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Abstract

In this paper, we consider the state controllability of networked systems, where the network topology is directed and weighted
and the nodes are higher-dimensional linear time-invariant (LTI) dynamical systems. We investigate how the network topology,
the node-system dynamics, the external control inputs, and the inner interactions affect the controllability of a networked
system, and show that for a general networked multi-input/multi-output (MIMO) system: 1) the controllability of the overall
network is an integrated result of the aforementioned relevant factors, which cannot be decoupled into the controllability of
individual node-systems and the properties solely determined by the network topology, quite different from the familiar notion
of consensus or formation controllability; 2) if the network topology is uncontrollable by external inputs, then the networked
system with identical nodes will be uncontrollable, even if it is structurally controllable; 3) with a controllable network topology,
controllability and observability of the nodes together are necessary for the controllability of the networked systems under
some mild conditions, but nevertheless they are not sufficient. For a networked system with single-input/single-output (SISO)
LTI nodes, we present precise necessary and sufficient conditions for the controllability of a general network topology.

Key words: Networked system; state controllability; structural controllability; directed network; MIMO LTI system.

1 Introduction

Complex networks of dynamical systems are ubiquitous
in nature and science, as well as in engineering and
technology.When control to a network is taken into con-
sideration, the controllability of the network is essential,
which is a classical concept [Kalman, 1962] applicable
to multi-variable control systems [Gilbert, 1963,Shields
& Pearson, 1976], composite systems [Davison & Wang,
1975] and decentralized control systems [Kobayashi,
Hanafusa, & Yoshikawa, 1978,Tarokh, 1992], etc.

The subject of system controllability has been exten-
sively studied over the last half a century. To date, vari-
ous criteria have been well developed, including different
kinds of matrix rank conditions and substantial graphic
properties [Gilbert, 1963,Hautus, 1969,Lin, 1974,Davi-
son & Wang, 1975, Glover & Silverman, 1976, Shields
& Pearson, 1976, Kobayashi, Hanafusa, & Yoshikawa,
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1978,Tarokh, 1992, Jarczyk, Svaricek, & Alt, 2011,Liu,
Slotine, & Barabási, 2011,Ruths, & Ruths, 2014]. One
closely-related subject is the controllability of multi-
agent systems, including the controllability of consensus
systems [Liu et al., 2008, Rahmani et al., 2009, Lou &
Hong, 2012,Ji, Lin, & Yu, 2012,Zhang, Camlibel, & Cao,
2012,Nabi-Abdolyousefi & Mesbahi, 2013,Ni, Wang, &
Xiong, 2013,Xiang et al., 2013], formation [Cai & Zhong,
2010], and pinning strategies [Chen, 2014].

Noticeably, many existing results on controllability are
derived under the assumption that the dimension of
the state of each node is one [Liu, Slotine, & Barabási,
2011, Lou & Hong, 2012, Zhang, Camlibel, & Cao,
2012,Nabi-Abdolyousefi & Mesbahi, 2013,Wang et al.,
2014]. However, most real-world networks of dynami-
cal systems have higher-dimensional node states, and
many multi-input/multi-output (MIMO) nodes are in-
terconnected via multi-dimensional channels. In this
paper we study the controllability of networked higher-
dimensional systems with higher-dimensional nodes
mainly for the MIMO setting.

In the literature, few results are developed for the con-
trollability of networked higher-dimensional systems.
Controllability and observability of specified cartesian
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product networks are investigated in [Chapman, Nabi-
Abdolyousefi, & Mesbahi, 2014], while a general net-
worked system is considered in [Zhou, 2015] with every
subsystem subject to external control input. It should be
noted that some recent studies have addressed consen-
sus controllability of networks with MIMO nodes [Cai
& Zhong, 2010,Ni, Wang, & Xiong, 2013,Xiang et al.,
2013], where the controllability usually can be decoupled
into two independent parts: one is about the control-
lability of each individual node and the other is solely
determined by the network topology. A general setting
of complex dynamical networks cannot be decoupled,
however, as will be seen from the discussions below.

This paper addresses networked MIMO LTI dynami-
cal node-systems in a directed and weighted topology,
where there is no requirement for every subsystem to
have an external control input. Some controllability
conditions on the network topology, node dynamics,
external control inputs and inner interactions are devel-
oped, so that effective criteria can be obtained for deter-
mining the large-scale networked system controllability.
On one hand, some necessary and sufficient conditions
on the controllability of a networked system with SISO
higher-dimensional nodes are derived. On the other
hand, some interesting results on the controllability of
a networked system with MIMO nodes are obtained:
1) Under some mild conditions, controllability and ob-
servability of the nodes together are necessary for the
controllability of the networked systems but, neverthe-
less, they are not sufficient; 2) the controllability of the
network topology is necessary for the controllability of
the generated networked system; 3) the controllability
of individual node is necessary for the controllability of
chain-networks, but not necessary for cycle-networks;
4) interactions among the states of different nodes play
an important role in determining the controllability of
a general networked system. Surprisingly, for the same
network topology with the same node systems, the in-
teractions among the states of nodes not only can lead
controllable nodes to form an uncontrollable networked
system, but also can assemble uncontrollable nodes into
a controllable networked system.

The rest of the paper is organized as follows: In Section 2,
some preliminaries and the general model of networked
MIMO LTI systems are presented. Controllability con-
ditions on various networked systems are investigated in
Section 3. Finally, conclusions are drawn with some dis-
cussions in Section 4.

2 Preliminaries and the networked system

2.1 Preliminaries

Throughout, let R and C denote the real and complex
numbers respectively, Rn (Cn) the vector space of real
(complex) n-vectors, Rn×m (Cn×m) the set of n × m

real (complex) matrices, IN the N ×N identity matrix,
and diag(a1, · · · , aN) the N × N diagonal matrix with
diagonal elements a1, · · · , aN . Denote by σ(A) the set of
all the eigenvalues of matrix A and by ⊗ the Kronecker
product.

In a directed graph, an edge (i, j) is directed from i to
j, where i is the tail and j is the head of the edge. As re-
viewed for a directed graph in [Liu, Slotine, & Barabási,
2011], a matching is a set of edges that do not share any
common tail or head, and a node being the head of an
edge in the matching is called a matched node; other-
wise, it is an unmatched node. A maximum matching
is a matching that contains the largest possible number
of edges in the graph. A perfect matching is a matching
which matches all nodes in the graph. A graph formed
by a sequence of edges {(vi, vi+1) | i = 1, · · · , ℓ−1} with
no repeated node is called a path, denoted as v1, · · · , vℓ,
where v1 is the beginning and vℓ is the end of the path,
and vℓ is said to be reachable from v1. If v1, · · · , vℓ is a
path, then the graph formed by adding the edge (vℓ, v1)
is a cycle. A graph without cycles is called a tree. The
node in a tree which can reach every other node is called
the root of the tree. A leaf in a rooted tree is a node of
degree 1 that is not the root.

Specifically, the notion of system controllability includes
state controllability and structural controllability. For
an n-dimensional system ẋ = Ax + Bu, it is said to
be state controllable, if it can be driven from any initial
state to the origin in finite time by a piecewise continu-
ous control input. (A,B) is state controllable if and only
if the controllability matrix (B,AB,A2B, · · · , An−1B)
has a full row rank [Kalman, 1962,Chui & Chen, 1998].
A parameterized system (A,B) (i.e., all of their nonzero
elements are parameters) is said to be structurally con-
trollable, if it is possible to choose a set of nonzero pa-
rameter values such that the resulting system (A,B) is
state controllable [Lin, 1974]. In this paper, for brevity,
controllability always means state controllability unless
otherwise specified, e.g., structural controllability.

2.2 The networked system model

Consider a general directed and weighted network con-
sisting ofMIMOLTI node-systems in the following form:





ẋi = Axi +
N∑
j=1

βijHyj,

yi = Cxi, i = 1, 2, · · · , N,

(1)

in which xi ∈ Rn is the state vector and yi ∈ Rm the
output vector of node i, H ∈ R

n×m denotes the inner
coupling matrix, and βij ∈ R represent the communica-
tion channels between different nodes. As usual, assume
that βii = 0 and βij 6= 0 if there is an edge from node j
to node i, otherwise βij = 0, for all i, j = 1, 2, · · · , N .
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When subjected to control inputs, the above networked
system becomes

ẋi = Axi +

N∑

j=1

βijHCxj + δiBui, i = 1, 2, · · · , N, (2)

where ui ∈ Rp is the external control input to node i,
B ∈ Rn×p, with δi = 1 if node i is under control, but
otherwise δi = 0, for all i = 1, 2, · · · , N . To avoid trivial
situations, always assume that N ≥ 2.

Here and throughout, for statement simplicity a network
consisting of more than one dynamical node, with or
without control inputs (e.g., (1) and (2)), will be called
a networked system.

Denote

L = [βij ] ∈ R
N×N and ∆ = diag(δ1, · · · , δN ), (3)

which represent the network topology and the external
input channels of the networked system (2), respectively.
Let X = [xT

1 , x
T
2 , · · · , x

T
N ]T be the whole state of the

networked system, and U = [uT
1 , u

T
2 , · · · , u

T
N ]T the total

external control input. Then, this networked system can
be rewritten in a compact form as

Ẋ = ΦX +ΨU , (4)

with

Φ = IN ⊗A+ L⊗HC, Ψ = ∆⊗B. (5)

In this paper, the focus is on how the network topology
(described by the matrix L), the node-system (A,B,C),
the external control input (determined by the matrix
∆), and the inner interactions specified by H affect the
controllability of the whole networked system.

2.3 Some counter-intuitive examples

In [Liu, Slotine, & Barabási, 2011], it is shown that a
network is structurally controllable if and only if there is
an external input on each unmatched node and there are
directed paths from controlled nodes with input signals
to all matched nodes. For the networked system (4)-(5)
formed by nodes with higher-dimensional state vectors,
however, its controllability can be much more compli-
cated, as demonstrated by the following example.

Example 2.1 Consider a network of three identical
nodes, with β21 = β31 = 1, and δ1 = 1, δ2 = δ3 = 0. It
is not structurally controllable with one external input
if each node has a one-dimensional state, since nodes 2

and 3 can not be matched simultaneously. If each node
has a higher-dimensional state with

A =

[
a11 a12

a21 a22

]
, B =

[
1 0

0 1

]
, H =

[
h1 0

0 h2

]
, C =

[
1 0

0 1

]
,

where aij 6= 0 and hi 6= 0, i, j = 1, 2, then obviously
(A,B) is controllable and (A,C) is observable. However,
based on the results from Subsection 3.2 below, one knows
that the networked system is uncontrollable for any ma-
trix A, although it is structurally controllable due to the
existence of self-matched cycle in every MIMO node.

The following three examples show that, even the net-
work is a cycle having a perfect matching, the controlla-
bility of (A,B) is neither necessary nor sufficient for the
controllability of the whole networked system.

Example 2.2 Consider a network of two mutually con-
nected identical nodes, with β12 = β21 = 1. Suppose that
both nodes have external control inputs, i.e. δ1 = δ2 = 1,
and

A =

[
1 0

1 1

]
, B =

[
1

0

]
, H =

[
0

1

]
, C = [1 0] .

It is easy to check that (A,B) is controllable. However,
the networked system (2) is uncontrollable, although each
node has an independent external input.

Example 2.3 Consider a simple network of two mu-
tually connected identical nodes, with β12 = β21 = 1,
δ1 = 1, δ2 = 0, and

A =

[
1 0

1 1

]
, B =

[
1

0

]
, H =

[
0

1

]
, C = [0 1] .

Then, (A,B) is controllable, (A,C) is observable. How-
ever, the networked system (2) is uncontrollable.

Example 2.4 Consider a network of two mutually con-
nected identical nodes, with β12 = β21 = 1, δ1 = 1,
δ2 = 0, and

A =

[
1 0

1 1

]
, B =

[
0

1

]
, H =

[
1

0

]
, C = [0 1] .

Then, (A,B) is uncontrollable. However, the networked
system (2) is controllable, although there is only one node
under external control.

Comparing the above three examples, their network
topologies are the same and their node-system matrices
A are identical. However, these networked systems have
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very different controllabilities. The interactions among
the states of nodes not only can lead controllable nodes
to form an uncontrollable network, but also can assem-
ble uncontrollable nodes into a controllable network.

3 Main Results

The controllability of the networked system (4)-(5) is
considered in this section, where results on general net-
work topologies are obtained, with specific and precise
conditions obtained for some typical networks including
tress and cycles.

First, recall the Popov-Belevitch-Hautus (PBH) rank
condition [Hautus, 1969]: the networked system (4)-(5)
is controllable if and only if

rank(sIN ·n − Φ,Ψ) = N · n (6)

is satisfied for any complex number s.

3.1 A general network topology

Based on the PBH rank condition (6), one can prove the
following results.

Theorem 1 If there exists one node without incoming
edges, then to reach controllability of the networked sys-
tem (4)-(5), it is necessary that (A,B) is controllable and
moreover an external control input is applied onto this
node which has no incoming edges.

Proof:Assume that node i does not have any incom-
ing edge. Then, the ith block row of Φ in (5) becomes
[0, · · · , 0, A, 0, · · · , 0]. If there is no external control in-
put onto node i, that is, δi = 0, then for any s0 ∈ σ(A),
the row rank of [s0I−Φ,Ψ] will be reduced at least by 1.
If (A,B) is uncontrollable, then there exists an s0 ∈ σ(A)
such that rank(s0I − A,B) ≤ n − 1, which will also re-
sult in the reduction of the rank of [s0I − Φ,Ψ].

Theorem 2 If there exists one node without external
control inputs, then for networked system (4)-(5) to be
controllable, it is necessary that (A,HC) is controllable.

Proof: Assume that node i does not have any ex-
ternal input, that is, δi = 0. If (A,HC) is uncontrol-
lable, then there exist an s0 ∈ σ(A) and a nonzero vec-
tor ξ ∈ C1×n, such that ξ(s0I − A) = 0 and ξHC = 0.
Let α = [0, · · · , 0, ξ, 0 · · · , 0] with ξ located at the ith
block. Then, it is easy to verify that α(s0I −Φ) = 0 and
αΨ = 0.

Theorem 3 If the number of nodes with external con-
trol inputs is m, and N > m · rank(B), then for the net-
worked system (4)-(5) to be controllable, it is necessary
that (A,C) is observable.

Proof: Suppose that (A,C) is unobservable. Then,
there exist an s0 ∈ σ(A) and a nonzero vector ξ ∈ Cn

such that

Cξ = 0 and (s0I −A)ξ = 0 . (7)

Consider the matrix Φs0 , s0I − Φ, and partition
it into N column blocks, [Φ1

s0
,Φ2

s0
, · · · ,ΦN

s0
], with

Φi
s0

= [β1i(HC)T , · · · , βi−1,i(HC)T , (sI − A)T , βi+1,i

(HC)T , · · · , βNi(HC)T ]T , which corresponds to node i.

Based on formula (7), one has

Φi
s0
ξ = 0, i = 1, · · · , N, (8)

which implies that rank(Φi
s0
) ≤ n − 1. Therefore,

rank(Φs0) ≤ N · (n − 1). In view of rank(Ψ) ≤
m · rank(B) < N , one has rank(s0I − Φ,Ψ) < N · n,
showing that the networked system (4)-(5) is uncontrol-
lable.

Theorem 4 If (L,∆) is uncontrollable, then the net-
worked system (4)-(5) is uncontrollable.

Proof: If (L,∆) is uncontrollable, then there exist
an s0 ∈ σ(L) and a nonzero vector ξ ∈ C1×N such that

ξ(s0I − L) = 0 , ξ∆ = 0 . (9)

Therefore,

(ξ ⊗ I)Ẋ = (ξ ⊗ I)
(
(I ⊗A+ L⊗HC)X + (∆⊗B)U

)

= (ξ ⊗A+ s0ξ ⊗HC)X

=
(
ξ ⊗ (A+ s0HC)

)
X ,

that is,

(
N∑

i=1

ξixi

)′

= (A+ s0HC)

N∑

i=1

ξixi . (10)

This implies that the variable
N∑
i=1

ξixi is unaffected by

the external control input U . For the zero initial state

xi(t0) = 0, i = 1, · · · , N , one has
N∑
i=1

ξixi(t0) = 0.

Moreover,
N∑
i=1

ξixi(t) = 0 for all t > t0, because of the

uniqueness of the solution to the linear equation (10).

Consequently, for any state X̃ , [x̃T
1 , · · · , x̃

T
N ]T with

N∑
i=1

ξix̃i 6= 0, there is no external control input U that

can drive the networked system (4)-(5) to traverse from

state 0 to X̃ . Thus, it is uncontrollable.

4



If the network is not structurally controllable by exter-
nal inputs, then (L,∆) is uncontrollable, and thus the
networked system will be uncontrollable. Since a net-
work having more leaf nodes than nodes with external
control input is not structurally controllable [Ruths, &
Ruths, 2014], the following result comes accordingly.

Corollary 3.1 If there are more leaf nodes than the
nodes with external control inputs, then the networked
system (4)-(5) is uncontrollable.

If (L,∆) is controllable, Examples 3.2, 3.4, and 3.6 dis-
cussed bellow for specific network topologies show that,
for the networked system (4)-(5) to be controllable, it
is not sufficient to ensure (A,B) and (A,HC) be both
controllable and (A,C) be observable. Moreover, Exam-
ple 3.4 shows that even every node has an external input
and (A,B) is controllable, the networked system may
still be uncontrollable.

Next, some necessary and sufficient conditions for the
controllability of networked systems with SISO nodes
are developed. First, a lemma is given.

Lemma 3.1 Assume that C ∈ R1×n is nonzero. Then,
(A,HC) is controllable if and only if (A,H) is control-
lable.

Proof: Since C ∈ R1×n, one has H ∈ Rn×1

and rank(HC) = 1. Therefore, rank(sI − A,HC) =
rank(sI −A,H), leading to the conclusion.

Before moving on to the theorem, some new notations
are needed. Denote the set of nodes with external control
inputs by

U = {i | δi 6= 0, i = 1, · · · , N} . (11)

For any s ∈ σ(A), define a matrix set

Γ(s) =

{
[αT

1 , · · · , α
T
N ]
∣∣∣
αi ∈ Γ1(s) for i /∈ U

αi ∈ Γ2(s) for i ∈ U

}
, (12)

where

Γ1(s) = {ξ ∈ C
1×n | ξ(sI −A) = 0},

Γ2(s) = {ξ ∈ C
1×n | ξB = 0, ξ ∈ Γ1(s)}.

Theorem 5 Suppose that |U| < N , B ∈ Rn×1, and C ∈
R1×n. Then, the networked system (4)-(5) is controllable
if and only if the following hold:

(i) (A,H) is controllable;
(ii) (A,C) is observable;
(iii) for any s ∈ σ(A) and κ ∈ Γ(s), κL 6= 0 if κ 6= 0;
(iv) for any s /∈ σ(A), rank(I − Lγ,∆η) = N , with

γ = C(sI −A)−1H and η = C(sI −A)−1B.

Proof: Necessity. From Theorem 2 and Lemma 3.1,
it follows that condition (i) is necessary. From Theorem
3, it follows that condition (ii) is also necessary.

Now, suppose that condition (iii) is not necessary. Then,
there exist an s0 ∈ σ(A) and a nonzero matrix κ ∈ Γ(s0)
such that

κL = 0 .

For matrix M ∈ Cp×q, denote by vec(M) ∈ Cpq×1

the vectorization of matrix M formed by stacking the
columns of M into a single column vector. Furthermore,
let α = vec(κ)T . Since κ ∈ Γ(s0), it is easy to verify that
αΨ = 0 and

α(s0I − Φ) = α(IN ⊗ (s0I − A)− L⊗HC)

=−α(L⊗HC)

=−vec(CTHTκL)T = 0 ,

which contradicts the network controllability.

Finally, suppose that condition (iv) is not necessary.
Then, there exists an s0 /∈ σ(A) satisfying

rank(I − Lγ0,∆η0) < N ,

with γ0 = C(s0I − A)−1H and η0 = C(s0I − A)−1B.
Thus, there exists a nonzero vector ζ = [ζ1, · · · , ζN ] ∈
C1×N , such that

ζ(I − Lγ0) = 0 and ζ∆η0 = 0 .

Let α = [α1, · · · , αN ] with αi = ζiC(soI −A)−1. Then,
since ζ 6= 0, one has α 6= 0. Moreover,

αΨ= (ζ ⊗ C(s0I −A)−1) · (∆⊗B)

= (ζ∆) ⊗ (C(soI −A)−1B)

= ζ∆η0 = 0 ,

and

α(s0I − Φ)

= (ζ ⊗ C(soI −A)−1) · (IN ⊗ (s0I − A)− L⊗HC)

= ζ ⊗ C − ζL⊗ (C(soI −A)−1H)C

= (ζ − ζLγ0)⊗ C = 0 .

This is also in conflict with the controllability of the
networked system.

Sufficiency. For s ∈ C, suppose that there exists a vector
α = [α1, · · · , αN ], with αi ∈ C1×n, such that α(sI −
Φ) = 0 and αΨ = 0. That is,

αi(sI −A)−
∑

j 6=i

βjiαjHC = 0, i = 1 · · · , N, (13)
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and

αiB = 0 , i ∈ U . (14)

If s ∈ σ(A), then rank(sI−A) < n. From (13), it follows
that, for all i = 1, · · · , N ,

∑

j 6=i

βjiαjH = 0 . (15)

If not, then rank

([
C

sI −A

])
= rank(sI − A) < n,

which contradicts with the observability of (A,C). More-
over, based on (13), one has

αi(sI −A) = 0 , i = 1 · · · , N . (16)

Therefore, for all i = 1 · · · , N , one has

∑

j 6=i

βjiαj(sI −A) = 0 . (17)

Combining it with (15) and the controllability of (A,H),
one obtains

∑

j 6=i

βjiαj = 0 , i = 1 · · · , N. (18)

Next, let κ = [αT
1 , · · · , α

T
N ]. In view of (14), (16) and

(18), it is easy to verify that κL = 0 with αi(sI−A) = 0
for i = 1, · · · , N , and αiB = 0 for i ∈ U. Therefore, by
condition (iii), one has α = 0.

If s /∈ σ(A), then sI−A is invertible. From (13), one has

αi =
∑

j 6=i

βjiαjHC(sI −A)−1, i = 1, · · · , N. (19)

Let ζi =
∑
j 6=i

βjiαjH . Then, for i = 1, · · · , N ,

αi = ζiC(sI −A)−1 , (20)

and

ζi =
∑
j 6=i

βjiαjH =
∑
j 6=i

βjiζjC(sI −A)−1H

=
∑
j 6=i

βjiζjγ .
(21)

Let ζ = [ζ1, · · · , ζN ], and rewrite (21) as

ζ(I − Lγ) = 0 . (22)

Then, from (14) and (20), it follows that ζiC(sI −
A)−1B = 0 for i ∈ U, which is equivalent to

ζ∆η = 0 . (23)

Consequently, by combining it with (22) and condition
(iv), one has ζ = 0, which together with (20) imply that
α = 0.

It follows from the above analysis that, for any s ∈ C,
the row vectors of matrix [sI − Φ,Ψ] are linearly inde-
pendent, hence rank(sI −Φ,Ψ) = N · n. Thus, the net-
worked system (4)-(5) is controllable.

Next, some typical network structures, i.e., trees and
circles are discussed in details.

3.2 Trees

In view of Corollary 3.1, the following result comes easily.

Corollary 3.2 Consider a tree-network, in which every
node is reachable from the root, and only the root has an
external control input. If there is more than one leaf node
in the tree, then the networked system is uncontrollable.
Consequently, a star networked system with N > 2 is
uncontrollable.

A tree with only one leaf is a chain, which could be de-
scribed by a path 1 → 2 → · · · → n. Based on Theorem
1, node 1 should be under external control.

This chain-networked system (4)-(5) has

Φ =




A 0 · · · 0

β21HC A
...

. . .
...

0 · · · βN,N−1HC A



, Ψ =




B

0
...

0



, (24)

where βi,i−1 6= 0 for i = 2, · · · , N , and βij = 0 for
j 6= i− 1, i = 1, · · · , N .

FromTheorems 1 and 2, one obtains the following result.

Corollary 3.3 A necessary condition for the control-
lability of the chain networked system (4)-(24) is that
(A,B) and (A,HC) are both controllable.

Remark 3.1 The observability of (A,C) is not neces-
sary for the controllability of the chain networked system
(4)-(24), as shown by the following example.
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Example 3.1 Consider a chain-network of two identi-
cal nodes, with β21 = 1 and

A =

[
1 0

1 1

]
, B =

[
1 0

0 1

]
, H =

[
1

0

]
, C = [1 0] .

It is easy to check that (A,B) and (A,HC) are both con-
trollable and (A,C) is unobservable. The coupled net-
worked system (24) has rank(Ψ,ΦΨ,Φ2Ψ,Φ3Ψ) = 4, in-
dicating that it is controllable. Therefore, the observabil-
ity of (A,C) is indeed not necessary.

Remark 3.2 Suppose that (A,B) and (A,HC) are both
controllable and (A,C) is observable. However, these are
not sufficient to guarantee the controllability of the chain
networked system (4)-(24), as shown by the following
example.

Example 3.2 Consider a chain-network of two nodes,
with β21 = 1 and

A =

[
1 2

5 4

]
, B =

[
2

−1

]
, H =

[
−1 1

−4 1

]
, C =

[
1 0

0 1

]
.

It is easy to check that (A,B) and (A,HC) are both con-
trollable and (A,C) is observable. However, the coupled
networked system (24) has rank(6 · I − Φ,Ψ) = 3 < 4,
indicating that it is uncontrollable.

If the input and output channels are all one-dimensional,
namely, if all the nodes are SISO, then Theorem 5 can
be restated as follows.

Corollary 3.4 Assume that B ∈ Rn×1 and C ∈ R1×n.
The chain networked system (4)-(24) is controllable if
and only if (A,B) and (A,H) are both controllable and
(A,C) is observable.

Proof: Construct κ = [αT
1 , · · · , α

T
N ] according to

condition (iii) of Theorem 5, such that α1 ∈ Γ2 satisfies
α1(sI − A) = 0 and α1B = 0, and moreover αi ∈ Γ1

satisfies αi(sI − A) = 0 for i = 2, · · · , N . In view of
κL = [β21α

T
2 , β32α

T
3 , · · · , βN,N−1α

T
N , 0], the condition

κL 6= 0 for κ 6= 0 is equivalent to α1 = 0, which im-
plies the equivalence with the controllability of (A,B).
Therefore, condition (iii) in Theorem 5 is equivalent to
the controllability of (A,B).

Condition (iv) in Theorem 5 is automatically satisfied
for the chain-network, since

L =




0 0 · · · 0

β21 0
...

. . .
...

0 · · · βN,N−1 0



, (25)

and correspondingly for s /∈ σ(A), rank(I − Lγ) = N
with γ = C(sI −A)−1H .

3.3 Cycles

Now, assume that the network topology is a cycle. Since
the cycle has a perfect matching, one external input is
enough for the structural controllability, which can be
added to any node in the cycle. Without loss of general-
ity, assume that node 1 is under external control.

The cycle networked system has

Φ =




A 0 · · · β1NHC

β21HC A
...

. . .
...

0 · · · βN,N−1HC A



,

Ψ =
[
BT 0 · · · 0

]T
,

(26)

where β1N 6= 0, βi,i−1 6= 0 for i = 2, · · · , N , and βij = 0
otherwise.

From Theorem 2, the controllability of (A,HC) is nec-
essary for the controllability of the networked system
(4)-(26).

Remark 3.3 The controllability of (A,B) and the ob-
servability of (A,C) are not necessary for the controlla-
bility of the cycle networked system (4)-(26), as can be
seen from the following example.

Example 3.3 Consider a cycle-network of three identi-
cal nodes, with β13 = β21 = β32 = 1 and

A =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1



, B =




1 0 0

0 1 0

0 0 1

0 0 0



, H =




0 1

0 0

0 0

1 0



,

C =

[
0 1 0 0

0 0 1 0

]
.
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It is easy to check that (A,B) is uncontrollable and (A,C)
is unobservable. However, the coupled system (26) has
rank(Ψ,ΦΨ,Φ2Ψ, · · · ,Φ11Ψ) = 12, indicating that the
networked system is controllable.

Remark 3.4 Conditions that (A,B) and (A,HC) are
both controllable and (A,C) is observable together are
not sufficient to guarantee the controllability of the cycle
networked system (4)-(26), as shown by the following
example.

Example 3.4 Consider a cycle-network of three identi-
cal nodes, with β13 = β21 = β32 = 1 and

A =

[
1 1

0 1

]
, B =

[
1

1

]
, H =

[
0 0

0 1

]
, C =

[
1 0

0 1

]
.

It is easy to check that (A,B) and (A,HC) are both con-
trollable and (A,C) is observable. However, although ev-
ery node is driven by a control input, the whole networked
system with

Φ =




A 0 HC

HC A 0

0 HC A


 , Ψ =




B 0 0

0 B 0

0 0 B


 (27)

has rank(Ψ,ΦΨ,Φ2Ψ, · · · ,Φ5Ψ) = 5 < 6, implying that
the networked system is uncontrollable.

Remark 3.5 Even every node is SISO, the controllabil-
ity of (A,B) is not necessary for the controllability of the
networked system (4)-(26), as shown by the following ex-
ample.

Example 3.5 Consider a cycle-network of three identi-
cal nodes, with β13 = β21 = β32 = 1 and

A =

[
0 1

0 0

]
, B =

[
1

0

]
, H =

[
0

1

]
, C = [1 0] .

It is easy to check that (A,H) is controllable, (A,C) is
observable, and (A,B) is uncontrollable. However, the
coupled system (26) has rank(Ψ,ΦΨ,Φ2Ψ, · · · ,Φ5Ψ) =
6, indicating that the networked system is controllable.

Remark 3.6 Assume that every node is SISO. The con-
ditions that (A,B) and (A,H) are controllable and (A,C)
is observable together are not sufficient to guarantee the
controllability of the networked system (4)-(26), as shown
by the following example.

Example 3.6 Consider a cycle-network of three identi-

cal nodes, with β13 = −1, β21 = β32 = 1, and

A =




1 8 7

4 5 6

1 2 3


 , B =




1

0

1


 , H =




1

1

1


 , C = [4 3 6] .

It is easy to check that (A,B) and (A,H) are both con-
trollable and (A,C) is observable. However, the coupled
system (26) has rank(Ψ,ΦΨ,Φ2Ψ, · · · ,Φ8Ψ) = 8 < 9,
showing that the networked system is uncontrollable.

For circle network with SISO nodes, a new criterion for
the controllability is given as follows.

Theorem 6 Assume that B ∈ Rn×1 and C ∈ R1×n.
The cycle networked system (4)-(26) is controllable if and
only if (A,H) is controllable, (A,C) is observable, and
moreover

rank
(
I − bHC(sI −A)−1, B

)
= n , ∀s /∈ σ(A) , (28)

where b = β1N

N−1∏
i=1

βi+1,iγ
N−1, with γ = C(sI−A)−1H.

Proof: For the cycle-network,

L =




0 0 · · · β1,N

β21 0
...

. . .
...

0 · · · βN,N−1 0



, (29)

which is invertible, therefore condition (iii) in Theorem
5 is automatically satisfied.

In the following, it will be proved that condition (iv) in
Theorem 5 is equivalent to the above rank condition.
Note that the two conditions are both given in terms
of matrix ranks, yet one is about the network topology
which is N -dimensional while the other is about a sub-
system which is only n-dimensional.

If γ = 0, then the two matrices both have full ranks. In
the following, assume that γ 6= 0.

If rank(I − Lγ,∆η) < N , then there exists a nonzero
vector k = [k1, · · · , kN ] ∈ C1×N such that

k = kLγ and k∆η = 0 ,

that is,

ki = ki+1βi+1,iγ, i = 1, · · · , N − 1,

kN = k1β1,Nγ,

k1η = 0 .

(30)
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From the recursion formula (30), it follows that
k1 6= 0 since k 6= 0. Moreover, k1 = k2β21γ =

· · · = kN
N−1∏
i=1

βi+1,iγ
N−1 = k1bγ, which implies that

bγ = 1. Choose ξ = k1C(sI − A)−1. Then, ξ 6= 0,
ξB = k1C(sI −A)−1B = k1η = 0, and ξ(I − bHC(sI −
A)−1) = k1C(sI −A)−1 − k1bγC(sI −A)−1 = 0, which
implies that rank(I − bHC(sI −A)−1, B) < n.

If rank(I − bHC(sI −A)−1, B) < n, then there exists a
nonzero vector ξ ∈ C1×n, satisfying

ξ = bξHC(sI −A)−1, ξB = 0 .

Since ξ 6= 0, one has b 6= 0 and ξH 6= 0. Moreover,
ξH = bξHγ, which implies that bγ = 1. Now, define

k1 = bξH,

kN = β1,Nk1γ,

ki = ki+1βi+1,iγ , i = 2, · · · , N − 1.

(31)

One can easily verify that

k1η = bξHC(sI −A)−1B = ξB = 0 ,

k2β21γ = kN

N−1∏

i=1

βi+1,iγ
N−1 = k1bγ = k1 .

Therefore,k = kLγ andk∆η = 0with k = [k1, · · · , kN ],
which implies that rank(I − Lγ,∆η) < N .

Looking back to Example 3.5, it can be seen that σ(A) =
{0, 0}. And, for any s 6= 0, one has b = s−4 and

rank
(
I − bHC(sI −A)−1, B

)

= rank

([
1 0

−s−5 1− s−6

]
,

[
1

0

])
= 2.

Moreover, (A,H) is controllable and (A,C) is observ-
able. Therefore, from Theorem 6, it follows that the net-
worked system in Example 3.5 is controllable.

Looking back to Example 3.6, it can be seen that for
s = 2 /∈ σ(A), one hasC(2I−A)−1H = −1, b = −1, and

rank(I − bHC(2I −A)−1, B)

= rank







1 −1 0

0 0 0

0 −1 1


 ,




1

0

1





 = 2 < 3.

Therefore, fromTheorem 6, it follows that the networked
system in Example 3.6 is uncontrollable.

4 Conclusions

We have investigated a network consisting of MIMO LTI
node-systems (A,B,C), in a topology described by ma-
trix L with inner interactions described by matrix H ,
with or without control inputs determined by matrix ∆.
We have studied the integrated effects of the network
topology L, node-system (A,B,C) and inner interac-
tions H on the controllability of the networked system.

We have shown that a networked system in the MIMO
setting is uncontrollable if the network topology L is
uncontrollable by external inputs through∆, e.g., a non-
trivial star-network with a single input to its root. For a
networked system to be controllable, the controllability
of (A,B) and (A,HC), as well as the observability of
(A,C), are necessary under some conditions; but they
are not sufficient in general, even for the cycle-network
which has a perfect matching.

For SISO nodes with higher-dimensional state vectors,
we have presented necessary and sufficient conditions for
the controllability of some networked systems, includ-
ing trees, cycles as well as a general network topology.
These results not only provide precise and efficient crite-
ria for determining the controllability of large-scale net-
worked systems, by means of verifying some properties
of a few matrices of lower dimensions, but also provide
some general guidelines on how to assemble uncontrol-
lable nodes to form a controllable networked system,
which is deemed useful in engineering practice.

If each node-system (described by higher-dimensional
matrices (A,B,H,C)) is viewed as a sub-network, then
the networked system studied in this paper can also be
considered as an interdependent network (or intercon-
nected network, multi-layer network, network of net-
works, multiplex network, etc. [Boccaletti et al., 2014]);
therefore, the results obtained in this paper should shed
lights onto studying the controllability of such complex
networks.
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