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Abstract

We propose a stability analysis method for sampled-data switched linear systems with finite-level

static quantizers. In the closed-loop system, information on the active mode of the plant is transmitted

to the controller only at each sampling time. This limitation of switching information leads to a mode

mismatch between the plant and the controller, and the system may become unstable. A mode mismatch

also makes it difficult to find an attractor set to which the state trajectory converges. A switching

condition for stability is characterized by the total time when the modes of the plant and the controller

are different. Under the condition, we derive an ultimate bound on the state trajectories by using a

common Lyapunov function computed from a randomized algorithm. The switching condition can be

reduced to a dwell-time condition.

I. INTRODUCTION

The recent advance of networking technologies makes control systems more flexible. However,

the use of networks also raises new challenges such as packet dropouts, variable transmission

delays, and real-time task scheduling. Switched system models provide a mathematical frame-

work for such network properties because of their versatility to include both continuous flows

and discrete jumps; see [3], [16], [30], [41] and references therein for the application of switched

system models to networked control systems.
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On the other hand, many control loops in a practical network contain channels over which

only a finite number of bits can be transmitted. We need to quantize data before sending them out

through a network. Therefore the effect of data quantization should be taken into consideration

to achieve stability and desired performance. In addition to the practical motivation, literature

such as [25], [27], [31], [35] has answered the theoretical question of how much information is

necessary/sufficient for a given control problem.

Switched systems and quantized control have been studied extensively but separately; see,

e.g., [12], [17], [29] for switched systems and [10], [21], [26] for quantized control. However,

quantized control of switched systems has received increasing attention in recent years. For

discrete-time Markovian jump linear systems, control problems with limited information have

been studied in [18], [19], [24], [36], [37]. Also, our previous work [34] has investigated

the output feedback stabilization of continuous-time switched systems under a slow-switching

assumption. In most of the above studies, the switching behavior of the plant is available to the

controller at all times.

In contrast, in sampled-data switched systems with quantization, the controller receives the

quantized measurement and the active mode of the plant only at each sampling time. Since the

controller side does not know the active mode of the plant between sampling times, we do not

always use the controller mode consistent with the plant mode at the present time. The closed-

loop system may therefore become unstable when switching occurs between sampling times.

Moreover, for the stability of quantized systems, it is important to obtain regions to which the

state belongs. However, mode mismatches yield complicated state trajectories, which make it

difficult to find such regions.

Stabilization of sampled-data switched system with dynamic quantizers has been first addressed

in [13], which has proposed an encoding strategy for state feedback control. This encoding

method has been extended to the output feedback case [32] and to the case with disturbances

[39]. A crucial ingredient in the dynamic quantization is a reachable set of the state trajectories

through sampling intervals. Propagation of reachable sets is used to set the quantization values at

the next sampling time, and the dynamic quantizer achieves increasingly higher precision as the

state approaches the origin. On the other hand, we study the stability analysis of sampled-data

switched systems with finite-level static quantizers. For such a closed-loop system, asymptotic

stability cannot be guaranteed. The objective of the present paper is therefore to find an ultimate



bound on the system trajectories as in the single-modal case, e.g., [4], [5], [8], [9]. Since frequent

mode mismatches make the trajectories diverge, a certain switching condition is required for the

existence of ultimate bounds.

As in [20] for switched systems with time delays, we here characterize switching behaviors by

the total time when the controller mode is not synchronized with the plant one, which we call the

total mismatch time. We derive a sufficient condition on the total mismatch time for the system

to be stable, by using an upper bound on the error due to sampling and quantization. Moreover,

an ultimate bound on the state trajectories is obtained under the switching condition. For the

stability analysis, we use a common Lyapunov function that guarantees stability for all individual

modes in the non-switched case. We find such Lyapunov functions in a computationally efficient

and less conservative way by combining the randomized algorithms in [8], [15] together.

From the total mismatch time, we can obtain an asynchronous switching time ratio. If the

controller mode is synchronized with the plant one, then the closed-loop system is stable.

Otherwise, the system may be unstable. Hence the total mismatch time is a characterization

similar to the total activation time ratio [40] between stable modes and unstable ones. The crucial

difference is that the unstable modes we consider are caused by switching within sampling

intervals. Using the dependence of the instability on the sampling period, we can reduce the

switching condition on the total mismatch time to a dwell-time condition, which is widely

used for the stability analysis of switched systems. In Section 4, we will discuss in detail the

relationship between the total mismatch time and the dwell time of switching behaviors.

This paper is organized as follows. In Section 2, we present the closed-loop system, the

information structure, and basic assumptions. In Section 3, we first investigate the growth rate

of the common Lyapunov function in the case when switching occurs in a sampling interval. Next

we derive an ultimate bound on the state, together with a sufficient condition on switching for

stability. Section 4 is devoted to reduce the derived switching condition to a dwell-time condition.

We illustrate the results through a numerical example in Section 5. Finally, concluding remarks

are given in Section 6.

This paper is based on a conference paper [33]. In the conference version, some of the proofs

were omitted due to space limitations. The present paper provides complete results on the stability

analysis in addition to an illustrative numerical example. We also made structural improvements

in this paper.



Notation

We denote by Z+ the set of non-negative integers {k ∈ Z : k ≥ 0}. For a set Ω ⊂ Rn, Cl (Ω),

Int (Ω), and ∂Ω are its closure, interior, and boundary, respectively. For sets Ω1,Ω2, let Ω1 \Ω2

be the relative complement of Ω2 in Ω1, i.e., Ω1 \ Ω2 := {ω ∈ Ω1 : ω 6∈ Ω2}.

Let M> denote the transpose of a matrix M ∈ Rn×m. The Euclidean norm of a vector v ∈ Rn

is defined by ‖v‖ := (v>v)1/2. For a matrix M ∈ Rm×n, its Euclidean induced norm is defined

by ‖M‖ := sup{‖Mv‖ : v ∈ Rn, ‖v‖ = 1}. Let λmax(P ) and λmin(P ) denote the largest and

the smallest eigenvalue of a square matrix P ∈ Rn×n. Let B(L) be the closed ball in Rn with

center at the origin and radius L, that is, B(L) := {x ∈ Rn : ‖x‖ ≤ L}.

Let Ts be the sampling period. For t ≥ 0, we define [t]− by

[t]− := kTs if kTs ≤ t < (k + 1)Ts (k ∈ Z+).

II. SAMPLED-DATA SWITCHED SYSTEMS WITH QUANTIZATION

A. Switched systems

Consider the following continuous-time switched linear system

ẋ = Aσx+Bσu, (1)

where x(t) ∈ Rn is the state and u(t) ∈ Rm is the control input. For a finite index set P ,

the mapping σ : [0,∞) → P is right-continuous and piecewise constant, which indicates the

active mode σ(t) ∈ P at each time t ≥ 0. We call σ a switching signal, and the discontinuities

of σ switching times or simply switches. The plant sends to the controller the state x and the

switching signal σ.

The first assumption is stabilizability of all modes.

Assumption 2.1: For every mode p ∈ P , (Ap, Bp) is stabilizable, i.e., there exists a feedback

gain Kp ∈ Rm×n such that Ap +BpKp is Hurwitz.

B. Quantized sampled-data system

Consider the closed-loop system in Fig. 1. Let Ts > 0 be the sampling period. The sampler

STs is given by

STs : (x, σ) 7→ (x(kTs), σ(kTs)) (k ∈ Z+),



and the zero-order hold HTs by

HTs : ud 7→u(t)=ud(k), t ∈ [kTs, (k + 1)Ts) (k ∈ Z+).

The second assumption is that at most one switch happens in each sampling interval.

Assumption 2.2: Every sampling interval (kTs, (k + 1)Ts) has at most one switch.

See Remark 2.5 (3) below for the reason why we need this switching assumption.

We now state the definition of a memoryless quantizer Q given in [8]. For an index set S,

the partition {Qj}j∈S of Rn is said to be finite if for every bounded set B, there exists a finite

subset Sf of S such that B ⊂
⋃
j∈Sf Qj . We define the quantizer Q with respect to the finite

partition {Qj}j∈S by

Q : Rn → {qj}j∈S ⊂ Rn

x 7→ qj if x ∈ Qj (j ∈ S).

As in [11], [14], we assume that Q(x) = 0 if x is close to the origin:

Assumption 2.3: If Cl (Qj) contains the origin, then the corresponding quantization value

qj = 0.

Let qx be the output of the zero-order hold whose input is the quantized state at sampling

times, i.e., qx(t) = Q(x([t]−)). Note that in Fig. 1, the control input u is given by

u(t) = Kσ([t]−)qx(t). (2)

  	

  	

u(t)

u(kTs)
Q

x(kTs),�(kTs)
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Fig. 1: Sampled-data switched system with quantization, where Ts is the sampling period and

STs , HTs , and Q are a sampler, a zero-order hold, and a static quantizer, respectively.



The control input u is a piecewise-constant and discrete-valued signal. If we assume that a finite

subset Sf of S satisfies x(t) ∈
⋃
j∈Sf Qj for every state trajectory x(t), then data is transmitted

to/from the controller at the rate of

log2 |Sf |+ log2 |P|
Ts

bits per time unit, where |Sf | and |P| are the numbers of elements in Sf and P , respectively.

Let P ∈ Rn×n be positive definite and define the quadratic Lyapunov function V (x) := x>Px

for x ∈ Rn. Its time derivative V̇ along the trajectory of (1) with (2) is given by

V̇ ((t), qx(t), σ(t)) = (Aσ(t)x(t) +Bσ(t)Kσ([t]−)qx(t))
>Px(t)

+ x(t)>P (Aσ(t)x(t) +Bσ(t)Kσ([t]−)qx(t)) (3)

if t is not a switching time or a sampling time.

For p, q ∈ P with p 6= q, we also define V̇p and V̇p,q by

V̇p(x(t), qx(t)) := (Apx(t) +BpKpqx(t))
>Px(t) + x(t)>P (Apx(t) +BpKpqx(t))

V̇p,q(x(t), qx(t)) := (Apx(t) +BpKqqx(t))
>Px(t) + x(t)>P (Apx(t) +BpKqqx(t)). (4)

Then V̇p and V̇p,q are the time derivatives of V along the trajectories of the systems (Ap, BpKp)

and (Ap, BpKq), respectively.

Every individual mode is assumed to be stable in the following sense with the common

Lyapunov function V :

Assumption 2.4: Consider the following quantized sampled-data systems with ‘a single mode’:

ẋ = Apx+Bpu, u = Kpqx (p ∈ P). (5)

Let C be a positive number and suppose that R and r satisfy R > r > 0. Then there exists a

positive-definite matrix P ∈ Rn×n such that for all p ∈ P , every trajectory x of the system (5)

with x(0) ∈ EP (R) satisfies

V̇p(x(t), qx(t)) ≤ −C‖x(t)‖2 (6)

or x(t) ∈ EP (r) for all t ≥ 0, where EP (R) and EP (r) are given by

EP (R) := {x ∈ Rn : V (x) ≤ R2λmax(P )}

EP (r) := {x ∈ Rn : V (x) ≤ r2λmin(P )}.



Assumption 2.4 implies the following: If we have no switches, then the common Lyapunov

function V exponentially decreases at a certain rate until V ≤ r2λmin(P ) for every mode p ∈ P .

Furthermore, the trajectory does not leave EP (r) as well as EP (R) once it falls into them.

The objective of the present paper is to find a switching condition under which every trajectory

of the switched system in Fig. 1 falls into some neighborhood of the origin and remains in the

neighborhood. We also determine how small the neighborhood is.

Remark 2.5: (1) The ellipsoid EP (R) is the smallest level set of V containing B(R), whereas

EP (r) is the largest level set of V contained in B(r).

(2) For switched systems without samplers, the existence of common Lyapunov functions is a

sufficient condition for stability under arbitrary switching; see, e.g., [12], [17], [29]. For sampled-

data switched systems, however, such functions do not guarantee stability because switching

within a sampling interval may make the closed-loop system unstable.

(3) Not only sampling but also quantization makes the stability analysis complicated. In fact,

Assumption 2.4 does not consider trajectories after a switch even without a mode mismatch.

For example, suppose that the mode changes p → q → p at the switching times t1 and t2 in a

sampling interval (0, Ts). Although the modes coincide between the plant and the controller in

[t2, Ts), (6) holds only for t ∈ (0, t1). This is because the trajectory in [t2, Ts) does not appear

for systems with a single mode. In Assumption 2.2, we therefore assume that at most one switch

occurs in a sampling interval, and hence (6) holds whenever the modes coincide. If we consider

trajectories in the worst case, then the switching condition in Assumption 2.2 can be removed.

However, the stability analysis becomes more conservative and involved.

(4) For quantized sampled-data plants with a single mode, the authors of [8] have proposed

a randomized algorithm for the computation of P in Assumption 2.4. On the other hand, for

switched systems without sampler or quantizer, the authors of [15] have developed a randomized

algorithm to construct common Lyapunov functions. Combining these algorithms together, we

can efficiently compute the desired common Lyapunov function. See Appendix B for details of

the randomized algorithm.



III. STABILIZATION WITH LIMITED INFORMATION

A. Upper bound on V̇p,q

Assumption 2.4 gives an upper bound (6) on V̇p, i.e., the decreasing rate of the Lyapunov

function in the case when we use the feedback gain consistent with the currently active mode

of the plant. In this subsection, we will find an upper bound on V̇p,q, i.e., the growth rate in the

case when intersample switching leads to the mismatch of the modes between the plant and the

feedback gain. More specifically, the aim here is to obtain D > 0 satisfying

V̇p,q(x(t), qx(t)) ≤ D‖x(t)‖2. (7)

Let qx(t)− x(t) is the error between the sampled and quantized state qx(t) and the state x(t)

at the present time. Since

V̇p,q(x(t), qx(t)) = 2x(t)>P (Ap +BpKq)x(t) + 2x(t)>PBpKq(qx(t)− x(t)), (8)

we need to obtain a bound on the error qx(t)− x(t) by using x(t). We begin by examining the

relationship among the state at the present time x(t), the sampled state x([t]−), and the sampled

quantized state qx(t).

The partition {Qj}j∈S is finite. Furthermore, Assumption 2.3 shows that if there exists a

sequence {ξk} ⊂ Qj such that ξk → 0 (k → ∞), then Q(x) = 0 for all x ∈ Qj . Hence there

exists a constant α0 > 0 such that

‖BpKqQ(x)‖ ≤ α0‖x‖ (9)

for all p, q ∈ P and x ∈ EP (R); see Remark 3.6 (3) for the computation of α0. We also define

Λ by

Λ := max
p∈P
‖Ap‖.

The next result gives an upper bound of the norm of the sampled state x([t]−) by using the

state at the present time x(t).

Lemma 3.1: Consider the swithced system (1) with (2), where σ has finitely many switching

times in every finite interval. Suppose that

η := α0
eΛTs − 1

Λ
< 1, (10)



and define α1 by

α1 :=
eΛTs

1− η
. (11)

Then we have

‖x([t]−)‖ < α1‖x(t)‖ (12)

for all t ≥ 0 with x([t]−) ∈ EP (R).

Proof: It suffices to prove (12) for x(0) ∈ EP (R) and t ∈ [0, Ts).

Let Φ(τ1, τ2) denote the state-transition matrix of the switched system (1) for τ1 ≥ τ2. If no

switches occur, Φ(τ1, τ2) is given by Φ(τ1, τ2) = e(τ1−τ2)Aσ(τ2) . If t1, t2, . . . , tm are the switching

times in an interval (τ2, τ1) and if we define t0 := τ2 and tm+1 := τ1, then we have

Φ(τ1, τ2) =
m∏
k=0

e(tk+1−tk)Aσ(tk) .

Since

x(t) = Φ(t, 0)x(0) +

∫ t

0

Φ(t, τ)Bσ(τ)Kσ(0)qx(τ)dτ (13)

and since Φ(τ, 0)−1 = Φ(t, 0)−1Φ(t, τ), it follows that

x(0) = Φ(t, 0)−1x(t) +

∫ t

0

Φ(τ, 0)−1Bσ(τ)Kσ(0)qx(τ)dτ.

This leads to

‖x(0)‖ ≤‖Φ(t, 0)−1‖ · ‖x(t)‖+

∥∥∥∥∫ t

0

Φ(τ, 0)−1Bσ(τ)Kσ(0)qx(τ)dτ

∥∥∥∥ . (14)

Let t1, t2, . . . , tm be the switching times in the interval [0, t). Since ‖eτA‖ ≤ eτ‖A‖ for τ ≥ 0, if

we define t0 := 0 and tm+1 := t, then we obtain

‖Φ(t, 0)−1‖ ≤
m∏
k=0

e(tk+1−tk)‖Aσ(tk)‖ ≤ eΛt < eΛTs . (15)

It is obvious that the equation above holds in the non-switched case as well. Since qx(τ) =

qx(0) = Q(x(0)) for all τ ∈ [0, Ts], if follows from (9) that∥∥∥∥∫ t

0

Φ(τ, 0)−1Bσ(τ)Kσ(0)qx(τ)dτ

∥∥∥∥ ≤ ∫ t

0

‖Φ(τ, 0)−1‖ · ‖Bσ(τ)Kσ(0)qx(τ)‖dτ

≤ α0

∫ t

0

eΛτdτ‖x(0)‖

≤ α0
eΛTs − 1

Λ
‖x(0)‖ = η‖x(0)‖. (16)



Substituting (15) and (16) into (14), we obtain

‖x(0)‖ < eΛTs‖x(t)‖+ η‖x(0)‖.

Thus if (10) holds, (12) follows.

Let us next develop an upper bound of the norm of the error x(t)− x([t]−) due to sampling.

To this end, we use the following property of the state-transition map of a switched system:

Proposition 3.2: Let Φ(t, 0) be the state-transition map of the switched system (1) as above.

Then

‖Φ(t, 0)− I‖ ≤ eΛt − 1. (17)

Proof: Let us first consider the case without switching; that is,

‖etAσ(0) − I‖ ≤ eΛt − 1. (18)

Define the partial sum SN of etAσ(0) − I by

SN(t) :=
N∑
k=0

1

k!
(tAσ(0))

k − I =
N∑
k=1

1

k!
(tAσ(0))

k.

Then for all t ≥ 0, we have

‖SN(t)‖ ≤
N∑
k=1

1

k!

(
t‖Aσ(0)‖

)k
=

N∑
k=0

1

k!

(
t‖Aσ(0)‖

)k − 1

≤
∞∑
k=0

1

k!

(
t‖Aσ(0)‖

)k − 1

= et‖Aσ(0)‖ − 1 ≤ eΛt − 1.

Letting N →∞, we obtain (18).

We now prove (17) in the switched case. Let t1, t2, . . . , tm be the switching times in the

interval (0, t). Let t0 = 0 and tm+1 = t. Then (17) is equivalent to∥∥∥∥∥
m∏
k=0

e(tk+1−tk)Aσ(tk) − I

∥∥∥∥∥ ≤ eΛt − 1. (19)



We have already shown (19) in the case m = 0, i.e., the non-switched case. The general case

follows by induction. For m ≥ 1,∥∥∥∥∥
m∏
k=0

e(tk+1−tk)Aσ(tk) − I

∥∥∥∥∥
≤

∥∥∥∥∥e(tm+1−tm)Aσ(tm)

(
m−1∏
k=0

e(tk+1−tk)Aσ(tk) − I

)∥∥∥∥∥+ ‖e(tm+1−tm)Aσ(tm) − I‖

≤ ‖e(tm+1−tm)Aσ(tm)‖ ·

∥∥∥∥∥
m−1∏
k=0

e(tk+1−tk)Aσ(tk) − I

∥∥∥∥∥+ ‖e(tm+1−tm)Aσ(tm) − I‖.

Hence if (19) holds with m− 1 in place of m, then

‖e(tm+1−tm)Aσ(tm)‖ ·

∥∥∥∥∥
m−1∏
k=0

e(tk+1−tk)Aσ(tk)−I

∥∥∥∥∥+ ‖e(tm+1−tm)Aσ(tm)−I‖

≤ eΛ(tm+1−tm)(eΛtm−1) + (eΛ(tm+1−tm)−1)

= eΛt − 1.

Thus we obtain (19).

Lemma 3.3: Consider the switched system (1) with (2), where σ has finitely many switching

times in every finite interval. Define β1 by

β1 := (eΛTs − 1)
(

1 +
α0

Λ

)
(20)

Then we have

‖x(t)− x([t]−)‖ < β1‖x([t]−)‖ (21)

for all t ≥ 0 with x([t]−) ∈ EP (R).

Proof: As in the proof of Lemma 3.1, it suffices to prove (21) for all x(0) ∈ EP (R) and

t ∈ [0, Ts).

By (13), we obtain

x(t)− x(0) = (Φ(t, 0)− I)x(0) +

∫ t

0

Φ(t, τ)Bσ(τ)Kσ(0)qx(τ)dτ.

This leads to

‖x(t)− x(0)‖ ≤‖Φ(t, 0)− I‖ · ‖x(0)‖+

∥∥∥∥∫ t

0

Φ(t, τ)Bσ(τ)Kσ(0)qx(τ)dτ

∥∥∥∥ . (22)



Proposition 3.2 provides the following upper bound on the first term of the right-hand side of

(22):

‖Φ(t, 0)− I‖ ≤ eΛt − 1 < eΛTs − 1. (23)

Since ‖Φ(t, τ)‖ ≤ eΛ(t−τ), a calculation similar to (16) gives∥∥∥∥∫ t

0

Φ(t, τ)Bσ(τ)Kσ(0)qx(τ)dτ

∥∥∥∥ ≤ α0
eΛTs − 1

Λ
‖x(0)‖. (24)

We obtain (21) by substituting (23) and (24) into (22).

We are now in the position to obtain an upper bound of the norm of the error qx(t) − x(t)

due to sampling and quantization by using the original state x(t).

Similarly to (9), to each p, q ∈ P with p 6= q, there corresponds a positive number γ0(p, q)

such that

‖PBpKq(Q(x)− x)‖ ≤ γ0(p, q)‖x‖ (25)

for all x ∈ EP (R); see Remark 3.6 (3) for the computation of γ0.

Lemma 3.4: Consider the switched system (1) with (2), where σ has finitely many switching

times in every finite interval. Define α1 and β1 as in Lemmas 3.1 and 3.3. If γ(p, q) is defined

by

γ(p, q) := α1(β1‖PBpKq‖+ γ0(p, q)) (26)

for each p, q ∈ P with p 6= q, then γ(p, q) satisfies

‖PBpKq(qx(t)− x(t))‖ < γ(p, q)‖x(t)‖ (27)

for all t ≥ 0 with x([t]−) ∈ EP (R).

Proof: Since qx(t) = Q(x([t]−)), it follows from (21) and (25) that

‖PBpKq(qx(t)− x(t))‖ ≤ ‖PBpKq(qx(t)− x([t]−))‖+ ‖PBpKq‖ · ‖x([t]−)− x(t)‖

< (β1‖PBpKq‖+ γ0(p, q))‖x([t]−)‖

< α1(β1‖PBpKq‖+ γ0(p, q))‖x(t)‖.

Thus the desired inequality (27) holds.

Finally, the following theorem gives the growth rate of V in the case when the modes of the

plant and the controller are not synchronized.



Theorem 3.5: Consider the switched system (1) with (2), where σ has finitely many switching

times in every finite interval. Using γ(p, q) in (26), we define D by

D := 2 max
p6=q

(‖P (Ap +BpKq)‖+ γ(p, q)). (28)

Then (7) holds for every p, q ∈ P with p 6= q and for every t ≥ 0 with x([t]−) ∈ EP (R).

Proof: Since V̇p,q satisfies (8), Lemma 3.4 shows that

V̇p,q(x(t), qx(t)) ≤ 2(‖P (Ap +BpKq)‖+ γ(p, q))‖x(t)‖2 (29)

for all p, q ∈ P with p 6= q and for all t ≥ 0 with x([t]−) ∈ EP (R). Thus we obtain the desired

result (7).

Remark 3.6: (1) Fine quantization and fast sampling make α1 in (11), β1 in (20), and γ0(p, q)

in (25) small, which leads to a decrease of D in (28).

(2) In this subsection, we have assumed that finitely many switches occurs in a sampling

interval, which makes (15), (23), and (24) conservative. If we allow a higher computational cost,

then another possibility of α1 in (11) and β1 in (20) under Assumption 2.2 would be

α1 =max
p 6=q

max
0≤t≤Ts

max
0≤t′≤t

‖e−Apt′e−Aq(t−t′)‖

1− α0

(∫ t
t′
‖e−Apt′e−Aq(τ−t′)‖dτ +

∫ t′
0
‖e−Apτ‖dτ

)
β1 =max

p 6=q
max

0≤t≤Ts
max
0≤t′≤t

(
‖eAq(t−t′)eApt′−I‖+α0

(∫ t

t′
‖eAq(t−τ)‖dτ +

∫ t′

0

‖eAq(t−t′)eAp(t′−τ)dτ‖

))
,

where t′ is a switching time in [0, t].

(3) We can derive α0 in (9) and γ0(p, q) in (25) as follows. Let Sf be a subset of S such that

EP (R) ⊂
⋃
j∈Sf Qj . Then

α0 := max
p,q∈P

max
j∈Sf

‖BpKqqj‖
minx∈Qj ‖x‖

satisfies (9). Note that if Qj is a polyhedron, then minx∈Qj ‖x‖ can be computed by quadratic

programming; see, e.g, [1]. As regards γ0(p, q) in (25), define S0 := {j ∈ S : 0 ∈ Cl (Qj)}.

Since Q(x) = 0 for x ∈ Qj with j ∈ S0 by Assumption 2.3, it follows that γ0(p, q) ≥ ‖PBpKq‖.

On the other hand, for j 6∈ S0, we define γ̂0 by

γ̂0(p, q) := max
j∈Sf\S0

‖PBpKq‖ ·maxx∈Qj ‖qj − x‖
minx∈Qj ‖x‖

.



Since

‖PBpKq‖ ·maxx∈Qj ‖qj − x‖
minx∈Qj ‖x‖

≥ ‖PBpKq‖ · ‖qj − x‖
‖x‖

≥ ‖PBpKq(qj − x)‖
‖x‖

,

γ0(p, q) := max{‖PBpKq‖, γ̂0(p, q)} satisfies (25). We can easily compute maxx∈Qj ‖qj − x‖

if Qj is a cuboid and qj is a center of a vertex of Qj . In fact, let the set of the vertices of Qj
be Vj . Then maxx∈Qj ‖qj − x‖ = maxx∈Vj ‖qj − x‖, which implies that maxx∈Qj ‖qj − x‖ can

be obtained by calculating ‖qj − v‖ for all v ∈ Vj .

B. Stability analysis with total mismatch time

Let us analyze the stability of the switched system (1) with (2) by using the two upper bounds

(6) and (7) of V̇ . Note that the former bound (6) is for the case σ(t) = σ([t]−), while the latter

(7) for the case σ(t) 6= σ([t]−). As in [20] for switched systems with time delays, it is therefore

useful to characterize switching signals by asynchronous periods.

Definition 3.7: For τ1 > τ2 ≥ 0, we define the total mismatch time µ(τ1, τ2) by the time in

which the modes mismatch between the plant and the controller, that is,

µ(τ1, τ2) := the length of the set {τ ∈ [τ2, τ1) : σ(τ) 6= σ([τ ]−)}. (30)

More explicitly, the length of a set in R means its Lebesgue measure. We shall not, however, use

any measure theory because σ has only finitely many discontinuities in every interval. We see

that if the total mismatch time is small on average as the average dwell-time condition introduced

in [7], then the system is stable. We also derive an ultimate bound on the state trajectories by

using this characterization of switching signals.

Define CP and DP by

CP :=
C

λmax(P )
, DP :=

D

λmin(P )
.

The objective of this subsection is to prove the following theorem:

Theorem 3.8: Let Assumptions 2.1, 2.2, 2.3, and 2.4 hold. Suppose that L ≥ 0 satisfies

L <
CP

CP +DP

, (31)

and that κ > 1 satisfies

κ2r2λmin(P ) < R2λmax(P ). (32)



Define f(κ) by

f(κ) :=
2 log κ

CP +DP

. (33)

If µ in (30) satisfies

µ(t, 0) ≤ Lt (34)

for every t > 0, and for each T0 ≥ 0 with σ(T0) 6= σ([T0]−)

µ(t, T0) ≤ f(κ) + L(t− T0) (35)

for every t > T0, then there exists Tr ≥ 0 such that for each x(0) ∈ Int (EP (R)) and σ(0) ∈ P ,

x(t) ∈ Int (EP (κr)) for all t ≥ Tr. Furthermore, x(t) ∈ Int (EP (R)) for all t ≥ 0.

Remark 3.9: (1) Theorem 3.8 gives the stability analysis of the switched system by using the

total mismatch time of the modes between the plant and the feedback gain. If a mismatch does

occur, the closed-loop system may be unstable; otherwise it is stable. Our proposed method is

therefore similar to that in [40], where the stability analysis of switched systems with stable and

unstable subsystems is discussed with the aid of the total activation time ratio between stable

subsystems and unstable ones. In [40], the average dwell time [7] is also required to be sufficiently

large. However, such a condition is not needed here because we use a common Lyapunov

function. Conditions on the total activation time ratio has been used for nonlinear systems in

[22], [23], [38]. Moreover, this switching characterization has been applied to stabilization of

systems with control inputs missing in [41] and to resilient control under denial-of-service attacks

in [2].

(2) Although Theorem 3.8 requires that (35) holds for each T0 ≥ 0 with σ(T0) 6= σ([T0]−), it

is enough to verify (35) only with the sampling instant [T0]− + Ts in place of T0. In fact, since

at most one switch occurs in [[T0]−, [T0]− + Ts), it follows that if σ(T0) 6= σ([T0]−), then

µ(t, [T0]− + Ts) = µ(t, T0)− ([T0]− + Ts − T0).

Hence (35) holds for t > T0 if it does for t ≥ [T0]− + Ts.

First we study the state behavior that is outside of EP (r). The following lemma shows that

every trajectory whose initial state is in Int (EP (R)) falls into EP (r) if the total mismatch time

µ is small on average. See also Fig. 2.



Lemma 3.10: Let Assumptions 2.1, 2.2, 2.3, and 2.4 hold, and let L ≥ 0 satisfy (31). If

µ(t, 0) achieves (34) for all t > 0, then there exists Tr ≥ 0 such that x(Tr) ∈ EP (r) for every

x(0) ∈ Int (EP (R)) and σ(0) ∈ P , and furthermore x(t) ∈ Int (EP (R)) for all t ∈ [0, Tr].

Proof: First we show that the trajectory x(t) does not leave Int (EP (R)) without belonging

to EP (r). Namely, there does not exist TR > 0 such that

x(TR) ∈ ∂EP (R), and (36)

x(t) ∈ Int (EP (R)) \ EP (r) (0 ≤ t < TR). (37)

Assume, to reach a contradiction, (36) and (37) hold for some TR > 0. Recall that

λmin(P )‖x‖2 ≤ V (x) = x>Px ≤ λmax(P )‖x‖2

for x ∈ Rn. It follows from (6) and (7) that

V̇p(x(t), qx(t)) ≤ −CPV (x(t))

V̇p,q(x(t), qx(t)) ≤ DPV (x(t)).
(38)

By (37) and (38), a successive calculation at each switching time shows that

V (x(TR)) ≤ exp
(
DPµ(TR, 0)− CP (TR − µ(TR, 0))

)
V (x(0)). (39)

Since (34) gives

DPµ(t, 0)− CP (t− µ(t, 0)) ≤ ((CP +DP )L− CP ) t (40)

for all t > 0, it follows from (31) and x(0) ∈ Int (EP (R)) that

V (x(TR)) < V (x(0)) < R2λmax(P ).

However, (36) shows that V (x(TR)) = R2λmax(P ), and we have a contradiction.

Let us next prove that x(Tr) ∈ EP (r) for some Tr ≥ 0.

Suppose x(t) 6∈ EP (r) for all t ≥ 0. Then since the discussion above shows that x(t) ∈

Int (EP (R)) \ EP (r) for all t ≥ 0, we obtain (39) with arbitrary t ≥ 0 in place of TR. Hence

(31) and (40) show that V (x(t)) → 0 as t → ∞. However, this contradicts x(t) 6∈ EP (r), i.e.,

V (x(t)) > r2λmin(P ) > 0. Thus there exists Tr ≥ 0 such that x(Tr) ∈ EP (r).

From the next result, we see that the trajectory leaves EP (r) only if a switch occurs between

sampling times. This is intuitively obvious because as mentioned in [8], EP (r) is an invariant

set if a mode mismatch does not occur.



Lemma 3.11: Let Assumptions 2.1, 2.2, 2.3, and 2.4 hold. If the trajectory x(t) leaves EP (r)

at t = T0, more precisely, if there exists δ > 0 such that

x(T0) ∈ ∂EP (r), x(T0 + ε) 6∈ EP (r) (0 < ε < δ), (41)

then σ(T0) 6= σ([T0]−).

Proof: Assume, to get a contradiction, that σ(T0) = σ([T0]−). Suppose that σ(T ) 6= σ([T ]−)

for some T > T0. Let T1 be the smallest number of such T . Define an interval Iδ by

Iδ := (0,min{δ, T1 − T0}).

If there does not exist T > T0 with σ(T ) 6= σ([T ]−), then we define Iδ by Iδ := (0, δ). Since

V (x(t)) is differentiable at all t ≥ 0 except for sampling times and switching times, there

is no loss of generality in assuming that V (x(t)) is differentiable in Iδ. Since σ(T0 + ε) =

σ([T0 + ε]−) = σ([T0]−) for all ε ∈ Iδ, it follows from (6) that

V̇ (x(T0 + ε)) ≤ −C‖x((T0 + ε))‖2 ≤ 0 (ε ∈ Iδ).

However, (41) gives

V (x(T0 + ε)) > r2λmin(P ) = V (x(T0)) (ε ∈ Iδ).

Since V (x(t)) is continuous, we have a contradiction by the mean value theorem. Thus σ(T0) 6=

σ([T0]−).

Lemma 3.12 below shows that the trajectory stays in a slightly larger ellipsoid than EP (r)

after the trajectory enters into EP (r); see Fig. 2.

Lemma 3.12: Let Assumptions 2.1, 2.2, 2.3, and 2.4 hold. Suppose that T0 ≥ 0 is a time at

which x(t) leaves EP (r). Let κ > 1 satisfy (32) and define f(κ) by (33). Pick L ≥ 0 with (31).

If µ(t, T0) satisfies (35) for all t > T0, then for every σ(T0) ∈ P , there exists T1 > T0 such that

x(T1) ∈ EP (r), and furthermore x(t) ∈ Int (EP (κr)) for all t ∈ [T0, T1].

Proof: By (35), V (x(t)) satisfies

V (x(t)) ≤ exp
(

((CP +DP )L− CP ) (t− T0)
)
· exp

(
(CP +DP ) f(κ)

)
V (x(T0)) (42)

if t > T0 satisfies x(t′) ∈ EP (R) \ EP (r) for all t′ ∈ (T0, t]. On the other hand, since x(T0) ∈

∂EP (r), it follows from (33) that

exp
(

(CP +DP ) f(κ)
)
V (x(T0)) = κ2r2λmin(P ). (43)
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In conjunction with (32), this leads to

exp
(

(CP +DP ) f(κ)
)
V (x(T0)) < R2λmax(P ).

Hence we have x(T1) ∈ EP (r) for some T1 > T0 from (31) and (42) as in the proof of Lemma

3.10. Substituting (43) into (42), we also obtain V (x(t)) < κ2r2λmin(P ) for t ≥ T0. Thus

x(t) ∈ Int (EP (κr)) for t ∈ [T0, T1].

Finally, we prove Theorem 3.8 by using Lemmas 3.10, 3.11, and 3.12:

Proof of Theorem 3.8: Lemma 3.10 shows that if (34) holds for all t > 0, then x(Tr) ∈ EP (r)

for some Tr > 0 and x(t) ∈ Int (EP (R)) for all t ∈ [0, Tr]. Let τ1, τ2, . . . be the instants at which

x(t) leaves EP (r). Using Lemmas 3.11 and 3.12 at each τ1, τ2, . . . , we have that if for each

T0 ≥ 0 with σ(T0) 6= σ([T0]−), (35) holds for every t > T0, then there exists τ̂k ∈ (τk, τk+1] such

that x(τ̂k) ∈ EP (r) and x(t) ∈ Int (EP (κr)) for all t ∈ [τk, τk+1]. Hence if {τk} has only finitely

many elements, then the stability is achieved. On the other hand, if we have infinitely many τk,

then τk →∞ as k →∞, because τk+2− τk > Ts by the switching condition in Assumption 2.2.

Thus x(t) ∈ Int (EP (κr)) for all t ≥ Tr. This completes the proof.

IV. REDUCTION TO A DWELL-TIME CONDITION

In the preceding section, we have derived a sufficient condition on the total mismatch time µ

for the stability of the quantized sampled-data systems with multiple modes. However, it may

be difficult to check whether µ satisfies (34) and (35). In this section, we will show that these

conditions (34) and (35) can be achieved for switching signals with a certain dwell-time property.



To proceed, we recall the definition of dwell time: We call σ a switching signal with dwell

time Td if the switching signal σ has an interval between consecutive discontinuities no smaller

than Td > 0 and further if σ has no discontinuities in [0, Td).

The following proposition gives an upper bound of the total mismatch time for switching

signals with dwell time.

Proposition 4.1: Fix n ∈ N. For every switching signal σ with dwell time nTs, µ in (30)

satisfies

µ(t, 0) <
t

n
(t > 0). (44)

Furthermore, if σ(T0) 6= σ([T0]−), then

µ(t, T0) < Ts +
t− T0

n
(t > T0). (45)

Proof: The proof includes a lengthy but routine calculation; see Appendix A.1.

Theorem 3.8 and Proposition 4.1 can be combined in the following way:

Theorem 4.2: Let Assumptions 2.1, 2.2, 2.3, and 2.4 hold. Let n ∈ N satisfy n ≥ 1+DP/CP .

Define

κ := exp

(
Ts(CP +DP )

2

)
, (46)

and suppose that κ satisfies (32). If the dwell time of σ is nTs, then there exists Tr ≥ 0 such that

for every x(0) ∈ Int (EP (R)) and σ(0) ∈ P , x(t) ∈ Int (EP (κr)) for all t ≥ Tr. Furthermore,

x(t) ∈ Int (EP (R)) for all t ≥ 0.

Proof: If n and κ are defined as above, Proposition 4.1 shows that µ satisfies (34) and (35)

for every switching signal σ with dwell time nTs. Hence the conclusion of Theorem 3.8 holds.

The next result implies that the upper bounds obtained in Proposition 4.1 are close to the

supremum over all switching signals with dwell time nTs if the sampling period Ts is sufficiently

small.

Proposition 4.3: Fix ε > 0 and n ∈ N. For any T ≥ 0, there exist a switching signal σ with

dwell time nTs and t ≥ T such that

µ(t, 0) ≥ t

n
−
(
Ts
n

+ ε

)
.



Furthermore, for any T ≥ 0, there exist a switching signal σ with dwell time nTs, T0 ≥ 0 with

σ(T0) 6= σ([T0]−), and t ≥ T0 + T such that

µ(t, T0) ≥ Ts +
t− T0

n
−
(
Ts
n

+ ε

)
. (47)

Proof: This is again a routine calculation; see Appendix A.2.

The next result is the case n = 1 in Proposition 4.3.

Corollary 4.4: There exist a switching signal σ with dwell time Ts such that µ(t, 0) ≈ t for

sufficiently large t > 0.

This corollary shows that, not surprisingly, if the dwell time does not exceed the sampling period,

then the information on switching signals is not so useful for the stabilization of the sampled-data

switched system.

V. NUMERICAL EXAMPLE

Consider the switched system with the following two modes:

A1 =
1

6

 1 −2

−3 2

 , B1 =
1

6

−4

3


A2 =

1 −5

1 2

 , B2 =

 1

−1

 .
The state feedback gains K1 and K2 are given by

K1 =
[
1.38 −1.86

]
, K2 =

[
−2.80 3.77

]
. (48)

We computed the above regulator gains by minimizing the cost∫ ∞
0

(
x(t)>x(t) + u(t)2

)
dt.

Note that both A1 + B1K2 and A2 + B2K1 are not Hurwitz: A1 + B1K2 has one unstable

eigenvalue 4.4538 and A2 +B2K1 has two unstable eigenvalues 1.4091 and 4.7750.

The sampling period Ts was given by Ts = 0.025, and we used the following logarithm

quantizer: Let the state x be x = [x1 x2]>. For a nonnegative integer n, the quantized state

Q(x) = [Q1(x1) Q2(x2)]> is defined by

Qi(xi) :=


−ξ0(ηn+ηn+1)

2
(−ξ0η

n+1 ≤ xi < −ξ0η
n)

0 (−ξ0 ≤ xi ≤ ξ0)

ξ0(ηn+ηn+1)
2

(ξ0η
n < x ≤ ξ0η

n+1),



where ξ0 = 0.08 and η = 1.2.

Set C = 1, R = 68.6, and r = 0.175 in Assumption 2.4. Algorithm 1.1 of Appendix B gave

the positive definite matrix P in Assumption 2.4 by

P =

2.9171 0.3489

0.3489 3.6256

 .
In the randomized algorithm, we used 107 samples in state for each run, and five samples in

time for each sampled state. We stopped the algorithm when there was no update for an entire

run.

Since we obtain D = 55.15 in (7) from the data above, the resulting n and κ in Theorem 4.2

are n = 76 and κ = 1.2864.

A time response (0 ≤ t ≤ 20) was calculated for σ(0) = 1 and some initial states on

∂EP (R − ε) with ε = 0.001. Fig. 3 depicts the state trajectories x of the switched system (1)

with dwell time 76Ts = 1.9. After an interval of length 76Ts with no switches, a switch of the

plant mode occurs with probability 0.05 per sampling interval and the distribution is uniform

in a sampling interval. The blue line indicates that the feedback gain designed for the active

subsystem was used, i.e.,

(Aσ(t), Bσ(t), Kσ([t]−)) = (A1, B1, K1) or (A2, B2, K2).

The red line shows that a switch led to the mismatch of the modes between the plant and the

feedback gain, i.e.,

(Aσ(t), Bσ(t), Kσ([t]−)) = (A1, B1, K2) or (A2, B2, K1).

The black lines in Fig. 3 represent the ellipsoid of initial conditions EP (R) and the attractor set

EP (κr), respectively.

Here we see two conservative results: the dwell time 76Ts and the attractor set EP (κr) in

Fig. 3b. Since we evaluate the increasing and decreasing rates of the Lyapunov function only by

(7) and (6), the switching condition for stability becomes conservative. In particular, we need to

refine the upper bound (7) in the mismatch case, which has been obtained by assuming that we

have the worst-case trajectory whenever a mode mismatch occurs. If we know where switching

happens as for piecewise affine systems, then the upper bound (7) can be improved.
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Fig. 3: The trajectories x with σ(0) = 1

As regards the attractor set EP (κr), the trajectories in Fig. 3b stayed in a smaller neighborhood

of the origin. The conservative result is also due to the upper bound (7); see (46). Another reason

is the nonlinearity of static quantizers and this conservatism is observed for systems with a single

mode as well [5], [8], [9]. Construction of polynomial Lyapunov functions may allow us to obtain

less conservative bounds.

If we use multiple Lyapunov functions together with an average dwell-time property, instead

of a common Lyapunov function, then the above conservatism can be reduced. On the other

hand, the authors of [6] have proposed the calculation method of an ultimate bound and an

invariant set for continuous-time switched systems with disturbances. If one can generalize this

method to sampled-data switched systems with a static quantizer, then another insight into the

state trajectory near the origin will be obtained. Details, however, are more involved, so these

extensions are subjects for future research.



VI. CONCLUDING REMARKS

For sampled-data switched systems with static quantizers, we have developed a stability analy-

sis by using a common Lyapunov function computed efficiently from a randomized algorithm. We

have derived a switching condition on the total mismatch time, and have found a neighborhood

of the origin into which all trajectories fall whenever the initial state is within a known bound.

Moreover, the condition on the total mismatch time has been reduced to a dwell-time condition.

Future work will focus on improving the upper bound on the growth rate of the Lyapunov

function in the mismatched case, and analyzing the stability by multiple Lyapunov functions

and an average dwell-time property.

APPENDIX

A. Proof of Proposition 4.1

Let us first prove (44). It is clear that µ = 0 if σ has no discontinuities in the interval (0, t).

Let t1, . . . , tm be the switching times in (0, t). We have

µ([tk+1]−, [tk]
−) =

[tk]
− + Ts − tk if tk 6= [tk]

−

0 otherwise

for k = 1, . . . ,m− 1, and

µ(t, [tm]−) =


[tm]− + Ts − tm if tm 6= [tm]− and [tm]− + Ts < t

t− tm if tm 6= [tm]− and [tm]− + Ts ≥ t

0 otherwise

Since t ≥ mnTs, we obtain

µ(t, 0) ≤
m∑
k=1

([tk]
− + Ts − tk) < mTs ≤

1

n
t.

Hence (44) holds.

Next we show (45). Since σ(T0) 6= σ([T0]−) and since the dwell time is nTs ≥ Ts, it follows

that σ has precisely one discontinuity in the interval ([T0]−, T0]. Let us denote the switching

time by t0.

Suppose that no switches occur in the interval (T0, t). Since only the interval [T0, [T0]−+ Ts)

has a mode mismatch, it follows that

µ(t, T0) ≤ [T0]− + Ts − T0 < Ts,



and hence (45) holds.

Suppose that m switches occur in the interval (T0, t), and let t1, . . . , tm be the switching times.

Define ξk by

ξk := (tk+1 − tk)− nTs (49)

for k = 0, . . . ,m− 1. The dwell-time assumption implies that ξk ≥ 0. We also have

t− T0 = (t− tm) +
m−1∑
k=0

(tk+1 − tk)− (T0 − t0)

= (t− tm) +
m−1∑
k=0

(ξk + nTs)− (T0 − t0)

= mnTs + (t− tm) +
m−1∑
k=0

ξk − (T0 − t0). (50)

We split the argument into two cases:

(t− tm) +
m−1∑
k=0

ξk ≥ T0 − t0 (51)

and

(t− tm) +
m−1∑
k=0

ξk < T0 − t0. (52)

First we study the case (51), where some switching intervals are sufficiently larger than nTs.

Combining (51) with (50), we obtain t− T0 ≥ mnTs, and hence

µ(t, T0) ≤ ([T0]− + Ts − T0) +
m∑
k=1

([tk]
− + Ts − tk)

< (m+ 1)Ts ≤ Ts +
1

n
(t− T0),

which is a desired inequality (45).

Let us next consider the case (52), where every switching interval is smaller than nTs. Since

µ(t, T0) = µ([t1]−, T0) +
m−1∑
k=1

µ([tk+1]−, [tk]
−) + µ(t, [tm]−)

and since µ([t1]−, T0) = µ([T0]−+Ts, T0) ≤ [T0]−+Ts−T0, it is enough to obtain upper bounds

on µ([tk+1]−, [tk]
−) and µ(t, [tm]−).

We first derive

µ([tk+1]−, [tk]
−) ≤ [t0]− + Ts − t0 (53)



for k = 1, . . . ,m − 1 as follows. Since
∑m−1

k=0 ξk < T0 by (52), each switching time tk (k =

1, . . . ,m) satisfies

tk − t0 = (tk − tk−1) + · · ·+ (t1 − t0)

=
k−1∑
`=0

(ξ` + nTs)

≤
m−1∑
`=0

ξ` + knTs

< T0 − t0 + knTs.

In conjunction with the assumption on the dwell time, this leads to

t0 + knTs ≤ tk < T0 + knTs (54)

for every k = 1, . . . ,m. Since

[t0]− = [T0]− < t0 ≤ T0 < [T0]− + Ts, (55)

(54) shows that [tk]
− = [t0]− + knTs, and hence

t0 + knTs ≤ tk < [tk]
− + Ts = [t0]− + knTs + Ts,

which gives [tk]
− + Ts − tk ≤ [t0]− + Ts − t0. We therefore have

µ([tk+1]−, [tk]
−) = µ([tk]

− + Ts, [tk]
−)

≤ [tk]
− + Ts − tk

≤ [t0]− + Ts − t0.

Thus we obtain (53).

Similarly, we can obtain

µ(t, [tm]−) < T0 − t0. (56)

In fact, (52) and (49) give

t < (T0 − t0) + tm −
m−1∑
k=0

ξk = T0 +mnTs.

If we combine this with t > tm and (54), we see that

t0 +mnTs ≤ tm < t < T0 +mnTs,



which implies that

µ(t, [tm]−) ≤ t− tm < T0 − t0.

We therefore have (56).

Since t− tm > 0 and ξk ≥ 0, it follows from (50) that m satisfies t− t0 > mnTs, i.e.,

m <
t− t0
nTs

. (57)

By (53), (56), and (57), we have

µ(t, T0) < ([T0]− + Ts − T0) + (m− 1)([t0]− + Ts − t0) + (T0 − t0)

<
t− t0
n

[t0]− + Ts − t0
Ts

<
t− [t0]−

n
. (58)

Moreover, (55) gives

Ts +
t− T0

n
− t− [t0]−

n
= Ts −

T0 − [t0]−

n

> Ts −
Ts
n
≥ 0.

Hence (45) follows from (58).

B. Proof of Proposition 4.3

Fix T ≥ 0 and suppose that m ∈ N satisfies mnTs ≥ T .

To prove the first assertion of the theorem, let a switching signal σ have discontinuities at

knTs + ε/m (k = 1, . . . ,m). If we define t := mnTs + Ts, then t ≥ T and we obtain

µ(t, 0) = m
(
Ts −

ε

m

)
= mTs − ε =

t

n
−
(
Ts
n

+ ε

)
.

To prove the second assertion, let T0 − [T0]− = ε/(2m+ 1) and let σ have a switch at

T0 + knTs +
ε

2(m+ 1)
= [T0]− + knTs +

ε

m+ 1
.

for each k = 1, . . . ,m. If we set t := T0 +mnTs + Ts, then t ≥ T0 + T and we have

µ(t, T0) =

(
Ts −

ε

2(m+ 1)

)
+m

(
Ts −

ε

m+ 1

)
≥ (m+ 1)Ts − ε

= Ts +
t− T0

n
−
(
Ts
n

+ ε

)
,



which is the desired inequality (47).

The randomized algorithm for the computation of P in Assumption 2.4 is summarized here

for the sake of completeness.

For a square matrix X ∈ Rn×n, we denote its Frobenius norm by ‖X‖F = (
∑n

i,k=1 x
2
i,k)

1/2,

where xi,k is the (i, k)-th entry of X . For X = X> ∈ Rn×n, let its eigenvalue decomposition be

X = UΣU>, where U is orthogonal and Σ = diag(λ1, . . . , λn). For a fixed γ ≥ 0, define Σγ :=

diag(max{λ1, γ}, . . . ,max{λn, γ}) and set Gδ,δ1(X) := UΣγU
>, where γ := [(δ2 − δ2

1)/n]1/2

for some δ > δ1 > 0.

For the construction of common Lyapunov functions, we use a scheduling function h : Z+ → P

that has the following revisitation property [15]: For every element i ∈ P and for every integer

l ∈ Z+, there exists an integer k ≥ l such that h(k) = i.

We can construct the common Lyapunov function in Assumption 2.4 by using the randomized

algorithm of [8], which is based on the gradient method proposed in [28].

Algorithm 1.1: (1) Pick an initial P [0,0] > 0 and set R0, r0, δ > 0, and δ1 ∈ (0, δ).

(2) Find a finite index subset SN of S such that B(R0) ⊂
⋃
j∈SN Qj .

(3a) Set A := Ah(k), B := Bh(k), and K := Kh(k), and define

φ(x0, u, t) := eAtx0 +

∫ t

0

eAτBdτ · u,

uj := Kqj

v(P, x, j, t) := (Aφ(x, uj, t) +Buj)
>Pφ(x, uj, t)

+ φ(x, uj, t)
>P (Aφ(x, uj, t) +Buj) + C‖φ(x, uj, t)‖2

∇Pv(P, x, j, t) := (Aφ(x, uj, t) +Buj)φ(x, uj, t)
> + φ(x, uj, t)(Aφ(x, uj, t) +Buj)

>

XP (u) := {x ∈ Rn : (Ax+Bu)>Px+ x>P (Ax+Bu) ≤ −C‖x‖2}.

(3b) Generate

(x[k], j[k]) ∈ {(x, j) : x ∈ [Qj ∩ (∂B(r0) ∪ ∂B(R0))] ∪ (∂Qj ∩ B(R0)), j ∈ SN}

=: F

according to some density function fx,j satisfying fx,j(x, j) > 0 for all (x, j) ∈ F .



(3c) If x[k] ∈ ∂B(r0) ∪ ∂B(R0), then set

P [k+1,0] =Gδ,δ1(P
[k,0])− µ[k,0]∇v[k,0] if x[k] 6∈ XP [k,0](uj[k])

P [k,0] otherwise,

where ∇v[k,0] = ∇Pv(P [k,0], x[k], j[k], 0) and µ[k,0] is the step size given by

µ[k,0] :=
v(P [k,0], x[k], j[k], 0) + δ‖∇v[k,0]‖F

‖∇v[k,0]‖2
F

.

(3d) If x[k] ∈ ∂Qj ∩ B(R0), then

(i) generate {t[k,i]}l−1
i=0 ⊂ [0, Ts] according to some density function ft satisfying

ft(t) > 0 for all t ∈ [0, Ts] with the indices in increasing order: 0 ≤ t[k,0] < · · · <

t[k,l−1] ≤ Ts;

(ii) if t[k,i] 6= 0 and if φ(x[k], uj[k] , t
[k,i]) ∈ Cl (Qj[k] ∩ B(R0)c \ B(r0)), then set

P [k+1,0] = P [k,i]; otherwise set

P [k,i+1] =

Gδ,δ1(P
[k,i])−µ[k,i]∇v[k,i] if φ(x[k], uj[k] , t

[k,i]) 6∈XP [k,0](uj[k])∪B(R0)

P [k,i] otherwise,

where ∇v[k,i] := ∇Pv(P [k,0], x[k], j[k], t[k,i]) is the step size given by

µ[k,i] :=
v(P [k,0], x[k], j[k], t[k,i]) + δ‖∇v[k,i]‖F

‖∇v[k,i]‖2
F

;

(iii) set P [k+1,0] = P [k,l].

(4) Find R > 0 satisfying EP [k,0](R) ⊂ B(R0) and obtain r > 0 satisfying B(r0) ⊂

EP [k,0](r) ⊂ EP [k,0](R) if it exists.

The major difference from the algorithm in [8] is the procedure (3a), where a scheduling

function is used. Under assumptions similar to those in [8], we can show that Algorithm 1.1

gives a solution in a finite number of steps with probability one. Since this is an immediate

consequence of [8], [15], we omit the details.
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