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Adaptive identification of linear systems subject to gross errors

Laurent Bako
a

aLaboratoire Ampère – Ecole Centrale de Lyon – Université de Lyon, France

Abstract

In this note, we investigate the convergence of a robust recursive identifier for linear models subject to impulsive disturbances.
Under the assumption that the disturbance is unknown and can be of arbitrarily large magnitude, the analyzed algorithm
attempts to minimize online the sum of absolute errors so as to achieve a sparse prediction error sequence. It is proved that
the identifier converges exponentially fast into an euclidean ball whose size is determined by the richness properties of the
estimation data, the frequency of occurrence of impulsive errors and the parameters of the algorithm.
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1 Introduction

Consider a data model defined by

y(t) = x(t)⊤θo + f(t), (1)

where y(t) ∈ R is the output at time t ∈ Z, x(t) ∈ R
n is

the regressor; θo denotes an unknown parameter vector.
The sequence {f(t)} is a disturbance of impulsive nature.
We may also call it a sparse sequence, an appellation by
which it is meant here that the elements of the sequence
{f(t)} are nonzero only occasionally. However, whenever
they are nonzero, they can take on values of arbitrarily
large magnitudes. Denote with t1 < t2 < . . . < tk, . . .,
the time instants t for which f(t) is different from zero
and let T = {t1, t2, t3, . . .}. Such times ti will be termed
impulse times. Hence for any tk ∈ T , f(tk) 6= 0 and
for any t /∈ T , f(t) = 0. Let τmin = mini |ti+1 − ti|
denote the minimum time between consecutive impulse
times and τmax = maxi |ti+1 − ti| < ∞. Assuming that
τmax is finite has the important implication that {f(t)}
is persistent, that is, it does not vanish when t → ∞.

Such a model as (1) with impulsive additive signal arises
in many engineering problems. For example, the impul-
sive disturbance {f(t)} can model intermittent sensor
failures. In networked control systems, it can account
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for occasional data packets losses (or corruption) in the
course of their transmission over the underlying com-
munication network. Another important application is
in the identification of switched linear systems. In this
case, a useful representation for identification purpose
consists of the equation of a single subsystem augmented
with a sparse component accounting for the effect of the
switchings. For more details on how these problems re-
late to Eq. (1), we refer to [3].
Model (1) can represent both static and dynamic sys-
tems. In the first case, the regression vector contains ob-
servations at time t and need not be structured. This
finds applications in the fields of signal processing and
machine learning (e.g. the problem of subspace cluster-
ing [2,18]). In the latter case the regression vector can
have a structure of the form

x(t) =
[

y(t− 1) · · · y(t− na) u(t)⊤ · · · u(t− nb)
⊤
]⊤

(2)
or

x(t) =
[

u(t)⊤ u(t− 1)⊤ · · · u(t− nb)
⊤
]⊤

(3)

where u(t) ∈ R
nu denotes the input of the system and

the integers na and nb represent structural parameters
of the model.

Given data x(k), y(k), k = 1, . . . , t, generated by a sys-
tem of the form (1), the goal of this paper is to provide
an adaptive estimation scheme for the parameter vector
θo. This is to be done under the assumptions that

• The values of the sequence {f(t)} are unknown and
can be arbitrarily large,

Preprint submitted to Automatica 28 November 2015



• The impulse times tk are not available,
• The sequence {f(t)} is sparse.

Note that no particular probability distribution assump-
tion is put on {f(t)} and the question of whether {f(t)}
is stochastic or deterministic does not matter as long as
the sparsity assumption holds.
The problem we pose is that of estimating the param-
eter vector θo from model (1) in the face of gross er-
rors affecting the measurements. As such, it is, as al-
ready discussed earlier, related to the literature of com-
pressed sensing [5,6,9], robust statistics [10,16] and hy-
brid system identification [1,13,14,12]. If the data were
completely collected in a batch mode, the problem could
be tackled through a nonsmooth optimization-based es-
timator, e.g. ℓ1-norm minimization (which is also known
as the least absolute deviation estimator) [3,4,17,19],
iterative reweighted least squares [8], least median of
squares [15], least trimmed squares [16], M-estimation
[10], etc. It is known in this case that when the num-
ber of gross errors is less than a certain threshold deter-
mined by the genericity properties of the data (usually
expressed in terms of mutual coherence, restricted isom-
etry, breakdown point, . . . ), the true parameter vector
θo can be exactly recovered.
In the current setting however, the data are only se-
quentially measured and at each time an estimate must
be provided for a certain online application (e.g., adap-
tive decision making system, adaptive control, . . . ). As a
consequence, the available batch data-based estimation
results obtained for example in [3,17,19] and the works
cited above do not apply here. A significant difference
is that the adaptive identifier to be designed takes the
form of a time-varying dynamic system whose input is
the incoming data. What matters then for the analysis
is no longer the absolute number of nonzeros errors f(t)
but instead the frequency of appearance of nonzeros dis-
turbances, that is, the (average) minimum time between
consecutive nonzeros elements.

The contribution of this note is to provide a convergence
analysis of a specific adaptive algorithm in the challeng-
ing situation where the data are corrupted by gross er-
rors of arbitrarily large amplitude. More precisely, we
show that this identification problem can be efficiently
solved by a simple weighted recursive least squares iden-
tifier provided the weighting function is appropriately
chosen. Sufficient conditions are derived for the estima-
tion error to converge to an euclidean ball whose radius
depends on the algorithm’s parameters and the system
data. The empirical behavior of the algorithm tend to
suggest that it outperforms the traditional ℓ1-norm min-
imization solution (see Section 4).
The rest of this note is structured as follows. Section
2 presents the robust weighted recursive least squares
(RW-RLS) algorithm and Section 3 provides the asso-

ciated analysis. To illustrate the behavior of the algo-
rithm in extremely challenging circumstances, a numer-
ical study is carried out in Section 4.

2 A weighted recursive least squares solution

In this section, we derive a recursive least squares esti-
mator endowed with the ability to remove the undesir-
able effects of gross errors f(t). Similarly to [8,5], the ro-
bustness properties of our method rely on an appropri-
ate weighting strategy. The underlying idea of the cur-
rent method is inspired by the sparsity-inducing opti-
mization techniques and it was already discussed in [7].
The purpose of this paper is to provide a convergence
analysis.

2.1 Recursive identifier

Let θ(t) denote the estimate at time t of the parameter
vector θo based on the measurements (x(k), y(k)) avail-
able up to time t. Being at time t, we have full knowl-
edge of the prior estimate θ(t − 1) along with the mea-
surements x(t), y(t) and want to generate θ(t). The pro-
posed recursive identifier does so through the following
recursive equations,

θ(t) = argmin
θ∈Rn

[1

2
w(t)2

(

y(t)− θ⊤x(t)
)2

+
λ

2
(θ − θ(t− 1))

⊤
P−1(t− 1) (θ − θ(t− 1))

]

(4)
where the sequence P−1(t) defined by

P−1(t) = λP−1(t− 1) + w(t)2x(t)x(t)⊤, P−1(0) ≻ 0,
(5)

is called the covariance matrix sequence, λ ∈]0, 1[ is
called the forgetting factor and w(t) is a positive weight
to be defined. The inequality P−1(0) ≻ 0 in (5) means
that P−1(0) is positive-definite.
Eqs. (4)-(5) describe a weighted recursive least squares
(W-RLS) algorithm. The design of the weight plays a
capital role in providing the algorithm with a relative
insensitivity (or robustness) to the impulsive noise se-
quence {f(t)}. Of course, if we could choose the weight
such that w(tk) = 0 for any tk ∈ T and w(t) = 1 for
t /∈ T , then the effects of the impulsive errors could
be completely removed and classical convergence results
[11] would then apply. Unfortunately this is not possible
since the impulse time sequence {tk} is not available. In
this paper the weight function w(t) will be defined by

w(t) = 1/ |ε(t)| , (6)

with
ε(t)2 =

[

y(t)− θ(t− 1)⊤x(t)
]2

+ ε0 (7)
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and ε0 > 0 is a "small" number which is intended essen-
tially for avoiding division by zero. The rationale behind
the choice (6)-(7) of the weights is, as argued in [7], to
mimic the nonsmooth ℓ1-norm minimization-based esti-
mator. Note that (4) can be rewritten in the more clas-
sical form,

q(t) =
P (t− 1)x(t)

λε(t)2 + x(t)⊤P (t− 1)x(t)
(8)

θ(t) = θ(t− 1) + q(t)
(

y(t)− θ(t− 1)⊤x(t)
)

(9)

P (t) =
1

λ

(

I − q(t)x(t)⊤
)

P (t− 1), (10)

which will be termed the robust weighted recursive least
squares (RW-RLS) algorithm with exponential forget-
ting factor.

3 Convergence analysis

The question we ask now is whether (8)-(10) can con-
verge in some sense towards the true parameter vector
θo in the presence of the gross errors. To answer this
question, introduce the estimation error θ̃(t) = θ(t)−θo.
Then,

θ̃(t) =
(

I − q(t)x(t)⊤
)

θ̃(t− 1) + q(t)f(t). (11)

The asymptotic convergence of the estimation algorithm
can therefore be formulated in terms of stability of the
point 0 for the time varying system (11). Note that q(t)

defined in (8), depends on the state θ̃(t − 1) through

the term ε(t)2 =
[

f(t)− θ̃(t− 1)⊤x(t)
]2

+ ε0. Therefore
Eq. (11) represents a nonlinear time-varying impulsive
system whose stability analysis is known to be hard.
For the question of convergence to be well-posed, we
must exclude the situations where there would exist a
time τ and a constant vector θ1 ∈ R

n such that

f(t) = x(t)⊤θ1 ∀ t ≥ τ. (12)

In effect, if this was to hold, then (11) would converge
to θ1 instead of zero that is, θ(t) would tend to θo + θ1

under conditions that can be readily deduced from the
classic analysis of recursive least squares (see e.g., [11]).
Interestingly, as will be observed in Remark 2 below,
such pathological situations are automatically excluded
by the sparsity condition on {f(t)} together with the
property of persistence of excitation (PE) to be defined
next.

Definition 1 A vector sequence {x(t)} is said to be per-
sistently exciting (PE) if there exist an integer T and

some real numbers α1 > 0, α2 > 0 and τ0 ≥ 0 such that

α1I �
t+T
∑

k=t+1

x(k)x(k)⊤ � α2I ∀ t ≥ τ0 (13)

In Eq. (13), I stands for the identity matrix with ap-
propriate dimensions. From [11], we know that the free
motion part (i.e., when f ≡ 0) of the unweighted version
of the system (11) converges to zero under the PE con-
dition. Here however, the term q(t)f(t), although some-
what only scarcely nonzero, might prevent the estima-
tion error to go to zero unless we force somehow the sub-
sequence {q(tk)}k where tk ∈ T , to tend to zero asymp-
totically. A major difficulty in achieving this is that the
impulse times {tk} are unknown. As a consequence, we
must just drive the whole sequence {q(t)} to zero. But

then it must not decay more rapidly than {θ̃(t)} itself;

otherwise since q(t) is the learning rate, θ̃(t) will either
evolve much slowly or stop changing before convergence
occurs.

Remark 2 For any integers k and m, let
T c
[k+1,k+m] =

{

t ∈ [k + 1, k + m] : f(t) = 0
}

denote

the set of discrete time instants t in the interval [k +
1, k+m] for which f(t) = 0. If there exists an integer m
such that rank

[

XT c
[k+1,k+m]

]

= n ∀ k, where XT c
[k+1,k+m]

is a matrix collecting the regressors x(t) indexed by the
set T c

[k+1,k+m], then (12) cannot hold. In turn, it can

be checked that this rank condition is satisfied for any
m ≥ τmin + τmax provided that {x(t)} fulfills the PE
property (13), and that τmin > T and τmax < ∞.

The following lemma states that if all the weights w(t) in
(4)-(5) were set to one, then the matrix P (t) is uniformly
bounded above and below when the sequence {x(t)} is
PE. This is a crucial property in our analysis.

Lemma 3 Assume that the sequence {x(t)} satisfies the
PE condition (13). Then the matrix sequence defined by

P̄−1(t) = λP̄−1(t− 1) + x(t)x(t)⊤, P̄−1(0) ≻ 0 (14)

satisfies
γ̄1I � P̄−1(t) � γ̄2I, ∀t ≥ 0 (15)

for some constant numbers γ̄1 > 0 and γ̄2 > 0.

PROOF. First note from (14) that

P̄−1(t) = λtP̄−1(0) +

t
∑

k=1

λt−kx(k)x(k)⊤.
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Assume t ≥ T and let d = ⌊t/T ⌋ that is d is the integer
part of t/T . Then the following chain of inequalities hold

P̄−1(t) � λT P̄−1(0) + α2I +
dT
∑

k=1

λdT−kx(k)x(k)⊤

� λT P̄−1(0) + α2I + α2λ
dT

d
∑

i=1

iT
∑

k=(i−1)T+1

λ−kI

�
[

λTλmax[P̄
−1(0)] + α2

2− λ

1− λ

]

I,

where the notation λmax refers to the maximum eigen-
value. To derive the lower bound, we proceed similarly
as above. With t ≥ T , we have

P̄−1(t) � λ(d+1)T
d

∑

i=1

iT
∑

k=(i−1)T+1

λ−kx(k)x(k)⊤

� λ(d+1)T
d

∑

i=1

iT
∑

k=(i−1)T+1

λ−(i−1)T−1x(k)x(k)⊤

� α1λ
(d+1)T−1

d
∑

i=1

λ−(i−1)T I

= α1λ
T−1 1− λdT

λ−T − 1
I � α1λ

2T−1I.

Finally, we can see that the following numbers satisfy
(15):

γ̄1 = min
{

δ1, α1λ
2T−1

}

,

γ̄2 = max
{

δ2, λ
Tλmax[P̄

−1(0)] + α2
2− λ

1− λ

}

,

where δ1 = min
t=0,...,T−1

λmin[P̄
−1(t)] > 0 and δ2 =

max
t=0,...,T−1

λmax[P̄
−1(t)] > 0 with λmin[·] standing for

the minimum eigenvalue. ✷

A consequence of Lemma 3 is as follows. Assuming {x(t)}
is PE, if we could guarantee that the weight sequence
{w(t)} is bounded above and below with strictly positive
lower bound, then the matrix defined in (5) would obey

γ1I � P−1(t) � γ2I, ∀t ≥ 0 (16)

with γ1 = γ̄1w
2
min > 0 and γ2 = γ̄2w

2
max > 0,

wmin = inft∈N w(t) and wmax = supt∈N w(t). Unfortu-

nately, since ε(t)2 = [θ̃(t − 1)⊤x(t) − f(t)]2 + ε0, w(t)
depends on the state of (11) whose boundedness is not
secured yet at this point of our developments. For exam-
ple, if θ̃(t) was to go to infinity, then the lower bound in

(16), would tend to zero so that the desired property of
uniform positive-definiteness for P−1(t) would be lost.

To overcome this difficulty, consider for the time being
a finite horizon N0 large enough in a sense that will
become more clear latter. Then for any t, 0 ≤ t ≤ N0,
(16) holds with a strictly positive lower bound. Introduce
the notations

µ(N0) = sup
τ=0,...,τmax

t=τmax,...,N0

λmax[P
−1(t− τ)]

λmin[P−1(t)]
(17)

γ(N0) = inf
t=0,...,N0

λmin[P
−1(t)]. (18)

From the above discussion, γ(N0) > 0 and µ(N0)
is well-defined since the PE condition ensures that
λmin[P

−1(t)] > 0 on any finite horizon N0. For nota-
tional simplicity, we will use from now onwards the
notation µ and γ for µ(N0) and γ(N0) respectively.

Our main convergence result of the estimation error (11)
will be stated in Theorem 6. The method of proof is as
follows: (a) consider a sufficiently large but finite hori-
zon N0 on which the numbers (17)-(18) are well defined;
(b) show that the error converges to a ball 2 before time
N0 under some assumptions; (c) once the estimation er-
ror enters the above mentioned ball in finite time, we
get the assurance that the numbers (17)-(18) are indeed
well-defined for any N0 so that the analysis is valid in-
dependently of N0. We start by stating a key technical
assumption.

Assumption 1 The design parameters λ, ε0, the min-
imum dwell time τmin and the sequence {x(t)} are such
that

µλτmin <
λ

1 + 1
λγε0

(19)

for someN0 sufficiently large such that t1+Kτmax ≤ N0,
where

K = 1 +

⌈

1

ln(λ)
ln

r20

‖θ̃(t1)‖22

⌉

(20)

with

r20 =
1

γ
[

λ− µλτmin(1 + 1
λε0γ

)
] . (21)

The notation ⌈·⌉ in (20) refers to the ceiling function, ‖·‖2
denotes the Euclidean norm and t1 is the first impulse
time.

The condition (19) involves three different categories of
parameters: the user-specified parameters λ, ε0 of the al-
gorithm; two parameters characterizing the properties

2 A vector sequence {w(t)} in R
n is said to converge to a

set S ⊂ R
n if limt→∞ dist(w(t),S) = 0, where dist(w,S) =

minz∈S ‖z − w‖ for some norm ‖·‖.
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of the data sequence {x(t)}, such as µ, γ; and a third
parameter τmin which measures the frequency of occur-
rence of the gross errors. The parameters µ and γ can be
viewed essentially as some quantitative measures of the
richness of the regression data. Note that they depend
also on the algorithm’s parameters to a certain extent.
Richest data are expected to have a small µ and a large
γ. Hence, condition (19) requires on the one hand, that
the frequency of the impulsive errors be relatively small
and on the other hand, that the regression data be rich
enough. We will show in Lemmas 4 and 5 that the sub-
sequence {θ̃(ti)}i converges to a ball. As a consequence,

the whole sequence {θ̃(t)} will, as stated in Theorem 6,
have its values confined also to a ball when t → ∞.

Lemma 4 Assume that the regressor {x(t)} is PE and
‖x(t)‖2 = 1 for all t. Then, under Assumption 1, the
following holds: ∀ti−1, ti ≤ N0,

‖θ̃(ti−1)‖22 > r20 ⇒ ‖θ̃(ti)‖22 < λ‖θ̃(ti−1)‖22 (22)

PROOF. Define a Lyapunov-like function V as

V (t) = θ̃(t)⊤P (t)−1θ̃(t).

By means of some algebraic calculations, we obtain

V (t)− V (t− 1) = −(1− λ)V (t− 1)

− λ
(

f(t)− x(t)⊤θ̃(t− 1)
)2

λε(t)2 + x(t)⊤P (t− 1)x(t)
+

f(t)2

ε(t)2

(23)
from which it can be inferred that

V (t) ≤ λV (t− 1) +
f(t)2

ε(t)2
. (24)

We see that for any t /∈ T , V (t) ≤ λV (t−1) and for any
ti ∈ T ,

V (ti) ≤ λti−ti−1V (ti−1) +
f(ti)

2

ε(ti)2
.

This, by using the definitions (17)-(18), implies that

∥

∥θ̃(ti)
∥

∥

2

2
≤ µλτmin

∥

∥θ̃(ti−1)
∥

∥

2

2
+

1

γ

f(ti)
2

ε(ti)2
. (25)

We wish to find sufficient conditions for ‖θ̃(ti)‖22 <

λ‖θ̃(ti−1)‖22. Proceeding from (25), a sufficient condition

for that is

− γ(λ− µλτmin)
∥

∥θ̃(ti−1)
∥

∥

2

2
+

f(ti)
2

(f(ti)− x(ti)⊤θ̃(ti − 1))2 + ε0
< 0.

Note from (19) that γ(λ− µλτmin) > 0. For convenience
of manipulation let us drop time indexation and pose
simply z = x(ti)

⊤θ̃(ti−1), η2 = γ(λ−µλτmin)‖θ̃(ti−1)‖22
and f(ti) = f . Then the previous inequality reads as the
following quadratic inequality





f

1





⊤ 



(1− η2) η2z

η2z −η2(z2 + ε0)









f

1



 < 0. (26)

Since no condition is imposed on the sequence {f(t)},
the above inequality must be true for any f ∈ R. By
invoking a Schur complement argument, (26) holds for
all f ∈ R if and only if

{

η2 > 1

η2
(

z2 + (1− η2)ε0
)

< 0
(27)

which in turn is equivalent to

z2 < (η2 − 1)ε0. (28)

On the other hand, let us observe that under Assumption
1, it necessarily holds that τmin ≥ 2. This is because
Eq. (19) cannot hold for τmin = 1. Consequently, ti − 1
is not an impulse time. Therefore by using the Cauchy-
Schwarz inequality and (24), we can write

z2 ≤
∥

∥θ̃(ti − 1)
∥

∥

2

2
≤ µλτmin−1

∥

∥θ̃(ti−1)
∥

∥

2

2
. (29)

Hence, for Eq. (28) to hold, it suffices that

µλτmin−1‖θ̃(ti−1)‖22 <
[

γ(λ− µλτmin)‖θ̃(ti−1)‖22 − 1
]

ε0

that is, ‖θ̃(ti−1)‖22 > r20. Therefore ‖θ̃(ti)‖22 < λ‖θ̃(ti−1)‖22
provided ‖θ̃(ti−1)‖22 > r20. ✷

Before proceeding further, let us comment briefly on the
assumptions of Lemma 4. Since Assumption 1 has al-
ready been discussed, let us consider just the require-
ment that ‖x(t)‖2 = 1 for all t. The primary purpose
of this last assumption is to simplify the analysis. In-
deed this is without loss of generality. In effect, if there
is any zero regressor x(t), it can be removed from the
data used to feed the algorithm without incurring any
loss of information (since the updating gain (8) in this

5



case is zero). For the nonzero remaining regressors, Eq.
(1) can be divided by ‖x(t)‖2 so as to achieve the unit
norm requirement. Note further that the precise feature
exploited in the proof (see Eq. (29)) is ‖x(t)‖2 ≤ 1 which
can be fulfilled simply by multiplying Eq. (1) for exam-

ple, by
(

1+‖x(t)‖22
)−1/2

. A secondary potential benefit
of such a normalization is to control the relative contri-
bution of each of the error terms (y(t)− x(t)⊤θ)2 in the
cost function associated with (4).

Lemma 5 Under the assumptions of Lemma 4, the se-
quence

{

θ̃(ti)
}

converges exponentially fast in finite time
to the euclidean ball B(0, r0) = {x ∈ R

n : ‖x‖2 ≤ r0}.

PROOF. 1)
{

θ̃(ti)
}

enters the ball in finite time. We
adopt a contradiction argument here. Assume that
{

θ̃(ti)
}

never enters the ball B(0, r0) over the time hori-

zon N0. Then for all ti ≤ N0, ‖θ̃(ti)‖22 > r20. By applying

Lemma 4, this implies that ‖θ̃(ti)‖22 ≤ λi−1‖θ̃(t1)‖22 for

all ti ≤ N0, that is, the norm of θ̃(ti) decreases expo-
nentially fast. It follows that if N0 is sufficiently large as
required by Assumption 1, then there is necessarily an
i⋆ such that ti⋆ ≤ N0 and ‖θ̃(ti⋆)‖22 ≤ r20. For example,
take i⋆ = K with K defined by (20). This constitutes

a contradiction with the initial thesis. Hence
{

θ̃(ti)
}

enters the ball at a time prior to tK .

2)
{

θ̃(ti)
}

cannot exit the ball. We need now to show that

once the sequence
{

θ̃(ti)
}

enters the ball B(0, r0) it stays
in it for ever. We proceed again by contradiction. Assume
that the sequence can exit the ball after entering it. Then
there exist some ti−1 and ti such that ‖θ̃(ti−1)‖22 ≤ r20
but ‖θ̃(ti)‖22 > r20. From (25), it follows that

r20 <
∥

∥θ̃(ti)
∥

∥

2

2
≤ µλτmin

∥

∥θ̃(ti−1)
∥

∥

2

2
+

1

γ

f(ti)
2

ε(ti)2

≤ µλτminr20 +
1

γ

f(ti)
2

ε(ti)2

so that

γ (1− µλτmin) r20 <
f(ti)

2

ε(ti)2
.

Expanding this as in (26), we see that





f

1





⊤ 



(η2 − 1) −η2z

−η2z η2(z2 + ε0)









f

1



 < 0 (30)

must hold for any f , with η2 = γ(1 − µλτmin)r20, z =

|x(ti)⊤θ̃(ti − 1)|, f = f(ti). Now we observe the follow-
ing two facts: (i) η2 > 1 and (ii) z2 ≤ (η2 − 1)ε0. The
statement (i) is immediate by simple calculations. The

second is a consequence of (29) from which we can infer
that

z2 ≤ µλτmin−1
∥

∥θ̃(ti−1)
∥

∥

2

2
≤ µλτmin−1r20.

Finally the statement (ii) is obtained by checking that
µλτmin−1r20 < (η2−1)ε0. These two facts together show,
by a Schur complement argument, that the 2× 2 matrix
appearing in (30) is positive semi-definite, hence render-
ing the corresponding inequality impossible. We there-
fore get a contradiction to the initial thesis according
to which

{

θ̃(ti)
}

could exit the ball. In conclusion, the

sequence
{

θ̃(ti)
}

converges in finite time into the ball
B(0, r0) and remains in it. ✷

Theorem 6 (Convergence in finite time) Assume
that the regressor sequence {x(t)} is PE and ‖x(t)‖2 = 1

for all t. If Assumption 1 holds, then
{

θ̃(t)
}

converges
exponentially fast in finite time to the euclidean ball
B(0, r1), where

r1 = r0 max
[

1,
√

µλ
]

. (31)

PROOF. The proof follows from Lemma 5. In effect,
since the assumptions of the lemma are fulfilled, we can
conclude that the sequence {θ̃(ti)} converges in B(0, r0).
Now for any t /∈ T such that ti < t < ti+1,

∥

∥θ̃(t)
∥

∥

2

2
≤ µλt−ti

∥

∥θ̃(ti)
∥

∥

2

2
≤ µλ

∥

∥θ̃(ti)
∥

∥

2

2
.

Since
{

θ̃(ti)
}

converges into B(0, r0),
{

θ̃(t)
}

t/∈T
con-

verges into B
(

0, r0
√
µλ

)

. Hence
{

θ̃(t)
}

t
converges into

B(0, r1) as claimed. ✷

The result stated in Theorem 6 guarantees boundedness
of the estimation error sequence {θ̃(t)}. Once {θ̃(t)} en-
ters the ball B(0, r1), we get that w(t)2 ≥ 1/(r21 + ε0)
whenever t /∈ T with w(t) referring to the weight de-
fined in (6). An implication of this is that the weights in
(6) will not vanish asymptotically hence preserving the
PE condition for {w(t)x(t)}. Therefore, we can redefine
the parameters µ and γ on an infinite horizon and the
reasoning carried out so far still holds unchanged.

Discussion on the significance of the analysis. A
question one may ask regarding the proposed analysis is
whether the size of the attraction ball of the estimation
error will shrink as time goes by. Here we provide an
informal discussion. As we will see in the next section,
there is an empirical evidence showing that the radius of
the attraction ball can indeed be very small. The intu-
itive reason why this is very likely is as follows. Instead
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of reasoning only on the interval [0, N0], we can con-
sider a time interval [Nk, Nk+1] with k possibly chang-
ing over time. Define on [Nk, Nk+1] the parameters γk
and µk respectively as in (17) and (18) with 0 and N0 re-
placed with Nk and Nk+1. Then what the theorem says
is that if the condition (19) holds over any time interval
[Nk, Nk+1] with respect to µk and γk, then the estima-
tion error will rest in B(0, r1k) where r1k is defined in a
similar way as r1 in (31) and (21). Therefore, the more
the estimation error shrinks, the larger the weights re-
lated to the samples indexed by T c (the complement of
T in N) will increase hence causing γk to get large as
well. The consequence of this is that r1k will get smaller
and smaller but potentially in a non monotone way.

4 Numerical study

4.1 Dynamic models

We first check the performance of the algorithm. For
this purpose, we consider a model of the form (1)-(2),
with na = nb = 2 and a randomly generated parameter
vector. The input signal is chosen as a realization of a
zero-mean white noise process with unit variance. {f(t)}
is selected as a sequence of large numbers drawn for a
Gaussian distribution with variance 10002 and mean 10.
To challenge the identification method to an extreme ex-
tent, we let {f(t)} be non sparse, and allow f(t) = 0
only occasionally, e.g. f(t) = 0 for one sample out of T
for T ∈ {1, 2, 4, 5, 10, 20, . . . , 100}. To be more clear, we
mean that only the samples f(kT ) are set to zero, all
the others are nonzero and arbitrarily large. This means
that rather than having only few nonzeros as generally
assumed in the paper, the experiment is conducted in a
very challenging case where there are only a few zeros
in the sequence {f(t)}. For each value of T , the identifi-
cation algorithm is run on 100 independent realizations
of input-output data of size N = 5000 and an average
relative error is measured out of the experiment. For the
sake of comparison we also compute:

• The more classical sparsity-inducing estimate

θ̂L1
= argmin

θ∈Rn

N
∑

t=1

∣

∣y(t)− θ⊤x(t)
∣

∣ (32)

by minimizing the sum of absolute values of the errors.
θ̂L1

is called the ℓ1-norm batch estimator.
• The ordinary (unweighted) recursive least squares

(RLS) estimate with exponential forgetting factor.
This corresponds to setting w(t) = 1 for all t in Eqs.
(4)-(5) which produces the same effect as fixing ε(t)
to 1 in Eq. (8).

The results are depicted in Figure 1 in term of the rela-
tive error

θ̃r(N) =
‖θ(N)− θo‖2

‖θo‖2
(33)

where θ(N) denotes the estimate at the last time N and
θo is the true parameter vector in Eq. (1). A striking
observation is that the Robust Weighted-RLS algorithm
discussed in this paper performs dramatically well in
comparison to the batch ℓ1-norm based optimization and
the RLS algorithm. To better judge how impressive and
surprising these results are, recall that they have been
obtained with a non sparse error sequence {f(t)}. On
the dynamic data example (see Fig. 1), RW-RLS proves
able to handle the impulsive noise in situations where
only one sample of {f(t)} out of T = 70 is equal to zero.
Meanwhile, the ℓ1 norm estimator is unsuccessful above
T = 10 and the RLS completely breaks down once T is
larger than one.

As it turns out the proposed algorithm returns accurate
estimates even when the conditions of the paper are not
satisfied. This confirms that the convergence conditions
of the paper (which are only sufficient) are somewhat
conservative. But the conservativeness in question here
should be balanced by the fact that the proposed con-
ditions concern worst case situations independently of
magnitude and sign of the sequence {f(t)}.
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(b) Zoom on sub-figure (a) after a removal of the curve corre-
sponding to RLS.

Fig. 1. Dynamic model: Average relative error θ̃r(N) over
100 simulations for each value of T . Algorithm’s parameters:
ε0 = 10−10, λ = 0.99, P0 = 10I.
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Fig. 2. Static model: Average relative error θ̃r(N) over 100
simulations for each value of T . Here, the regression vectors
{x(t)} are drawn from a unit-variance and zero-mean Gaus-
sian distribution on R

4. Algorithm’s parameters: ε0 = 10−10,
λ = 0.99, P0 = 10I.

4.2 Static models

On static models the performance of the algorithm is
even better as shown by Figure 2. This can be informally
justified by the fact that the static data are more generic
than dynamic data. While the static data are drawn
from all directions without any constraint (e.g., from a
Gaussian distribution), the directions spanned by the
dynamic data structured as in (2) are constrained by the
equation of the underlying system. As a consequence,
the number γ defined in (18) is expected to be larger in
the first case than in the second.

4.3 Discussions on the size of the attraction set

As is usual in this type of analysis, the derived conditions
are not testable a priori. But they do provide a useful
insight into the behavior of the identification method.

To achieve convergence of the estimation error in the
sense of Theorem 6, it is desired that γ be as large and
µλτmin as small as possible. From the definition of the
size of the attraction ball in (21) and (31), large γ and
small µλτmin would also lead to a small estimation error.
To give an idea as to how small r0 and r1 may be, we can

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2
x 10

11

γ
0
(t
)

time(t)

Fig. 3. Evolution of γ0(t) = λmin[P
−1(t)] over time. Algo-

rithm’s parameters: ε0 = 10−10, λ = 0.99, P0 = 10I.

carry out a numerical experiment in which we compute
r0 and r1 online while the algorithm is operating. For
example, let the impulse time sequence {tk} be periodic,
i.e., tk = tk−1+T . In this case, τmin = τmax = T . Fix T =
30 and choose the algorithm’s parameters to be λ = 0.8,
P0 = 100I and ε0 ∈

{

10−2, 10−5, 10−10, 10−15
}

. Then
for each value of ε0, we carry out a Monte-Carlo simula-
tion of size 100 and report the average values in Table 1.
The results are very instructive. First they suggest that
the condition (19) can indeed be fulfilled by lowering
λ. Second, the estimation error converges effectively as
stated by Theorem 6 to the aforementioned ball. Third,
the attraction ball has a very small radius which keeps
shrinking as ε0 gets smaller. Also, it can be remarked
that the numbers r0 and r1 are generally different but
they tend to become closer as ε0 is taken smaller.

Now, to give a sense of the magnitudes of the parameters
γ and µ involved in condition (19) and the size of the
convergence ball, we plot in Figures 3 and 4 some signals
γ0(t) and µ0(t) from which they are derived (see the
captions of the respective figures for definition). As it
turns out, µ is typically slightly larger than one and γ is
roughly ten times larger than 1/ε0.

ε0 10−2 10−5 10−10 10−15

A1 92% 94% 97% 98%

r20 0.3 9.9×10−5 3.3×10−9 3.7×10−14

r21 7.4 10−3 6.8×10−8 7.9×10−13

θ̃r(N) 3.6×10−7 2.1×10−10 7.5×10−15 1.8×10−16

Table 1
Some tests of the derived sufficient conditions. The line A1
gives the percentages of situations where Assumption (19)
holds. Results obtained with P0 = 100I, λ = 0.8, T = 30.

4.4 On the behavior in the presence of dense noise

Before closing this section let us make a last remark con-
cerning the situation where both dense zero-mean noise
{e(t)} and impulsive gross sequence {f(t)} are present
in the system equation (1) so that it is now defined by
ỹ(t) = x(t)⊤θo, y(t) = ỹ(t) + f(t) + e(t). To illustrate
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Fig. 4. Evolution of µ0(t) = supτ=0,...,τmax
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−1(t−τ)]

λmin[P
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over time. Algorithm’s parameters: ε0 = 10−10, λ = 0.99,
P0 = 10I.

the behavior of the RW-RLS identifier in this case, con-
sider the following numerical study on static systems:
100 different systems are generated at random and the
output is computed as in the equation above with {e(t)}
being, for each system, a zero-mean noise sequence sam-
pled independently from a Gaussian distribution and the
impulsive sequence {f(t)} being nonzero for all t except
at times kT , with T a constant integer. The amount of
noise {e(t)} is such that the signal to noise ratio

10 log10

[∑N
t=1 ỹ(t)

2

∑N
t=1 e(t)

2

]

is about 10 dB. This experiment is carried out succes-
sively for two fixed values of T : T = 10 and T = 20.
Figure 5 compares the batch ℓ1 estimator θ̂L1

defined in
(32) and the RW-RLS identifier in terms of the average

relative error {θ̃r(t)} (see Eq. (33) for a definition). Since

θ̂L1
is estimated once off-line for each run, the result-

ing average error is represented as a horizontal straight
line while the average value of θ̃r(t) over the 100 inde-
pendent runs oscillate over time as a result of the dense
noise acting on the recursive estimate. What this reveals
is that the performance of the recursive identifier is ro-
bust to the joint effect of dense and impulsive noises.
We remark in particular that when T is small, i.e., when
{f(t)} is sparse enough, the ℓ1 batch estimator tends to
perform better. But as T increases, this trend is reversed
as shown by Figure 5-(b). Overall the numerical exper-
iment suggests that when the sparsity level of {f(t)} is
sufficient enough to allow both the ℓ1 and the RW-RLS
estimators to yield θo in case e ≡ 0, the performance of
RW-RLS tends to deteriorate more than that of the ℓ1-
estimator after addition of the dense noise {e(t)}. But
this observation is quite consistent with the batch nature
of ℓ1-estimator which implies averaging of noise effect
over the entire data sequence and the adaptive nature of
RW-RLS which processes one sample at a time.
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Fig. 5. Average relative estimation error versus time for the
case of static models. The regression vectors {x(t)} are drawn
from a unit-variance and zero-mean Gaussian distribution
on R

4. Algorithm’s parameters: ε0 = 10−10, λ = 0.985,
P0 = 100I.

5 Conclusion

In this note we have studied the convergence properties
of a recursive identifier that is designed to be robust to
impulsive sensor failures. The failures are modeled as an
unknown and sparse error sequence of arbitrary magni-
tude. The main theoretical result roughly says that if the
failures do not occur too frequently, then the estimation
error converges into a ball whose size is determined by
some richness properties of the identification data and
the algorithm’s design parameters. Empirical evidence
on generic data tend to suggest that the derived con-
ditions, because they intend to characterize worst case
situations, are somewhat conservative. Indeed, the pro-
posed robust identifier can achieve a very good perfor-
mance in practice even when the sequence of impulsive
gross errors is not sparse.
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