions for programs structured specifically as P do acquire some useful properties. Informally
speaking, these additional properties arise mainly from the fact that, as P grows in size, it tends
to closely approximate a convex program. One known result of this is that the duality gap
between P and D vanishes, in relative terms, as |I| increases.

Theorem 2.3 (bound on duality gap). Assume that for any xi ∈ conv(Xi), there exists an
x̃i ∈ Xi such that Hix̃i ≤ Hixi. Then

J?P − J?D ≤ m ·max
i∈I

γi, γi
.
= max
xi∈Xi

c>i xi − min
xi∈Xi

c>i xi. (3)

In consideration of Theorem 2.3, let |I| increase, while m remains constant and the sets {Xi}i∈I
are uniformly bounded. If J?P increases linearly with |I|, then

J?P − J?D
J?P

→ 0 as |I| → ∞. (4)

An early proof of this result appears in [AE76], while a more recent version is in [Ber96, Prop.
5.26, p. 374]. The same result also holds for more general problems; see [Ber09, Prop. 5.7.4, p.
223].

Note that while Theorem 2.3 ensures the existence of a primal feasible solution satisfying the
performance bound (3), it does not provide an algorithmic way to produce it. Furthermore,
the assumption required by Theorem 2.3 is restrictive; an example that does not fulfil this
assumption is discussed in Section 4, see Remark 4.1. In this work we lift this assumption, at
the cost of conservatism and thus performance of the solutions recovered.
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2.2. Geometric Properties of the Inner Solutions x(λ?). Here we present a new connection
between the inner solutions x(λ?) and the optimizers of the following optimization program

minimize
x

∑
i∈I

c>i xi

subject to
∑
i∈I

Hixi ≤ b
xi ∈ conv(Xi) ∀i ∈ I,

(PLP)

which amounts to a linear program. We denote by J?PLP
its optimal value, and by x?LP one of

its optimizers. The relaxation PLP plays a central role in Lagrangian duality for mixed integer
programs; it is in fact well known that PLP satisfies the (non-obvious) relation J?PLP

= J?D
[Geo74, Thm. 1b, p.87]. Accordingly, PLP is often used to gain insight into the strength of
the relaxation, i.e., the tightness of the lower bounds to J?P provided by the Lagrangian dual.
While in most practical cases one cannot solve PLP directly since an explicit description of the
polyhedral sets conv(Xi) is required, column generation techniques construct approximations
of PLP [BJN+98, DL05, Van05]. It must be further emphasized that even though PLP is a
relaxation of P and is a linear program, it does not coincide with the standard linear relaxation
in which the integrality constraints on the discrete variables are relaxed to intervals. In fact,
PLP is usually tighter; see [Geo74, Thm. 1a].

In consideration of the Shapley–Folkman–Starr theorem [AE76, p.233], one can expect the ver-
tices of the convexified problem PLP to have “structure”, i.e. for (x?LP)i to belong to Xi for
at least |I| − m − 1 subproblems, and (x?LP)i ∈ conv(Xi) for the remaining m + 1 ones, see
[VEGM14b, Thm. 1]. This number can be improved to |I| − m using an argument based on
simplex tableaus instead of the Shapley–Folkman–Starr theorem. We use this tighter version
here, and in the following new result, the crucial technical theorem of the paper, we extend it by
establishing that the subproblems for which (x?LP)i ∈ Xi also “freeze” the corresponding inner
solutions xi(λ

?).

Assumption 2.4 (uniqueness for PLP and D). The programs PLP and D have unique solutions
x?LP and λ?, respectively.

Theorem 2.5 (relation between x?LP and x(λ?)). Under Assumption 2.4, the solutions x?LP and
x(λ?) differ in at most m subproblem components, for any selection of x(λ?) ∈ X (λ?). That is,
for all x(λ?) ∈ X (λ?) there exists I1 ⊆ I, with |I1| ≥ |I| −m, such that xi(λ

?) = (x?LP)i.

Proof. See Appendix A.2. �

Assumption 2.4 concerns two linear programs (see program Dlp in Section A.2 for the LP version
of D). Uniqueness of primal and dual optimizers in the linear programming case is discussed in
[Man79], where necessary and sufficient conditions are provided. There are degenerate cases in
which this assumption may fail, in particular when the problem’s data is affected by a high degree
of symmetry. These cases, however, can always be avoided by adding negligible perturbations
to the cost and resource vectors.

Furthermore, note that while the structural properties of x?LP appeared in the literature [BLSP83,
Ber09, VEGM14b], the contribution here is to ensure that, under Assumption 2.4, these advan-
tageous properties are transferred to the inner solutions x(λ?). This is of substantial practical
interest, because it is the inner solutions that one has direct access to when solving the dual.
In the following we provide an analytical example that further illustrates the significance of
Theorem 2.5. It also includes a counterexample, showing how the desired assertion may fail in
absence of Assumption 2.4.
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X1 X2 X3 X4

c1 c2 c3 c4

Figure 1. Illustration of the sets Xi in Example 2.6.

Example 2.6. Suppose we have to minimize
∑4
i=1 cixi

s.t.
∑4
i=1Hixi ≤ 11.1

xi ∈ Xi i = 1, . . . , 4

(5)

and Xi =
{
x ∈ Z2

+ | Aixi ≤ di
}

with

A1 =

[
0 1
1 1

]
d1 =

[
1.2
2.1

]
c1 = [1, 1] H1 = [1, 1]

A2 =

[
0 1
1 0

]
d2 =

[
0.6
2.1

]
c2 = [−2, 1] H2 = [5, 1]

A3 =

[
1 0
−0.5 1

]
d3 =

[
2.2
1.1

]
c3 = [0.5,−1] H3 = [1, 1]

A4 =

[
1 0
0 1

]
d4 =

[
1.2
2

]
c4 = [−3, 0.5] H4 = [1, 1],

see Figure 1. Relaxing the constraint
∑4
i=1Hixi ≤ 11.1 in this problem leads to the dual function

d(λ) =


−8 + 0.9λ 0 ≤ λ ≤ 2/5
−4− 8.9λ 2/5 < λ ≤ 1
−3− 9.9λ 1 < λ ≤ 3
−10.9λ λ > 3,

so that the dual optimizer is λ∗ = 2/5, and d(λ?) = J?D = −7.64, while the primal optimal
objective is J?P = −7 (note the duality gap). The corresponding sets of inner solutions are,
according to (2),

X1(λ?) =

{[
0
0

]}
X2(λ?) =

{[
0
0

]
,

[
2
0

]}
X3(λ?) =

{[
0
1

]}
X4(λ?) =

{[
1
0

]}
.

On the other hand, x?LP is unique and is given by

(x?LP)1 =

[
0
0

]
(x?LP)2 =

[
1.82

0

]
(x?LP)3 =

[
0
1

]
(x?LP)4 =

[
1
0

]
.

Notice how the relationship xi(λ
?) = (x?LP)i holds for i ∈ {1, 3, 4} = I1, and that the cardinality

of |I1| satisfies |I1| ≥ |I| −m = 4− 1 = 3. The validity of Theorem 2.5 is thus verified.
6



R. Vujanic, P. Mohajerin Esfahani, P. Goulart, S. Mariéthoz and M. Morari

On the other hand, to see how the Theorem may fail in absence of Assumption 2.4, consider
again problem (5), but now with b = 6 and with the subsystems determined by

Ai =

[
1 0
0 1

]
di =

[
3.2
1.4

]
ci = [−1, 1] Hi = [1, 1]

for i = 1, . . . , 4. Notice that all the subsystems are identical, hence the problem is highly sym-
metric. The dual function in this case is

d(λ) =

{
−12 + 6λ 0 ≤ λ ≤ 1
−6λ λ > 1,

and the unique dual optimizer is λ? = 1. However, x?LP is not unique. For example

(x̄?LP)1 =

[
0.7
0

]
(x̄?LP)2 =

[
1.6
0

]
(x̄?LP)3 =

[
0.6
0

]
(x̄?LP)4 =

[
3.1
0

]
and

(x̄?LP)1 =

[
2
0

]
(x̄?LP)2 =

[
2
0

]
(x̄?LP)3 =

[
2
0

]
(x̄?LP)4 =

[
0
0

]
are both valid optimizers of PLP. Assumption 2.4 is therefore not fulfilled. The sets of inner
solutions are

Xi(λ̄?) =

{[
0
0

]
,

[
3
0

]}
, i = 1, . . . , 4,

and the relationship of Theorem 2.5 is violated.

Remark 2.7 (nonlinear extension). Theorem 2.5 holds even when the objective and the coupling
constraints functions are concave. This is immediate by noticing that, in either case, local
solutions are found at the vertices of Xi, according to a more general version of the Fundamental
Theorem of Linear Programming, see [Ber09, Prop. 2.4.2]. The passage (A.1) in the proof of
Lemma 2.2 remains unchanged, and the proof of Theorem 2.5 follows verbatim.

3. A Distributed Solution Method for P

Informally speaking, Theorem 2.5 says that the inner solutions x(λ?) nearly coincide with those
of x?LP, with the cardinality of their difference bounded by m, i.e., the dimension of the coupling
constraint. Since x?LP is feasible with respect to the coupling constraints and attains a better
objective than J?P , one can expect the solutions obtained from solving the dual to be nearly
feasible and to attain good objective values. In this section we exploit this result to propose a
method aimed at obtaining “good” feasible solutions to problem P in a distributed fashion.

3.1. Contraction of the Resources. Our proposed method is to contract the resources vector
b by an appropriate amount, which is determined by the results of the previous section. We show
that any inner solution recovered at the dual optimum λ? of the contracted problem is a feasible
solution for P. We also provide a performance bound for these solutions, which indicates that
their quality improves with increasing problem size.

Consider the following modified version of problem P
minimize

∑
i∈I

c>i xi

subject to
∑
i∈I

Hixi ≤ b̄
xi ∈ Xi ∀i ∈ I.

(P)

7
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The resource vector b has been contracted to b̄
.
= b−ρ, where the k-th element of the contraction

ρ ∈ Rm is given by

ρk = m ·max
i∈I

(
max
xi∈Xi

Hk
i xi − min

xi∈Xi

Hk
i xi

)
, (6)

where Hk
i is the k-th row of Hi. Correspondingly, we introduce the problems PLP and D, defined

similarly to PLP and D, replacing the resource vector b with b̄. We next establish that the primal
solutions recovered from the dual of P are feasible for P.

Theorem 3.1 (feasible solutions). If Assumption 2.4 holds for the programs PLP and D, then
any selection x(λ̄?) ∈ X (λ̄?) is feasible for P, where λ̄? is the optimal solution of D.

Proof. See Appendix A.3. �

The method is easy to implement because the amount of contraction required usually necessitates
only simple computations1, and these can be carried out in a distributed fashion. Furthermore,
for the solution of the dual problem well established methods exist (e.g., the subgradient method)
and they can be directly applied here.

The critical assumption of Theorem 3.1 is that the resources available should be sufficiently
abundant, such that the problem remains feasible after the contraction has been applied. In
Section 3.2 we discuss practical cases in which it is possible to safely decrease the necessary
resource reduction.

In the next Theorem we assess the performance of the solutions x(λ̄?). In order to obtain an
explicit bound, we first make the following assumption.

Assumption 3.2 (Slater point with increasing slack). There exist ζ > 0 and x̂i ∈ conv(Xi) for
all i ∈ I such that ∑

i∈I
Hix̂i ≤ b̄− ζ|I|1. (7)

Theorem 3.3 (performance guarantee). Suppose that the programs PLP and D satisfy Assump-
tion 2.4 and Assumption 3.2 holds. Then any solution x(λ̄?) ∈ X (λ̄?) recovered satisfies

JP(x(λ̄?))− J?P ≤ (m+ ‖ρ‖∞/ζ) ·max
i∈I

γi, (8)

where γi and ρ are as defined in (3) and (6), respectively.

Proof. See Appendix A.4. �

In view of Theorem 3.3, if the sets {Xi}i∈I are uniformly bounded and J?P grows linearly in
terms of |I|, then

J(x(λ̄?))− J?P
J?P

→ 0 as |I| → ∞. (9)

Accordingly, the quality of the solutions recovered increases the larger the problem becomes, as
the optimality gap decreases at a “1/|I|” rate. In Section 3.3 we will discuss Assumption 3.2
and show this asymptotic behavior can be expected even in the absence of a Slater point.

1Dual methods are most useful when the computation of the inner solutions is substantially easier than
the coupled system. To compute the contraction, however, we have to perform maximizations of the form
maxxi∈Xi

Hk
i xi, which for mixed integer problems are not necessarily as easy as minimizations over the same

feasible set.

8
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Subsystems

H =

A

B

C

D

E

F

7 13 14 19 2320 24 28− − − −
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Figure 2. (a) block structure considered in Theorem 3.4; hatched boxes in-
dicate non-zero submatrices, while the dashed box contains the submatrix
[Hi]i∈Ik . (b) an example network that would give rise to such a block structured
H. In this illustrative Figure there are 28 subsystems, and 6 sets of coupling
constraints determined by constraints on the network links A–F.

Theorem 3.1 and 3.3 provide a systematic way to produce solutions that are guaranteed to be
feasible and that satisfy the performance bound (8). This bound resembles (3), where the addi-
tional term “‖ρ‖∞/ζ” may be viewed as the price to ensure feasibility and to lift the assumption
required by Theorem 2.3.

3.2. Reducing Conservatism. The contraction proposed in Theorem 3.1 can be interpreted
as a robustification of problem P toward alterations of m local solutions xi. In this section we
take a closer look at the coupling constraints matrix H

.
=
[
H1, H2, . . . ,H|I|

]
and discuss some

special cases in which its structure can be exploited to safely reduce the necessary contraction.

Suppose that the matrix H has block structure, as depicted in Figure 2(a). As illustrated,
we introduce the set Ik as the index set of the subsystems contributing to the k-th coupling
constraint, i.e., for which Hk

i 6= 0. We furthermore define the submatrix [Hi]i∈Ik , obtained by
collecting the columns of H related to the subsystems in Ik.

Such a block structured H may arise in applications in which the resources present a hierarchical
structure, or when the optimization is over tree or tree-star networks, as shown on Figure 2(b).
In this case, the uniform contraction proposed in Theorem 3.1 can be safely reduced.

Theorem 3.4 (refinement for block structure). Theorem 3.1 holds with the contraction (6)
substituted by

ρk = rank([Hi]i∈Ik) ·max
i∈Ik

(
max
xi∈Xi

Hk
i xi − min

xi∈Xi

Hk
i xi

)
. (10)

Proof. See Appendix A.5. �

This theorem implies, as a special case, that we can generally substitute m with rank(H) in (6),
independently of whether the problem has block structure. This is important when the vectors
determining the coupling constraints are linearly dependent. An example exploiting this result
is discussed in Section 4.

9
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Furthermore, instead of immunizing against rank([Hi]i∈Ik) times the largest subproblem budget
consumption change, it is sufficient to immunize against the rank([Hi]i∈Ik) largest ones, i.e.,

Remark 3.5. The contraction (6) can be safely substituted by

ρk = max
Ĩ⊆Ik

|Ĩ|=rank([Hi]i∈Ik
)

∑
i∈Ĩ

max
xi∈Xi

Hk
i xi − min

xi∈Xi

Hk
i xi

 . (11)

Finally, an important subclass of problems for which we can suppress the necessary contraction
to ρ = 0 is the following.

Remark 3.6. If Hixi ≥ 0 for all xi ∈ Xi, and 0 ∈ Xi, then one can obtain the same performance
bound as in (8) while setting ρ = 0, and a feasible solution can be recovered by setting xi(λ

?) = 0
for at most m subsystem solutions.

This is for instance the case for the (multidimensional) knapsack problem and some of its variants.
Namely, a feasible solution is obtained by removing at most m items from the knapsacks.

3.3. Further Discussion on the Performance Bound. One of the key factors contributing
to the optimality gap identified in Theorem 3.3 is the performance loss due to the contraction
ρ, determined by [J?PLP

− J?PLP
]; see the proof of Theorem 3.3, in particular the term (ii), in

Section A.4. In Theorem 3.3, Assumption 3.2 allows us to establish an explicit bound on this
term. Here we show that this performance loss can be characterized by the data of only m
subsystems, which explains why one may expect a behavior for the optimality gap similar to (9)
even in the absence of Assumption 3.2.

Proposition 3.7. Consider the perturbed version of the program PLP
minimize

∑
i∈I

c>i xi

subject to
∑
i∈I

Hixi ≤ b+ ε1

xi ∈ conv(Xi) i ∈ I,
(PLP(ε))

whose optimal value is denoted by J?PLP
(ε). Let Di

.
= (Xi, Hi, ci) be the tuple representing the

data of the ith subsystem, where the sets Xi are all compact. Then, there exist a partition
I = I1 ∪ I2 and a constant L(I2)

.
= L

(
(Di)i∈I2

)
, only depending on the data of subsystems

indexed by I2, such that |I2| ≤ m and

0 ≤ J?PLP
(0)− J?PLP

(ε) ≤ L(I2)ε, ∀ε ∈ R+.

Proof. The proof, along with some preliminaries, is in Appendix A.6. �

This result allows us to provide the following performance bound on the optimality gap for the
recovered solutions.

Theorem 3.8 (performance without Slater). Suppose the programs PLP and D satisfy Assump-
tion 2.4. Then, any solution x(λ̄?) ∈ X (λ̄?) recovered satisfies

JP(x(λ̄?))− J?P ≤ m ·max
i∈I

γi + max
I2⊂I
|I2|≤m

L(I2) · ‖ρ‖∞ (12)

where γi and ρ are as defined in (3) and (6), respectively, and L(I2) is the constant determined
by subsystems indexed by I2 as introduced in Proposition 3.7.

10
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The proof of Theorem 3.8 essentially follows the same analysis of Section A.4. In light of this
theorem, it is then clear that if {γi}i∈I and {L(I2)}I2⊂I are uniformly bounded, and J?P grows
linearly with |I|, we reach the same conclusion on the optimality gap behavior as in (9). These
uniform bounds are satisfied if the diversity of the subsystems added to the problem, when we
increase its size, is limited.

4. Application Example: Charging of Plug-in Electric Vehicles (PEVs)

We consider a fleet of |I| Plug-in (Hybrid) Electric Vehicles (PEVs) that must be charged by
drawing power from the same electricity distribution network. As the number of PEVs increases,
it becomes necessary to manage their charging pattern in order to avoid excessive stresses on
the lines and transformers of the network. The role of interfacing the fleet of PEVs with the
network operators is taken over by a so-called aggregator.

In this Section we take the perspective of such an aggregator. Its control task is to assign
charging slots to each individual PEV under its jurisdiction. The charging schedules have to
be compatible with the local requirements (e.g., a desired final state of charge SoC), as well as
global, network wide constraints.

4.1. Model. We will only consider the problem of establishing a feasible overnight charging
schedule, since this is this period when most charging will occur [Sio12]. We will also assume
that at the time when the schedule is to be decided (e.g., midnight), all PEVs are connected and
their local charging requirements (initial and final required SoC) have been communicated to the
aggregator. Both of these assumptions can be easily relaxed by buffering newly connected PEVs,
and recomputing every 20 minutes a charging schedule with the new population information,
in a receding horizon fashion similar to [DGLC12]. Further, we assume that charging can be
interrupted and resumed, but in order to avoid excessive switching, once charging starts it must
continue for at least 20 minutes. This is a reasonable way of charging Lithion-Ion batteries, the
most common in PEVs, because they do not present memory effect [Rie95]. Non-interruptible
charging is not discussed here as it is uncommon in practice, but those applications for which it
may be necessary (e.g., Nickel-Cadmium batteries) can be readily incorporated in our proposed
framework with an appropriate design of the local constraints. We thus split the overnight period
in intervals of 20 minutes each, and assume that the aggregator has authority to flag, for each
individual PEV, the available charging time slots.

For each PEV i ∈ I, charging at the time step k is allowed when ui[k] = 1, otherwise ui[k] = 0.
We will also consider as a separate case the situation in which discharging (or vehicle-to-grid
V2G) is possible. Then, the discharge requests are modelled using vi[k] ∈ {0, 1}. Charging and
discharging rates Pi are assumed to be constant, as done in [DGLC12, CH11, KH12, GTL12,
VEGM14a] and reflecting the charging station protocol IEC 618512.

The objective of the aggregator is to maximize the profit while satisfying the local charging
requirements of each individual PEV and the network constraints, which are established by the
network operator. The optimization problem model we work with is as follows.

• Subsystems model. The subsystems controlled are the PEVs batteries. Battery’s i
charge level is denoted by ei[k], its initial state of charge is Einit

i , which by the end of

2This is particularly true in case of stations with low power ratings. More generally, smart charging stations
compatible with the IEC 61851 standard could operate in a semi-continuous fashion, i.e., with a minimum current

output when charging, that can be then modulated in a certain band. This requirement results in disjunctive

models of the corresponding subsystems, which requires discrete variables and thus fits our proposed framework.
However we do not consider this aspect in the model.

11
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the charging period has to attain at least Eref
i . The charging conversion efficiency is

ζui
.
= 1 − ζi, while the discharging efficiency is ζvi

.
= 1 + ζi

3. We denote by Emin
i and

Emax
i the battery’s capacity limits. We thus have

ei[0] = Einit
i (13a)

ei[k + 1] = ei[k] + Pi∆T
(
ζui ui[k]− ζvi vi[k]

)
(13b)

ei[N ] ≥ Eref
i (13c)

Emin
i ≤ ei[k] ≤ Emax

i (13d)

ui[k] + vi[k] ≤ 1 (13e)

ui, vi ∈ {0, 1}N . (13f)

Condition (13e) removes the possibility of charging and discharging simultaneously.

• Coupling constraints. Within a distribution system, network congestions typically
occur on the lines departing from the substation, since the power flow at that point is
the sum of all the power loads in the network, and thus largest [LSA11]. We therefore
model congestion avoidance as a limit on the global aggregate charging and discharging
power flow,

Pmin[k] ≤
∑
i∈I

Pi(ui[k]− vi[k]) ≤ Pmax[k]. (14)

In cases when other network points are susceptible to congestions, similar coupling con-
straints have to be added, in which the sum is over a smaller subset of PEVs. Then
Theorem 3.4 can be used to limit the necessary contraction.

• Objective function. The objective function encodes the cost the aggegator incurs to
charge its fleet,

minimize
uu,vi

∑
i∈I

N−1∑
k=0

Pi · (Cu[k]ui[k]− Cv[k]vi[k]) (15)

where Cu and Cv are, respectively, the price vector for electricity consumption and
injection. We allow for time varying and possibly different charging and discharging
prices. In the simulations we assume a 10% markup on injection pricing, i.e., Cv =
1.1 ·Cu, which the system operator pays to the aggregator in order to incentivize PEVs
to make the V2G functionality available.

We can write the complete optimization program (13a)–(15) as
minimize

e,u,v

∑
i∈I

Pi (Cu · ui − Cv · vi)
subject to Pmin ≤ ∑

i∈I
Pi(ui − vi) ≤ Pmax

(ei, ui, vi) ∈ Xi

(16)

with

Xi =


eiui
vi

 ∈ RN × Z2N

∣∣∣∣∣∣Eq. (13a)− (13f)

 . (17)

Remark 4.1. Note that the assumption in Theorem 2.3 does not apply to this model. To
see this, we consider the charge–only case. According to (16), Hixi = Piui, and a fractional
xi ∈ conv(Xi) implies that in at least one time step, charge is happening at a partial rate. To

3The discharging efficiency must be greater than 1. This correctly encodes the fact that the amount of energy
fed back to the network is smaller than the battery’s energy content decrease.
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rectify it, one has to either increase it to the fixed charge rate or decrease it to 0. In the latter
case it may however be necessary to increase charging at another time step, in order to satisfy
the energy requirement of the EV (13c). Since any such rectification will cause an increase of
resources used at some time, the assumption cannot be met.

4.2. Solution Method. We apply the method proposed in Theorem 3.1 to problem (16), which
we consider under two different scenarios: in the first, only charging is allowed (v = 0), while in
the second, both charging and V2G controls are enabled. This allows us to illustrate how the
method can be adapted in two cases in which the combinatorial structure of the subsystems is
substantially different.

In both cases, the number of coupling constraints is 2N . However, since these are box constraints,
in consideration of Remark 3.4 we can reduce this number to N . Hence, the necessary contrac-
tions introduced in (6), for the charge only scenario and the case in which V2G is available, are,
respectively,

ρV2G = N ·max
i∈I

(maxPi(ui − vi)−minPi(ui − vi))
= 2N ·max

i∈I
Pi

ρcharge = N ·max
i∈I

Pi.

(18)

Dualizing the complicating constraints leads to the dual problem

sup
λ,µ

∑
i∈I

min
(ei,ui,vi)∈Xi

Pi ((Cu + δui − λ+ µ)ui − (Cv + δvi − λ+ µ)vi)

+
(
λP̄min − µP̄max

)
s.t. λ, µ ≥ 0,

(19)

in which λ[k] is the dual variable associated with the lower power rating constraint P̄min[k]
.
=

Pmin[k] + ρ, and µ[k] is the variable for P̄max[k]
.
= Pmax[k] − ρ. We note that the cost vector

for the subsystems is highly symmetric – every PEV receives the same price profile. In order to
ensure that Assumption 2.4 is satisfied, we introduce small additive perturbation terms δui and
δvi to the costs Cu and, respectively, Cv.

For the outer (maximization) problem in (19) we use a subgradient method [AW09] with a
constant stepsize rule, which we decrease every 20− 30 iterations.

The inner (minimization) problem, on the other hand, is decomposed into |I| decoupled sub-
problems which are optimal control problems of 1-dimensional systems. For the sole charging
case, the optimal local strategy can be proven to be greedy4: the least number of charging steps
is performed, and those are selected at times of ”lowest local prices” (i.e., taking into account
λ and µ as well). The local optimizations are thus computationally inexpensive in this case.
For the V2G case, on the other hand, the optimal charging and discharging strategy is not as
immediate, so it must be solved either as a generic optimization problem, or by applying the
Dynamic Programming (DP) algorithm, see e.g [Ber05, p.23]. In our tests we apply DP.

4.3. Simulation Setup. We compare the performance of our proposed method with the results
provided by CPLEX 12.5. For each fleet size considered, we generate 10 random instances based
on the parameters provided in Table 1 in Appendix B. In order to ensure a fair comparison,
since CPLEX is generally unable to find exact solutions to the model (16), we first run our
proposed algorithm on each problem instance, record the optimality gap (we get a tight lower
bound for free as a by-product of our method), and then run CPLEX up to the same optimality
gap. Furthermore, the perturbation δi is added to the objective function, and the perturbed

4Optimality of greedy can be shown using a Dynamic Programming argument, but since it is straightforward
we omit it for brevity.
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Figure 3. Optimality gap of the solutions recovered using the proposed method.

problem is the one on which we deploy both our method as well CPLEX. This ensures that both
methods are exposed to exactly the same problem. All our tests are performed on a Desktop
PC with 8GB of RAM and a 3.10 GHz processor.

4.4. Results. Figure 3 illustrates the optimality gap of the recovered solutions (min, max and
average). The asymptotic behaviour (9) is confirmed.

Solution times are shown on Figure 4. Owing to the greedy subproblem structure when only
charging is allowed (discussed in the previous Section 4.2), computation times in this case are fast:
using our method, the largest instances are consistently solved within 5 seconds, see Figure 4(a).
CPLEX is comparably fast. Figure 4(b) shows solve times when the discharging functionality is
enabled. V2G introduces a much more complicated combinatorial subproblem structure – the
optimal local control is not greedy anymore. In this case solution via CPLEX is impractical,
because solve times are generally long and affected by substantial variances. For the case with
500 PEVs, solution times vary from 15 minutes to 4 and a half hours, and up to 6 hours on the
two instances that CPLEX wasn’t able to solve before running out of memory. Our proposed
method has the advantage of providing consistent solution times across different instances, and
the solution times substantially outperfom CPLEX also on those instances in which CPLEX
provides a solution at all. It should be emphasized that the computations are carried out on a
single processor, so that solve times can be reduced substantially by exploiting parallelism.

Figure 5(a) and 5(b) show the typical convergence behavior for the dual objective and the
coupling constraints violations. Note that inner solutions are feasible starting from iteration
∼ 120, while one may have interrupted the dual method already at iteration ∼ 60 given the dual
objective behaviour.

Finally, Figure 6 depicts the local charging behaviour of one individual PEV. Charge and dis-
charge control signals, as well as the evolution of the SoC are shown. The desired final state of
charge is achieved by the end of the charging period.

The numeric values of these results are reported in the Appendix, see Table 2 for the charge-only
experiments, and Table 3 for the results with V2G.
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Figure 4. Solve times.
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Figure 5. Dual function value and feasibility violations at each iteration.
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5. Conclusion

We have provided new results concerning the primal solutions recovered from lagrangian duals
of problems structured as P. These results are of direct practical interest, in particular if one
wishes to distribute the computational burden of calculating solutions to very large instances of
such mixed integer programs. The strength of our results lies in the generality of Xi, which can
include very sophisticated local models and therefore accommodate a large variety of practical
applications.

It appears that many solution approaches can be derived from the result given in Theorem
2.5; the one we propose in Section P is amenable to distributed computations and is simple
to implement. It is also independent of the method used to solve the dual. Depending on the
method chosen, convergence results could also be derived. One can for instance deploy the
scheme exposed in [AW09] together with our contraction method to recover an optimizer x?LP

of PLP . According to Theorem 2.5, this solution is known to satisfy integrality for at least
|I| − m subsystems. The non-integral components can be resolved by performing at most m
local optimizations, neglecting the coupling constraints. Owing to the contraction, the resulting
solution retains feasibility, and satisfies performance bounds similar to (8).

A. Appendix: Proofs

A.1. Proof of Fact 2.2.

Proof. Due to the linearity of the objective function and the definition of the set Xi, it is
straightforward to observe that

min
xi∈Xi

(c>i + λ>Hi)xi = min
xi∈conv(Xi)

(c>i + λ>Hi)xi

= min
xi∈vert(Xi)

(c>i + λ>Hi)xi.
(A.1)

Thus, the desired assertion readily follows from the fact that Xi are non-empty. �

A.2. Proof of Theorem 2.5.

Proof. Let us introduce two new LPs that are crucial for our subsequent analysis. First, we
denote by xji the j-th element of vert(Xi) for j ∈ Ji where Ji = {1, . . . , | vert(Xi)|}. In view of
(A.1), one can derive an LP version of the program D as maximize

λ
−λ>b+

∑
i∈I

min
j∈Ji

(
c>i x

j
i + λ>Hix

j
i

)
subject to λ ≥ 0,

which can then be cast as the LP
maximize

λ,z,s
−λ>b+

∑
i∈I

zi

subject to zi = c>i x
j
i + λ>Hix

j
i − sji i ∈ I, j ∈ Ji

sji ≥ 0 i ∈ I, j ∈ Ji
λ ≥ 0,

(Dlp)
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where sji is the slack variable, and zi corresponds to the inner problem min
j∈Ji

(c>i x
j
i +λ>Hix

j
i ). The

second LP is the dual program of Dlp described as

minimize
p

∑
i∈I

∑
j∈Ji

pji c
>
i x

j
i

subject to
∑
i∈I

∑
j∈Ji

pjiHix
j
i ≤ b∑

j∈Ji
pji = 1 i ∈ I

pji ≥ 0 i ∈ I, j ∈ Ji,

(Plp)

where pji ∈ [0, 1] is the scalar optimization variable associated to the vertex xji . Let us denote
by p? an optimizer of Plp. Note that Plp corresponds to an extended LP version of PLP, yet
they are not entirely equivalent problems. In particular, each p? leads to a unique x?LP, but the
reverse does not hold, i.e., uniqueness of x?LP does not imply uniqueness of p?. We split the proof
of the theorem by proving the following steps:

(a) Let I1 ⊂ I be a subset of indices where (x?LP)i ∈ vert(Xi) for all i ∈ I1. Then, (x?LP)i
is an optimizer of the inner problem, i.e., (x?LP)i ∈ argmin

xi∈Xi

(c>i x + λ?>Hix) where λ? is an

optimizer of D.

(b) Let (λ?, z?, s?) be an optimal solution of Dlp and p? be an optimal solution of Plp with the
corresponding optimizer x?LP for P. If the optimal pair (p?, s?) is strictly complementary,
then (x?LP)i = xi(λ

?) for all i in the subset I1 as defined in (a).

(c) If x?LP is a vertex for the program P, then the subset I1 in (a) can be selected such that
|I1| ≥ |I| −m.

Before proceeding with the proofs of the above results, let us highlight how the desired assertion,
under the unique primal and dual optimizers, follows from these three steps. First, note that if
the optimal solution of D is unique, then (λ?, z?, s?) is the unique solution to Dlp: λ? coincides
for D and Dlp according to [Geo74, p. 89]; z? is the optimal objective of the i-th inner problem,

and is thus uniquely determined for fixed λ; and finally (s?)ji is also uniquely determined by
the equality constraints in Dlp, in which it is the only variable left undetermined. Therefore, s?

always belongs to the pair (p?, s?) of primal-dual optimizers for which strict complementarity
holds; the existence of such pair is guaranteed in the LP setting [Gre94, Thm. 2.1]. Moreover,
if x?LP is unique, then it is always a vertex. Hence, the requirements of the above results are
fulfilled and the theorem assertion is concluded.

Proof of (a): Let (x?LP)i ∈ vert(Xi). Then, owing to the uniqueness of x?LP, for any solution p?

of Plp we have (p?)̂i = 1 for the corresponding ̂ ∈ Ji. Therefore, by complementary slackness,

the dual optimizer has (s?)̂i = 0, and the step (a) follows by

z?i = c>i (x?LP)i + λ?>Hi(x
?
LP)i ≤ c>i x

j
i + λ?>Hix

j
i , ∀j ∈ Ji. (A.2)

Proof of (b): Let i ∈ I1 and, as explained in the proof of (a), (p?)̂i = 1 for the corresponding

̂ ∈ Ji. In light of the equality constraint
∑
j∈Ji p

j
i = 1, we have (p?)

j
i = 0 for all j 6= ̂. The

assumed strict complementarity now implies (s?)ji 6= 0 for all j 6= ̂, which leads to a strict

inequality in (A.2). Hence, the inner problem minxi∈Xi
(c>i x+ λ?>Hix) has the unique solution

xi(λ
?). Now the desired assertion follows from the step (a).

Proof of (c): Problem Plp has m inequality constraints (b ∈ Rm) and |I| equality constraints,

plus the positivity constraints on pji . We can add slack variables to the complicating constraints
thus obtaining a problem with |I|+m equality constraints and positivity constraints on all the
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optimization variables, which are now the slacks q ∈ Rm+ and the variables pji . The constraints

of Plp can therefore be rewritten as H(p>, q>)> = (b>, 1 . . . , 1)>, p, q ≥ 0, where the matrix H,
is defined as

H =


H1x

1
1 · · · H1x

J1
1 · · · H|I|x

1
|I| · · · H|I|x

J|I|
|I| Im×m

1 · · · 1 · · · 0 · · · 0 0
...

. . .
...

...

︸ ︷︷ ︸
H1

0 · · · 0 · · · ︸ ︷︷ ︸
H|I|

1 · · · 1 0

 (A.3)

in which we have also defined the submatrices Hi, i ∈ I. It is well known (see [Ber09, Prop. 2.1.4
(b)]) that for a problem in this form any feasible point is a vertex if and only if the columns of
H corresponding to the non-zero coordinates of the point are linearly independent. This is then
true for any optimal vertex. Thus, supp(p?) ≤ |I| + m, as the number of rows of H is |I| + m.

On the other hand, the constraint
∑
j∈Ji p

j
i = 1, i ∈ I in Plp forces any feasible solution to have

at least one variable pji larger than zero for each i ∈ I, i.e. supp(p?) ≥ |I|. It thus follows that at
least |I| −m entries must be set to 1 at any feasible vertex solution, including an optimal one.

�

A.3. Proof of Theorem 3.1.

Proof. Note that by construction x(λ̄?) ∈ X (λ̄?) for all i ∈ I. Then, it only suffices to show∑
i∈I Hixi(λ̄

?) ≤ b. By virtue of Theorem 2.5, we know that there exists a subset I1 ⊂ I such

that |I1| ≥ |I| −m and xi(λ̄
?) = (x̄?LP)i. Setting I2 = I \ I1, we have∑

i∈I
Hixi(λ̄

?) =
∑
i∈I1

Hixi(λ̄
?) +

∑
i∈I2

Hixi(λ̄
?)

=
∑
i∈I1

Hi(x̄
?
LP)i +

∑
i∈I2

Hixi(λ̄
?)

=
∑
i∈I

Hi(x̄
?
LP)i︸ ︷︷ ︸

≤b̄

+
∑
i∈I2

(
Hixi(λ̄

?)−Hi(x̄
?
LP)i

)
︸ ︷︷ ︸

≤ρ

≤ b.

�

A.4. Proof of Theorem 3.3.

Proof. Note that

JP(x(λ̄?))− J?P =
[
JP(x(λ̄?))− J?PLP

]
︸ ︷︷ ︸

(i)

+
[
J?PLP

− J?PLP

]
︸ ︷︷ ︸

(ii)

+
[
J?PLP

− J?P
]︸ ︷︷ ︸

(iii)

,

where each term can be bounded as follows:

(i) According to Theorem 2.5, there exists an index set I1 with |I1| ≥ |I| −m such that, for
all i ∈ I1, (x̄?LP)i = xi(λ̄

?). Defining I2
.
= I \ I1, we have

JP(x(λ̄?))− JP(x̄?LP) =
∑
i∈I2

(
c>i xi(λ̄

?)− c>i (x̄?LP)i
)

18



R. Vujanic, P. Mohajerin Esfahani, P. Goulart, S. Mariéthoz and M. Morari

≤ m ·max
i∈I

(
max
xi∈Xi

c>i xi − min
xi∈Xi

c>i xi
)

= mmax
i∈I

γi.

(ii) By virtue of [NO09, Lemma 1], given the Slater’s point x̂ we can bound ‖λ̄?‖1 by

‖λ?‖1 ≤
1

ζ|I|

(∑
i∈I

c>i x̂i −
(∑
i∈I

min
xi∈Xi

(
c>i + λHi

)
xi

)
− λ>b

)
,

∀λ ≥ 0.

Setting λ = 0 in the above, we arrive at

‖λ?‖1 ≤
1

ζ
max
i∈I

γi, γi
.
= max
xi∈Xi

c>i xi − min
xi∈Xi

c>i xi.

In light of perturbation theory [BV04, Sec. 5.6.2], one can bound the term (ii) from above
by (λ̄?)>ρ, where λ̄? is the optimizer of the program D and ρ is the contraction vector as
defined in (6). Thus,

J?PLP
− J?PLP

≤ (λ̄?)>ρ ≤ ‖λ̄?‖1‖ρ‖∞ ≤
‖ρ‖∞
ζ

max
i∈I

γi.

(iii) By definition, PLP is a relaxed version of P. Hence J?PLP
− J?P ≤ 0.

�

A.5. Proof of Theorem 3.4. For a given x(λ?) ∈ X (λ?), let us introduce Ĩ =
{
i ∈ I | (x?LP)i 6= xi(λ

?)
}

.
For the k-th complicating constraint we then have∑

i∈I
Hk
i xi(λ

?) =
∑
i∈I\Ĩ

Hk
i (x?LP)i +

∑
i∈Ĩ

Hk
i xi(λ

?)

≤ b+
∑
i∈Ĩ

Hk
i (xi(λ

?)− (x?LP)i)

= b+
∑

i∈Ĩ∩Ik

Hk
i (xi(λ

?)− (x?LP)i)

≤ b+ |Ĩ ∩ Ik| ·max
i∈Ik

(
max
xi∈Xi

Hk
i xi − min

xi∈Xi

Hk
i xi

)
In order to get a bound on |Ĩ ∩ Ik|, we resort again to the program Plp. We know that, under
Assumption 2.4, xi(λ

?) 6= (x?LP)i if and only if (x?LP)i /∈ vert(Xi), as shown in Appendix A.2.

Thus, if i ∈ Ĩ there are at least two j ∈ Ji such that (p?)
j
ı̂ > 0 in the corresponding program

Plp. And for every i ∈ I, there is always at least one j ∈ Ji such that (p?)
j
ı̂ > 0. Thus

|supp([p?]i∈Ik)| ≥ |Ik \ Ĩ|+ 2|Ĩ ∩ Ik| = |Ik|+ |Ĩ ∩ Ik|.
On the other hand, in view of [Ber09, Prop. 2.1.4 (b)], and as discussed in Appendix A.2,

the columns within the matrix H (defined in Equation (A.3)) corresponding to non-zero (p?)
j
i

coordinates must be linearly independent. Hence |supp(p?)| ≤ rank(H) and in particular

|supp([p?]i∈Ik)| ≤ rank([Hi]i∈Ik).

Finally, from the structure of H defined in Equation (A.3), it is clear that

rank([Hi]i∈Ik) ≤ rank([Hi]i∈Ik) + |Ik|.
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Combining the above inequalities immediately leads to

rank([Hi]i∈Ik) ≥ |Ĩ ∩ Ik|,
as desired.

A.6. Proof of Proposition 3.7. The objective is to establish a connection from the sensitivity
of the large scale, but structured, optimization program PLP to a reduced version in which only
m subsystems appear. To this end, we first start with some preparatory lemmas.

Lemma A.1. Let J : R+ → R be a convex function. Suppose there exist a constant L and a
sequence {εn}n∈N such that εn → 0 as n goes to infinity and J(0)− J(εn) ≤ Lεn for all n ∈ N.
Then, J(0)− J(ε) ≤ Lε for all ε ∈ R+.

Proof. For the sake of contradiction, suppose there exists an ε̄ such that J(0)− J(ε̄) > Lε̄. Let
n be large enough so that εn ∈ (0, ε̄) and α

.
= εn

ε̄ . In light of convexity of J , we have

J(εn) ≤ (1− α)J(0) + αJ(ε̄)

< (1− α)J(0) + α(J(0)− Lε̄) = J(0)− Lεn,
which is obviously in contradiction with our assumption. �

Lemma A.2. Consider the parametrized LP{
minimize

x
cx

subject to Ax ≤ b+ ε1,
(A.4)

where ε ∈ R+ is the parameter and 1
.
= [1, . . . , 1]> ∈ Rm. Suppose the program admits a vertex

optimizer whose objective value is denoted by J(ε). Then, there exists a constant independent of
the resource vector b, denoted by L(A, c), such that

0 ≤ J(0)− J(ε) ≤ L(A, c)ε, ∀ε ∈ R+.

Proof. We only need to prove the right-hand side of the inequality as the left-hand side trivially
holds since the parameter ε is non-negative and only relaxes the constraint. Let x?(ε) be a
vertex optimizer for (A.4). By virtue of [Ber09, Prop. 2.1.4 (a)], given a fixed ε, we know that
there exists a collection of m linearly independent rows of the matrix A, denoted by the invertible
submatrix [A](ε), such that [A](ε)x?(ε) = b+ε1. Note that the number of submatrices of matrix
A is, of course, finite. Therefore, one can always pick a sequence {εn}n∈N such that εn → 0
as n goes to infinity and the corresponding submatrix [A](εn) is constant; let us denote this
submatrix by [A]. We thus have

J(0)− J(εn) = cx?(0)− cx?(εn) = −c[A]−11εn ≤ L(c, A)εn,

where the constant can be, for example, L(c, A)
.
= m‖c‖2‖[A]−1‖2. Note that, by construction,

the submatrix [A] is invertible and the norm ‖[A]−1‖ is bounded. The desired assertion now
follows from the convexity of the perturbation mapping ε 7→ J(ε) [BV04, Sec. 5.6.2] and Lemma
A.1. �

Theorem 3.7. Given the partition I = I1∪I2, we introduce a reduced version of PLP(ε) associated
with the index set I2 as follows:

minimize
(xi)i∈I2

∑
i∈I2

c>i xi

subject to
∑
i∈I2

Hixi ≤ b−
∑
i∈I1

Hi(x
?
LP)i + ε1

xi ∈ conv(Xi) i ∈ I2,

(RI2(ε))
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where x?LP is an optimizer of the program PLP. We denote the optimal value of RI2(ε) by
J?RI2

(ε). Let us highlight that for any partition of the index set I = I1 ∪ I2 the program RI2(ε)

is always feasible as (x?LP)i∈I2 trivially satisfies the constraints for any ε ∈ R+. As a first step

in the proof, we show that there exist an index subset I2 and a sequence of {εn}n∈N such that
|I2| ≤ m and the optimal values J?PLP

(εn) and J?RI2
(εn) have the same sensitivity in terms of

the parameter ε.

Let x?LP(ε) be a vertex optimizer of the program PLP (ε); the existence of such a vertex is always
ensured since the feasible set of PLP (ε) is a compact polytope. In light of part (c) in the proof
of Theorem 2.5, we know that for each x?LP(ε) there exists a partition I = I1(ε) ∪ I2(ε) where
|I2(ε)| ≤ m and

(
x?LP (ε)

)
i
∈ vert(Xi) for all i ∈ I1(ε). Due to the fact that the number of

the subsets of I as well as the set vert(Xi) is finite, then there exists a partition I = I1 ∪ I2
and a subsequence of {εn}n∈N such that |I2| ≤ m and

(
x?LP (εn)

)
i

are constants for i ∈ I1. By
compactness we can, without loss of generality, assume that this sequence is convergent. It is a
well-known result in the context of perturbation theory that the mapping ε 7→ J?PLP

(ε) is convex

on [0,∞), and in particular continuous [Roc97, Sec. 28]. Hence, one can infer that
(
x?LP (εn)

)
i

converges to an optimizer of PLP, which consequently implies
(
x?LP (εn)

)
i

= (x?LP)i for all i ∈ I1.

Therefore, by construction of the auxiliary program RI2(ε) we can deduce

J?PLP
(0)− J?PLP

(εn) = J?RI2
(0)− J?RI2

(εn), ∀n ∈ N.

Now, in view of Lemma A.2, we know that the right-hand side of the above equality is non-
negative and can be upper bounded by a constant only depending on the data of the subsystems
indexed in I2, i.e., (Di)i∈I2 . Let us denote this constant by L(I2). Then, we have

0 ≤ J?PLP
(0)− J?PLP

(εn) ≤ L(I2)εn, ∀n ∈ N,
that by virtue of Lemma A.1 leads to the desired assertion. �

B. Simulation Tables

Table 1 contains the parameters used in the simulation. Values in brackets are sampled from
a uniform distribution over the given interval. Tables 2 and 3 report the numeric values of the
performance results derived from the simulations discussed in Section 4.

Parameter |I| Pi Emin
i Emax

i Einit
i Eref

i

Unit PEVs kW kWh kWh kWh kWh
Value 200− 10000 [3; 5] 1 [8; 16] [0.2; 0.5] · Emax

i [0.55; 0.8] · Emax
i

Parameter ζi ∆T N Pmax Pmin Cu[k] Cv[k] δui , δ
v
i

Unit − min − kW kW e/MWh e/MWh e/MWh
Value [0.015; 0.075] 20 24 3 · |I| −Pmax [19; 35] 1.1 · Cu[k] [−0.3; 0.3]

Table 1. Parameters used in the simulations. Values in the brackets are sam-
pled from a uniform distribution.
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Proposed Method CPLEX
Opt. Gap (%) Solve time† (sec) Solve time (sec)

# PEVs Min Avg Max Min Avg Max Min Avg Max

200 3.24 3.32 3.41 * * * 1.97 2.16 3.74
350 2.21 2.44 2.58 * * * 1.13 1.79 2.30
500 1.40 1.46 1.54 * * * 1.02 1.24 1.52
700 1.01 1.05 1.10 0.31 0.31 0.31 1.27 1.29 1.31
1000 0.68 0.72 0.76 0.44 0.44 0.44 1.68 1.70 1.73
1500 0.46 0.47 0.49 0.67 0.70 0.70 2.39 2.42 2.45
2000 0.33 0.35 0.36 0.88 0.88 0.89 3.22 3.30 3.41
5000 0.13 0.14 0.14 2.17 2.21 2.23 8.00 8.18 8.43
7000 0.05 0.05 0.06 3.14 3.15 3.16 11.40 11.74 13.25
10000 0.03 0.03 0.04 4.45 4.51 4.52 17.41 17.77 18.43

(*) ≤ 0.3 sec (imprecise measurements).

Table 2. Charging only.

Proposed Method CPLEX
Opt. Gap (%) Solve time (min) Solve time (min)

# PEVs Min Avg Max Min Avg Max Min Avg Max

200 8.82 10.51 12.37 1.05 1.06 1.08 0.06 0.07 0.07
350 2.93 3.24 3.51 1.48 1.49 1.52 1.56 6.89 15.81
500 2.05 2.15 2.24 1.85 1.93 2.62 15.21∗ 65.10∗ 262.81∗

700 1.48 1.54 1.61 2.43 2.44 2.48 – – –
1000 1.01 1.05 1.10 3.24 3.26 3.28 – – –
1500 0.65 0.68 0.72 4.72 4.74 4.81 – – –
2000 0.45 0.50 0.53 6.19 6.21 6.23 – – –
5000 0.12 0.15 0.20 14.88 14.90 14.95 – – –
7000 0.09 0.10 0.12 20.59 20.77 21.94 – – –
10000 0.06 0.07 0.07 29.34 29.39 29.58 – – –

(*) failed to solve two instances (out of memory)

(–) out of memory before attaining the desired optimality gap

Table 3. Charging and V2G.
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