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Abstract

Linear Quadratic Gaussian (LQG) systems are well-understood and methods to minimize the expected cost are readily
available. Less is known about the statistical properties of the resulting cost function. The contribution of this paper is a set
of analytic expressions for the mean and variance of the LQG cost function. These expressions are derived using two different
methods, one using solutions to Lyapunov equations and the other using only matrix exponentials. Both the discounted and
the non-discounted cost function are considered, as well as the finite-time and the infinite-time cost function. The derived
expressions are successfully applied to an example system to reduce the probability of the cost exceeding a given threshold.
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1 Introduction

The Linear-Quadratic-Gaussian (LQG) control paradigm
is generally well-understood in literature. (See for in-
stance [1,16,3,12].) There are many methods available
of calculating and minimizing the expected cost E[J].
However, much less is known about the resulting distri-
bution of the cost function J. Yet in many cases (like
in machine learning applications, in risk analysis and
similar stochastic problems) knowledge of the full dis-
tribution of the cost function J, or at least knowledge
of its variance V[J], is important. That is the focus of
this paper. We derive analytical expressions for both
the mean E[J] and the variance V[J] of the cost func-
tion distribution for a variety of cases. The expressions
for the variance V[J] have not been published before,
making that the main contribution of this paper.

The cost function J is usually defined as an integral
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over a squared non-zero-mean Gaussian process, turning
its distribution into a generalized noncentral x? distri-
bution. This distribution does not have a known Prob-
ability Density Function (PDF), although its proper-
ties have been studied before in literature, for instance
in [13,15,14], and methods to approximate it are dis-
cussed in [10,6]. No expressions for the variance of the
LQG system cost function are given though.

In LQG control most methods focus on the expected
cost IE[J], but not all. For instance, Minimum Variance
Control (MVC) (see [12]) minimizes the variance of the
output y, while Variance Constrained LQG (VCLQG)
(see [4,5]) minimizes the cost function subject to bounds
on the variance of the state  and/or the input u. Al-
ternatively, in Minimal Cost Variance (MCV) control
(see [8,19]) the mean cost IE[J] is fixed through an equal-
ity constraint and the cost variance V[J] (or alterna-
tively the cost cumulant) is then minimized. However,
expressions for the cost variance V[.J] are still not given.

This paper is set up as follows. We present the problem
formulation in Section 2 and derive the expressions that
solve this problem in Section 3, also making use of the
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appendices. Section 4 then shows how the equations can
be applied to LQG systems, which is subsequently done
in Section 5. Finally, Section 6 contains the conclusions.

2 Problem formulation

We consider continuous linear systems subject to
stochastic process noise. Formally, we write these as

da(t) = Ax(t) dt + dw(t), 1)

where w(t) is a vector of Brownian motions. (Note
that (1) is not an LQG system, because it is lacking in-
put. The extension to LQG systems will be discussed in
Section 4.) As a result, dw(t) is a Gaussian random pro-
cess with zero-mean and an (assumed constant) covari-
ance of V' dt. Within the field of control (see for instance
[16]) this system is generally rewritten according to

&(t) = Az(t) + v(t), (2)

where v(t) is zero-mean Gaussian white noise with in-
tensity V. That is, E[v(t)vT (7)] = V&(t — 7), with 6(.)
the Kronecker delta function. From a formal mathemat-
ical perspective this simplification is incorrect, because
v(t) is not measurable with nonzero probability. How-
ever, since this notation is common in the control lit-
erature, and since it prevents us from having to evalu-
ate the corresponding It6 integrals, we will stick with
it, although the reader is referred to [11] for methods to
properly deal with stochastic differential equations.

We assume that the initial state (0) = xo has a Gaus-
sian distribution satisfying

o = Elxg] and ¥y = Elzoxl]. (3)
Note that the variance of x( is not ¥, but actually
equals Yo — poud . We will use two different cost func-

tions in this paper: the infinite-time cost J and the finite-
time cost Jp, respectively defined as

— > eZath T

7= (H)Qa(t) dt, (4)
T

Jr = /0 2T (1) Qe (t) dt, (5)

where @ is a user-defined symmetric weight matrix. The
parameter o can be positive or negative. If it is positive,
it is known as the prescribed degree of stability (see [1] or
[3]), while if it is negative (like in Reinforcement Learn-
ing applications) it is known as the discount exponent.

3 Mean and variance of the LQG cost function

In this section we derive expressions for E[J], E[J7], V[J]
and V[Jr]. An overview of derived theorems, as well as
the corresponding requirements, is shown in Table 1.

Table 1
The theorems with which the mean and variance of J and Jr
can be found, as well as the requirements for these theorems.

If @ # 0| If & = 0| Requirements

E[Jr]|| Th.1 Th. 3 | A and A, Sylvester
E[J] Th. 2 a < 0 and A, stable

V[Jr]|| Th.4 | Th.6 |A ., A, Aa and Ay, Sylvester
E[J] Th. 5 a < 0 and A, stable

3.1 Notation and terminology

Concerning the evolution of the state, we define
u(t) = Blx(t)], 3(t) = Elxt)zT(t)] and X(t1,t2) =
E[z(t1)x” (t2)]. These quantities can be found through
the theorems of Appendix A.

We define the matrices A, = A + ol and similarly
Ao = A+ kal for any number k. We also define X,?a
and X kQa to be the solutions of the Lyapunov equations

A X2 4+ X2 AL +Q =0, (6)
AzaXI?a + Xl?aAka + Q = 0 (7)

We often have o = 0. In this case Ag equals A, and we
similarly shorten X(? to X¥. The structure inherent in
the Lyapunov equation induces interesting properties in
its solutions X ,?a, which are outlined in Appendix B.

We define the time-dependent solution X ;?a(th t2) as

ta
Xe () = [ etQetlita (9

t1

This integral can be calculated efficiently by solving a
Lyapunov equation. (See Theorem 14.) Often it hap-

pens that the lower limit ¢; of X ,?a (t1,t2) equals zero.
To simplify notation, we then write X,?a (t) = X,?a (0,1).
Another integral solution X (T) is defined as

kla,kga

T
X sal@) = [ MeT0Qetert e ()

This quantity can be calculated (see [17]) through

/)

Considering terminology, we say that a matrix A is stable
(Hurwitz) if and only if it has no eigenvalue A\; with a
real part equal to or larger than zero. Similarly, we say
that a matrix A is Sylvester if and only if it has no two
eigenvalues A\; and \; (with possibly ¢ = j) satisfying
A; = —A;. This latter definition is new in literature, but
to the best of our knowledge, no term for this matrix
property has been defined earlier.

. Aoy Q 0
Xe  (T)= ' 10
& (™) = |1 0] exp< o (10)




3.2 The expected cost

We now examine the expected costs E[J] and E[Jr]. Ex-
pressions for these costs are already known for various
special cases. (See for instance [3,12].) To provide a com-
plete overview of the subject, we have included expres-
sions which are as general as possible.

Theorem 1 Consider system (2). Assume that o # 0
and that A and A, are both Sylvester. The expected value
E[Jr] of the finite-time cost Jr (5) then equals

tr ((20 —e*TY(T) + (1 —€*7) (;—V» XS) . (11)

a
PROOF. From (5) follows directly that

T
E[Jr] = tr </0 e2at2(t)dtQ>_tr(Y(T)Q), (12)

where Y (T') is defined as the above integral. To find it,
we multiply (A.7) by e2*! and integrate it to get

T T
/ 2t (t) dt = AY (T)+Y(T)AT + / etV dt. (13)
0 0

The left part, through integration by parts, must equal

/ ! ety (t) dt = (**TE(T) — o) — 2aY(T). (14)

As aresult, Y(T') must satisfy the Lyapunov equation

2aT _ 1
ALY (T)+Y (T)AL + (STV + X0 — eMz(T)> =0.
!

(15)

Using Theorem 15, we can now write Y (T) as

eQaT -1
Y(T) = TXZ + XZo _ 20T x2(T) - (16)
!

Combining this with (12) and applying Theorem 16
(with F' = G = I) completes the proof.

Theorem 2 Consider system (2). Assume that o < 0
and that A is stable. The expected value E[J] of the
infinite-time cost J (4) is then given by

E[J] = tr ((zo — %) Xff) . (17)

PROOF. If we examine (11) in the limit as T" — oo,
then this theorem directly follows. After all, Theorem 8
implies that, for stable A,, e2*T%(T) — 0 as T — oc.

Theorem 3 Consider system (2). Assume that o = 0
and that A is Sylvester. The expected value E[Jr] of the
finite-time cost Jp (5) is then given by

E[Jr] = tr (S0 — (1) + TV) X9). (18)

PROOF. If we consider (11) from Theorem 1 as o« — 0,
then this theorem directly follows. After all, we know

from I’Hopital’s rule that lim,_.o 1= _ _7p

3.8 The cost variance

Next, we derive expressions for the variances V[J] and
V[Jr]. These expressions are new and as such are our
main contribution. If we define A = $o— XV then V[Jr]
and V[J] can be found through the following theorems.

Theorem 4 Consider system (2). Assume that o # 0
andthat A_,, A, A, and As,, are Sylvester. The variance
V[Jr] of the finite-time cost Jr (5) is then given by

V[Jr] = 2tr (AXE(T))?) — 2 (uE XQ(T) o)
4aT v @Q v
+ 4tr(XVQ <XV AT X (T) = XS(T)

4o
~ z
+2XAXQT) — 2X e T2 (T)>). (19)

PROOF. We will start our proof by evaluating E[.J?].
If we write x(t1) as 1 and x(t2) as @2, then we have

E[J?]=FE

T T
//62“(t1+t2)mlTQw1w2TQcc2 dtQ dt1‘| . (20)
0J0
Taking the trace and applying Theorem 19 gives us

T T
B2 = [ [ (1 (@ 20)Q) tr (0e5(1)0)
+ 2tr (20 RS (1, 1)Q (1, 12)Q)

- 2e2o‘(t1+t2)H1TQH1N2TQH2) dtzdt1, (21)

where p; equals E[z(t1)] = e* p, (see Theorem 8) and

similarly for p,. There are three terms in the above equa-
tion. We will denote them by 77, Ts and T3, respectively.
The first term 7} directly equals E[J]? (see Theorem 1).
This is convenient, because V[.J] = E[J?] — E[J]?, which
means that V[J] equals the remaining two terms 7o+ T5.



The third term T3 is, according to definition (8), equal to

T 2
T3 = _9 </ 20(15“ eA thAtNO dt)
0
S 2
= =2 (o X2 (T)po) ", (22)

where X%(T') can be evaluated through Theorem 14.
That leaves T5. To find it, we first have to adjust the
integrals. We note that T5 is symmetric with respect to
t1 and to. That is, if we would interchange t; and to, the
integrand would be the same. As a result, we do not have
to integrate over all values of t; and t5. We can also only
consider all cases where t; < to, integrate over this area,
and then multiply the final result by 2. This gives us

T T
T2 = 4tr </ / €2a(t1+t2)2(t2,tl)QE(tl,tg)Q dtg dt1> .
0Jt,
(23)
Now, with t; < t2, we can apply Theorem 10 to substi-
tute for X(t1,t2). If we subsequently expand the brack-

ets, and use the fact that XV and hence also A is sym-
metric (see Theorem 12), then the above term turns into

T T
Ty :4tr(//e2°‘(t1+t2)(eAt2AeATtlQeAt1AeATt2Q
0Jty
+ eA(tz_tl)XVQXVGAT(tZ_tl)Q

+ 26A(t2*tl)XVQeAt1AeATt2 Q) dta dtl) . (24)

This expression again has three terms. We call them 75 1,
T59 and Ty 3, respectively. First we find 75 ;. We can
again note that the integrand is symmetric with respect
to t1 and t3, meaning we can apply the opposite trick of
the one we applied at (23). This gives us

T T
Ty, = 2tr <//eA"‘terAaT“QeAa“AeAgt?Q dts dt1>
0J0
T 2
= 2tr < AeA«fthAatdt> =2tr((AXE(T))?). (25)
0

The next term, 75 o, is not symmetric in ¢; and to. To
bring both integration bounds back to zero, we now sub-
stitute t5 for o + ¢1. Subsequently interchanging the in-
tegrals results in

T22—4tr<// 202t +13) A XV QXY eA 2Q dty dt1>

T t2
=4tr < / ( / 4at1dt1>eAZfZQeAafZXVQXth2>
0 0

= 4tr < X (T) ~ XR(T) XVQXV> : (26)

4o

That leaves T 3, which is the most involved term. We
can apply the same substitution and interchanging of
integrals to find that T3 3 equals

8tI' <// 20[ 2t1+t2) AtQXVQeAtl AeA (tz-‘rtl)Q dtl dt2>

—=8tr ( / XV QXA (T—ty)etat QeAet dt2> =Ty3. (27)
0
Expanding X4},(T —t2) using Theorem 14 turns this into

T
T3 = 8tr<XVQ (X?a/ eAgtzQeAatz dts
0
T T
_/ ean(T=0) x5 edoT Qe dty (28)
0

_ ~ A AT
s (xVQ (Xfaxf?m _ X TQ(T))) ,

where the final term XXME - Q(T) can be found

through (10). If we now merge all terms together, we
find the result which we wanted to prove.

Theorem 5 Consider system (2). Assume that & < 0
and that A, is stable. The variance V[J| of the infinite-
time cost J (4) is then given by

VIJ) = 2tr (50 X2)) = 2 (ud Xpso)”

Vv
+ 4tr ((X?; — @> ngxgz) . (29)
(0%

PROOF. As T — oo, eAaT and e**T become ZETo,
XQ(T) becomes X and hence (19) reduces to

(1o XS Quozf (30)
)

Through an excessive amount of elementary rewritings,
using both Q = —AT X9 — X9 A, and Theorem 17, the
above can be rewritten to (29), which is a slightly more
elegant version of the above expression.

V[J] = 2tr (AXZ)?) — 2

+ 4tr (XQXVQ <2X2a —

Theorem 6 Consider system (2). Assume that o = 0
and that A is Sylvester. The variance V[Jr] of the finite-



time cost Jr (5) is then given by
V[Jr] = 2tr (AXQ(T))?) — 2 (uf XUT)pse)”
+ 4tr(XVQ (XV (TXQ _xx¢ (T))

+2XAXT) — 2XXA6“TTQ(T)) > (31)

PROOF. We can evaluate (19) from Theorem 4 as o —
0. While doing so, we may use the relation

e XQ(T)— 4ozTXQ T 4aT_q _
Xi(fa(T): a( ) € 704( )+6 XQ

4o 4o -

(32)

which follows from combining Theorems 14 and 17. From
this, we find through application of I’'Hopital’s rule that

_eTXC (1) - XQ(T)
lim

a—0 4o

=TXQ—XX°(T). (33)

By using the above relation, the theorem directly follows.

3.4  Finding E[Jr| and V[J7] using matriz exponentials

The method of using Lyapunov solutions to find E[Jr]
and V[Jr] has a significant downside: if A or A, is not
Sylvester, the theorems do not hold. By solving integrals
using matrix exponentials, according to the methods de-
scribed in [17], we can work around that problem.

Theorem 7 If we define the matriz C as

AT Q@ 0 0 0
0 AV 0 0
C= 0 0-AT Q@ 0 ) (34)
0 0 0 Ay V
. 0 0 0 o0 -AT, |
and write e€T as
Ci -+ Cs
eCT _ . . . , (35)
Cs - Ot

then we can find E[Jr| and V[Jr] through
E[Jr] = tr ((Ciy)" (CTa¥0 + Cy)) (36)
V1] = 26r(((C5)" (CE2%0 + CF) (37)

e e € e € 2
- 2(044)T(01420 + 015)) -2 (HOT(C44)T012H0) .

PROOF. We first prove the expression for E[Jr]. If we
insert (A.5) into (12), we find that

T
E[J7] :tr( / e20teAly AT gt
0

T t
+ / / eZO‘teA(t_S)VeAT(t_S)Qdsdt). (38)
0 0

We know from [17] that

cs, = eAT, (39)
T
cs, = / e~ 42 (T=D) QeAl gy (40)
0

T
Cle3:/ / efA?Ta(Tft)QeA(t*S)Ve*ATS dsdt. (41)
o Jo

From this (36) directly follows. Proving the expression
for V[Jr] is done similarly, but with more bookkeeping.
First of all, C§, equals (see [17])

T rt s
/ //e_A2Ta(T_t)QeA(t_s)Ve_AT(S_T)QeAZ"‘T drds dt,
0JoJo
(42)
with a similar expression for C{5. Next, we will find the

terms T3 (see (22)) and T» (see (23)), which together
equal V[Jr]. We can directly see from (22) that T3 equals

e € 2
T3 = =2 (pg (C5y)" Capg)” - (43)

Then we consider T» from (23). Instead of apply-
ing (A.5), we now use

min(tl ,t2)

Y(t1,t2) = eAly et t2 —I—/ eA(tlfs)VeAT(&*S)ds, (44)
0

which is derived in an identical way. For ease of nota-
tion, we write X(t1,t2) = X, + Xp, with X, and X
the two parts in the above expression. Inserting X(¢1, t2)
into (23) then gives

T T
T, = 2tr</ / go(tittz) <25QEaQ
0 0

+2270Q%,Q + 2{@2,@) dts dt1>. (45)

The first term T3 4, here equals

T (T
9y (/ / eza(t1+t2)eAt2EOeATt1 QeAtl EoeATt2 dts dt1>
0Jo

T 2
= 2tr (/ e2ateATthAtEo dt)
0

— % (((054)%5220)2) = Th.aa- (46)



The second term T3 4 is given by

T T pmin(tytz) .
T2, = 4tr(/ / / 2alti+ia) Aty (ATt
0 0 0

A=)y eA (=9 0 ds dt, dtl) Y

We want the integration order to be dts dsdt;. If we
note that the integration area is described by 0 < s <
(t1,t2) < T, we can reorder the integrals. That is,

T pt1 pT
Ty gp=4tr (/ / / ...dtads dtl) (48)
0J0 Js

T pt1 pT T pt1 ps
:4t1”(///...dtgdsdtl—///...dtgdsdt1>.
0J0 JO 0J0 J0O

We now have two integrals, but we can solve both. If we
split up the first one and rewrite the second one, we get

T pt1
T2,ab:4tr ((// et eATt1 QeA(h—s)Ve—ATs ds dtl)
0J0

T T T pty ps
(/ 62Oztg eA to QeAtg dt2> EO _/ / /eQQ(t1 +t2)
0 0J0 JO

eATtl QeA(tl —s) V@AT(tz—s)QeAtz Yo dto ds dt1>
=4tr((C5) Cf3(C5) CFy S0~ (C5,) CF430). (49)

Finally there is T5 p,. We first concern ourselves with the
integration order and limits. By rearranging integrals,
and by using the symmetry between ¢; and t5 as well as
between s; and so, we can find that

T pT min(tl,tg) min(tl,tg)
Top = 2tr(/ // / ... dsodsy dts dt1>
0J0J0 0
T tg T tl
22131'(//// dSl dtgdSzdtl
0J0 JOJO
T tg S1 tl
-2 // / / e dSl dtg d82 dt1>. (50)
0J0 JO JO

After inserting the integrand, we can rewrite this to

T ot 2
T27bb:2tr((// ezo‘teATthA(ts)VeATSdsdt)
0Jo
T pto ps1 pt1
—2////e2a(t1+t2)eAT(tlfsl)QeA(tlfsg)V
0Jo Jo Jo

A (2=2) QA0 g, dty disy dtl)
e \T e 2 e \T e
= 2tr (((044) Cf3) —2(Cqy) 015)- (51)

By combining all the results, we wind up with (37).

So now we have two methods of finding E[J7] and V[J7].
But which one is better? This mainly depends on the
time T'. Our experiments have shown that, for small
times 7', using matrix exponentials results in a better
numerical accuracy than using Lyapunov solutions, but
for large T the situation is exactly the opposite, and the
numerical accuracy of the matrix exponential method
quickly deteriorates. Similar results have been obtained
by [18], which examines the numerical accuracy of both
algorithms when finding X 9(T).

4 Application to an LQG system

So far we have only considered systems of the form (2),
but in LQG systems there are also input and output
signals. However, in that case we can always rewrite the
system on the form (2). In this section we show how to
do this. For more details we refer to [1,16,3,12].

First, we consider a system &(t) = Ax(t) + Bu(t) +v(t)
with input. Its corresponding cost function equals

J= / h 2 (2T (t)Qx(t) + u” (t)Ru(t))dt.  (52)
0

It is well-known in literature (see for instance [7]) that
the optimal control law minimizing E[J] is a linear con-
trol law u(t) = —Fx(t). If we assume that Q = QT >0
and R = RT > 0, then the optimal gain matrix F equals

F=R'BTX,, (53)
with X, the solution to the algebraic Riccati equation
ATX o 4+ XoAo+Q — XoBR'BTX, =0. (54)

For this optimal gain matrix F' (and for any other matrix
F') the system and cost function can be written as

&(t) = (A— BF)x(t) + v(t) = Ax(t) + v(t), (55)
J:/‘e%%T@Qﬂﬂﬁ, (56)
0

where we have Q = Q + FTRF. This shows that the

system is now in our original form (2).

A similar reduction can be performed when we are deal-
ing with a noisy output equation y(t) = Cz(t) + w(t),
where w(t) is zero-mean Gaussian white noise with in-
tensity W. To deal with this output equation, we take a
state estimate &(¢) and update it through

&(t) = A&(t) + Bu(t) + K (y(t) — C&(t)).  (57)



To minimize the state estimation error e(t) = &(t) —
x(t), we need to choose the observer gain K equal to

K =ECTwW™!, (58)
where F is the solution to
AE+ EAT +V — ECTW™ICE =0. (59)

We need this state estimate in a new optimal control law

1w = —F'&. This reduces the system equations to
0 A— BF —BF T v
.| = + , (60)
T KC A-BF-KC| |% Kw

which is again of the form we have seen earlier, albeit
with a somewhat larger state vector. Because of this,
all the equations that were originally developed for sys-
tem (2) are applicable to LQG systems as well.

5 Numerical evaluation

In this section we look at an example of how to apply
the derived equations. In literature, researchers almost
always use the controller which minimizes the expected
value of the cost. This is done irrespective of the variance
of the cost. But if the goal is to keep the cost below a cer-
tain threshold, then this may not be the best approach.

Consider the two-state system

) 10
xr = x+
[1/20 11

where we will apply @ = I, R = [ and « = —0.8 in
the cost function. As control law we use u = —Fx. We
assume that the state @ is fully known, and hence only F'
needs to be chosen. In practice this is often not the case
and only a noisy measurement y will be available. To
solve this, we can apply the theory from Section 4 and
subsequently choose the observer gain K along with F'.
However, this process is identical to choosing F'. So for
simplicity of presentation, we only consider selecting F'.

1

U+ v, (61)
0

The optimal control matrix follows from (53) as Fopy =
[1,6 9.9}. It minimizes B[J] at B[J(Fop)] = 154.4.

However, we can also minimize V[J]| using a basic
gradient descent method. This gives the minimum-

variance control matrix Fi,, = [4,4 30_0} with mean

cost E[J(Fy)] = 187.5. This mean cost is significantly
larger than E[J]opt, making it seem as if this is a signif-
icantly worse control matrix.

However, now suppose that we do not care so much about
the mean cost. All we want is to reduce the probability

that the cost J is above a certain threshold .J. That
is, we aim to minimize p(J > J) where we use J =
1500, which is roughly ten times the mean. Using 250 000
numerical simulations, with T'= 20 s and dt = 0.01 s,
we have found that

p(J(Fopt) > J) ~ 0.091%, (62)
p(J(Fy) > J) =~ 0.059%. (63)

Hence the optimal controller has more than half as many
threshold-violating cases as the minimum-variance con-
trol law, which is a significantly worse result.

6 Conclusions

In this paper, equations have been derived for the mean
and the variance of both the infinite-time cost .JJ and the
finite-time cost Jp. We have seen a case in which the
equations can support controller synthesis by reducing
the number of extreme cases that occur.

The infinite-time cost J has a finite value if and only
if A, is stable and o < 0. In this case, E[J] can be
found through Theorem 2 and V[.J] through Theorem 5.
The finite-time cost Jr always has a finite value. The
theorems needed to find its mean and variance, as well
as the requirements for using these theorems, have been
summarized in Table 1. Alternatively, when T is not too
large, these two quantities can also be calculated through
Theorem 7 using matrix exponentials for any A and «.
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A Evolution of the state

The way in which the state x(t) evolves over time is
described by (2). Solving this equation for (t) results in

t
x(t) = et + / e uy(s) ds. (A.1)
0

We use this to derive statistical properties for x(¢). These
properties are well-known (see for instance [3]), but they
are included to give a good overview of existing theory.



Theorem 8 When x(t) satisfies system (2), with the
corresponding assumptions on x(0) and v, then x(t) is
a Gaussian random variable satisfying

p(t) =Ela(t)] = e py, (A.2)
D) =Ezt)z” ()] = (So— XV)eA T+ XV, (A.3)

PROOF. Because x(t) is the sum of Gaussian vari-
ables, it will have a Gaussian distribution at all times t.
From (A.1), its mean equals

p(t) = Elz(t)] = e Elxo] = e pq. (A4)

The expected squared value is found similarly through
Y(t) = eME[xoxl]e ATt

// Alt— Sl)IE (s1)vT(s2)]e AT (t= %2)dsy dss

_ AtE €A t+/ A(t— s)V AT (t—s) ds. (A5)
0

(The reduction of E[v(s1)v? (s2)] to V§(s1 — sg) is for-
mally an application of the It6 isometry, as explained
in [11].) Next, by substituting s by ¢ — 7, we find that

t
() = eAy et 4 / A VeA T ds (A.6)
0

= eAtEoeATt + Xv(t) = At(zo — XV)SATt + XV,
where in the end we have also applied Theorem 14.
Theorem 9 The expected squared value 3(t) satisfies

N(t) = AX(t) + () AT + V. (A.7)

PROOF. The derivative of (A.3) equals

:A(e (S0 —XV)e ) (eAt(ZO—XV)eATt)AT
= A(S(t) - X") + (50 - XV) AT
= AX(t)+ ()AT (AXV +xVAT). (A.8)

Applying AXY 4+ XV AT +V = 0 completes the proof.

Theorem 10 Fort; <ty we have
E(tl,tg) = tl(zo—XV)GATt2+XV€AT(t27t1). (Ag)

Furthermore, X(t1,t2) = X(t2, t1)T and X(t,t) = B(t).

PROOF. The proof is identical to that of Theorem 8.

B Properties of Lyapunov equation solutions

Theorem 11 There is a unique solution for X@, and
identically for X2, if and only if the matriz A is Sylvester.

PROOF. In literature it is known (see [2]) that the
Sylvester Equation AX + X B = () has a unique solution
if and only if A and —B do not have a common eigen-
value. Substituting B = AT directly proves the theorem.

Theorem 12 Assume that A is Sylvester. In this case
X< is symmetric if and only if Q is symmetric.

PROOF. If we take the Lyapunov equation AX® +
XQAT 4+ @Q = 0 and subtract its transpose, we find that

AX—(X9T)+(X=(XNT) AT +(Q-QT)=0(B.1)

This equation has a unique solution (Theorem 11) di-
rectly implying that Q@ = Q7 if and only if X% = (X®)7.

Theorem 13 Assume that A is stable. Then A is
Sylvester and the Lyapunov equation AX®Q + XQAT +
Q = 0 has a unique solution X which equals

X9 = / eAQe" dt. (B.2)
0

PROOF. The assumption that A is stable directly
implies that A is Sylvester and hence (Theorem 11)
that X9 exists and is unique. Now we only need
to prove (B.2). Because A is stable, we know that
lim;_, oo €4 = 0. We can hence write Q as

Q=— {eAthATt}ZO _ _/Oo % (eAthATt) dt
0

__ / (Aeh Qe + QA AT) it (B3)
0

- A < / eAtQeA™ dt) - < / eAthATtdt> AT
0 0

The equation above is a Lyapunov equation with the
quantity between brackets as its unique solution X <.

Theorem 14 When A is Sylvester, X?(t1,t2) can ei-
ther be found by solving the Lyapunov equation

€At2 QeATt2 —0
(B.4)

AXQ(tl, t2)—|—XQ(t1, tQ)AT—I—eAtlQeATtl—
or by first finding X? and then using

XO(ty,tp) = Al X QeA Tt _ oAl2 X QoA 2 (B.5)



PROOF. We first prove (B.4) through

T T T,71t2
At QeA Tt _ Atz ATt — [eAthA t}

2 d T
At Act
=— — (e Qe dt
[ (e
to T to T
=-A </ eAtQett dt> — (/ eMtQett dt) AT
t1 t1

= —AXO(ty,t2) — XOty,t2)AT. (B.6)

ty

To prove (B.5) too, we will use Q = —AX? — X@AT
and the matrix property eA*A = Ae”* to find that

eAtl QeATtl —€At2Q€ATt2 — —A(eAthQeATtl (B?)

_eAt2 XQGATt2) _ (eAtl XQeATtl _eAtQXQeATtg) AT'

The above expression actually equals (B.4), except that
the part between brackets is replaced by X% (t,t2). Be-
cause A is Sylvester, the expression has a unique solution
X@(ty,t5), which must equal the part between brackets.

Theorem 15 Assume that A is Sylvester and that AC =
CA. For any Q and V we then have

XCeHV — X9 4+ xV, (B.8)

PROOF. Per definition, AX® + X@AT + Q = 0 and
AXV + XV AT +V = 0. Left-multiplying the first ex-
pression by C' and adding it to the second gives us

A(CXQ+XV)+(CX24+XY) AT+(CQ+V)=0. (B.9)
This is a Lyapunov equation with X ©@*+V as its solution.

Theorem 16 Assume that A is Sylvester. For matrices
F and G satisfying AF = FA and ATG = GAT, and for
any Q and V', we have

tr(QFXVG) = tr (X9FVG). (B.10)

PROOF. This is directly proven by

tr (QFXVG) =tr ((-ATX? - XA FXVG)
=tr ((—ATX9FXYG - XCAFX"Q))
=tr (-GX9FXVA" - GXOFAXY))
=tr (GXOF(—-XVA"T — AXY))

=tr (XOFVG). (B.11)

Theorem 17 Assume that both A and A, are Sylvester.
For X9, X@, Xi(Q and XX& we have

Xg—XQi xXQ

XX° = = XX, (B.12)
2c

PROOF. Per definition, we have

(A+a) X2+ XA+ aD)T +Q =0,
AXQ 4+ X9AT +Q=0.

(B.13)
(B.14)

By subtracting the two equations, and by using A, =
A+ al, we can get either of two results

AXL X+ (XE-XNAT 4 20X9 =0, (B.15)
Af( X8 - X+ (X2 - XNAT 420X =0. (B.16)

Next, we divide the above equations by 2. The resulting
Lyapunov equations have (B.12) as their solution.

C Power forms of Gaussian random variables

Theorem 18 Consider a Gaussian random variable x
with mean p and expected squared value ¥ = ElxzT).
For symmetric matrices P and @ we have

Elz’ Pxa’ Qx] = tr(XP)tr(2Q) + 2tr(XPXQ)
—2u" Pup” Qpu. (C.1)

PROOF. We know from [9] (Appendix F.3) that, for
symmetric P and @, and for a zero-mean process y =
x — p with covariance Y = E[yy”] = ¥ — uu”, we have

Ely” Pyy” Qy] = tr(Y P)tr(Y Q) +2tr(Y PY Q). (C.2)
If we apply this result to the expansion of

Efz" Pza’ Qz] = E[(y+u)TP(y+u)(y+u)TQ(y(ﬂEu3);

and rewrite the result, (C.1) follows.

Theorem 19 Consider Gaussian random variables x

and y with joint distribution
xr T Kzz Kac
Yy Hy Kye Kyy

Also define Ygp = Kap + uaubT, where the subscripts a
and b can be substituted for x and/or y. For symmetric
matrices P and QQ we now have

Elz” Pxy’ Qy] = tr(Z.2P)tr(3,,Q) + 2tr(Xy. PX., Q)
- 2Na:TPNwNyTQHy' (C.5)

PROOF. This follows directly from Theorem 18 with

, lcc PO
xr —=
Y

00

00
0Q

P = Q=

] @)
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