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Abstract

This paper establishes that generic linear quantum stochastic systems have a pure
cascade realization of their transfer function, generalizing an earlier result established
only for the special class of completely passive linear quantum stochastic systems.
In particular, a cascade realization therefore exists for generic active linear quantum
stochastic systems that require an external source of quanta to operate. The results
facilitate a simplified realization of generic linear quantum stochastic systems for
applications such as coherent feedback control and optical filtering. The key tools
that are developed are algorithms for symplectic QR and Schur decompositions. It is
shown that generic real square matrices of even dimension can be transformed into
a lower 2 × 2 block triangular form by a symplectic similarity transformation. The
linear algebraic results herein may be of independent interest for applications beyond
the problem of transfer function realization for quantum systems. Numerical exam-
ples are included to illustrate the main results. In particular, one example describes
an equivalent realization of the transfer function of a nondegenerate parametric am-
plifier as the cascade interconnection of two degenerate parametric amplifiers with
an additional outcoupling mirror.

1 Introduction

The class of linear quantum stochastic systems [1, 2, 3, 4] represents multiple distinct open
quantum harmonic oscillators that are coupled linearly to one another and also to exter-
nal Gaussian fields, e.g., coherent laser beams, and whose dynamics can be conveniently
and completely summarized in the Heisenberg picture of quantum mechanics in terms of a
quartet of matrices A,B,C,D, analogous to those used in modern control theory for linear

∗This research was supported by the Australian Research Council
†H. I. Nurdin is with the School of Electrical Engineering and Telecommunications, UNSW Australia,

Sydney NSW 2052, Australia. Email: h.nurdin@unsw.edu.au. S. Grivopoulos and I. R. Petersen are with
the School of Engineering and Information Technology, UNSW Canberra, Canberra BC 2610, Australia.

1

ar
X

iv
:1

50
9.

05
53

7v
1 

 [
qu

an
t-

ph
] 

 1
8 

Se
p 

20
15



systems. As such, they can be viewed as a quantum analogue of classical linear stochastic
systems and are encountered in practice, for instance, as models for optical parametric
amplifiers [5, Chapters 7 and 10]. However, due to the constraints imposed by quantum
mechanics, the matrices A,B,C,D in a linear quantum stochastic system cannot be ar-
bitrary, a restriction not encountered in the classical setting. In fact, as derived in [2]
for a certain fixed choice of D, it is required that A and B satisfy a certain non-linear
equality constraint, and B and C satisfy a linear equality constraint. These constraints on
A,B,C,D are referred to as physical realizability constraints [2].

A number of applications of linear quantum stochastic systems have been theoretically
proposed or experimentally demonstrated in the literature. In particular, they can serve as
coherent feedback controllers [2, 6], i.e., feedback controllers that are themselves quantum
systems. In this context, they have been shown to be theoretically effective for cooling
of an optomechanical resonator [7], can modify the characteristics of squeezed light pro-
duced experimentally by an optical parametric oscillator (OPO) [8], and, in the setting
of microwave superconducting circuits, a linear quantum stochastic system in the form of
a Josephson parametric amplifier (JPA) operated in the linear regime has been experi-
mentally demonstrated to be able to rapidly reshape the dynamics of a superconducting
electromechanical circuit (EMC) [9]. Linear quantum stochastic systems can also be used
as optical filters for various input signals, including non-Gaussian input signals like single
photon and multi-photon states. As filters they can be used to modify the wavepacket
shape of single and multi-photon sources [10, 11]. Also, linear quantum stochastic sys-
tems can dissipatively generate Gaussian cluster states [12] as an important component of
continuous-variable one way quantum computers [13].

In certain quantum control problems, such as in coherent feedback H∞ [2] and LQG
[6] control problems, the latter being adapted for addressing an optomechanical cooling
problem in [7], the important feature of the controller is its transfer function T (s) =
C(sI −A)−1B+D rather than the system matrices (A,B,C,D). Therefore, an important
issue in the implementation of coherent feedback controllers is how to realize a controller
with a certain transfer function from a bin of basic linear quantum (optical) devices. This
is a special case of the problem of network synthesis of linear quantum stochastic systems
addressed in [3, 14, 15]. In particular, it was shown in [15], generalizing the results of
[16, 17], that the transfer function of all linear quantum stochastic systems which are
completely passive can be realized by a cascade of one degree of freedom linear quantum
stochastic systems. Completely passive here means that the system can be realized using
only passive linear optical devices which do not need an external source of quanta for their
operation. The question of whether cascade realizations exist for general linear quantum
stochastic systems has remained an open problem. The contribution of this paper is to
resolve this question by proving that, generically, linear quantum stochastic systems do
possess a pure cascade realization. This is significant from a practical point of view, as it
allows for a simpler realization of generic linear quantum stochastic systems.

The remainder of the paper is organized as follows. Section 2 introduces the notation
and gives an overview of linear quantum stochastic systems and the associated realization
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theory. Section 3 presents a symplectic QR decomposition algorithm. The results of Section
3 form the basis for a symplectic Schur decomposition algorithm that is presented in Section
4 and used to show that the transfer function of generic linear quantum stochastic systems
can be realized by pure cascading. Finally, Section 5 summarizes the contributions of the
paper.

2 Preliminaries

2.1 Notation

We will use the following notation: ı =
√
−1, ∗ denotes the adjoint of a linear operator as

well as the conjugate of a complex number. If A = [ajk] then A# = [a∗jk], and A† = (A#)>,

where (·)> denotes matrix transposition. <{A} = (A + A#)/2 and ={A} = 1
2ı

(A − A#).
We denote the identity matrix by I whenever its size can be inferred from context and
use In to denote an n × n identity matrix. Similarly, 0m×n denotes a m × n matrix with
zero entries but drop the subscript when its dimension can be determined from context.
We use diag(M1,M2, . . . ,Mn) to denote a block diagonal matrix with square matrices
M1,M2, . . . ,Mn on its diagonal, and diagn(M) denotes a block diagonal matrix with the

square matrix M appearing on its diagonal blocks n times. Also, we will let J =

[
0 1
−1 0

]
and Jn = In ⊗ J = diagn(J).

2.2 The class of linear quantum stochastic systems

Let x = (q1, p1, q2, p2, . . . , qn, pn)T denote a vector of the canonical position and momen-
tum operators of a many degrees of freedom quantum harmonic oscillator satisfying the
canonical commutation relations (CCR) [qi, pj] = 2ıδij, [qi, qj] = 0, and [pi, pj] = 0 for
i, j = 1, 2, . . . , n, or, more compactly, xxT − (xxT )T = 2ıJn. A linear quantum stochas-
tic system [2, 6, 3] G is a quantum system defined by three parameters: (i) A quadratic
Hamiltonian H = 1

2
xTRx with R = RT ∈ R2n×2n, (ii) a coupling operator L = Kx, where

K is an m × 2n complex matrix, and (iii) a unitary m × m scattering matrix S. For
shorthand, we write G = (S, L,H) or G = (S,Kx, 1

2
xTRx). The time evolution x(t) of x

in the Heisenberg picture (t ≥ 0) is given by the quantum stochastic differential equation
(QSDE) (see [1, 2, 3]):

dx(t) = A0x(t)dt+B0

[
dA(t)
dA(t)#

]
;x(0) = x,

dY (t) = C0x(t)dt+D0dA(t),

with A0 = 2Jn(R + ={K†K}), B0 = 2ıJn[ −K†S KTS# ], C0 = K, and D0 = S. Here
Y (t) = (Y1(t), . . . , Ym(t))> is a vector of continuous-mode bosonic output fields that results
from the interaction of the quantum harmonic oscillators and the incoming continuous-
mode bosonic quantum fields in the m-dimensional vector A(t). Note that the dynamics
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of x(t) is linear, and Y (t) depends linearly on x(s), 0 ≤ s ≤ t. We refer to n as the degrees
of freedom of the system or, more simply, the degree of the system.

Following [2], it will be convenient to write the dynamics in quadrature form as

dx(t) = Ax(t)dt+Bdw(t); x(0) = x.

dy(t) = Cx(t)dt+Ddw(t), (1)

with w(t) = 2(<{A1(t)},={A1(t)}, . . . ,<{Am(t)}, ={Am(t)})> and y(t) = 2(<{Y1(t)},
={Y1(t)}, . . . , <{Ym(t)},={Ym(t)})>. Here, the real matrices A, B, C, D are in one-to-
one correspondence with A0, B0, C0, D0. Also, w(t) is taken to be in a vacuum state where
it satisfies the Itô relationship dw(t)dw(t)> = (I+ ıJm)dt; see [2]. Note that in this form it
follows that D is a real unitary symplectic matrix. That is, it is both unitary (i.e., DD> =
D>D = I) and symplectic (a real m×m matrix is symplectic if DJmD> = Jm). However,
in the most general case, D can be generalized to a symplectic matrix that represents a
quantum network that includes ideal infinite bandwidth squeezing devices acting on the
incoming field w(t) before interacting with the system [4, 3]. The matrices A, B, C, D of
a linear quantum stochastic system cannot be arbitrary and are not independent of one
another. In fact, for the system to be physically realizable [2, 6, 3], meaning it represents
a meaningful physical system, they must satisfy the constraints (see [18, 2, 6, 3, 4])

AJn + JnA> +BJmB> = 0, (2)

JnC> +BJmD> = 0, (3)

DJmD> = Jm. (4)

Note that, more generally, one can consider linear quantum stocastic systems with less
outputs than inputs by ignoring certain output quadrature pairs in y(t) which are not of
interest, and a corresponding generalized physical realizability conditions analogous to the
above can be derived [18, 19]. However, for the purpose of this paper it is sufficient to
consider systems with the same number of inputs and outputs, as systems with less outputs
than inputs can then be easily handled [19].

Following [20], we denote a linear quantum stochastic system having an equal number
of inputs and outputs, and Hamiltonian H, coupling vector L, and scattering matrix S,
simply as G = (S, L,H) or G = (S,Kx, 1

2
x>Rx). We also recall the series product / for

open Markov quantum systems [20] defined by G2 / G1 = (S2S1, L2 + S2L1, H1 + H2 +
={L†2S2L1}), where Gj = (Sj, Lj, Hj) for j = 1, 2. Since the series product is associative,
Gn /Gn−1 / . . . /G1 is unambiguously defined. The series product corresponds to a cascade
connection G2 /G1 where the outputs of G1 are passed as inputs to G2; see [20] for details.

2.3 Realization theory

Given an n degree of freedom linear quantum stochastic system with system matrices
A,B,C,D, how can it be built from a bin of linear quantum components and which com-
ponents are needed? This is the network synthesis question for linear quantum stochastic

4



systems. It was shown in [3] that any linear quantum stochastic system with n degrees
of freedom system G can be decomposed as the cascade of n one degree of freedom sys-
tem G1, G2, . . . , Gn together with some bilinear interaction Hamiltonians between them,
as illustrated in Fig. 1. It was then shown how each one degree of freedom system can be
realized from a certain bin of linear quantum optical components.

G
!(1) G

!(2) G
!(3) G

!(n) 

H
!(1)!(2) 

H
!(2)!(3) 

H
!(1) !(3) 

H
!(2)!(n) 

H
!(3)!(n) 

H
!(1)!(n) 

G 

A(t) Y(t) 

G
!(1) G

!(2) G
!(3) 

G
!(m) 

H
!(1)!(2) 

H
!(2)!(3) 

H
!(1) !(3) 

H
!(2)!(m) 

H
!(3)!(m) 

H
!(1)!(m) 

G
!,1 

A(t) Y
!,1(t) 

Figure 1: Cascade realization of Gπ (π is permutation map of {1, 2, . . . , n} to itself),
with direct interaction Hamiltonians Hd

π(j)π(k) between sub-systems Gπ(j) and Gπ(k) for

j, k = 1, 2, . . . , n, following [3]. Illustration is for n > 3.

In certain control problems, such as H∞ and H2/LQG coherent feedback control prob-
lems, it is the transfer function of the systems that is important rather than the sys-
tem matrices G = (A,B,C,D) themselves. The transfer function is defined as ΞG(s) =
C(sI − A)−1B + D, and rather than realizing a particular quartet (A,B,C,D) one may
consider realizing GT = (TAT−1, TB,CT−1, D) for a suitable arbitrary symplectic matrix
T , since G and GT have the same transfer function. The transformation T is required to
be symplectic to ensure that the new internal degrees of freedom z(t) = Tx(t) satisfies the
canonical commutation relations. It was shown in [15] that every completely passive linear
quantum stochastic system, a system that can be realized using only passive quantum de-
vices, has a pure cascade realization of its transfer function that does require any bilinear
interaction Hamiltonians between oscillators in the cascade. In the context of Fig. 1 above,
this means that all bilinear interaction Hamiltonians Hπ(i)π(j) can be removed. Purely cas-
cade realizations are simpler to implement and are therefore desirable. However, it is not
known whether the transfer function of general linear quantum stochastic systems outside
of the completely passive class have such a realization. This is an important open problem
that is resolved in this paper.

3 A symplectic QR decomposition algorithm

The main purpose of this section is to develop a symplectic QR decompositon algorithm
and derive a necessary and sufficient condition for real square matrices of even dimension
to possess this decomposition. The symplectic QR decomposition will play an important
role in proving subsequent results that will be presented in Section 4. We begin by recalling
some useful definitions.

Let X be an invertible 2n × 2n skew-symmetric matrix and let 〈◦, X•〉 = ◦>X• be a
skew-symmetric bilinear form on R2n induced by X. A set of linearly independent vectors
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v1, v2, . . . , v2n on R2n is said to be a symplectic basis with respect to 〈◦, X•〉 if 〈vi, Xvj〉 =
−〈vj, Xvi〉 = Xij. The space R2n endowed with 〈◦, X•〉 forms a symplectic vector space.
Thus, we shall also refer to 〈◦, X•〉 as a symplectic form. A matrix T ∈ R2n×2n is said to
be sympletic with respect to X if T>XT = X. Therefore, if T is sympletic with respect
to X, then Tv1, T v2, . . . , T v2n is also a symplectic basis for R2n whenever v1, v2, . . . , v2n

is a symplectic basis. In this paper, we will be interested in R2n as a symplectic vector
space with X = Jn. Therefore, unless stated otherwise, it is implicit throughout that
the symplectic structure on R2n is with respect to the symplectic form 〈◦, Jn•〉. Note the
standard property that if T is a symplectic matrix then so is T> and T−1, see, e.g., [21].
This property will often be invoked without further comment.

We also recall the following definition from [15].

Definition 1 A square matrix F of even dimension is said to be lower 2×2 block triangular
if it has a lower block triangular form when partitioned into 2× 2 blocks:

F =


F11 02×2 02×2 . . . 02×2

F21 F22 02×2 . . . 02×2
...

. . . . . . . . .
...

Fn1 Fn2 . . . . . . Fnn

 ,
where Fjk, j ≤ k, is of dimension 2 × 2. Similarly, a matrix F is said to be upper 2 × 2
block triangular if F> is lower 2× 2 block triangular.

We are now ready to state the main lemma of this section that describes a symplectic
QR decomposition algorithm with respect to the symplectic form 〈◦, Jn•〉. The lemma is
based on a symplectic Gram-Schmidt procedure that is different from symplectic Gram-
Schmidt procedures to construct a canonical symplectic basis in a symplectic vector space,
e.g., [21, Proposition 40] and its proof. It is in the same class of algorithms as, though not
identical to, existing symplectic Gram-Schmidt procedures used in numerical analysis with
respect to the symplectic form 〈◦,Kn•〉 with Kn = J ⊗ In [22]. In fact, our procedure is
rather analogous to the Gram-Schmidt procedure in spaces with indefinite inner products
as described in, e.g. [23, Section 3.1]. In the lemma, a symplectic basis is constructed
sequentially from a given and fixed set of linearly independent initial vectors v1, v2, . . . , v2n,
which are presented to the procedure sequentially two at a time in that order. As in the
Gram-Schmidt procedure in indefinite inner product spaces, since the initial vectors are
given, a certain condition is required for the new procedure proposed below to yield a
symplectic basis for R2n.

Lemma 2 (Symplectic QR decomposition) Let V be a real invertible 2n × 2n ma-
trix with linearly independent columns v1, v2, . . ., v2n from left to right. Let Mi =[
v2i−1 v2i

]
∈ R2n×2 for i = 1, 2, . . . , n and M̃1 = M1, M̃2 = [ M1 M2 ], and M̃i =

[ M1 M2 . . . Mi ] for i = 3, . . . , n, and assume that Ni = M̃>
i JnM̃i is full rank for

i = 1, 2, . . . , n. Then V has a QR decomposition V = SY for some symplectic matrix S
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and an upper 2× 2 block triangular matrix Y . Moreover, S can be constructed recursively
by contructing a sequence of real numbers αj, real 2(j − 1) × 2 matrices Ξj, and real in-
vertible 2j × 2j matrices Sj, for j = 2, 3, . . . , n. Define µ1 as the (1,2) element of the

skew-symmetric matrix N1, α1 =
√
|µ1|

−1
, Ξ1 = I2, and

S1 = M1α1Ξ1

[
1 0
0 sgn(µ1)

]
.

For j = 2, 3, 4, . . . , n, define Sk recursively as

Sj =
[
Sj−1 Mj

]  I2(j−1) αjΞj

[
1 0
0 sgn(µj)

]
0 αj

[
1 0
0 sgn(µj)

]
 , (5)

with αj =
√
|µj|

−1
and Ξj = Jj−1S

>
j−1JnMj, where µj denotes the (1,2) element of

(Sj−1Ξj + Mj)
>Jn(Sj−1Ξj + Mj). Then Sj satisfies S>j JnSj = Jj for j = 1, 2, 3, . . . , n,

and S = Sn is symplectic. In particular, the columns of Sk are contained as the first 2k
columns of Sk+1, thus forming a symplectic basis of R2n for k = n. Moreover, defining the
invertible matrices

X1 =

 α1Ξ1

[
1 0
0 sgn(µ1)

]
02×2(n−1)

02(n−1)×2 I2(n−1)

 .
and

Xj =


I2(j−1) αΞj

[
1 0
0 sgn(µj)

]
0

0 αj

[
1 0
0 sgn(µj)

]
0

0 0 I2(n−j)


for j = 2, 3, . . . , n, then V = SY for an invertible upper 2 × 2 block triangular matrix
Y = X−1, where X = X1X2 · · ·Xn−1Xn.

Proof. Since M>
1 JnM1 is a real 2×2 skew-symmetric matrix and is full rank by hypothesis,

it is of the form

M>
1 JnM1 =

[
0 µ1

−µ1 0

]
,

with µ1 6= 0. It follows immediately from the given construction of S1 in the statement of
the theorem that S>1 JnS1 = J1. Therefore, the columns of S1 are mutually skew-orthogonal.
We proceed further by induction.

Suppose that the columns of Sj, as constructed according to the theorem, form a
partial symplectic basis for 1 < j < n, i.e., S>j JnSj = Jj. Consider now the matrix
Zj+1 = SjΞj+1 + Mj+1 for some real 2j × 2 matrix Ξj+1. We will choose Ξj+1 to satisfy
S>j JnZj+1 = 0. This yields the equation S>j JnSjΞj+1 + S>j JnMj+1 = 0. Since S>j JnSj =
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Jj we can solve for Ξj+1 to obtain Ξj+1 = JjS>j JnMj+1. Define the real 2 × 2 skew-
symmetric matrix Yj+1 = Z>j+1JnZj+1. We will show that Yj+1 6= 02×2. We first note that

since Nj+1 = [ M1 . . . Mj Mj+1 ]>Jn[ M1 . . . Mj Mj+1 ] is full rank by hypothesis,
so is [ Sj Mj+1 ]>Jn[ Sj Mj+1 ]. This is a consequence of the fact that the columns
of Sj are, by construction, linearly independent linear combinations of the columns of
M1,M2, . . . ,Mj. Moreover, since

[ Sj Zj+1 ] = [ Sj Mj+1 ]

[
Ij Ξj+1

0 I2

]
,

while the matrix [
Ij Ξj+1

0 I2

]
is evidently invertible, we conclude that

[ Sj Zj+1 ]>Jn[ Sj Zj+1 ]

is full rank skew-symmetric. By the given construction of Sj and Ξj+1, [ Sj Zj+1 ]>Jn[ Sj Zj+1 ]
is necessarily of the form

[ Sj Zj+1 ]>Jn[ Sj Zj+1 ] =

[
Jj 0
0 Yj+1

]
.

From the fact that the left hand side of the identity is full rank, it follows immediately
that Yj+1 is full rank 2× 2 skew-symmetric. Therefore, it is necessarily of the form

Yj+1 =

[
0 µj+1

−µj+1 0

]
,

with µj+1 6= 0. Define αj+1 =
√
|µj+1|

−1
. Consider now the matrix

Z̃j+1 = αj+1Zj+1

[
1 0
0 sgn(µj+1)

]
.

Some brief calculations shows that, by construction, the matrix Z̃j+1 satisfies S>j JnZ̃j+1 =

0, and Z̃>j+1JnZ̃j = J1. Therefore, we have shown for 1 < j < n that if the hypotheses of
the theorem hold and Sj satisfies S>j JnSj = Jj then the matrix Sj+1 given by (5) satisfies
S>j+1JnSj+1 = Jj+1. In particular, S = Sn is a symplectic matrix.

Note that by the above construction each Xi as defined in the lemma is invertible.
Direct calculations then show that V X1 = [ S1 V2→n ], V X1X2 = [ S2 V3→n ], . . .,
V X1X2 · · ·Xn = Sn = S, where Vj→n is matrix constructed of columns 2j to 2n of V from
left to right. Moreover, clearly X = X1X2 · · ·Xn is upper 2× 2 block triangular since each
of the Xj in the product has this structure, and therefore so is Y = X−1. Hence, V has the
symplectic QR decomposition V = SX−1 = SY . This concludes the proof of the lemma.

Let us now look at an example to illustrate Lemma 2.
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Example 3 Consider the matrix

V =


−15 42 −12 3
33 −22 7 28
9 26 −43 44
5 26 −45 −37

 .
It can be verified that V >J2V and the matrix N1 as defined in Lemma 2 are full rank. The
symplectic matrix produced by executing the symplectic QR decomposition is then

S =


−0.4862 −1.3612 −0.1418 −1.0405
1.0695 0.7130 0.0975 1.4863
0.2917 −0.8427 −0.7193 0.4113
0.1621 −0.8427 −0.7569 −1.1093

 ,
while the upper 2× 2 block triangular matrix Y such that V = SY is

Y =


30.8545 0 −0.7130 −28.0024

0 −30.8545 3.2734 −34.7437
0 0 55.6558 0
0 0 0 55.6558

 ;

Finally, we give a necessary and sufficient condition for a 2n× 2n matrix V to possess
a symplectic QR decomposition.

Theorem 4 Let V and Nj be as defined in Lemma 2. Then there exists a symplectic QR
decomposition V = SY , with S a symplectic matrix and Y an invertible upper 2× 2 block
triangular matrix, if and only if the matrices N1, N2, . . ., Nn are full rank.

Proof. The if part is the content of Lemma 2. For the necessity of the full rankness
of N1, N2, . . ., Nn−1, first note that V >JnV = Y >S>JnSY = Y >JnY . Take any k ∈
{1, 2, . . . , n− 1} and partition Y as

Y =

[
Y11,k Y12,k

0 Y22,k

]
,

with Y11,k ∈ R2k×2k, Y12,k ∈ R2k×2(n−k), and Y22,k ∈ R2(n−k)×2(n−k), where Y11,k and Y22,k are
invertible upper 2 × 2 block triangular matrices. Since Nk = [ I2k 0 ]V >JnV [ I2k 0 ]>,
from the expression for Y above we immediately get that Nk = Y >11,kJkY11,k, which is

evidently invertible for k = 1, 2, . . . , n− 1, while Nn = Y >JnY is invertible by hypothesis.

We now provide an example of an instance where the condition of Theorem 4 fails and
hence V does not have symplectic QR decompositon.
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Example 5 Consider the matrix

V =


0 1 0 0
0 0 0 1
−1 0 0 0
0 0 −1 0

 .
Then V >JnV is full rank. However, it may be verified that the matrix N1 associated with
V is a zero matrix, hence the condition of Theorem 4 is not satisfied and V does not have
a symplectic QR decomposition.

4 Pure cascade realization of the transfer function of

generic linear quantum stochastic systems

In this section we employ the results from the preceding section to obtain sufficient con-
ditions under which a (physically realizable) linear quantum stochastic system has a pure
cascade realization. It is shown that this condition will be met by generic (in a sense
that will be detailed in this section) linear quantum stochastic systems, thereby extending
the results obtained in [15] for the special case of completely passive systems to generic
linear quantum stochastic systems (including a large class of active systems). Let us now
recall a characterization of linear quantum stochastic systems G that have a pure cascade
realization, i.e., G can be written as G = Gn / Gn−1 / · · · / G1 for some distinct one degree
of freedom systems G1, G2, . . . , Gn.

Theorem 6 [15, Theorem 4] Let R = [Rij]i,j=1,2,...,n with Rij ∈ R2×2, and K =
[ K1 K2 . . . Kn ] with Ki ∈ Cm. A linear quantum stochastic system G = (S,Kx, 1

2
x>Rx)

with n degrees of freedom is realizable by a pure cascade of n one degree of freedom har-
monic oscillators (without a direct interaction Hamiltonian) if and only if the A matrix is
similar via a symplectic permutation matrix to a lower 2× 2 block triangular matrix. That
is, there exists a symplectic permutation matrix P such that PAP> = Ã, where Ã is lower
2 × 2 block triangular. Let R̃ = PRP> = [R̃ij], K̃ = KP> = [ K̃1 K̃2 . . . K̃n ], with

R̃ij ∈ R2×2 and K̃j ∈ Cm. If the condition is satisfied then G can be explicitly constructed
as the cascade connection Gn / Gn−1 / . . . / G1 with G1 = (S, K̃1x̃1,

1
2
x̃>1 R̃11x̃1), and Gk =

(I, K̃kx̃k,
1
2
x̃>k R̃kkx̃k) for k = 2, . . . , n, where x̃ = (qπ(1), pπ(1), qπ(2), pπ(2), . . . , qπ(n), pπ(n))

>,
and π is a permutation of {1, 2, . . . , n} onto itself such that x̃ = Px.

Remark 7 The theorem has been stated as a minor and trivial generalization of [15,
Theorem 4]. The original did not include the additional freedom of allowing a symplectic
permutation matrix to transform A into lower 2×2 block triangular form, corresponding to
a mere permutation of pairs of position and momentum operators in x. For instance, if A
is in upper 2× 2 block triangular form it can be trivially transformed into lower 2× 2 block
triangular form by a suitable symplectic permutation matrix, which by [15, Theorem 4]
would then be physically realizable by pure cascading.
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Given an n degree of freedom linear quantum stochastic system G = (A,B,C,D) with
transfer function ΞG(s) = C(sI − A)−1B + D, the problem that will be addressed is how
to obtain a cascade of n one degree of freedom linear quantum stochastic systems that has
transfer function ΞG(s), if such a cascade exists. Recall that for any symplectic matrix
T , the system GT = (TAT−1, TB,CT−1, D) is a physically realizable system that has the
same transfer function as G. The main strategy is to find a symplectic matrix T such that
GT is the cascade realization that is sought. Before stating the main result, let us recall
the real Jordan canonical form of a real matrix; see, e.g., [24, Section 3.4]. Let A be a real
square matrix then A can always be decomposed as A = V JAV

−1, where JA is a Jordan
canonical form for A. Of course, although A is real, its eigenvalues and eigenvectors can
be complex, but they always come in complex conjugate pairs. That is, if λ and v are a
complex eigenvalue and eigenvector of A then so are λ∗ and v#, respectively. Therefore, in
general, V and JA may have complex entries. However, when A is real it is also similar to a
real Jordan canonical form. A real Jordan block for a real Jordan canonical corresponding
to a real eigenvalue of A is the same as the corresponding block in the Jordan canonical
form. However, to a pair of conjugate complex eigenvalues λk = ak + ıbk and λ∗ = ak − ıbk
there will associated with them one or more real Jordan blocks of the upper 2 × 2 block
triangular form 

Ck I2 02×2 02×2 . . . 02×2

02×2 Ck I2 02×2 . . . 02×2

02×2 02×2 Ck
. . . . . . 02×2

...
...

...
. . . . . . I2

02×2 02×2 02×2 02×2 . . . Ck

 ,
with

Ck =

[
ak bk
−bk ak

]
.

With respect to the real Jordan blocks, A can be written as Ṽ J̃AṼ
−1, where J̃A is a real

Jordan canonical form of A (unique up to permutation of the real Jordan blocks), and Ṽ a
real invertible matrix [24, Section 3.4]. We are now ready to state the main results of this
section.

Lemma 8 (Symplectic Schur decomposition) Let A be a real 2n× 2n matrix. Then
A has a symplectic Schur decomposition A = S−1US with U lower 2 × 2 block triangular
if there exists a real invertible 2n× 2n matrix

Ṽ = [ ṽ1 ṽ2 . . . ṽ2n−1 ṽ2n ]

such that

(i) Ṽ brings A into a real Jordan canonical form J̃A = Ṽ −1AṼ , with J̃A in the upper 2×2
block triangular form J̃A = diag(J̃A,r, J̃A,c), where J̃A,r contains all Jordan blocks cor-
responding to the (possibly repeated) real eigenvalues of A (in upper triangular form),
and J̃A,c contains all real Jordan blocks corresponding to the complex eigenvalues of
A.
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(ii) The matrices Ñ1, Ñ2, . . ., Ñn−1 given by

Ñ1 = [ ṽ1 ṽ2 ]>Jn[ ṽ1 ṽ2 ],

Ñ2 = [ ṽ1 ṽ2 ṽ3 ṽ4 ]>Jn[ ṽ1 ṽ2 ṽ3 ṽ4 ],

...

Ñn−1 = [ ṽ1 ṽ2 . . . ṽ2n−3 ṽ2n−2 ]>Jn[ ṽ1 ṽ2 . . . ṽ2n−3 ṽ2n−2 ].

are all full rank.

If the above conditions hold, let S1 be a 2n × 2n symplectic matrix obtained from
Ṽ by applying the symplectic QR decomposition of Lemma 2 so that Ṽ = S1Y ,
for an invertible 2n × 2n upper 2 × 2 block triangular matrix Y as given by the
lemma, and let P ∈ R2n×2n be a permutation matrix that implements the mapping
(q1, p1, q2, p2, . . . , qn, pn)> 7→ (qn, pn, qn−1, pn−1, . . . , q1, p1)>. Then A has the sym-
plectic Schur decomposition A = S−1US with S = PS−1

1 and U lower 2 × 2 block
triangular.

Remark 9 Notice that since A and J̃A,c have even dimensions, so does J̃A,r. One can
always choose a real Jordan canonical form of A to be of the form J̃A = diag(J̃A,r, J̃A,c),
which is upper 2× 2 block triangular.

Proof. Let A = Ṽ J̃AṼ
−1, with J̃A and Ṽ as given in the lemma. By conditions (i) and

(ii), using Lemma 2 we can construct a symplectic matrix S1 such that Ṽ = S1Y , with
Y real invertible upper 2 × 2 block triangular as given in the lemma. We can thus write
A = Ṽ J̃AṼ

−1 = S1Y J̃AY
−1S−1

1 . Moreover, since J̃A = diag(J̃A,r, J̃A,c), Y , and Y −1 are all
upper 2 × 2 block triangular, the product Y J̃AY

−1 is also upper 2 × 2 block triangular.
Let P ∈ R2n×2n be the permutation matrix defined in the lemma. Notice that, by its
definition, the permutation matrix P is symplectic, and that PZP> is 2 × 2 lower block
triangular whenever Z is upper 2 × 2 block triangular. It follows from these observations
that PY J̃AY

−1P> is lower 2 × 2 block triangular. Therefore, we conclude that SAS−1

with S = PS−1
1 is a lower 2 × 2 block triangular matrix, since SAS−1 = PY J̃AY

−1P>.
Additionally, notice that S is symplectic since S−1

1 (the inverse of a symplectic matrix) and
P are symplectic. �

A direct consequence of Lemma 8 is the existence of the cascade realization of the
transfer function of a linear quantum stochastic system when the conditions of the lemma
are satisfied.

Theorem 10 Let G = (A,B,C,D) be a physically realizable n degree of freedom linear
quantum stochastic system. If there exists a matrix Ṽ associated to the 2n× 2n matrix A
satisfying the conditions of Lemma 8 then there exists a symplectic matrix S such that the
transformed system (SAS−1, SB,CS−1, D) is physically realizable with SAS−1 lower 2× 2
block triangular, i.e., ΞG(s) has a pure cascade realization.
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Proof. Let S be as in Lemma 8, then A = SAS−1 is lower 2 × 2 block triangular.
Therefore, ΞG(s) has a pure cascade realization by Theorem 6. �

We emphasize that fulfillment of the full rankness conditions on Ñ1, Ñ2, . . ., Ñn−1

depends on the choice of the matrix Ṽ which transforms A into its real Jordan canonical
form (which is not unique). For some choices of Ṽ the full rankness conditions may fail to
hold and thus a pure cascade realization of the transfer function cannot be obtained.

Let us call as admissible all real 2n×2n matrices A satisfying the conditions of Lemma
8, and refer to those that do not as non-admissible. The following examples illustrate some
samples of non-admissible matrices that cannot meet the conditions of Lemma 8.

Example 11 Consider the matrix

A =


−1 0 0 −1
0 −1 0 0
−1 0 −1 0
0 −1 0 −1

 ,
which has the real Jordan decomposition A = Ṽ J̃AṼ

−1 with (following from Example 5)

Ṽ =


0 1 0 0
0 0 0 1
−1 0 0 0
0 0 −1 0

 , J̃A =


−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

 .
It can be easily inspected that for any choice of permutation matrix P such that Ṽ P satisfies
the conditions of Theorem 4, one will find that P J̃AP

> will not be upper 2 × 2 block
triangular. This matrix A is therefore non-admissible.

Example 12 Consider the matrix

A =


−2 0 0 0
0 −3 0 4
0 0 −1 0
0 −4 0 −3

 ,
which has the real Jordan decomposition A = Ṽ J̃AṼ

−1 with

Ṽ =


0 1 0 0
0 0 0 1
−1 0 0 0
0 0 −1 0

 , J̃A =


−1 0 0 0
0 −2 0 0
0 0 −3 4
0 0 −4 −3

 .
As with Example 12 it can be verified that for any choice of permutation matrix P such
that Ṽ P satisfies the conditions of Theorem 4, one will find that P J̃AP

> will not be upper
2× 2 block triangular. Thus A is also non-admissible.
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We observe the following:

1. All diagonalizable matrices in R2n×2n (including all symmetric matrices) with only
real eigenvalues are admissible. Example 14 to be given below involves this type of
admissible matrix.

2. Non-admissible matrices in R2n×2n include the following cases:

(i) The matrix has a real repeated eigenvalue with geometric multiplicity less than
its algebraic multiplicity, and there exist two mutually skew-orthogonal real
basis vectors v1 and v2 for the invariant subspace of R2n associated with that
eigenvalue. For some matrices of this type it is not possible to permute the
columns of Ṽ and the corresponding rows and columns of J̃A to transform them
into admissible matrices, as illustrated in Example 11.

(ii) The matrix has a pair of conjugate complex eigenvalues λ and λ∗ (not necessarily
repeated) with a corresponding pair of conjugate eigenvectors or generalized
eigenvectors v and v# such that the real vectors v+v# and−ıv+ıv# are mutually
skew-orthogonal. Example 12 illustrates an instance of a non-admissible matrix
with this property.

The non-admissibility of a real 2n× 2n matrix entails rather particular properties that
are unlikely to be possessed by typical matrices. This suggests that admissible real 2n×2n
matrices are generic in the set of all real 2n × 2n matrices. Generic is in the sense that
the set of admissible matrices contains an open and dense subset of R2n×2n. This is indeed
the case and we state it as the following theorem, with the proof being deferred to the
appendix.

Theorem 13 The set of admissible 2n× 2n matrices is generic in R2n×2n.

Thus, generic matrices in R2n×2n have a symplectic Schur decomposition and the trans-
fer function ΞG(s) of a generic physically realizable linear quantum stochastic system
G = (A,B,C,D) has a pure cascade realization that can be explicitly determined us-
ing Lemma 8 and Theorem 10. We conclude this section by applying the results obtained
herein in an example that demonstrates an equivalent realization of the transfer function
of a nondegenerate optical parametric amplifier (NOPA) by a cascade of two degenerate
parametric amplifiers (DPAs) equipped with an additional transmissive mirror.

Example 14 Consider a NOPA with two modes aj = 1
2
(qj + ıpj), j = 1, 2, satisfying the

canonical commutation relations [aj, a
∗
k] = δjk and [aj, ak] = 0. The operators describing the

system is H = ıε
2
(a∗1a

∗
2 − a1a2), L = [

√
γa1

√
γa2 ]>, and S = I2. We take γ = 7.2× 107

and ε = 0.6γ = 4.32× 107, values that can be realized in a tabletop optical experiment, see,
e.g., the experimental work [25] based on the proposals in [26, 27]. The A,B,C,D matrices
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for the NOPA are:

A = 107


−3.6 0 2.16 0

0 −3.6 0 −2.16
2.16 0 −3.6 0

0 −2.16 0 −3.6

 ;

B = −8.4853× 103I4; C = 8.4853× 103I4; D = I4.

We can choose the matrix Ṽ in Theorem 10 to be

Ṽ =


0.7071 0 0 0.7071

0 −0.7071 0.7071 0
−0.7071 0 0 0.7071

0 0.7071 0.7071 0

 ,
corresponding to the (real) Jordan canonical form

J̃A = Ṽ −1AṼ = 107diag(−5.76,−1.44,−5.76,−1.44).

Using Lemma 2, we compute the symplectic matrix S1 and upper 2 × 2 block triangular
matrix Y as

S1 =


0.7071 0 0 −0.7071

0 0.7071 0.7071 0
−0.7071 0 0 −0.7071

0 −0.7071 0.7071 0

 ;

Y = diag(1,−1, 1,−1).

The required symplectic transformation matrix from Theorem 10 is S = PS−1
1 , and

a cascade realization of the transfer function of the NOPA is G1 = (A1, B1, C1, D1) =
(SAS−1, SB,CS−1, D) with

A1 = 107


−5.76 0 0 0

0 −1.44 0 0
0 0 −5.76 0
0 0 0 −1.44

 ;

B1 = 103


0 −6 0 −6
6 0 6 0
−6 0 6 0
0 −6 0 6

 ; C1 = 103


0 −6 6 0
6 0 0 6
0 −6 −6 0
6 0 0 −6

 ;

D1 = I4.

The cascade realization G1 can be decomposed as the cascade G1 = G12 / G11, with

G11 =

(
I2, 103

[
3ı −3
3ı −3

] [
q1

p1

]
,−5.4× 106(q1p1 + p1q1)

)
,
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and

G12 =

(
I2, 103

[
3 3ı
−3 −3ı

] [
q2

p2

]
,−5.4× 106(q2p2 + p2q2)

)
.

Each of G11 and G12 can be realized as a DPA with two transmissive mirrors rather than
one; see [3] for details of the realization of G11 and G12. Note that the pump amplitude for
each NOPA in the cascade realization is 4× 5.4× 106 = 2.16× 107. Therefore, remarkably,
the cascade realization G12 /G12 requires less total pump power to realize than the original
NOPA, i.e., 2 × (2.16 × 107)2 in the cascade compared to (4.32 × 107)2 in the original,
i.e., half the pump power. So, with the cascade realization one obtains a more power
efficient realization of the same transfer function which yields the same amount of two-
mode squeezing in the two output beams.

Finally, note that if Ṽ had been chosen differently from the one above, for instance, as

Ṽ =


0.7071 0 0.7071 0

0 0.7071 0 −0.7071
−0.7071 0 0.7071 0

0 0.7071 0 0.7071

 ,
corresponding to

J̃A = Ṽ −1AṼ = 107diag(−5.76,−5.76,−1.44,−1.44),

then it may be readily inspected that the full rankness conditions of Lemma 8 are not
satisfied, hence this choice of Ṽ cannot lead to a pure cascade realization of the NOPA.

5 Conclusion

In this paper we have generalized the ideas and results in [17, 15], that focus on the special
class of completely passive linear quantum stochastic systems, to show that the transfer
function of generic linear quantum stochastic systems, which includes a large generic class of
active systems, can be realized by pure cascading. The proof is constructive as the cascade
realization, when it exists, can be explicitly computed. This is of practical importance
as it will allow a simpler realization of a large class of linear quantum stochastic systems
as, say, coherent feedback controllers or quantum optical filters. Numerical examples have
been provided to illustrate the results of the paper. In one example, it is shown that the
transfer function of a nondegenerate optical parametric amplifier has a realization as the
cascade of two degenerate optical parametric amplifiers having an additional outcoupling
mirror, which operates for only half of the pump power required by the nondegenerate
optical parametric amplifier.

Acknowledgement. Contributions: HN developed the symplectic QR and Schur decom-
position algorithms, associated results and Example 14, SG and IP proved the genericity of
admissible matrices in discussion with HN. The authors thank the reviewers and Associate
Editor for their constructive and helpful comments on this paper.
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Proof of Theorem 13

Let M2n(R) denote the set of 2n× 2n real matrices, M̄2n(R) denote the subset of full rank
(i.e. invertible) matrices, and M̄2n,s(R) the subset of those matrices in M̄2n(R) that are
simple (recall that simple matrices are square matrices with simple eigenvalues, i.e., all
eigenvalues are distinct). M̄2n(R) and M̄2n,s(R) are generic (open and dense) in M2n(R),
and in fact they are (non-connected) manifolds of dimension 2n× 2n = 4n2. Similarly, let
A2n(R) denote the set of real skew-symmetric 2n×2nmatrices, and Ā2n(R) the subset of full
rank such matrices. Ā2n(R) is generic (open and dense) in A2n(R), and in fact it is a (non-
connected) manifold of dimension (2n× 2n− 2n)/2 = 2n2− n. For a matrix X in A2n(R),
we define the principal submatrices X(i) as the upper left corner 2i× 2i submatrices of X
(i.e., the sub-matrices formed by rows and columns 1 to 2i) from X(1) up to X(n) = X.
Let Ã2n(R) be the subset of Ā2n(R) containing matrices X with the property that all
X(i), i = 1, . . . , n− 1, are full rank. Finally, let M̃2n,s(R) denote the subset of matrices in
M̄2n,s(R) which are admissible. This means that they have the following properties: (i)
there is a real invertible 2n× 2n matrix V that puts them in a real Jordan canonical form
JA (A = V JAV

−1), which is block-diagonal, with the 1 × 1 real blocks before the 2 × 2
complex blocks (recall that A is simple, so it has no real Jordan blocks of dimension higher
than two), and (ii) V >JnV ∈ Ã2n(R). The proof uses arguments inspired by the proof of
genericity of simple matrices in the set of all real square matrices of a given dimension, from
[28, Section 5.6]. Also, it relies heavily on methods and results from differential topology.
A standard reference for these methods and results, along with terminology and notation,
is the book [29]. Finally, a crucial argument uses Theorem 5.16 of [30, Chapter II] and
its proof. The proof uses Lemma 15 and Proposition 17, and Lemma 16 is needed in the
proof of Proposition 17. All these results will be proved later on in this appendix.

Lemma 15 Let T ∈ RN×N be a simple matrix with nonzero eigenvalues. There is a neigh-
borhood of T in RN×N such that, every matrix in this neighborhood has eigenvectors and
eigenspaces (the latter represented by projection operators onto the respective eigenspaces)
which are continuous functions of their entries, and moreover, their eigenvalues are of the
same type as those of T .

Lemma 16 Let F : M̄2n(R) → Ā2n(R) be defined by F (V ) = V >JnV . Then, F is onto,
and a submersion (see [29, Section 1.4] for terminology).

Proposition 17 The set V2n of matrices V ∈ M̄2n(R) such that V >JnV ∈ Ã2n(R), is
open and dense.

We have to show that M̃2n,s(R) is an open and dense (generic) subset of M2n(R). First,
we show that M̃2n,s(R) is an open set. Consider a matrix A ∈ M̃2n,s(R) ⊂ M̄2n,s(R),
and let A = V JAV

−1. The block-diagonal real Jordan canonical form JA of A, has the
1× 1 real blocks before the 2× 2 complex blocks, and no real Jordan blocks of dimension
higher than two. Also, V ∈ V2n. Applying Lemma 15 to A, we conclude that there is a
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neighborhood N ′(A) such that for every Ã ∈ N ′(A), Ã = Ṽ JÃṼ
−1, with Ṽ close to V , and

JÃ close to JA, and with the same block structure. Let E = Ṽ −V . Then, Ṽ >JnṼ = (V +

E)>Jn(V +E) = V >JnV +E>JnV +V >JnE+E>JnE. Hence, det
(
Ṽ >JnṼ

)(i)
= P (i)(E), a

multivariate polynomial of degree 4i in the entries Ejk of E = Ṽ −V , whose constant term

is det
(
V >JnV

)(i)
. However, for matrices V ∈ V2n, det

(
V >JnV

)(i) 6= 0, i = 1, . . . , n − 1.

By continuity, there exists ε0 > 0, such that det
(
Ṽ >JnṼ

)(i) 6= 0, for any E ∈ M2n(R)
with maxjk |Ejk| < ε0. By shrinking the neighborhood of A if necessary, we can satisfy
maxjk |Ṽjk − Vjk| < ε0, and hence Ṽ ∈ V2n and Ã ∈ M̃2n(R). This proves that M̃2n,s(R) is
an open subset of M̄2n,s(R).

To prove that M̃2n,s(R) is a dense subset of M2n(R), we must prove that every A ∈
M2n(R) has a Ã ∈ M̃2n,s(R) arbitrarily close to it. Since M̄2n,s(R) is a dense subset of
M2n(R), there exists a Ā ∈ M̄2n,s(R) arbitrarily close to A. Let Ā = V̄ JĀV̄

−1. Then, JĀ
is a block-diagonal real Jordan canonical form with no Jordan blocks of dimension higher
than two, and can be structured so that it has the 1×1 real blocks before the 2×2 complex
blocks. Also, V̄ ∈ M̄2n(R). If V̄ is not in V2n, we know from Proposition 17 that we can
find a Ṽ arbitrarily close to V̄ that is in V2n. Then, Ã = Ṽ JĀṼ

−1 ∈ M̃2n,s(R), and is
arbitrarily close to A. Hence, M̃2n,s(R) is a dense subset of M̄2n,s(R), and the theorem is
proven. �

Proof of Lemma 15: Theorem 5.16 of [30, Chapter II] states that, for a simple ma-
trix in CN×N , there is a neighborhood of matrices in CN×N that contains it, such that the
eigenvalues of every matrix in this neighborhood are holomorphic functions of the matrix
entries. Furthermore, in the proof of this theorem, it is shown that the eigenspaces of
matrices in this neighborhood are also holomorphic functions of their entries. Specializing
these results to real matrices, we have that for a simple matrix in RN×N , there is a neighbor-
hood of matrices in RN×N that contains it, such that the eigenvalues and eigenspaces (with
eigenspaces being represented by projection operators onto the respective eigenspaces) of
every matrix in this neighborhood are analytic functions of its entries. Let T ∈ RN×N

be a simple matrix with nonzero eigenvalues, and T = UJU−1 a decomposition of it in
a Jordan form (J is diagonal with distinct entries). Let also T̃ ∈ RN×N be a matrix in
the neighborhood N(T ) of T with the aforementioned properties. Taking the entries of
T̃ arbitrarily close to those of T , the eigenspaces of the two matrices can be made arbi-
trarily close, as well. Hence, we may change the chosen eigenvectors of T (columns of U)
to form eigenvectors of T̃ in a continuous way. Then, we may write T̃ = Ũ J̃Ũ−1, where
Ũ is arbitrarily close to U . Similarly, the diagonal matrix J̃ of eigenvalues of T̃ will be
arbitrarily close to J . Due to the property of real matrices to have complex eigenvalues in
conjugate pairs, and the fact that that T has no zero eigenvalues, there is a neighborhood
N ′(T ) ⊆ N(T ) such that every T̃ ∈ N ′(T ) has eigenvalues not only close, but of the same
type as T . The reason is that, for a pair of complex conjugate eigenvalues to be created
(destroyed), two distinct real nonzero eigenvalues must coalesce to a double eigenvalue (be
produced by the separation of two equal real eigenvalues). This, however, can be prevented
by shrinking the neighborhood of T as much as necessary. �
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Proof of Lemma 16: First, we show that F is properly defined. Obviously, F (V ) is
antisymmetric. For a V ∈ M̄2n(R), detV 6= 0, so detF (V ) = (detV )2 det Jn = (detV )2 6=
0, and hence F (V ) ∈ Ā2n(R). Next, we show that F is onto. Let X ∈ Ā2n(R). From [24,
Subsection 2.5.14], we know that there exists a 2n×2n orthogonal matrix Q, and a 2n×2n
block-diagonal matrix Λ of the form

Λ = diag

([
0 λ1

−λ1 0

]
, . . . ,

[
0 λn

−λn 0

])
,

with λi ≥ 0, i = 1, . . . , n, such that X = Q>ΛQ. Furthermore, the eigenvalues of X are
±ıλ1, . . ., ±ıλn, and hence λi > 0, for a full rank X. It is easy to see that Λ = D>JnD,
with D = diag(

√
λ1,
√
λ1, . . . ,

√
λn,
√
λn). Then, X = V >JnV , for V = DQ, and V is full

rank because Q and D are. Hence, F is onto.

Continuity and differentiability follow from the fact that the entries of F (V ) are second
order multivariate polynomials in the entries of V . Finally, we show that F is a submersion,
i.e. that its derivative DFV : TV M̄2n(R) → TF (V )Ā2n(R) is a surjective linear map from
the tangent space TV M̄2n(R) of M̄2n(R) at V , to the tangent space TF (V )Ā2n(R) of Ā2n(R)
at F (V ), see [29, Chapter 1] for terminology and notation. Starting from F (V ) = V >JnV
and “taking differentials” of both sides, we have that dF = (dV )>JnV + V >JndV . Hence,
for a tangent vector v ∈ TV M̄2n(R) (infinitesimal variation dV at V ), we have DFV (v) =
v>JnV + V >Jnv. The tangent space of M̄2n(R) at any point V is isomorphic to M2n(R),
and the tangent space of Ā2n(R) at any point X is isomorphic to A2n(R). Hence, v ∈
M2n(R), and DFV (v) ∈ A2n(R). Let w be a tangent vector in TF (V )Ā2n(R). To show
that DFV : TV M̄2n(R) → TF (V )Ā2n(R) is surjective, we must show that for any such w,
there exists at least one v ∈ TV M̄2n(R), such that DFV (v) = w. This is equivalent to the
equation v>JnV + V >Jnv = w having a solution v ∈ M2n(R) given any w ∈ A2n(R). Let
v = Jn(V >)−1v̄ in that equation (recall that for any V ∈ M̄2n(R), V is invertible). Then,
it reduces to −v̄+ v̄> = w, where the antisymmetry of Jn, and the identity J2

n = −I2n were
used. The general solution of this equation is v̄ = u− 1

2
w, where u is any 2n×2n symmetric

matrix. It is to be expected that the solution for v (equivalently for v̄) is not unique, since
TV M̄2n(R) is a higher dimensional space from TF (V )Ā2n(R). As a matter of fact, the general
solution for v, v = Jn(V >)−1v̄ = Jn(V >)−1

(
u− 1

2
w
)

is parameterized by a 2n×2n symmetric
matrix u. The set of such matrices is a linear space of dimension 1

2
2n(2n+1) = 2n2+n, and

its dimension is exactly the difference of dimensions of TV M̄2n(R) (4n2) and TF (V )Ā2n(R)
(2n2 − n). Hence, we proved that DFV is surjective for every V ∈ M̄2n(R), i.e. F is a
(local) submersion. �

Proof of Proposition 17: First, we show that the set of V ∈ M̄2n(R) such that
F (V ) = V >JnV ∈ Ã2n(R), is open in M̄2n(R). Consider such a V . Then, detF (V )(i) 6=
0, i = 1, . . . , n. Let E ∈ M2n(R), and consider detF (V + E)(i). Since F (V + E) =
(V +E)>Jn(V +E) = V >JnV +E>JnV +V >JnE+E>JnE, we can see that detF (V +E)(i) =
P (i)(E), a multivariate polynomial of degree 4i in the entries Ejk of E, whose constant term
is detF (V )(i). By continuity, there exists ε0 > 0, such that detF (V + E)(i) 6= 0, for any
E ∈ M2n(R) with |Ejk| < ε0, j, k = 1, 2, . . . , 2n. This proves that, the set of V ∈ M̄2n(R)
such that F (V ) = V >JnV ∈ Ã2n(R), is open in M̄2n(R).
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Now we shall prove that it is dense as well. It suffices to show that, for V ∈ M̄2n(R) such
that F (V ) = V >JnV ∈

(
Ā2n(R)\Ã2n(R)

)
, there exists a Ṽ ∈ M̄2n(R) arbitrarily close to

V such that F (Ṽ ) = Ṽ >JnṼ ∈ Ã2n(R). Since X = F (V ) = V >JnV ∈
(
Ā2n(R)\Ã2n(R)

)
,

there exists at least one 1 ≤ r ≤ n− 1, such that detX(r) = detF (V )(r) = 0. Since X(r) is
a 2r × 2r real skew-symmetric matrix, there exists an 2r × 2r orthogonal matrix Q such
that X(r) = Q>SQ, with

S = diag

([
0 ν1

−ν1 0

]
, . . . ,

[
0 νr

−νr 0

])
,

and νi ≥ 0, i = 1, . . . , r. Then, detX(r) = (detQ)2 detS = (ν1 . . . νr)
2. Since detX(r) = 0,

this implies that at least one of the ν’s must be equal to zero. Without loss of generality, we
may assume that the first q are equal to zero, 1 ≤ q ≤ r. Let S̃ be given by the expression
above, where the zero ν’s have been replaced by nonzero ε1, . . . , εq:

S̃ = diag

([
0 ε1

−ε1 0

]
, . . . ,

[
0 εq
−εq 0

]
,

[
0 νq+1

−νq+1 0

]
,

. . . ,

[
0 νr
−νr 0

])
.

Let also, (
S W
−W> U

)
=

(
Q 0
0 I2(n−r)

)
X

(
Q> 0
0 I2(n−r)

)
,

and

X̃ =

(
Q> 0
0 I2(n−r)

)(
S̃ W
−W> U

)(
Q 0
0 I2(n−r)

)
.

It is obvious that X̃ can be arbitrarily close to X, for small enough ε1, . . . , εq, and
that det X̃(r) = det S̃ = (ε1 . . . εq νq+1 . . . νr)

2 6= 0. We can also see that det X̃(i) =
P̃ (i)(ε1, . . . , εq), for i = 1, . . . , n, where P̃ (i)(ε1, . . . , εq) is a multivariate polynomial of de-
gree at most 2i in the variables ε1, . . . , εq, with constant term equal to detX(i). Hence,
for small enough ε1, . . . , εq, all the determinants detX(i) 6= 0 remain so for X̃. So, by
slightly changing X to X̃, we increased the number of principal submatrices X̃(i) of full
rank by (at least) one, compared with those of X. If, for some principal submatrices of
X̃(i) (such that detX(i) = 0), we still have det X̃(i) = 0, we may apply the same procedure
sequentially, and end up with a matrix X̃ ∈ Ã2n(R) arbitrarily close to X. From Propo-
sition 16, F is globally onto. This guarantees that there exists Ṽ ∈ M̄2n(R) such that
Ṽ >JnṼ = F (Ṽ ) = X̃. Moreover, F is a submersion at V . The Local Submersion Theorem
[29, Section 1.4], guarantees that a neighborhood of X = F (V ) (in which we may assume
that X̃ belongs to, because we may construct X̃ to be arbitrarily close to to X) is the image
under F of a neighborhood of V . Then, there exists Ṽ ∈ M̄2n(R) in said neighborhood of
V , such that Ṽ >JnṼ = F (Ṽ ) = X̃ ∈ Ã2n(R). Hence, the set of V ∈ M̄2n(R) such that
F (V ) = V >JnV ∈ Ã2n(R), is also dense in M̄2n(R), and the proposition is proven. �
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