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Abstract

Inspired by the hunting and foraging behaviors of group predators, this paper addresses a class of multi-player pursuit-evasion
games with one superior evader, who moves faster than the pursuers. We are concerned with the conditions under which
the pursuers can capture the evader, involving the minimum number and initial spatial distribution required as well as the
cooperative strategies of the pursuers. We present some necessary or sufficient conditions to regularize the encirclement formed
by the pursuers to the evader. Then we provide a cooperative scheme for the pursuers to maintain and shrink the encirclement
until the evader is captured. Finally, we give some examples to illustrate the theoretical results.
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1 Introduction

There was an interesting Chinese proverb saying: “ If the
tiger went down to plain land, it would be insulted by
dogs”, whichmeans that even though the tiger has better
explosive force and a faster speed, it might be insulted or
hunted by canids (hyenas) who have slower speed but are
adept in besieging their preys cooperatively. In the real
world, this hunting or foraging behavior by predators
for a larger or faster prey is a wide spread phenomenon
[18, 23]. For example, the pronghorn’s speed is usually
80−100km/hwhile the lion’s speed is only 70−80km/h.
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But a group of lions are able to capture the pronghorn
through effective cooperation.

These hunting phenomena can be naturally generalized
to the field of robotics and control, where multiple slower
robots (pursuers) try to capture one faster target (evad-
er) who, conversely, attempts to escape. Theoretically, it
is known as multi-player pursuit-evasion games with one
superior evader [25]. Here, the term “ superior” signifies
that the evader has comparatively more advantageous
control resources than the pursuers.

Pursuit-evasion game, as a common model in differential
game theory, has been studied by many researchers
during the past decades [4,7,11,20], involving extensive
applications such as interception problems of missile and
satellite, formation control and jamming confrontation
of unmanned aerial vehicles (UAVs), search and rescue
operations of robots, and so on. In recent years, the
group behaviors (such as team collaboration, distribut-
ed control, artificial intelligence, population evolution,
etc.) in multi-agent systems have received increasing
attention [2, 9, 10, 19, 22]. The conventional approach
introduced by [14] is applicable to two-player pursuit-
evasion game, which is based on the underlying idea of
state reversal: Starting from the terminal manifold, an
optimal trajectory of the states is depicted retrograde
and the value function of the game can be determined
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by using a formulation of the Hamilton-Jacobi-Isaacs
(HJI) equation, so as to attain the equilibrium strategies
for the players. However, when it comes to the case of
multiple players, this approach encounters tremendous
difficulties in the determination of terminalmanifold, the
characterization of cooperation amongmultiple pursuers
or evaders, and the computational complexity in solving
HJI equations.

To cope with the above challenges, researchers generally
demonstrate the possibility of capture or escape by
exhibiting some particular strategies or policies of the
players [1,3,5,6,16,26]. These methods can be collective-
ly referred to as “method of explicit policy” [14,26]. For
example, [5] proposed a sweep-pursuit-capture strategy
to capture a single evader for multiple pursuers in
an unbounded planar environment and determined the
minimum probability of capture. In [6] they addressed a
cooperative Homicidal Chauffeur game and presented a
multi-phase cooperative strategy (align, swerve, encircle
and close phases). [16] designed entrapment strategies
for the pursuers under distributed information (sensing
limitation) that the pursuers will spread out around the
evader while approaching it.

However, most of the literature assumes that the pur-
suers move faster than or equal to the evader to ensure
capture feasible. Little has been done for the problems
with faster evader in a continuous unbounded planar
environment as the hunting phenomena in the animal
kingdom mentioned before. Breakwell might be the
first one to consider the multi-player pursuit-evasion
problems with faster evader in the literature [8, 13],
where the evader is required to pass between two
pursuers. He obtained a closed-form solution by dividing
the optimal trajectories of the players into two successive
phases, but it is not scalable for more pursuers. [25]
preliminarily studied the multi-pursuer single-superior-
evader game on an unbounded plane and provided the
minimum number of the pursuers required when the
evader moves in a straight line.

Other literature related to faster evader usually imposes
some additional constraints on the problem formulation,
such as polygonal environment (a closed and bounded
set in Euclidean space with polygonal boundary) [21],
graph environment (discrete time and discrete space
with multiple nodes and edges) [24], sensing limitation
[17] and limited turning of the evader [12]. With regard
to a general planar environment where themotions of the
players are simple, however, some fundamental problems
have not been solved completely. For example, howmany
pursuers would be necessary to capture an evader?What
conditions make the capture or escape possible? How to
design the cooperative scheme among the pursuers?

The main contribution of this paper is to solve the
above problems. We obtain the minimum number of
pursuers required to guarantee a capture, which only

depends on the speed ratio of the pursuers to the evader.
Then we present some necessary or sufficient conditions
to regularize the encirclement formed by the pursuers
to the evader, and provide a cooperative scheme for
the pursuers to maintain and shrink the encirclement
until the evader is captured. This cooperative scheme
contains three phases: besiege, shrink, and capture. For
each phase, the feasible strategies of the players are
characterized.

In our previous work [26], a fishing game is introduced,
which bears resemblance to the pursuit game in [13],
i.e., the superior evader must pass the gap between two
pursuers. We obtained a complete solution which can be
utilized to induce the analysis of capture conditions for
the current multi-player game, because the evader will
exert itself to break through the encirclement against
some two adjacent pursuers on each instant of time. Thus
in Section 2, we present the problem formulation based
on the work on fishing game. Then in Section 3 we focus
on determining the capture conditions and cooperative
strategies for the pursuers. In Section 4, we give some
examples to illustrate our findings. Finally, conclusions
and future work are summarized in Section 5.

2 Preliminaries

2.1 A fishing game with two pursuers and one evader

First, we provide a brief introduction to our previous
work on the fishing game [26], which is played in
the plane by two pursuers and one superior evader.
The evader attempts to pass the gap between the two
pursuers (as shown in Fig. 1), while avoiding being
captured. On the contrary, the pursuers try to capture
the evader while preventing the evader from threading.

In a reduced state space formed by the relative distances
d1, d2 and the included angle θ, the dynamics are given
as follows:

ḋ1 = −vp cos ϕ̂1 − ve cos(θ − α), d1(t0) = d01 (1)

ḋ2 = vp cos ϕ̂2 − ve cosα, d2(t0) = d02 (2)

θ̇ = −vp
d1

sin ϕ̂1 +
ve
d1

sin(θ − α)−

− vp
d2

sin ϕ̂2 +
ve
d2

sinα, θ(t0) = θ0 (3)

The fishing game with point capture terminates when
one of the following situations occurs: a) min{d1, d2} =
0, the pursuers win; b) min{d1, d2} > 0 and θ = π, the
evader wins. Then we obtained a complete solution that
consists of a barrier and the optimal strategies of the
players. Here, we give some main results.

Theorem 2.1 The barrier of fishing game is governed
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Fig. 1. Fishing game in the fixed reference system.

by

B = {d1, d2, θ | cos θ =
(1− a2)(d1 + d2)

2

2d1d2
− 1}

= {d1, d2, θ | r12 = a(d1 + d2)} (4)

and the optimal strategies of the players on the barrier
are given by

ϕ̂∗
1 =

π

2
, ϕ̂∗

2 =
π

2
(5)

sinα∗ =
d1 − d2 cos θ

r12
, cosα∗ =

d2 sin θ

r12
(6)

where r12 =
√

d21 + d22 − 2d1d2 cos θ is the distance
between the pursuers P1 and P2, and a = vp/ve < 1.

The barrier separates the state space into two disjoint re-
gions: capture zone and escape zone. From Theorem 2.1,
the capture zone can be described by

Dp = {d1, d2, θ | cos θ ≥ (1− a2)(d1 + d2)
2

2d1d2
− 1}

= {d1, d2, θ | r12 ≤ a(d1 + d2)} (7)

and the escape zone De lies outside of Dp. Further let

Θ = arccos
[ (1− a2)(d1 + d2)

2

2d1d2
− 1

]
, (8)

we call it as “non-escape angle” since the evader will be
captured by the pursuers if θ ≤ Θ.

It is convenient to switch the problem to a three-
dimensional relative state space, where the state vari-
ables are x, y and z (see Fig. 2). The coordinates of
the pursuers and the evader correspond to P1(0, z),
P2(0,−z) and E(x, y), respectively. Then for a fixed z,
the barrier B is an ellipse in the relative state space,
which is given by the following equation

x2 + (1− a2)y2 =
(1− a2)z2

a2
. (9)

Fig. 2. The barrier of fishing game in the relative state space,
where the shaded region (excluding points P1, P2 and the
boundary B) corresponds to the escape zone De.

2.2 Problem formulation

We proceed to present the problem formulation of this
paper. Consider a multi-player pursuit-evasion game
with n identical pursuers and one superior evader played
in an unbounded planar environment. We assume that
all the players are of simple motion, i.e., constant speed
and unlimited direction, and the speed of the pursuers vp
is strictly less than that of the evader ve, a := vp/ve < 1.
As shown in Fig. 3, from the dynamics of fishing game,
we obtain the state equations as follows

ḋi = vp cos(ϕi − θi)− ve cos(φ− θi) (10)

θ̇i =
vp
di

sin(ϕi − θi)−
ve
di

sin(φ− θi) (11)

where the control variables of Pi and E are ϕi and φ,
respectively. The included angle between two adjacent
pursuers Pi and Pi+1 with the evader is denoted as θi,i+1,
where θn,n+1 = θn,1. Further, the distance between two
adjacent pursuers Pi and Pi+1 is denoted as ri,i+1, and
the encirclement formed by n pursuers is denoted as the
polygon G = P1P2 · · ·Pn.

Fig. 3. The multi-player pursuit-evasion game in polar
coordinate system.
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The multi-player pursuit-evasion game terminates when
the pursuers capture the evader, i.e., min1≤i≤n di ≤ dc,
where dc ≥ 0 is called as capture radius (we assume
dc = 0 in the theoretical analysis of this paper). In
addition, we assume that the instantaneous position
and velocity of the evader is available to all pursuers.
Then the purpose of the pursuers is to capture the
evader as soon as possible while the evader aims to
prevent it infinitely. In terms of game of kind 1 , to
capture the superior evader, generally, at least three
conditions should be satisfied: first, the pursuers are
enough to participate in a group cooperatively; second,
the initial positions of these pursuers are around of
the evader; and third, the encirclement formed by the
pursuers is shrinkable to trap the evader in progressively
smaller regions. Based on these conditions, the following
problems will be considered in this paper:

-1- Howmany pursuers would be required to guarantee
the capture?

-2- What kind of position distribution of the pursuers
is an effective encirclement to the evader?

-3- What strategies would be available for the pursuers
to shrink the encirclement regardless of the evader’s
strategy?

3 Capture Conditions and Cooperative Strate-
gies

3.1 A simple extension from the fishing game

In fact, the pursuit-evasion problem with n pursuers and
one evader discussed in this paper, can be regarded as a
combination of n fishing games, because the evader will
exert itself to break through the encirclement against
some two adjacent pursuers on each instant of time.
Thus naturally some results of the fishing game can be
extended to the current multi-player game. First, we
address a simple problem, assuming that the evader will
choose some two adjacent pursuers to play the fishing
game while disregarding other pursuers. To distinguish,
we call this simple problem as “multi-player fishing
game”, and then we have the following results:

Definition 3.1 (Surrounding Condition) An evad-
er is surrounded by n pursuers if the configuration of the
evader and any pair of adjacent pursuers satisfies

θi,i+1 ≤ Θi,i+1 = arccos
[ (1− a2)(di + di+1)

2

2didi+1
− 1

]
(12)

1 Game of kind, introduced by [14] in distinction to one
of degree, is a pursuit game in which we are concerned
with what conditions make capture possible for the pursuers
or escape for the evader, rather than seeking the best
procedures in terms of optimizing some continuous payoff.

or ri,i+1 ≤ a(di + di+1), ∀ i = 1, 2, . . . , n. (13)

It is obvious that when the evader is surrounded by the
pursuers, it will be captured in the multi-player fishing
game. For a fixed encirclement G formed by the pursuers,
Fig. 4 shows the possible position of the evader (shaded
region) satisfying the conditions (12)∼(13). According
to the characteristics of barrier [26], we know that the
boundary of shaded region is exactly the barrier of multi-
player fishing game, and correspondingly the shaded
region represents the capture zone.

Fig. 4. The initial position distribution of the players when
the surrounding condition is satisfied, where the boundary of
shaded region is composed of the barriers of n fishing games.

Based on the previous work [26], the optimal strategies
of the players are accessible to describe as follows:

I. For the evader, at first, it should find out whether
there exists an i subject to ri,i+1/(di + di+1) > a. If so,
the evader chooses pursuers Pi and Pi+1 as opponents
to play the fishing game, and implements the strategy
(6) to escape. If not, to maximize the capture time the
evader should choose Pj and Pj+1 as the opponents,
where the barrier associated with line segment PjPj+1

is the closest one to the evader, or more specifically, the
value of rj,j+1/(dj + dj+1) is a maximum for all j =
1, 2, . . . , n.

II. For the pursuers, correspondingly, their strategies are
to ensure that the evader is in the capture zone first,
then Pk and Pk+1 perform the strategy (5) to capture
the evader if the evader moves towards them, while other
pursuers only need to follow the evader.

Next, we discuss the minimum number of the pursuers
required to satisfy the surrounding condition. It is easy
to verify that only if di = di+1, the non-escape angle
Θi,i+1 = arccos(1−2a2); otherwise, Θi,i+1 < arccos(1−
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2a2). Thus, from

n∑
i=1

θi,i+1 = 2π, θi,i+1 ≤ Θi,i+1

⇒ nmin ≥
[

2π

arccos(1− 2a2)

]
=

[
π

arcsin a

]
(14)

where [·] is the symbol of integer conversion, e.g. [x] is
the smallest integer greater than x. Same result as (14)
was given at [15,25] using different approaches, but here
we provide a more general argument that the minimum
number of the pursuers should be strictly greater than
π/ arcsin a if di ̸= di+1 for some i ∈ {1, 2, · · · , n}.

3.2 The challenges of capturing an agile evader

When the superior evader moves freely in the plane
(see Fig. 5), it can seek the breakthrough from any two
adjacent pursuers at any time. Thus, for the pursuers, it
is more difficult to capture such an agile evader. At this
point, the surrounding condition (12) no longer works,
because it is easy to be destroyed by the evader. When
θi,i+1(t) ≤ Θi,i+1(t), we cannot ensure that θi,i+1(t+1)
is still no greater than Θi,i+1(t + 1). Moreover, even
though the surrounding condition could be satisfied
for any time, the relative distance di would not be
guaranteed decreasing with time; because if the evader

chooses the direction of vector
−−→
PiE, the minimum value

of di(t+1) in one time step will be di(t)+(ve−vp)∆t >
di(t). Consequently, it is possible that the encirclement G
can only change its shape and position with the evader’s
moving, but not shrink its size.

Fig. 5. Multiple pursuers chasing one superior evader who
moves freely, where the dotted circles are the accessible
position of the players in one time step.

Additionally, it is well recognized that cooperation is a
good way to bring the pursuers’ advantage in numbers
into the game. However, effective cooperation scheme

continues to be a significant challenge for the pursuers
[3, 5, 6, 16]. In fact, cooperation can be construed as
two distinct concepts:Natural Cooperation andArtificial
Cooperation. The former refers to a natural collaboration
evolved by intelligent species for the realization of
some specific and common objective (such as hunting,
foraging and migrating). Theoretically, this evolving
cooperation will reach a stable and optimal equilibrium.
The latter is a kind of behavior rules applied artificially
on the multi-agent systems to achieve some specific
objective (such as formation, lead-follow and flocking).
It might be able to optimize the objective in the
corresponding mathematical model, but not necessarily
pure optimization of the original multi-agent system-
s. Throughout the researches of biological population
collaborative behaviors in artificial intelligence, almost
all of them focus on constructing artificial cooperation
scheme to simulate or approximate the unknown natural
cooperation as much as possible.

Inspired by the hunting and foraging behaviors of
group predators, we concentrate on dealing with the
above challenges in the following, where the artificial
cooperation scheme of multi-pursuers will be divided
into three phases: besiege, shrink and capture.

3.3 Besieged status

First, for a general multi-player pursuit-evasion game,
since the surrounding condition is only necessary to
capture the evader rather than sufficient, we define a
novel concept named “besieged status” in discrete time.

Definition 3.2 (Besieged Status) For k from 0 to
K(∈ N) and any i = 1, 2, . . . , n, if the inequality

ri,i+1(k) ≤ a
[
di(k) + di+1(k)

]
(15)

holds, then we say that the game is in K-besieged status,
and the evader is besieged by the pursuers without escape
angle for K time steps.

Theorem 3.1 (Besieging Condition) If at the initial
time,

ri,i+1(0) ≤ a
[
di(0) + di+1(0)

]
−K(3− 2a)vp∆t (16)

holds for any i = 1, 2, . . . , n, then the game is in K-
besieged status, where ∆t represents the length of one
time step.

PROOF. From Fig. 5, for any non-worst strategy of the
pursuers (the worst strategy refers to that the pursuers
move dispersedly or away from the evader) and any
strategy of the evader

ri,i+1(k + 1) ≤ ri,i+1(k) + vp∆t,
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di(k + 1) ≥ di(k)− (ve − vp)∆t.

Then we have

ri,i+1(1) ≤ ri,i+1(0) + vp∆t

≤ a
[
di(0) + di+1(0)

]
−K(3− 2a)vp∆t+ vp∆t

≤ a
[
di(1) + di+1(1) + 2(ve − vp)∆t

]
−

−K(3− 2a)vp∆t+ vp∆t

= a
[
di(1) + di+1(1)

]
− (K − 1)(3− 2a)vp∆t.

Continue to derive the above results, and finally

ri,i+1(K) ≤ a
[
di(K) + di+1(K)

]
− 0.

Thus, the theorem is proved. �

Theorem 3.1 provides a broad sufficient condition to
ensure the game entering into K-besieged status, which
has strict requirements on the number and initial posi-
tion distribution of the pursuers, but thanks to it, the
pursuers can choose some specific strategies to decrease
the sum of relative distances d1, d2, . . . , dn, without
worrying about the destruction of K-besieged status.
This property comes from the following theorem:

Theorem 3.2 If the besieging condition is satisfied, then
there exist pursuit strategies such that

n∑
i=1

di(k+1)−
n∑

i=1

di(k) < 0, k = 0, 1, . . . ,K−1 (17)

regardless of the evasion strategy.

PROOF. From the state equation (10), we know that

di(k + 1)− di(k) = [vp cos ϕ̂i − ve cos(φ− θi)]∆t

where ϕ̂i = ϕi − θi is the alternative control of Pi. Then

1

ve∆t

n∑
i=1

[di(k+1)−di(k)] = a
n∑

i=1

cos ϕ̂i−
n∑

i=1

cos(φ−θi)

Suppose the evader aims to maximize the above expres-
sion, then the best strategy of the evader is given by

cosφ∗ = − 1

ρ(k)

n∑
i=1

cos θi, sinφ∗ = − 1

ρ(k)

n∑
i=1

sin θi

ρ(k) =

√√√√( n∑
i=1

cos θi

)2

+

( n∑
i=1

sin θi

)2

.

Thus, we have

max
φ

1

ve∆t

n∑
i=1

[di(k + 1)− di(k)] = a
n∑

i=1

cos ϕ̂i + ρ(k)

At this point, (17) will be satisfied as long as

n∑
i=1

cos ϕ̂i < −ρ(k)

a
. (18)

We claim that the solutions of (18) are existent based
on the following arguments: 1) ρ(k) is bounded for any
θi(k). Particularly, when θi−1,i(k) = θi,i+1(k) for every
i = 2, 3, . . . , n, ρ(k) = 1; 2) Since the besieging condition
is satisfied, the pursuers could choose any non-worst
strategy without worrying about the destruction of K-
besieged status. For example, they can follow the evader

to make cos ϕ̂◦
i = −1; 3) From (14) n ≥ π/ arcsin a, then∑

cos ϕ̂◦
i = −n ≤ −π/ arcsin a < −1/a. �

Remark 3.1 From Definition 3.1, we know that in K-
besieged status

n∑
i=1

ri,i+1(k) ≤ 2a ·
n∑

i=1

di(k) (19)

where
∑

ri,i+1(k) represents the perimeter of polygonal
encirclement G. Thus, according to Theorem 3.2, under
the besieging condition, there exist some specific strate-
gies for the pursuers to shrink the encirclement G. �

3.4 Capturing status

Now, we are going to discuss the condition which can
guarantee the pursuers capturing the superior evader.

Definition 3.3 We say that the game is in capturing
status at the kth time step, if

ri,i+1(k) ≤ 2vp∆t, (20)

holds for any i = 1, 2, . . . , n and the evader lies in G.

Fig. 6. The capturing status of multi-player pursuit-evasion
gamer. Note: the encirclement might not be regular polygon,
here is only an extreme example.
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As shown in Fig. 6, the game being in capturing status
means that the pursuers’ accessible regions intersect
pairwise in one time step. Thus no matter what strategy
the evader chooses, the pursuers can capture it as long
as they move towards the barycenter of encirclement G
collectively. Correspondingly, to maximize the capture
time, the optimal strategy of the evader will also be
moving to this center.

It is well-known that when each side length of a convex
polygon is not greater than 2vp∆t, the radius of whose
circumcircle will be no greater than vp∆t/ sin(π/n).
Thus, if the game is in capturing status, from Fig. 6

vp∆t

sin π
n

≥ (ve + vp)∆t ⇒ sin
π

n
≤ vp

ve + vp
=

a

1 + a
.

Then, the minimum number of the pursuers satisfies

n ≥ π

arcsin a
1+a

>
π

arcsin a
. (21)

Furthermore, if a = 1,

π

arcsin a
1+a

= 6, (22)

which implies that only if the minimum number is
greater than 6, the pursuers capturing one free superior
evader is possible (since a < 1).

3.5 Transitions from K-besieged status to capturing
status

Now, we commence at the possibility of transforming
the game from K-besieged status into capturing status.
We have known that there exist pursuit strategies
to decrease

∑
di(k) under the besieging condition.

Besides, when the game is in capturing status, the
maximum value of

∑
di(k) is nvp∆t/ sin(π/n). The

above arguments inspire us that:

♢ Whether there exists some k < K such that when∑
di(k) ≤ nvp∆t/ sin(π/n), the game can reach

capturing status from K-besieged status in the
remaining K − k time steps.

We will tackle this problem in two steps. First, if at
the k1th time step, every di(k1) ≤ vp∆t/ sin(π/n), then
according to the proofs of Theorem 3.1,

ri,i+1(k1) ≤
2avp∆t

sin π
n

− (K − k1)(3− 2a)vp∆t. (23)

In this sense, as shown in Fig. 7, the pursuers need
to adjust every ri,i+1 to be equidistant nearly whilst

shrinking the encirclement G until ri,i+1(K) ≤ 2vp∆t.
Since ri,i+1 decreases at most 2vp∆t at each step,

(K−k1)2vp∆t ≥ 2avp∆t

sin π
n

−(K−k1)(3−2a)vp∆t−2vp∆t,

⇒ K − k1 ≥ 2

5− 2a

[
a

sin π
n

− 1

]
. (24)

Considering sin(π/n) ≤ a/(1 + a), then

2

5− 2a

[
a

sin π
n

− 1

]
≥ 2a

5− 2a
> 0. (25)

For example, when a = 0.85 and n = 9 we have K −
k1 ≥ 0.9001, which means that at least at the (K− 1)th
time step every di ≤ vp∆t/ sin(π/n), the game can reach
capturing status at the Kth time step.

Fig. 7. The strategies of the pursuers when
di(k1) ≤ vp∆t/ sin(π/n), where the radius of dotted circle
is vp∆t/ sin(π/n).

Next, we discuss the other case: when
∑

di(k2) ≤
nvp∆t/ sin π

n at the k2th time step, there exists at least
one i subject to di(k2) > vp∆t/ sin(π/n). It is worth
noting a point that the evader would not let “di(k2) <
(ve + vp)∆t” come true, because that is the worst case
for the evader. Thus, the minimum value of di(k2) will
be (ve + vp)∆t. Besides, since

∑
di(k2) is bounded, the

maximum value of di(k2) can also be solved

max di(k2) =
nvp∆t

sin π
n

− (n− 1)(ve + vp)∆t. (26)

The strategies of the players are shown in Fig. 8, where
all the pursuers move towards the evader to minimize the
relative distances. Correspondingly, the evader moves
away from the closest pursuer to avoid the distance being
less than (ve + vp)∆t.
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Fig. 8. The strategies of the players when existing
di(k2) > vp∆t/ sin(π/n), where the radius of circles R1, R2

and R3 are (ve + vp)∆t, vp∆t/ sin(π/n) and formula (26),
respectively.

Therefore, after one time step the largest di(k2) will
decrease at most (ve + vp)∆t, while the smallest one
will increase at most (ve − vp)∆t. Then, to ensure every
di(k1) ≤ vp∆t/ sin(π/n) at the k1th time step, the fol-
lowing two conditions must be satisfied simultaneously,

max di(k2)− (k1 − k2)(ve + vp)∆t ≤ vp∆t

sin π
n

, (27)

(ve + vp)∆t+ (k1 − k2)(ve − vp)∆t ≤ vp∆t

sin π
n

. (28)

Simplify the above inequalities, we have

k1 − f ≤ k2 ≤ k1 − g, (29)

where,

f =
a

(1− a) sin π
n

− 1 + a

1− a
, (30)

g = (n− 1)

[
a

(1 + a) sin π
n

− 1

]
. (31)

Since sin(π/n) ≤ a/1 + a, then f ≥ 0 and g ≥ 0. The
comparison of f and g is shown in Fig. 9. It is clear that
there exists a pair of a and n, such that f ≥ g (e.g.,
when a = 0.85 and n = 9, f = 4.2349, g = 2.7470, and
we can let k1 − k2 = 3). Therefore, the existence of k2 is
realizable.

In summary, we have the following theorem:

Theorem 3.3 (Transition Condition) If there exist
k1 and k2 (k2 ≤ k1 ≤ K) in K-besieged status, such that∑

di(k2) ≤ nvp∆t/ sin(π/n) and the inequalities (24)
and (29) hold, then the pursuers can adopt some suitable
strategies to make every di(k1) ≤ vp∆t/ sin(π/n) after
k1 − k2 time steps, and further, force the game into
capturing status after K − k1 time steps.

Fig. 9. The comparison of f and g.

Cooperative Pursuit Strategies. Combine the be-
sieging condition and transition condition, we obtain a
cooperative scheme for the pursuers, namely “besiege
− shrink − capture”. Firstly, the pursuers spread out
around the evader to satisfy the besieging condition.
Then they shrink the encirclement G as soon as pos-
sible using non-worst strategies to meet the transition
condition. At that point, the game can be guaranteed
entering into capturing status, as long as the pursuers
adopt the corresponding strategies in k2 → k1 phase and
k1 → K phase. Finally, the pursuers can move towards
the barycenter of encirclement G to capture the evader
after the game reaches capturing status.

4 Examples

In this section, we give some examples to illustrate the
theoretical results. We assume that ve = 1m/s, ∆t = 1s
and the capture radius is vp∆t for all the examples.
Others such as vp, n and the initial positions of the
players will be set distinctively to correspond to different
themes.

4.1 Examples of multi-player fishing game

Suppose vp = 0.8m/s, n = 4 and the initial positions
of the players are E(20, 20), P1(20, 40), P2(32, 18),
P3(18, 12) and P4(5, 25), respectively. Then the initial
surrounding condition is satisfied. As shown in Fig. 10,
to maximize the capture time, the evader chose P1 and
P2 as the opponents to play fishing game, because the
value of r12/(d1 + d2) was maximum for 1 ≤ i ≤ 4 at
the initial time. Then correspondingly the pursuers P1

and P2 adopted strategy (5) to chase the evader, and
eventually captured it at t = 22s.

Let us take another example, where vp = 0.55m/s, n = 6
and the initial positions of the players are E(20, 20),
P1(36, 40), P2(30, 20), P3(25, 10), P4(12, 8), P5(0, 22)
and P6(12, 40), respectively. As shown in Fig. 11, at
the initial time, the evader lay inside of the barrier
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Fig. 10. The evader was captured at t = 22s when the initial
surrounding condition held in multi-player fishing game. The
ellipses were the barriers of the game, and apparently the
evader lay in the capture zone initially.

associated with P1 and P2, thus it chose P1 and P2 as
the opponents to play fishing game and finally achieved
escape at t = 20s.

Fig. 11. The evader escaped at t = 20s when its initial
position lay in the escape zone, i.e., inside of the barrier
associated with P1 and P2.

4.2 Examples of general multi-player game

Here, we use the initial settings of Fig. 11 except
for vp = 0.65m/s to compare with the multi-player
fishing game. The surrounding condition is satisfied
currently, however, the evader can escape when it moves
freely. As shown in Fig. 12, the evader changed its
directions sharply and continually at the earlier stages,
which forced the pursuers to follow its pace back and
forth. At the 14th time step, the evader’s efforts was
rewarded: the surrounded status was destroyed and
r56 > a(d5 + d6) appeared. Then the evader chose P5

and P6 as the opponents of fishing game to escape from
the encirclement.

We give the last example to illustrate whether the
pursuers can capture the agile evader. Suppose vp =
0.85, n = 9 and the initial positions of the players are
E(20, 20), P1(30, 40), P2(36, 28), P3(34, 16), P4(24, 8),
P5(12, 8), P6(4, 16), P7(2, 24), P8(8, 36) and P9(18, 42),

Fig. 12. The evader escaped from 6 pursuers, where the
barriers were delineated at the 14th time step. At the
moment the evader lay in the escape zone and began to play
fishing game with P5 and P6 to escape.

respectively. In this scenario, the number of the pursuers
is enough to satisfy the besieging condition, and there
exist k1 = 21 and k2 = 18 furnishing the transition
condition. It can be seen from Fig. 13 that the game
reached capturing status at the 22nd time step. The
evader could not destroy the encirclement despite of
changing its heading frequently, while the pursuers could
advance towards the barycenter of the encirclement
gradually. Until the 22nd time step, the evader had
nearly nowhere else to go and the pursuers captured it
after one time step.

Fig. 13. The evader was captured even though it moved
freely, where the game entered into the capturing status at
the 22nd time step and terminated at the 23rd time step.
The little figure in top right corner amplifies the original
figure. We can see that the evader’s track is quite chaotic
since it can not find any suitable strategy to escape.

5 Conclusions and Future Work

Motivated by the hunting and foraging behaviors in
group predators, we investigate a class of multi-player
pursuit-evasion games with one superior evader in this
paper.We are interested in the conditions on the number
and initial position distribution of pursuers for which
capture can be guaranteed. It shows that for a so-
called multi-player fishing game, the minimum number
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of pursuers nmin ≥ π/ arcsin a; while for a more general
case where the superior evader moves freely, the number
should be no less than π/ arcsin[a/(1 + a)].

Further, we provide a surrounding condition and the
optimal strategies of the players in the multi-player
fishing game. Then for the general case, we define two
concepts, besieged status and capturing status, and
derive besieging condition and transition condition to
ensure the game progressing from K-besieged status to
capturing status, which comprise a cooperative scheme
for the pursuers: besiege − shrink − capture.

In future, the barrier of the game and feasible evasion
strategy for the evader still need to be studied in
depth. We hope that our findings can be applied for
analyzing the interception, tracking, besiegement or
collision avoidance of multi-agent systems to some
superior targets. To realize these purposes, the future
work could focus on the cooperative strategies and more
practical motion models of the players under some addi-
tional constraints, involving the game environment (map
or semi-enclosed polygon), the information structure
(limited observation or jamming) and different types
of the evader’s superiority (more extensive sensing or
advantageous position).
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