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Abstract

In this paper, a new demand-side management problem of networked smart grid is formulated and solved based on evolu-

tionary game theory. The objective is to minimize the overall cost of the smart grid, where individual communities can switch

between grid power and local power according to strategies of their neighbors. The distinctive feature of the proposed formu-

lation is that, a small portion of the communities are cooperative, while others pursue their own benefits. This formulation can

be categorized as control networked evolutionary game, which can be solved systematically by using semi-tensor product. A

new binary optimal control algorithm is applied to optimize transient performances of the networked evolutionary game.

Keywords: Demand-side management, game theory, semi-tensor product, optimal control, binary decision systems.

1. Introduction

Demand-side management of energy systems becomes in-

creasingly popular, because of its great potential in improving

energy efficiency in industries. Smart grid is a typical plat-

form where demand-side management strategies can be ap-

plied. A core issue in smart grid is that, dynamic user be-

haviors should be addressed in designing demand-side man-

agement strategies. Widely-used techniques for demand-side

management of smart grid include game theoretic approach

(Mohsenian-Rad et al., 2014), multi-objective optimization

(Nwulu and Xia, 2015; Malatji et al., 2013), distributed energy

consumption control (Ma et al., 2014), and model predictive

control (Zhang and Xia, 2011), etc.

Smart grids can be analyzed in the perspective of network

systems, since there usually exist multiple interactive users

consuming powers from grids. In networked smart grid sys-

tems, stability and optimization are two main issues. Stabil-

ity of the networked smart grid system indicates that inter-

active users reach an equilibrium. Some methodologies, i.e.

game theory (Mohsenian-Rad et al., 2014), can be applied to

prove the existence of equilibria in networked smart grid sys-

tem. Optimization of the network smart grid system implies

that, in the transient process to reach the equilibrium, some

indexes can be optimized. The grid provider is capable of in-

fluencing decisions of users in the network by presenting dy-

namic pricing strategies (Liang et al., 2013; Jiang et al., 2014).

It is possible that the smart grid provider and some of the

users cooperate to affect decisions of other users, such that

the common benefit can be improved.

Game theory has been widely applied to energy systems

(Du et al., 2015; Hong et al., 2014). In previous researches

on game theoretic policy for energy systems, fundamental

games are usually played between two individual users (Xiao
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et al., 2015), or between the power company and users (Fad-

lullah et al., 2014). Pay-off functions and strategies are usu-

ally defined such that existence of Nash Equilibrium (NE)

can be proved. Optimization (or model predictive control

(Stephens et al., 2015)) can be employed to search for NE.

Sometimes the fundamental game is played repeatedly, and

strategies of users are updated in real-time. In this situa-

tion, it is named evolutionary game (Cheng et al., 2015). Net-

worked evolutionary game indicates that, the repeated game

is played among networked users, and updating laws relate to

topological structure of the network (Cheng, 2009). In some

networked evolutionary games, actions of some users can be

actively assigned, such that other users are induced to im-

prove common benefit. The users with actively assigned ac-

tions can be defined as controllers; and the networked evolu-

tionary game with controllers can be defined as control net-

worked evolutionary game (Zhao et al., 2011).

During recent years, a new semi-tensor product (Cheng et

al., 2007) is developed to solve the problem of networked evo-

lutionary game. The semi-tensor product is an extension of

ordinary matrix product. By using semi-tensor product, dy-

namics of evolutionary games can be formulated into an al-

gebraic form (Cheng, 2009), and the existence of NE can be

proved systematically (Cheng et al., 2015). For the control

networked evolutionary game, control strategies can be de-

signed to reach the NE by using semi-tensor product. More-

over, classical control methods can be introduced and ex-

tended in the framework of semi-tensor product to attain the

NE of the networked evolutionary game.

In this paper, demand-side management of a class of smart

grid is studied within the framework of control networked

evolutionary game. The smart grid is built among interac-

tive communities using either grid power or local generated

power. It is assumed that a small portion of the communi-

ties are subsidized, thus cooperative with the grid provider.

However, other communities are un-subsidized and pursu-

ing individual benefits. We aim to design actions for the

cooperative communities (controllers), such that the com-
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mon benefits can be improved even if other communities

are noncooperative. The main contributions of this paper in-

clude that: 1) the demand-side management of a smart grid is

modeled into a control networked evolutionary game; 2) the

networked evolutionary game is composed by fundamental

games played simultaneously among several players instead

of 2-player games; 3) semi-tensor product is applied to solve

the demand-side management problem; and 4) a new binary

optimal control is introduced to optimize the transient per-

formance of the control networked evolutionary game.

The layout of this paper is arranged as following. In Section

2, mathematical preliminaries are introduced. In Section 3,

the demand-side management of a simple smart grid is for-

mulated within the framework of control networked evolu-

tionary game. In Section 4, the proposed control evolutionary

game is analyzed and solved by using semi-tensor product,

and a new optimal control approach is proposed to improve

transient performance. In Section 5, a simulation example

is presented to illustrate the proposed demand-side manage-

ment approach. This paper is concluded in the final section.

2. Mathematical preliminaries

2.1. Control networked evolutionary game

Information interchange within networked system can

be described by a directed graph G = {V ,E }, where V =

{π1,π2, . . . ,πn} is a set of nodes, and E ⊆ V ×V is a set of edges

that depict information flow between nodes. An edge (πi ,π j )

in G denotes that the information of node πi is available to

π j , and πi is defined as a neighbor of π j . The index set of

all neighbors of node π j is denoted by N j = {i : (πi ,π j ) ∈ E }.

In an undirected graph, (πi ,π j ) ∈ E ⇔ (π j ,πi ) ∈ E . The ad-

jacent matrix A , [ai j ] ∈ Rn×n , where ai j = 1 if (πj ,πi ) ∈ E ,

and ai j = 0 otherwise. It is assumed that ai i = 0. More details

on network system can be found in Ren (2010).

Definition 1. A normal finite game H can be formulated by

1) the set of players: V = {π1,π2, . . . ,πn}; 2) the strategy set for

each player: Xi = {xi1 , xi2 , . . . , xik }, where i = 1, . . . ,n; and 3)

the cost function: ci (xi , x−i ), where xi ∈Xi denotes the strat-

egy selected by player i , and x−i denotes strategies of other

players excluding player i .

Definition 2. Nash equilibrium (NE), denoted by

(x∗

1 , x∗

2 , . . . , x∗

n ), is a local optimal response for a normal

finite game, where no individual would gain by unilaterally

changing its own strategy: ci (x∗

i
, x∗

−i
) ≤ ci (xi , x∗

−i
).

If a game can be played repeatedly with an updating law:

Π : xi (t +1) = f (xi (t), x−i (t),ci (t)), where t ≥ 0 denotes the

discrete sampling time, then it is named evolutionary game.

In an evolutionary game played by multiple players, a typ-

ical updating law can be given by Unconditional Imitation

with fixed priority (Cheng et al., 2015):

xi (t +1) = x j∗(t), j∗ = arg min
j∈Ni

c j (x j (t), x− j (t)). (1)

If j∗ is non-unique, then select the minimal j∗ as priority.

Definition 3. The networked evolutionary game is com-

posed by 1) a networked graph G ; 2) a normal finite game H

that can be played repeatedly; and 3) an updating lawΠ.

Remark 1. The above definition of the networked evolution-

ary game is slightly different from that of Cheng et al. (2015),

where fundamental networked game (FNG) is required. In

this paper, the normal finite game is used in Definition 3.

Definition 4. The control networked evolutionary game is

composed by 1) a normal finite game H that is played repeat-

edly; 2) a networked graph Gc = (X ∪U ,E ), where {X ,U } is

a partition of V (X ∪U = V and X ∩U = Ø), and strategies

of U can be actively assigned; and 3) an updating law Π.

2.2. Semi-tensor product

Definition 5. The semi-tensor product of two matrix A ∈

R
m×n and B ∈R

p×q can be defined by

A⋉B , (A⊗ Io/n )(B ⊗ Io/p ) ∈R(mo/n)×(qo/p) , (2)

where o = lcm(n, p) denotes the least common multiple of n

and p; and ⊗ denotes the Kronecker product.

Definition 6. The fundamental vector δ
i
n ∈ Dn is defined as

the i th column of the identity matrix In×n . It can be further

defined that δn[i , j , . . . ,k] , [δi
n ,δ

j
n , . . . ,δk

n ].

Theorem 1. (Cheng et al., 2015) With equivalence i ∼ δ
i
n , i =

1,2, . . . ,n, a logic function f : D
k
n → Dn can be rewritten by

f (x1, x2, . . . , xk ) = M f ⋉
k
i=1

xi , where M f is the structure ma-

trix of logic function f .

Theorem 2. (Cheng et al., 2015) For a logic dynamic system

xi (t +1) = fi (xi (t), x−i (t))= M f i ⋉
n
i=1

xi , i = 1, . . . ,n, it can be

rewritten in the form of

x(t +1) = M f x(t), (3)

where x(t) , ⋉
n
i=1

xi , and M f , M f 1 ∗ M f 2 ∗ ·· · ∗ M f n .

Here, ∗ denotes the Khatri-Rao product: M ∗ N , [col1(M)⋉

col1(N ), · · · ,cols(M)⋉cols (N )], where M ∈R
p×s and N ∈R

q×s ;

and coli (M) denotes the i th column of matrix M.

Theorem 3. (Cheng et al., 2015) For a logic dynamic system

given by (3), δi
n is its fixed point, if and only if the diagonal

element mi i of M f equals 1.

3. Problem formulation

In this paper, the evolutionary game is played among some

remote rural communities, where a networked power grid is

newly constructed. Before the construction of the power grid,

the communities were using power generated by local facili-

ties, e.g., diesel generators. To cover the cost, the price of grid

power is high when there are less users. As the number of

users grows, the price of grid power would decrease. How-

ever, if the number of users grows excessively large, the price

would increase again due to supply shortage.

The main problem of this price policy is that, no individ-

ual community would like to become the first user of the

grid, since its price would be high at the initial stage. An-

other problem is that, even if an optimal common benefit is

reached, it might be unstable.
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Figure 1: Topological structure of the graph given in Cases 1 and 2

Table 1: Prices of diesel power and grid power

user number 0 1 2 3 4

grid power price 8 7 7 6.5 7.5

diesel power price 7.2 7.2 7.2 7.2 7.2

Note: values in this table are not absolute prices; they are assigned

to reflect differences of prices in various scenarios.

Case 1. Consider a grid connecting 4 communities. Each

community has the choices of either local diesel power or grid

power. The diesel power price pd is constant, and the grid

power price pg (t) varies with the numbers of users, as is dis-

played in Table 1. Denote the strategy space of community i

by Xi = {1,2}, where 1 indicates using grid power, and 2 indi-

cates using of local diesel power. The topological structure of

the network is given by Fig. 1, where edges are all undirected.

It follows that the adjacent matrix is given by

A =









0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0









.

Communities have no direct knowledge of real-time prices,

but they fully know costs of their neighbors. Define pi as the

price paid by community i . The cost function is defined by

ci (xi (t), x−i (t))= pi (t)+α

(

pi (t)−min
j∈Ni

p j (t)

)

, (4)

where α > 0 is a constant weight coefficient. The cost func-

tion (4) indicates that each community, while pursuing the

lowest price, feels uncomfortable if paying higher price than

its neighbors. The updating law Π is given by (1), imply-

ing one community would change its strategy to that of the

neighbor with the lowest cost. The common benefit at time

t is defined as C (t) =
∑4

i=1 pi (t). It should be noted that, in

this case, the optimal common benefit happens when three

communities use grid power, and one uses diesel power.

Consider the scenario that the states are already in one of

the cases of the optimal common benefit:

{x1(t), x2(t), x3(t), x4(t)} = {2,1,1,1}. (5)

It follows that, according to the updating law (1), {x1(t +

1), x2(t +1), x3(t +1), x4(t +1)} = {1,1,1,1}, deviating from the

optimal common benefit.

In this case, {2,2,2,2} indicates a fixed point; however, it

is not an NE. If any community changes from 2 to 1, its cost

would become smaller; however, no community would like

to change unilaterally, because others might also make the

same choice, and the states come to {1,1,1,1}.

Remark 2. The weight coefficient α > 0 is necessary in (4),

because the direct subtraction would be inappropriate if the

two terms are with different physical implications. Another

physical meaning ofα is users’ priorities between actual costs

and psychological comforts. Without loss of generality, α= 1

is assumed in this paper. Uncertain/time-varying α will be

investigated in the future research.

Case 2. Suppose that all conditions in Case 1 are satisfied, ex-

cept that the real-time price can be fully accessible, and the

updating law is given by

xi (t +1) = g (xi (t), x−i (t))=

{

2, if pg (t) > pd (t);

1, if pg (t) ≤ pd (t),
(6)

indicating that the less expensive choice is preferred.

Consider one of the cases of optimal common benefit given

by (5). It follows from (6) that {x1(t+1), x2(t+1), x3(t+1), x4(t+

1)} = {1,1,1,1}, and {x1(t + 2), x2(t + 2), x3(t + 2), x4(t + 2)} =

{2,2,2,2}, and the situation will remain in the future.

Suppose that the game is a controlled network evolution-

ary game defined by Definition 3. The objective of this paper

is to design strategies for U , such that optimal common ben-

efit is achieved and maintained.

Case 3. Consider node 4 as the controller; and suppose the

updating law is given by (1). The objective is to design u =

x4 ∈X4, such that the total cost
∑4

i=1
pi (xi , x−i ) is minimized.

Case 4. Consider node 4 as the controller; and suppose the

updating law is given by (6). The objective is to design u =

x4 ∈X4, such that the total cost
∑4

i=1 pi (xi , x−i ) is minimized.

4. Control design

4.1. Algorithm for calculating the algebraic form

Suppose that there are n communities, and their com-

munication topology can be given by adjacent matrix A =

{aik }n×n . The algorithm for calculating the algebraic form (3)

can be designed as following.

i. Set j = 1.

ii. Set initial value x0 = δ
j

2n . Based on the initial value, cal-

culate the grid power price pg and the price pi .

iii. Use aik and pi to calculate the cost function ci .

iv. Based on aik , ck and the updating law, the updated strat-

egy can be obtained: xi ( j ) = f (x0, aik ,ck ).

v. Set j = j +1, and go to ii until j = 2n .

vi. Calculate M f = M f 1 ∗ M f 2 ∗ ·· · ∗ M f n , where M f i =

[xi (1), xi (2), · · · , xi (2n)]. The algebraic form can be ob-

tained by x(k +1) = M f x(k).

4.2. Analysis on Case 3

Based on the updating law given by (1), the true value dia-

gram can be calculated with the algorithm in Section 4.1, and

listed by Tables 2 and 3. Identify 1 with δ
1
2 , [1,0]T , and 2

with δ
2
2 , [0,1]T . The cost function can be calculated by (4).

According to semi-tensor product theory, the controlled net-

work evolutionary game can be described by

xi (t +1) = f (xi (t), x−i (t),ci (t)) = M f i x(t), (7)
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Table 2: True value diagram of Case 3 when u = 1

profile 111 112 121 122 211 212 221 222

c1 7.5 6.5 6.5 7 7.9 7.2 7.4 7.2

c2 7.5 6.5 7.9 7.4 6.5 7 7.4 7.4

c3 7.5 7.9 6.5 7.4 6.5 7.4 7 7.4

c4 7.5 6.5 6.5 7 6.5 7 7 7

x1(t +1) 1 1 1 1 1 1 1 2

x2(t +1) 1 1 1 1 1 1 1 1

x3(t +1) 1 1 1 1 1 1 1 1

Table 3: True value diagram of Case 3 when u = 2

profile 111 112 121 122 211 212 221 222

c1 6.5 7 7 7 7.4 7.4 7.4 7.2

c2 6.5 7 7.4 7.4 7 7 7.4 7.2

c3 6.5 7.4 7 7.4 7 7.4 7 7.2

c4 7.9 7.4 7.4 7.4 7.4 7.4 7.4 7.2

x1(t +1) 1 1 1 1 1 1 1 2

x2(t +1) 1 1 1 1 1 1 2 2

x3(t +1) 1 1 1 1 1 2 1 2

where x(t) =⋉
3
i=1

xi (t), and

M f 1 =

{

δ2[1,1,1,1,1,1,1,2], for u = 1,

δ2[1,1,1,1,1,1,1,2], for u = 2,

M f 2 =

{

δ2[1,1,1,1,1,1,1,1], for u = 1,

δ2[1,1,1,1,1,1,2,2], for u = 2,

M f 3 =

{

δ2[1,1,1,1,1,1,1,1], for u = 1,

δ2[1,1,1,1,1,2,1,2], for u = 2.

It follows from Theorem 2 that the overall controlled logic

dynamics can be expressed by x(t +1) = M f (u(t))x(t), where















M f (δ1
2) = M f 1(δ1

2)∗M f 2(δ1
2)∗M f 3(δ1

2)

= δ8[1,1,1,1,1,1,1,5],

M f (δ2
2) = M f 1(δ2

2)∗M f 2(δ2
2)∗M f 3(δ2

2)

= δ8[1,1,1,1,1,2,3,8].

(8)

By using Theorem 3, it can be claimed that

1) When the controller is u = δ
1
2 (grid power), there is only

one fixed point δ1
8. Here, (x1, x2, x3,u) ∼ (1,1,1,1) is an

NE, but not the optimal NE.

2) When the controller is u = δ
2
2 (diesel power), there

are two fixed points, namely (1,1,1) and (2,2,2).

Here, (x1, x2, x3,u) ∼ (1,1,1,2) is an optimal NE, while

(x1, x2, x3,u) ∼ (2,2,2,2) is not an NE.

The following strategies of u(t) is capable of reaching and

maintaining the optimal NE point:

1) For x(0) ∈ {δ1
8,δ2

8,δ3
8,δ4

8,δ5
8},select either u(0) = δ

1
2 or

u(0) = δ
2
2, and it follows from Table 2 and 3 and (8) that

x(1) = δ
1
8. Then, set u(t) = δ

2
2 for t ≥ 1, such that the op-

timal NE (1,1,1,2) will be maintained.

2) For x(0) ∈ {δ6
8,δ7

8} ∼ {212,221}, select u(0) = δ
1
2. and it

follows that x(1) = δ
1
8. Then, set u(t) = δ

2
2 for t ≥ 1, such

that the optimal NE (1,1,1,2) will be maintained.

3) For x(0) ∈ {δ8
8} ∼ {222}, it can be calculated that M f (δ1

2)⋉

M f (δ1
2) = δ8[1,1,1,1,1,1,1,1]. Consequently, select

u(0) = δ
1
2 and u(1) = δ

1
2; it follows that x(2) = δ

1
8. Then,

set u(t) = δ
2
2 for t ≥ 2, such that the optimal NE (1,1,1,2)

will be maintained.

Table 4: True value diagram of Case 4 when u = 1

profile 111 112 121 122 211 212 221 222

pd 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2

pg 7.5 6.5 6.5 7 6.5 7 7 7

x1(t +1) 2 1 1 1 1 1 1 1

x2(t +1) 2 1 1 1 1 1 1 1

x3(t +1) 2 1 1 1 1 1 1 1

Table 5: True value diagram of Case 4 when u = 2

profile 111 112 121 122 211 212 221 222

pd 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2

pg 6.5 7 7 7 7 7 7 8

x1(t +1) 1 1 1 1 1 1 1 2

x2(t +1) 1 1 1 1 1 1 1 2

x3(t +1) 1 1 1 1 1 1 1 2

4.3. Analysis on Case 4

Based on the updating law given by (6), the true value di-

agram can be calculated through the algorithm proposed in

Section 4.1, and listed by Table 4 and 5. It follows that, accord-

ing to semi-tensor product, the controlled network evolu-

tionary game can be described by xi (t +1) = g (xi (t), x−i (t))=

Mg i x(t), where x(t) =⋉
3
i=1

xi (t), and

Mg 1 =

{

δ2[2,1,1,1,1,1,1,1], for u = 1,

δ2[1,1,1,1,1,1,1,2], for u = 2,

Mg 2 =

{

δ2[2,1,1,1,1,1,1,1], for u = 1,

δ2[1,1,1,1,1,1,1,2], for u = 2,

Mg 3 =

{

δ2[2,1,1,1,1,1,1,1], for u = 1,

δ2[1,1,1,1,1,1,1,2], for u = 2.

It follows from Theorem 2 that the overall dynamics can be

expressed by x(t +1) = Mg (u(t))x(t), where the structure ma-

trix can be calculated by















Mg (δ1
2) = Mg 1(δ1

2)∗Mg 2(δ1
2)∗Mg 3(δ1

2)

= δ8[8,1,1,1,1,1,1, 1],

Mg (δ2
2) = Mg 1(δ2

2)∗Mg 2(δ2
2)∗Mg 3(δ2

2)

= δ8[1,1,1,1,1,1,1, 8].

It can be seen from structure matrix that, when u = δ
1
2, there

is no fixed point; when u = δ
2
2, there are two fixed points x =

δ
1
8 and x = δ

8
8. The fixed point x = δ

1
8 is an optimal NE, while

x = δ
8
8 is not an optimal NE.

The optimal NE can be reached and maintained by using

the following strategies.

1) For x(0) = δ
1
8, select u(t) = δ

2
8, such that the optimal NE

can be maintained.

2) For x(0) ∈
{

δ
2
8,δ3

8,δ4
8,δ5

8,δ6
8,δ7

8,
}

, select either u(0) = δ
1
2 or

u(0) = δ
2
2, such that x(1) = δ

1
8. Then, select u(t) = δ

2
8 for

t ≥ 2, such that the optimal NE can be maintained.

3) For x(0) = δ
8
8, select u(t) = δ

1
8, such that x(1) = δ

1
8. Then,

select u(t) = δ
2
8 for t ≥ 2, such that the optimal NE can

be maintained.

Remark 3. Case 3 and 4 are controllable cases. It should be

noted that controllability of networked evolutionary games

depends on topological structure, strategy set, updating law,

and selection of control variables. Detailed information of

controllability can be found in Cheng et al. (2015).
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4.4. Optimal control design

As can be seen from Section 4.2, to achieve the optimal NE,

there may exist different strategies. For example, if the ini-

tial states are given by x(0) = δ
4
8 ∼ (1,2,2), either u(0) = δ

1
2 or

u(0) = δ
2
2 enables the state to become x(1) = δ

1
8. If u(0) = δ

1
2,

the overall cost at t = 0 is C (x(0),u(0)) = 28.4; if u(0) = δ
2
2, the

overall cost at t = 0 is C (x(0),u(0)) = 28.6. Comparatively, for

initial states x(0) = δ
4
8, u(0) = δ

1
2 is superior. In this section,

we propose an optimal control to minimize the overall cost

in transient process.

Suppose that the system is required to reach the opti-

mal NE within T steps, and define U = [u(0),u(1), . . . ,u(T )]T .

The cost function for optimization can be designed by J ,
∑T

t=0 C (x(t),u(t)). Dynamics of the system can be given in

algebraic form (3). The terminal states should reach the op-

timal NE: x(T ) = xNE∗ . Suppose that the initial states is de-

noted by x(0) = x0. The optimization can be formulated by

U∗
= argmin

U
J , (9)

s.t. x(t +1) =M f (u(t))x(t), (10)

u(t) =⋉ui (t), ui (t) ∈ [δ1
2,δ2

2], (11)

x(0) =x0, (12)

x(T ) =xNE∗ , (13)

where the optimal solution U∗
= [u∗(0),u∗(1), . . . ,u∗(T )]T

can be regarded as the optimal control sequence.

As can be seen from the control constraint (11), the prob-

lem (9) is a binary optimization. The system constraint (10)

seems linear; however, since the product is semi-tensor prod-

uct, it is actually nonlinear. The nonlinear binary optimiza-

tion can be solved by using a newly developed algorithm

named Bounded Neighborhood Field Optimization (BNFO)

(Wu and Chow, 2013a,b). The algorithm of BNFO is incapable

of addressing the terminal constraint (13). Consequently, the

optimization can be reformulated by (9)–(12), where no ter-

minal constraint is included.

Remark 4. BNFO can be categorized as switching optimiza-

tion. Typical results in switching optimization can be seen in

Li et al. (2006) and literatures therein. General optimal con-

trol of boolean networks can be found in Zhao et al. (2011).

Theorem 4. Suppose that the following conditions are satis-

fied: (1) the optimal NE xNE∗ is a global optimal point; and

(2) with certain control series [û(0), û(1), · · · , û(N )], the opti-

mal NE xNE∗ can be reached within finite time t = N < T from

initial states x(0) = x0. Then, with large enough control hori-

zon T , the closed-loop system with the optimal control (9)–(12)

is capable of reaching the optimal NE.

Proof. The result can be proved by contradiction. Assume

that, with control horizon T and the optimal control (9)–(12),

the closed-loop system fails to reach xNE∗ . It follows that

J∗ =

T
∑

t=0

C (x∗(t),u∗(t))

=

N−1
∑

t=0

C (x∗(t),u∗(t))+
T
∑

t=N

C (x∗(t),u∗(t)),

Figure 2: Topological structure of the circular network with 10 nodes

where x∗t is the corresponding optimal states under optimal

control u∗(t); and x∗(t), xNE∗ .

In another aspect, according to conditions of the

theorem, there exists at least another control series

[û(0), û(1), · · · , û(N ), · · · , û(T )], such that xNE∗ is reached

and maintained. It follows that

Ĵ =
T
∑

t=0

C (x̂(t), û(t))=
N−1
∑

t=0

C (x̂(t), û(t))+
T
∑

t=N

C (x̂(t), û(t))

=

N−1
∑

t=0

C (x̂(t), û(t))+ (T −N )C (xNE∗ ,uNE∗ ),

where uNE∗ is the corresponding control to maintain the op-

timal NE. It then follows that

Ĵ − J∗ =

(

N−1
∑

t=0

C (x̂(t), û(t))−
N−1
∑

t=0

C (x∗(t),u∗(t))

)

+

T
∑

t=N

(

C (xNE∗ ,uNE∗ )−C (x∗(t),u∗(t))
)

,

where
∑N−1

t=0 C (x̂(t), û(t))−
∑N−1

t=0 C (x∗(t),u∗(t)) is finite; and
∑T

t=N (C (xNE∗ ,uNE∗ )−C (x∗(t),u∗(t))) is negative and de-

creases strictly as T increases. Consequently, it can be

claimed that Ĵ− J∗ < 0 for large enough T , indicating that û(t)

is superior over u∗(t); hence u∗(t) is not an optimal solution,

which contradicts the assumption given at the beginning of

this proof. Based on the contradiction, it can be proved that

the optimal control (9)–(12) guarantees the convergence to

the optimal NE xNE∗ . ä

For Case 3, suppose the initial state is given by x(0) = δ
4
8.

Set T = 3, and x(T ) = δ
1
8. Solving the optimization formulated

by (9)–(12) yields U∗
= [δ1

2,δ2
2,δ2

2].

5. A simulation example

In this section, an illustrative example is presented by con-

sidering a smart grid with more communities. Its topologi-

cal structure is given by an undirected circular network with

10 nodes, as can be seen from Fig. 2. Based on concepts in

Section 2.1, its adjacent matrix can be calculated accordingly.

The diesel power price is given by pd = 7, and the grid power

price is given by pg (n) = (n−5)2

25
+6.5, where n is the number of

communities using the grid power. In this simulation exam-

ple, x7 and x10 are selected as controls u1 and u2; their values

can be assigned arbitrarily to δ
1
2 or δ

2
2. We suppose that the

updating law is given by (1), and the cost function is given by

(4) with the coefficient α= 0.8.

By using the algorithm proposed in Section 4.1, the al-

gebraic form of the game can be obtained by x(t + 1) =

M f (u1(t),u2(t))x(t), where x(t) =⋉
10
i=1,i,7,i,10

xi . All NEs can

be calculated by using Theorem 3: xNE (u1 = δ
1
2,u2 = δ

1
2) =

δ256[1], xNE (u1 = δ
1
2,u2 = δ

2
2) = δ256[256], xNE (u1 = δ

2
2,u2 =

δ
1
2) = δ256[256], xNE (u1 = δ

2
2,u2 = δ

2
2) = δ256[1,4,253,256],

where xNE∗ = δ
4
256 is the optimal NE.
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Figure 3: Number of communities using grid power, in case of x(0) = δ
200
256

1 2 3 4 5 6 7 8
6.4

6.5

6.6

6.7

Time

P
ric

e 
of

 g
rid

Figure 4: Price of grid power, in case of x(0) = δ
200
256
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Figure 5: Total cost paid by communities, in case of x(0) = δ
200
256

Suppose that the initial states are given by x(1) = δ
200
256.

Applying the optimal control (9)–(12) with control hori-

zon T = 8 to the control networked evolutionary game

yields u(t) = u1(t)⋉u2(t) = δ4[4,4,4,4,4,4,4, 4], and x(t) =

δ256[200,132,4,4,4, 4, 4, 4], where t = 1,2, · · · ,8; and the

closed-loop system reaches xNE∗ = δ
4
256. Simulation results

are illustrated by Figs. 3–5, where the number of communities

using grid power, the real-time price of the grid power, and

the overall cost paid by all communities are displayed. As can

be seen from simulation results, with the proposed optimal

control based on evolutionary game theory and semi-tensor

products, the overall cost converges to the optimal NE.

Suppose that the initial states are given by x(1) = δ
78
256, and

the control horizon is set to T = 6. The result can be obtained

by using the optimal control (9)–(12):

u(t)=u1(t)⋉u2(t) = δ4[3,4,4,4,4,4], (14)

x(t)=δ256[78,5,1,1,1,1], (15)

where t = 1,2,3,4,5,6. As can be seen from (15), the closed-

loop system fails to reach xNE∗ = δ
4
256; the reasons include

that 1) xNE∗ may be un-reachable from the initial point x(0) =

δ
78
256, and 2) the control horizon is not large enough.

6. Conclusion

In this paper, control networked evolutionary game and

semi-tensor product are applied to solve the demand-side

management problem of a simple smart grid. By using the

semi-tensor product to solve the control networked evolu-

tionary game, NEs can be proved systematically, and control

series can be designed to reach and maintain the optimal NE.

The BNFO algorithm is introduced to optimize the transient

performance of the control networked evolutionary game.

Some future works of this research include: 1) optimal con-

trol with dynamic price policies (instead of static ones in this

paper), and 2) adaptive control in case of uncertain/time-

varying weight coefficient in the cost function.
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