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Abstract

Linear Quadratic Gaussian (LQG) systems are well-understood and methods to minimize the expected cost are readily
available. Less is known about the statistical properties of the resulting cost function. The contribution of this paper is a set
of analytic expressions for the mean and variance of the LQG cost function. These expressions are derived using two different
methods, one using solutions to Lyapunov equations and the other using only matrix exponentials. Both the discounted and
the non-discounted cost function are considered, as well as the finite-time and the infinite-time cost function. The derived
expressions are successfully applied to an example system to reduce the probability of the cost exceeding a given threshold.

Key words: Linear systems; Linear quadratic regulators; LQG control; Lyapunov equation; Probability density function;
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1 Introduction

The Linear-Quadratic-Gaussian(LQG) control paradigm
is generally well-understood in literature. (See for in-
stance [1,16,3,12].) There are many methods available
of calculating and minimizing the expected cost E[J ].
However, much less is known about the resulting distri-
bution of the cost function J . Yet in many cases (like
in machine learning applications, in risk analysis and
similar stochastic problems) knowledge of the full dis-
tribution of the cost function J , or at least knowledge
of its variance V[J ], is important. That is the focus of
this paper. We derive analytical expressions for both
the mean E[J ] and the variance V[J ] of the cost func-
tion distribution for a variety of cases. The expressions
for the variance V[J ] have not been published before,
making that the main contribution of this paper.

The cost function J is usually defined as an integral
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over a squared non-zero-meanGaussian process, turning
its distribution into a generalized noncentral χ2 distri-
bution. This distribution does not have a known Prob-
ability Density Function (PDF), although its proper-
ties have been studied before in literature, for instance
in [13,15,14], and methods to approximate it are dis-
cussed in [10,6]. No expressions for the variance of the
LQG system cost function are given though.

In LQG control most methods focus on the expected
cost E[J ], but not all. For instance, Minimum Variance
Control (MVC) (see [12]) minimizes the variance of the
output y, while Variance Constrained LQG (VCLQG)
(see [4,5]) minimizes the cost function subject to bounds
on the variance of the state x and/or the input u. Al-
ternatively, in Minimal Cost Variance (MCV) control
(see [8,19]) the mean cost E[J ] is fixed through an equal-
ity constraint and the cost variance V[J ] (or alterna-
tively the cost cumulant) is then minimized. However,
expressions for the cost varianceV[J ] are still not given.

This paper is set up as follows. We present the problem
formulation in Section 2 and derive the expressions that
solve this problem in Section 3, also making use of the
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appendices. Section 4 then shows how the equations can
be applied to LQG systems, which is subsequently done
in Section 5. Finally, Section 6 contains the conclusions.

2 Problem formulation

We consider continuous linear systems subject to
stochastic process noise. Formally, we write these as

dx(t) = Ax(t) dt+ dw(t), (1)

where w(t) is a vector of Brownian motions. (Note
that (1) is not an LQG system, because it is lacking in-
put. The extension to LQG systems will be discussed in
Section 4.) As a result, dw(t) is a Gaussian random pro-
cess with zero-mean and an (assumed constant) covari-
ance of V dt. Within the field of control (see for instance
[16]) this system is generally rewritten according to

ẋ(t) = Ax(t) + v(t), (2)

where v(t) is zero-mean Gaussian white noise with in-
tensity V . That is, E[v(t)vT (τ)] = V δ(t − τ), with δ(.)
the Kronecker delta function. From a formal mathemat-
ical perspective this simplification is incorrect, because
v(t) is not measurable with nonzero probability. How-
ever, since this notation is common in the control lit-
erature, and since it prevents us from having to evalu-
ate the corresponding Itô integrals, we will stick with
it, although the reader is referred to [11] for methods to
properly deal with stochastic differential equations.

We assume that the initial state x(0) = x0 has a Gaus-
sian distribution satisfying

µ0 ≡ E[x0] and Σ0 ≡ E[x0x
T
0 ]. (3)

Note that the variance of x0 is not Σ0, but actually
equals Σ0 − µ0µ

T
0 . We will use two different cost func-

tions in this paper: the infinite-time cost J and the finite-
time cost JT , respectively defined as

J ≡

∫

∞

0

e2αtxT (t)Qx(t) dt, (4)

JT ≡

∫ T

0

e2αtxT (t)Qx(t) dt, (5)

where Q is a user-defined symmetric weight matrix. The
parameter α can be positive or negative. If it is positive,
it is known as the prescribed degree of stability (see [1] or
[3]), while if it is negative (like in Reinforcement Learn-
ing applications) it is known as the discount exponent.

3 Mean and variance of the LQG cost function

In this sectionwe derive expressions forE[J ],E[JT ],V[J ]
and V[JT ]. An overview of derived theorems, as well as
the corresponding requirements, is shown in Table 1.

Table 1
The theorems with which the mean and variance of J and JT

can be found, as well as the requirements for these theorems.

If α 6= 0 If α = 0 Requirements

E[JT ] Th. 1 Th. 3 A and Aα Sylvester

E[J ] Th. 2 α < 0 and Aα stable

V[JT ] Th. 4 Th. 6 A
−α, A, Aα and A2α Sylvester

E[J ] Th. 5 α < 0 and Aα stable

3.1 Notation and terminology

Concerning the evolution of the state, we define
µ(t) ≡ E[x(t)], Σ(t) ≡ E[x(t)xT (t)] and Σ(t1, t2) ≡
E[x(t1)x

T (t2)]. These quantities can be found through
the theorems of Appendix A.

We define the matrices Aα ≡ A + αI and similarly

Akα ≡ A+ kαI for any number k. We also define XQ
kα

and X̄Q
kα to be the solutions of the Lyapunov equations

AkαX
Q
kα +XQ

kαA
T
kα +Q = 0, (6)

AT
kαX̄

Q
kα + X̄Q

kαAkα +Q = 0. (7)

We often have α = 0. In this case A0 equals A, and we

similarly shorten XQ
0 to XQ. The structure inherent in

the Lyapunov equation induces interesting properties in

its solutions XQ
kα, which are outlined in Appendix B.

We define the time-dependent solution XQ
kα(t1, t2) as

XQ
kα(t1, t2) =

∫ t2

t1

eAkαtQeA
T
kαt dt. (8)

This integral can be calculated efficiently by solving a
Lyapunov equation. (See Theorem 14.) Often it hap-

pens that the lower limit t1 of XQ
kα(t1, t2) equals zero.

To simplify notation, we then write XQ
kα(t) ≡ XQ

kα(0, t).

Another integral solution X̃Q
k1α,k2α

(T ) is defined as

X̃Q
k1α,k2α

(T ) ≡

∫ T

0

eAk1α(T−t)QeAk2αt dt. (9)

This quantity can be calculated (see [17]) through

X̃Q
α1,α2

(T ) =
[

I 0
]

exp

([

Aα1
Q

0 Aα2

]

T

)[

0

I

]

. (10)

Considering terminology, we say that a matrixA is stable
(Hurwitz) if and only if it has no eigenvalue λi with a
real part equal to or larger than zero. Similarly, we say
that a matrix A is Sylvester if and only if it has no two
eigenvalues λi and λj (with possibly i = j) satisfying
λi = −λj . This latter definition is new in literature, but
to the best of our knowledge, no term for this matrix
property has been defined earlier.
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3.2 The expected cost

We now examine the expected costsE[J ] and E[JT ]. Ex-
pressions for these costs are already known for various
special cases. (See for instance [3,12].) To provide a com-
plete overview of the subject, we have included expres-
sions which are as general as possible.

Theorem 1 Consider system (2). Assume that α 6= 0
and that A and Aα are both Sylvester. The expected value
E[JT ] of the finite-time cost JT (5) then equals

tr

((

Σ0 − e2αTΣ(T ) +
(

1− e2αT
)

(

−V

2α

))

X̄Q
α

)

. (11)

PROOF. From (5) follows directly that

E[JT ] = tr

(

∫ T

0

e2αtΣ(t) dtQ

)

= tr (Y (T )Q) , (12)

where Y (T ) is defined as the above integral. To find it,
we multiply (A.7) by e2αt and integrate it to get

∫ T

0

e2αtΣ̇(t) dt = AY (T )+Y (T )AT+

∫ T

0

e2αtV dt. (13)

The left part, through integration by parts, must equal

∫ T

0

e2αtΣ̇(t) dt =
(

e2αTΣ(T )− Σ0

)

− 2αY (T ). (14)

As a result, Y (T ) must satisfy the Lyapunov equation

AαY (T )+Y (T )AT
α+

(

e2αT − 1

2α
V +Σ0 − e2αTΣ(T )

)

=0.

(15)
Using Theorem 15, we can now write Y (T ) as

Y (T ) =
e2αT − 1

2α
XV

α +XΣ0

α − e2αTXΣ(T )
α . (16)

Combining this with (12) and applying Theorem 16
(with F = G = I) completes the proof.

Theorem 2 Consider system (2). Assume that α < 0
and that Aα is stable. The expected value E[J ] of the
infinite-time cost J (4) is then given by

E[J ] = tr

((

Σ0 −
V

2α

)

X̄Q
α

)

. (17)

PROOF. If we examine (11) in the limit as T → ∞,
then this theorem directly follows. After all, Theorem 8
implies that, for stable Aα, e

2αTΣ(T ) → 0 as T → ∞.

Theorem 3 Consider system (2). Assume that α = 0
and that A is Sylvester. The expected value E[JT ] of the
finite-time cost JT (5) is then given by

E[JT ] = tr
(

(Σ0 − Σ(T ) + TV ) X̄Q
)

. (18)

PROOF. If we consider (11) fromTheorem 1 as α → 0,
then this theorem directly follows. After all, we know

from l’Hôpital’s rule that limα→0
1−e2αT

2α = −T .

3.3 The cost variance

Next, we derive expressions for the variances V[J ] and
V[JT ]. These expressions are new and as such are our
main contribution. If we define∆ = Σ0−XV , thenV[JT ]
and V[J ] can be found through the following theorems.

Theorem 4 Consider system (2). Assume that α 6= 0
and thatA−α,A,Aα andA2α are Sylvester. The variance
V[JT ] of the finite-time cost JT (5) is then given by

V[JT ] = 2tr
(

(∆X̄Q
α (T ))2

)

− 2
(

µ
T
0 X̄

Q
α (T )µ0

)2

+ 4tr

(

XV Q

(

XV e4αT X̄Q
−α(T )− X̄Q

α (T )

4α

+ 2X∆
2αX̄

Q
α (T )− 2X̃

X∆

2αe
AT

αTQ

3α,α (T )

))

. (19)

PROOF. We will start our proof by evaluating E[J2].
If we write x(t1) as x1 and x(t2) as x2, then we have

E[J2]=E

[

∫ T

0

∫ T

0

e2α(t1+t2)x
T
1 Qx1x

T
2 Qx2 dt2 dt1

]

. (20)

Taking the trace and applying Theorem 19 gives us

E[J2] =

∫ T

0

∫ T

0

(

tr
(

e2αt1Σ(t1)Q
)

tr
(

e2αt2Σ(t2)Q
)

+ 2tr
(

e2α(t1+t2)Σ(t2, t1)QΣ(t1, t2)Q
)

− 2e2α(t1+t2)µ
T
1 Qµ1µ

T
2 Qµ2

)

dt2 dt1, (21)

where µ1 equals E[x(t1)] = eAt1µ0 (see Theorem 8) and
similarly forµ2. There are three terms in the above equa-
tion. We will denote them by T1, T2 and T3, respectively.
The first term T1 directly equals E[J ]2 (see Theorem 1).
This is convenient, becauseV[J ] = E[J2]−E[J ]2, which
means thatV[J ] equals the remaining two terms T2+T3.
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The third term T3 is, according to definition (8), equal to

T3 = −2

(

∫ T

0

e2αtµT
0 e

AT tQeAt
µ0 dt

)2

= −2
(

µ
T
0 X̄

Q
α (T )µ0

)2
, (22)

where X̄Q
α (T ) can be evaluated through Theorem 14.

That leaves T2. To find it, we first have to adjust the
integrals. We note that T2 is symmetric with respect to
t1 and t2. That is, if we would interchange t1 and t2, the
integrand would be the same. As a result, we do not have
to integrate over all values of t1 and t2. We can also only
consider all cases where t1 < t2, integrate over this area,
and then multiply the final result by 2. This gives us

T2 = 4tr

(

∫ T

0

∫ T

t1

e2α(t1+t2)Σ(t2, t1)QΣ(t1, t2)Qdt2 dt1

)

.

(23)
Now, with t1 < t2, we can apply Theorem 10 to substi-
tute for Σ(t1, t2). If we subsequently expand the brack-
ets, and use the fact that XV and hence also ∆ is sym-
metric (see Theorem 12), then the above term turns into

T2 = 4tr

(∫ T

0

∫ T

t1

e2α(t1+t2)

(

eAt2∆eA
T t1QeAt1∆eA

T t2Q

+ eA(t2−t1)XV QXV eA
T (t2−t1)Q

+ 2eA(t2−t1)XV QeAt1∆eA
T t2Q

)

dt2 dt1

)

. (24)

This expression again has three terms.We call them T2,1,
T2,2 and T2,3, respectively. First we find T2,1. We can
again note that the integrand is symmetric with respect
to t1 and t2, meaning we can apply the opposite trick of
the one we applied at (23). This gives us

T2,1 = 2tr

(

∫ T

0

∫ T

0

eAαt2∆eA
T
α t1QeAαt1∆eA

T
α t2Qdt2 dt1

)

=2tr





(

∫ T

0

∆eA
T
αtQeAαt dt

)2


=2tr
(

(∆X̄Q
α (T ))2

)

. (25)

The next term, T2,2, is not symmetric in t1 and t2. To
bring both integration bounds back to zero, we now sub-
stitute t2 for t2 + t1. Subsequently interchanging the in-
tegrals results in

T2,2 =4tr

(∫ T

0

∫ T−t1

0

e2α(2t1+t2)eAt2XV QXV eA
T t2Qdt2 dt1

)

=4tr

(

∫ T

0

(

∫ T−t2

0

e4αt1dt1

)

eA
T
αt2QeAαt2XV QXV dt2

)

=4tr

(

e4αT X̄Q
−α(T )− X̄Q

α (T )

4α
XV QXV

)

. (26)

That leaves T2,3, which is the most involved term. We
can apply the same substitution and interchanging of
integrals to find that T2,3 equals

8tr

(

∫ T

0

∫ T−t2

0

e2α(2t1+t2)eAt2XV QeAt1∆eA
T (t2+t1)Qdt1 dt2

)

=8tr

(

∫ T

0

XV QX∆
2α(T−t2)e

AT
αt2QeAαt2 dt2

)

=T2,3. (27)

ExpandingX∆
2α(T−t2) using Theorem 14 turns this into

T2,3 = 8tr

(

XV Q

(

X∆
2α

∫ T

0

eA
T
αt2QeAαt2 dt2

−

∫ T

0

eA3α(T−t2)X∆
2αe

AT
αTQeAαt2 dt2

))

(28)

= 8tr

(

XV Q

(

X∆
2αX̄

Q
α (T )− X̃

X∆

2αeA
T
αTQ

3α,α (T )

))

,

where the final term X̃
X∆

2αeA
T
αTQ

3α,α (T ) can be found

through (10). If we now merge all terms together, we
find the result which we wanted to prove.

Theorem 5 Consider system (2). Assume that α < 0
and that Aα is stable. The variance V[J ] of the infinite-
time cost J (4) is then given by

V[J ] = 2tr
(

(Σ0X̄
Q
α )2

)

− 2
(

µ
T
0 X̄

Q
α µ0

)2

+ 4tr

((

XΣ0

2α −
XV

2α

4α

)

X̄Q
α V X̄Q

α

)

. (29)

PROOF. As T → ∞, eA
T
αT and e4αT become zero,

X̄Q
α (T ) becomes X̄Q

α and hence (19) reduces to

V[J ] = 2tr
(

(∆X̄Q
α )2

)

− 2
(

µ
T
0 X̄

Q
α µ0

)2
(30)

+ 4tr

(

X̄Q
α XV Q

(

2X∆
2α −

XV

4α

))

.

Through an excessive amount of elementary rewritings,
using both Q = −AT

αX̄
Q
α − X̄Q

α Aα and Theorem 17, the
above can be rewritten to (29), which is a slightly more
elegant version of the above expression.

Theorem 6 Consider system (2). Assume that α = 0
and that A is Sylvester. The variance V[JT ] of the finite-
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time cost JT (5) is then given by

V[JT ] = 2tr
(

(∆X̄Q(T ))2
)

− 2
(

µ
T
0 X̄

Q(T )µ0

)2

+ 4tr

(

XV Q

(

XV
(

T X̄Q −XXQ

(T )
)

+ 2X∆X̄Q(T )− 2X̃X∆eA
T TQ(T )

))

. (31)

PROOF. We can evaluate (19) fromTheorem 4 as α →
0. While doing so, we may use the relation

X̄
X̄

Q

−α
α (T )=

X̄Q
α (T )−e4αT X̄Q

−α(T )

4α
+
e4αT−1

4α
X̄Q

−α, (32)

which follows from combining Theorems 14 and 17. From
this, we find through application of l’Hôpital’s rule that

lim
α→0

e4αT X̄Q
−α(T )− X̄Q

α (T )

4α
=T X̄Q−XXQ

(T ). (33)

By using the above relation, the theorem directly follows.

3.4 FindingE[JT ] andV[JT ] using matrix exponentials

The method of using Lyapunov solutions to find E[JT ]
and V[JT ] has a significant downside: if A or Aα is not
Sylvester, the theorems do not hold. By solving integrals
using matrix exponentials, according to the methods de-
scribed in [17], we can work around that problem.

Theorem 7 If we define the matrix C as

C =



















−AT
2α Q 0 0 0

0 A V 0 0

0 0 −AT Q 0

0 0 0 A2α V

0 0 0 0 −AT
−2α



















, (34)

and write eCT as

eCT =











Ce
11 · · · Ce

15

...
. . .

...

Ce
51 · · · Ce

55











, (35)

then we can find E[JT ] and V[JT ] through

E[JT ] = tr
(

(Ce
44)

T (Ce
12Σ0 + Ce

13)
)

, (36)

V[JT ] = 2tr
(

(

(Ce
44)

T (Ce
12Σ0 + Ce

13)
)2

(37)

− 2(Ce
44)

T (Ce
14Σ0 + Ce

15)
)

− 2
(

µ
T
0 (C

e
44)

TCe
12µ0

)2
.

PROOF. We first prove the expression for E[JT ]. If we
insert (A.5) into (12), we find that

E[JT ] = tr

(∫ T

0

e2αteAtΣ0e
AT tQdt

+

∫ T

0

∫ t

0

e2αteA(t−s)V eA
T (t−s)Qds dt

)

. (38)

We know from [17] that

Ce
44 = eA2αT , (39)

Ce
12 =

∫ T

0

e−AT
2α(T−t)QeAt dt, (40)

Ce
13 =

∫ T

0

∫ t

0

e−AT
2α(T−t)QeA(t−s)V e−AT s ds dt. (41)

From this (36) directly follows. Proving the expression
for V[JT ] is done similarly, but with more bookkeeping.
First of all, Ce

14 equals (see [17])

∫ T

0

∫ t

0

∫ s

0

e−AT
2α(T−t)QeA(t−s)V e−AT (s−r)QeA2αr dr ds dt,

(42)
with a similar expression for Ce

15. Next, we will find the
terms T3 (see (22)) and T2 (see (23)), which together
equalV[JT ]. We can directly see from (22) that T3 equals

T3 = −2
(

µ
T
0 (C

e
44)

TCe
12µ0

)2
. (43)

Then we consider T2 from (23). Instead of apply-
ing (A.5), we now use

Σ(t1, t2) = eAt1Σ0e
AT t2+

∫ min(t1,t2)

0

eA(t1−s)V eA
T (t2−s)ds, (44)

which is derived in an identical way. For ease of nota-
tion, we write Σ(t1, t2) = Σa + Σb, with Σa and Σb

the two parts in the above expression. Inserting Σ(t1, t2)
into (23) then gives

T2 = 2tr

(∫ T

0

∫ T

0

e2α(t1+t2)

(

ΣT
aQΣaQ

+ 2ΣT
aQΣbQ+ΣT

b QΣbQ

)

dt2 dt1

)

. (45)

The first term T2,aa here equals

2tr

(

∫ T

0

∫ T

0

e2α(t1+t2)eAt2Σ0e
AT t1QeAt1Σ0e

AT t2 dt2 dt1

)

= 2tr





(

∫ T

0

e2αteA
T tQeAtΣ0 dt

)2




= 2tr
(

(

(Ce
44)

TCe
12Σ0

)2
)

= T2,aa. (46)
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The second term T2,ab is given by

T2,ab = 4tr

(
∫ T

0

∫ T

0

∫ min(t1,t2)

0

e2α(t1+t2)eAt2Σ0e
AT t1Q

eA(t1−s)V eA
T (t2−s)Qds dt2 dt1

)

. (47)

We want the integration order to be dt2 ds dt1. If we
note that the integration area is described by 0 ≤ s ≤
(t1, t2) ≤ T , we can reorder the integrals. That is,

T2,ab=4tr

(∫ T

0

∫ t1

0

∫ T

s

. . . dt2 ds dt1

)

(48)

=4tr

(∫ T

0

∫ t1

0

∫ T

0

. . . dt2 ds dt1−

∫ T

0

∫ t1

0

∫ s

0

. . . dt2 ds dt1

)

.

We now have two integrals, but we can solve both. If we
split up the first one and rewrite the second one, we get

T2,ab=4tr

((∫ T

0

∫ t1

0

e2αt1eA
T t1QeA(t1−s)V e−AT s ds dt1

)

(∫ T

0

e2αt2eA
T t2QeAt2 dt2

)

Σ0−

∫ T

0

∫ t1

0

∫ s

0

e2α(t1+t2)

eA
T t1QeA(t1−s)V eA

T (t2−s)QeAt2Σ0 dt2 ds dt1

)

=4tr
(

(Ce
44)

TCe
13(C

e
44)

TCe
12Σ0−(Ce

44)
TCe

14Σ0

)

. (49)

Finally there is T2,bb. We first concern ourselves with the
integration order and limits. By rearranging integrals,
and by using the symmetry between t1 and t2 as well as
between s1 and s2, we can find that

T2,bb = 2tr

(∫ T

0

∫ T

0

∫ min(t1,t2)

0

∫ min(t1,t2)

0

. . . ds2 ds1 dt2 dt1

)

= 2tr

(∫ T

0

∫ t2

0

∫ T

0

∫ t1

0

. . . ds1 dt2 ds2 dt1

− 2

∫ T

0

∫ t2

0

∫ s1

0

∫ t1

0

. . . ds1 dt2 ds2 dt1

)

. (50)

After inserting the integrand, we can rewrite this to

T2,bb = 2tr

((∫ T

0

∫ t

0

e2αteA
T tQeA(t−s)V e−AT s ds dt

)2

− 2

∫ T

0

∫ t2

0

∫ s1

0

∫ t1

0

e2α(t1+t2)eA
T (t1−s1)QeA(t1−s2)V

eA
T (t2−s2)QeA(t2−s1)V ds1 dt2 ds2 dt1

)

= 2tr
(

(

(Ce
44)

TCe
13

)2
−2(Ce

44)
TCe

15

)

. (51)

By combining all the results, we wind up with (37).

So nowwe have two methods of findingE[JT ] andV[JT ].
But which one is better? This mainly depends on the
time T . Our experiments have shown that, for small
times T , using matrix exponentials results in a better
numerical accuracy than using Lyapunov solutions, but
for large T the situation is exactly the opposite, and the
numerical accuracy of the matrix exponential method
quickly deteriorates. Similar results have been obtained
by [18], which examines the numerical accuracy of both
algorithms when finding XQ(T ).

4 Application to an LQG system

So far we have only considered systems of the form (2),
but in LQG systems there are also input and output
signals. However, in that case we can always rewrite the
system on the form (2). In this section we show how to
do this. For more details we refer to [1,16,3,12].

First, we consider a system ẋ(t) = Ax(t)+Bu(t)+v(t)
with input. Its corresponding cost function equals

J =

∫

∞

0

e2αt(xT (t)Qx(t) + u
T (t)Ru(t)) dt. (52)

It is well-known in literature (see for instance [7]) that
the optimal control law minimizing E[J ] is a linear con-
trol law u(t) = −Fx(t). If we assume that Q = QT ≥ 0
and R = RT > 0, then the optimal gain matrix F equals

F = R−1BT X̂α, (53)

with X̂α the solution to the algebraic Riccati equation

AT
αX̂α + X̂αAα +Q− X̂αBR−1BT X̂α = 0. (54)

For this optimal gain matrix F (and for any other matrix
F ) the system and cost function can be written as

ẋ(t) = (A−BF )x(t) + v(t) = Âx(t) + v(t), (55)

J =

∫

∞

0

e2αtxT (t)Q̂x(t) dt, (56)

where we have Q̂ = Q + FTRF . This shows that the
system is now in our original form (2).

A similar reduction can be performed when we are deal-
ing with a noisy output equation y(t) = Cx(t) +w(t),
where w(t) is zero-mean Gaussian white noise with in-
tensity W . To deal with this output equation, we take a
state estimate x̂(t) and update it through

˙̂x(t) = Ax̂(t) +Bu(t) +K(y(t)− Cx̂(t)). (57)
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To minimize the state estimation error e(t) = x̂(t) −
x(t), we need to choose the observer gain K equal to

K = ECTW−1, (58)

where E is the solution to

AE + EAT + V − ECTW−1CE = 0. (59)

We need this state estimate in a new optimal control law
u = −F x̂. This reduces the system equations to

[

ẋ

˙̂x

]

=

[

A−BF −BF

KC A−BF −KC

][

x

x̂

]

+

[

v

Kw

]

, (60)

which is again of the form we have seen earlier, albeit
with a somewhat larger state vector. Because of this,
all the equations that were originally developed for sys-
tem (2) are applicable to LQG systems as well.

5 Numerical evaluation

In this section we look at an example of how to apply
the derived equations. In literature, researchers almost
always use the controller which minimizes the expected
value of the cost. This is done irrespective of the variance
of the cost. But if the goal is to keep the cost below a cer-
tain threshold, then this may not be the best approach.

Consider the two-state system

ẋ =

[

1 0

1/20 1

]

x+

[

1

0

]

u+ v, (61)

where we will apply Q = I, R = I and α = −0.8 in
the cost function. As control law we use u = −Fx. We
assume that the state x is fully known, and hence only F
needs to be chosen. In practice this is often not the case
and only a noisy measurement y will be available. To
solve this, we can apply the theory from Section 4 and
subsequently choose the observer gain K along with F .
However, this process is identical to choosing F . So for
simplicity of presentation, we only consider selecting F .

The optimal control matrix follows from (53) as Fopt =
[

1.6 9.9
]

. It minimizes E[J ] at E[J(Fopt)] = 154.4.

However, we can also minimize V[J ] using a basic
gradient descent method. This gives the minimum-

variance control matrix Fmv =
[

4.4 30.0
]

with mean

cost E[J(Fmv)] = 187.5. This mean cost is significantly
larger than E[J ]opt, making it seem as if this is a signif-
icantly worse control matrix.

However, now suppose that we do not care somuch about
the mean cost. All we want is to reduce the probability

that the cost J is above a certain threshold J̄ . That
is, we aim to minimize p(J > J̄) where we use J̄ =
1 500,which is roughly ten times themean. Using 250 000
numerical simulations, with T = 20 s and dt = 0.01 s,
we have found that

p(J(Fopt) > J̄) ≈ 0.091%, (62)

p(J(Fmv) > J̄) ≈ 0.059%. (63)

Hence the optimal controller has more than half as many
threshold-violating cases as the minimum-variance con-
trol law, which is a significantly worse result.

6 Conclusions

In this paper, equations have been derived for the mean
and the variance of both the infinite-time cost J and the
finite-time cost JT . We have seen a case in which the
equations can support controller synthesis by reducing
the number of extreme cases that occur.

The infinite-time cost J has a finite value if and only
if Aα is stable and α < 0. In this case, E[J ] can be
found through Theorem 2 andV[J ] through Theorem 5.
The finite-time cost JT always has a finite value. The
theorems needed to find its mean and variance, as well
as the requirements for using these theorems, have been
summarized in Table 1. Alternatively, when T is not too
large, these two quantities can also be calculated through
Theorem 7 using matrix exponentials for any A and α.
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A Evolution of the state

The way in which the state x(t) evolves over time is
described by (2). Solving this equation for x(t) results in

x(t) = eAt
x0 +

∫ t

0

eA(t−s)
v(s) ds. (A.1)

We use this to derive statistical properties forx(t). These
properties are well-known (see for instance [3]), but they
are included to give a good overview of existing theory.
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Theorem 8 When x(t) satisfies system (2), with the
corresponding assumptions on x(0) and v, then x(t) is
a Gaussian random variable satisfying

µ(t)≡E[x(t)] = eAt
µ0, (A.2)

Σ(t)≡E[x(t)xT (t)] = eAt(Σ0−XV )eA
T t+XV . (A.3)

PROOF. Because x(t) is the sum of Gaussian vari-
ables, it will have a Gaussian distribution at all times t.
From (A.1), its mean equals

µ(t) ≡ E[x(t)] = eAt
E[x0] = eAt

µ0. (A.4)

The expected squared value is found similarly through

Σ(t) = eAt
E[x0x

T
0 ]e

AT t

+

∫ t

0

∫ t

0

eA(t−s1)E[v(s1)v
T (s2)]e

AT (t−s2)ds1 ds2

= eAtΣ0e
AT t +

∫ t

0

eA(t−s)V eA
T (t−s) ds. (A.5)

(The reduction of E[v(s1)v
T (s2)] to V δ(s1 − s2) is for-

mally an application of the Itô isometry, as explained
in [11].) Next, by substituting s by t− τ , we find that

Σ(t) = eAtΣ0e
AT t +

∫ t

0

eAτV eA
T τ ds (A.6)

= eAtΣ0e
AT t +XV (t) = eAt(Σ0−XV )eA

T t+XV ,

where in the end we have also applied Theorem 14.

Theorem 9 The expected squared value Σ(t) satisfies

Σ̇(t) = AΣ(t) + Σ(t)AT + V. (A.7)

PROOF. The derivative of (A.3) equals

Σ̇(t) =A
(

eAt(Σ0−XV )eA
T t
)

+
(

eAt(Σ0−XV )eA
T t
)

AT

=A
(

Σ(t)−XV
)

+
(

Σ(t)−XV
)

AT

=AΣ(t)+Σ(t)AT −
(

AXV +XV AT
)

. (A.8)

Applying AXV +XV AT + V = 0 completes the proof.

Theorem 10 For t1 < t2 we have

Σ(t1, t2) = eAt1(Σ0−XV )eA
T t2+XV eA

T (t2−t1). (A.9)

Furthermore, Σ(t1, t2) = Σ(t2, t1)
T and Σ(t, t) = Σ(t).

PROOF. The proof is identical to that of Theorem 8.

B Properties of Lyapunov equation solutions

Theorem 11 There is a unique solution for XQ, and
identically for X̄Q, if and only if thematrixA is Sylvester.

PROOF. In literature it is known (see [2]) that the
Sylvester EquationAX+XB = Q has a unique solution
if and only if A and −B do not have a common eigen-
value. SubstitutingB = AT directly proves the theorem.

Theorem 12 Assume that A is Sylvester. In this case
XQ is symmetric if and only if Q is symmetric.

PROOF. If we take the Lyapunov equation AXQ +
XQAT +Q = 0 and subtract its transpose, we find that

A
(

XQ−(XQ)T
)

+
(

XQ−(XQ)T
)

AT +(Q−QT )=0.(B.1)

This equation has a unique solution (Theorem 11) di-
rectly implying thatQ = QT if and only ifXQ = (XQ)T .

Theorem 13 Assume that A is stable. Then A is
Sylvester and the Lyapunov equation AXQ + XQAT +
Q = 0 has a unique solution XQ which equals

XQ =

∫

∞

0

eAtQeA
T t dt. (B.2)

PROOF. The assumption that A is stable directly
implies that A is Sylvester and hence (Theorem 11)
that XQ exists and is unique. Now we only need
to prove (B.2). Because A is stable, we know that
limt→∞ eAt = 0. We can hence write Q as

Q = −
[

eAtQeA
T t
]

∞

0
= −

∫

∞

0

d

dt

(

eAtQeA
T t
)

dt

= −

∫

∞

0

(

AeAtQeA
T t + eAtQeA

T tAT
)

dt (B.3)

= −A

(∫

∞

0

eAtQeA
T t dt

)

−

(∫

∞

0

eAtQeA
T t dt

)

AT .

The equation above is a Lyapunov equation with the
quantity between brackets as its unique solution XQ.

Theorem 14 When A is Sylvester, XQ(t1, t2) can ei-
ther be found by solving the Lyapunov equation

AXQ(t1, t2)+X
Q(t1, t2)A

T+eAt1QeA
T t1−eAt2QeA

T t2=0
(B.4)

or by first finding XQ and then using

XQ(t1, t2) = eAt1XQeA
T t1 − eAt2XQeA

T t2 . (B.5)

8



PROOF. We first prove (B.4) through

eAt1QeA
T t1 − eAt2QeA

T t2 = −
[

eAtQeA
T t
]t2

t1

= −

∫ t2

t1

d

dt

(

eAtQeA
T t
)

dt

= −A

(∫ t2

t1

eAtQeA
T t dt

)

−

(∫ t2

t1

eAtQeA
T t dt

)

AT

= −AXQ(t1, t2)−XQ(t1, t2)A
T . (B.6)

To prove (B.5) too, we will use Q = −AXQ − XQAT

and the matrix property eAtA = AeAt to find that

eAt1QeA
T t1−eAt2QeA

T t2 = −A
(

eAt1XQeA
T t1 (B.7)

−eAt2XQeA
T t2
)

−
(

eAt1XQeA
T t1−eAt2XQeA

T t2
)

AT .

The above expression actually equals (B.4), except that
the part between brackets is replaced by XQ(t1, t2). Be-
causeA is Sylvester, the expression has a unique solution
XQ(t1, t2), which must equal the part between brackets.

Theorem 15 Assume thatA is Sylvester and thatAC =
CA. For any Q and V we then have

XCQ+V = CXQ +XV . (B.8)

PROOF. Per definition, AXQ +XQAT + Q = 0 and
AXV + XV AT + V = 0. Left-multiplying the first ex-
pression by C and adding it to the second gives us

A
(

CXQ+XV
)

+
(

CXQ+XV
)

AT+(CQ+V )= 0. (B.9)

This is a Lyapunov equationwithXCQ+V as its solution.

Theorem 16 Assume that A is Sylvester. For matrices
F and G satisfying AF = FA and ATG = GAT , and for
any Q and V , we have

tr
(

QFXVG
)

= tr
(

X̄QFV G
)

. (B.10)

PROOF. This is directly proven by

tr
(

QFXVG
)

= tr
(

(−AT X̄Q − X̄QA)FXV G
)

= tr
(

(−AT X̄QFXV G− X̄QAFXV G)
)

= tr
(

(−GX̄QFXV AT −GX̄QFAXV )
)

= tr
(

GX̄QF (−XV AT −AXV )
)

= tr
(

X̄QFV G
)

. (B.11)

Theorem 17 Assume that bothA andAα are Sylvester.

For XQ, XQ
α , XXQ

α and XXQ
α we have

XXQ

α =
XQ

α −XQ

2α
= XXQ

α . (B.12)

PROOF. Per definition, we have

(A+ αI)XQ
α +XQ

α (A+ αI)T +Q = 0, (B.13)

AXQ +XQAT +Q = 0. (B.14)

By subtracting the two equations, and by using Aα =
A+ αI, we can get either of two results

A(XQ
α −XQ)+(XQ

α −XQ)AT +2αXQ
α =0, (B.15)

Aα(X
Q
α −XQ)+(XQ

α −XQ)AT
α +2αXQ =0. (B.16)

Next, we divide the above equations by 2α. The resulting
Lyapunov equations have (B.12) as their solution.

C Power forms of Gaussian random variables

Theorem 18 Consider a Gaussian random variable x

with mean µ and expected squared value Σ ≡ E[xxT ].
For symmetric matrices P and Q we have

E[xTPxx
TQx] = tr(ΣP )tr(ΣQ) + 2tr(ΣPΣQ)

− 2µTPµµ
TQµ. (C.1)

PROOF. We know from [9] (Appendix F.3) that, for
symmetric P and Q, and for a zero-mean process y =
x−µ with covariance Y = E[yyT ] = Σ−µµ

T , we have

E[yTPyy
TQy] = tr(Y P )tr(Y Q)+2tr(Y PY Q). (C.2)

If we apply this result to the expansion of

E[xTPxx
TQx] = E[(y+µ)TP (y+µ)(y+µ)TQ(y+µ)]

(C.3)
and rewrite the result, (C.1) follows.

Theorem 19 Consider Gaussian random variables x

and y with joint distribution

[

x

y

]

∼ N

([

µx

µy

]

,

[

Kxx Kxy

Kyx Kyy

])

. (C.4)

Also define Σab = Kab + µaµb
T , where the subscripts a

and b can be substituted for x and/or y. For symmetric
matrices P and Q we now have

E[xTPxy
TQy] = tr(ΣxxP )tr(ΣyyQ) + 2tr(ΣyxPΣxyQ)

− 2µx
TPµxµy

TQµy. (C.5)

PROOF. This follows directly from Theorem 18 with

x
′ =

[

x

y

]

, P ′ =

[

P 0

0 0

]

, Q′ =

[

0 0

0 Q

]

. (C.6)
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