
Data-DrivenRobustRecedingHorizonFaultEstimation ?

YimingWan a, Tamas Keviczky a, Michel Verhaegen a, Fredrik Gustafsson b

aDelft Center for Systems and Control, Delft University of Technology, Delft, 2628 CD, The Netherlands

bDepartment of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden

Abstract

This paper presents a data-driven receding horizon fault estimation method for additive actuator and sensor faults in unknown
linear time-invariant systems, with enhanced robustness to stochastic identification errors. State-of-the-art methods construct
fault estimators with identified state-space models or Markov parameters, but they do not compensate for identification
errors. Motivated by this limitation, we first propose a receding horizon fault estimator parameterized by predictor Markov
parameters. This estimator provides (asymptotically) unbiased fault estimates as long as the subsystem from faults to outputs
has no unstable transmission zeros. When the identified Markov parameters are used to construct the above fault estimator,
zero-mean stochastic identification errors appear as model uncertainty multiplied with unknown fault signals and online system
inputs/outputs (I/O). Based on this fault estimation error analysis, we formulate a mixed-norm problem for the offline robust
design that regards online I/O data as unknown. An alternative online mixed-norm problem is also proposed that can further
reduce estimation errors when the online I/O data have large amplitudes, at the cost of increased computational burden.
Based on a geometrical interpretation of the two proposed mixed-norm problems, systematic methods to tune the user-defined
parameters therein are given to achieve desired performance trade-offs. Simulation examples illustrate the benefits of our
proposed methods compared to recent literature.
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1 Introduction

Model-based fault diagnosis techniques for linear dy-
namic systems have been well established during the past
two decades [2, 5, 7, 16]. Recently, the model-based re-
ceding horizon approach has received attention because
it provides a flexible framework to enhance robustness
of passive fault diagnosis [34, 36] and to enable optimal
input design in active fault diagnosis [28, 29, 31]. How-
ever, an explicit and accurate system model is often un-
known in practice. In such situations, a conventional ap-
proach first identifies the system model from system I/O
data, and then designs the model-based fault diagnosis
system under various performance criteria [22, 25, 32].
Without explicitly identifying a system model, recent
research efforts investigate data-driven approaches to
construct a fault diagnosis system utilizing the link be-
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tween system identification and the model-based fault
diagnosis methods [8, 9, 30]. These recent data-driven
approaches simplify the design procedure by skipping
the realization of an explicit system model, while at the
same time allow developing systematic methods to ad-
dress the same fault diagnosis performance criteria as
the existing model-based approaches.

Most recent data-driven fault diagnosis approaches
for unknown linear dynamic systems can be classi-
fied into two categories. The first category, e.g., [27]
and [9, 10], identifies a projection matrix known as
parity space/vectors for residual generation, by ex-
ploiting the subspace identification method based on
principal component analysis (SIM-PCA) [17]. How-
ever, as pointed out in [13], a model reduction step is
needed to determine the projection matrix, hence leads
to the nonlinear dependence of the generated residuals
on the identification errors. Therefore it is difficult to
guarantee the robustness of such data-driven methods
to the identification errors.

The second category of data-driven fault diagnosis
methods, e.g., [11], utilizes the Markov parameters (or
impulse response parameters) which can be obtained in
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the first step of the predictor based subspace identifi-
cation (PBSID) technique [6, 33]. It constructs residual
generators parameterized by the predictor Markov pa-
rameters. The main advantage of this method is that
the residual signal linearly depends on the identification
errors of the predictor Markov parameters. Hence a ro-
bust scheme has been developed in [13,14] to cope with
stochastic identification errors. This benefit of robust-
ness compared to the SIM-PCA based method in [10] is
achieved at the cost of increased computational burden
in incorporating past I/O data.

Most of the data-driven fault diagnosis literature men-
tioned above discuss only fault detection and isolation.
It is much more involved to estimate/identify the fault
signal in the data-driven setting. The work in [1, 26]
proposed to reconstruct faults by minimizing the recon-
structed squared prediction error obtained from PCA.
However, this approach did not fully investigate the sta-
tistical properties of the calculated fault estimates. By
investigating the link between system-inversion based
fault reconstruction and the predictor Markov param-
eters, the method in [12] constructed fault estimators
parameterized by the predictor Markov parameters. Its
fault estimates are asymptotically unbiased as the esti-
mation horizon length tends to infinity, under the con-
dition that the underlying inverted system is stable.

One drawback of the data-driven fault estimator pro-
posed in [12] is that it cannot be directly applied to
sensor faults in an unstable open-loop plant because its
underlying inverted system is unstable. Another limita-
tion of this method is that it does not compensate for the
identification errors. The robustness of fault estimation
to the identification errors is critical in two situations:
1) there exist large identification errors due to small
number of identification data samples or low signal-to-
noise ratio in identification data; 2) multiplication of the
erroneous identified matrices with online I/O data of
large amplitude cannot be simply ignored.

Motivated by the above two drawbacks of the proposed
method in [12], this paper develops data-driven robust
fault estimation methods for additive actuator/sensor
faults, utilizing the identified Markov parameters. In
order to pave the way for data-driven design, we first
construct a receding horizon (RH) fault estimator pa-
rameterized by the predictor Markov parameters, as-
suming that the predictor Markov parameters are accu-
rately available. It gives (asymptotically) unbiased fault
estimates under the condition that the subsystem from
faults to outputs has no unstable transmission zeros. The
above condition for unbiasedness generalizes the require-
ment of stable inversion in [12]. An immediate benefit is
that our fault estimator can be applied to sensor faults
in unstable open-loop plants as long as the above condi-
tion for unbiasedness is satisfied, whereas the proposed
method in [12] cannot.

Our data-driven design parameterizes the above RH
fault estimator with predictor Markov parameters iden-
tified from closed-loop data. The obtained data-driven
fault estimation error is linear with regards to the sto-
chastic identification errors of Markov parameters, al-
though the identification errors appear as multiplicative
uncertainty that couples with unknown fault signals
as well as online I/O data. In order to enhance ro-
bustness to stochastic identification errors, we propose
two mixed-norm fault estimators. The first one can be
designed offline by regarding the online I/O data as un-
known. By exploiting online I/O data in its formulated
mixed-norm problem, the second robust fault estimator
further reduces estimation errors when the online I/O
data have large amplitudes, at the cost of increased
online computational burden. Based on a geometric in-
terpretation of the formulated mixed-norm problems, a
systematic tuning method for the user-defined parame-
ters therein is provided to achieve the desired trade-offs
between estimation bias and variance. Our proposed
methods can handle sensor and actuator faults either
separately or simultaneously. Only the separate scenario
is illustrated in detail in this paper. Exact formulas for
the simultaneous scenario can be derived in a straight-
forward manner but are omitted for the sake of brevity.

The rest of this paper starts with the problem formula-
tion and some preliminaries on closed-loop identification
of predictor Markov parameters in Section 2. Section 3
constructs the predictor-based RH fault estimator, and
analyzes its condition for unbiasedness. A data-driven
nominal fault estimator is given in Section 4. Section
5 and 6 propose two mixed-norm fault estimators with
enhanced robustness to identification errors. Simulation
studies are finally given in Section 7.

2 Preliminaries and problem formulation

2.1 Notations

For a matrix X, its range and null space is denoted by
R (X) and N (X), respectively. X− represents the left
inverse satisfying X−X = I, while X(1) represents the
generalized inverse satisfying

XX(1)X = X. (1)

X [i] represents the ith column of X. The trace of X is
denoted by tr (X). Let ‖X‖F represent the Frobenius
norm of the matrixX. The minimal eigenvalue of a sym-
metric matrix X is represented by λmin (X). Let vec (X)
represent the column vector concatenating the columns
of a matrix X. The symbol “⊗” stands for Kronecker
product. Let diag (X1, X2, · · · , Xn) denote a block di-
agonal matrix with X1, X2, · · · , Xn as its diagonal ma-
trices.
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2.2 Problem formulation

We consider linear discrete-time systems governed by
the following state space model:

ξ(k + 1) = Aξ(k) +Bu(k) + Ef(k) + Fw(k)

y(k) = Cξ(k) +Du(k) +Gf(k) + v(k).
(2)

Here ξ(k) ∈ Rn, y(k) ∈ Rny , and u(k) ∈ Rnu rep-
resent the state, the output measurement, and the
known control input at time instant k, respectively.
The process and measurement noises w(k) ∈ Rnw and
v(k) ∈ Rnv are white zero-mean Gaussian, with covari-
ance matrices E

(
w(k)wT(k)

)
= Q, E

(
v(k)vT(k)

)
= R,

E
(
w(k)vT(k)

)
= 0. f(k) ∈ Rnf is the unknown fault

signal to be estimated. A,B,C,D,E, F,G are constant
real matrices, with bounded norms and appropriate
dimensions.

The following assumption is standard in Kalman fil-
tering [18] and subspace identification [6, 19]:

Assumption 1 The pair (C,A) is assumed detectable;

and there are no uncontrollable modes of
(
A,FQ

1
2

)
on

the unit circle, where Q
1
2 ·
(
Q

1
2

)T

= Q is the covariance

matrix of w(k).

Based on Assumption 1, the system (2) admits the one-
step-ahead predictor form given by [18]

x(k + 1) = Φx(k) + B̃u(k) + Ẽf(k) +Ky(k)

y(k) = Cx(k) +Du(k) +Gf(k) + e(k),
(3)

where K is the steady-state Kalman gain, Φ = A−KC,
B̃ = B−KD, and Ẽ = E−KG, {e(k)} is the zero-mean
innovation process with the covariance matrix Σe.

We consider additive sensor or actuator faults in this
paper, i.e.,

• fault of the jth sensor:

E = 0nx×1, G = I [j], Ẽ = −K [j]; (4)

• fault of the lth actuator:

E = B[l], G = D[l], Ẽ = B̃[l]; (5)

• simultaneous faults of the jth sensor and lth actuator:

E =
[
0nx×1 B

[l]
]
, G =

[
I [j] D[l]

]
, Ẽ =

[
−K [j] B̃[l]

]
;

(6)

with X [j] representing the jth column of a matrix X.

Denote the predictor Markov parameters by

Hu
i =

{
D i = 0

CΦi−1B̃ i > 0
, Hy

i =

{
0 i = 0

CΦi−1K i > 0
,

Hf
i =

{
G i = 0

CΦi−1Ẽ i > 0
.

(7)

Assumption 2 The relative degree of the fault sub-

system
(

Φ, Ẽ, C,G
)

is τ , i.e., τ is the smallest nonneg-

ative integer i such that Hf
0 = Hf

1 = · · · = Hf
i−1 = 0

and Hf
i 6= 0 [20]; moreover, rank

(
Hf
τ

)
= nf [12].

Note that τ = 0 for sensor faults and τ > 0 for actuator
faults.

The essential goals of this paper are to design a fault
estimator from identification data without knowing the
system matrices in (2), and moreover to robustify the
fault estimator against identification errors.

Concerning the identification data, it should be noted
that in practice data from faulty conditions may be sel-
domly available, or if recorded then without a reliable
fault description [9]. Hence we make the assumption as
below:

Assumption 3 Only I/O data collected from the fault-
free condition are used in our data-driven design.

In contrast to [24] which assumes the fault signals f(k)
evolve according to a random walk model, no assumption
is made in this paper about how the fault signals f(k)
vary with time.

2.3 Closed-loop identification of predictor Markov pa-
rameters

Considering Assumption 3, we set f(k) = 0 in (2) for
the identification data collected from the fault-free con-
dition. Then with f(k) = 0, the predictor form (3) over
the time window [t, · · · , t+N − 1] can be written into
the following data equation [6, 33]:

Yid = CΦpXid + ΞZid + Eid, (8)

where

Ξ =
[
Hu
p Hy

p · · · Hu
1 Hy

1 Hu
0

]
(9)

denotes the sequence of Markov parameters {Hu
i } and

{Hy
i } (defined in (7)) to be identified. The detailed def-

initions of the data matrices Xid, Yid and Zid can be
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found in [33], and Eid is the sequence of the innovation
signal in the identification data.

The least-squares (LS) estimate of the Markov parame-
ters Ξ is

Ξ̂ = arg min
Ξ

‖Yid − ΞZid‖2F = YidZ−id

= Ξ + CΦpXidZ−id + EidZ−id,
(10)

with Z−id = ZT
id

(
ZidZT

id

)−1
. As standard assumptions

for consistent identification from closed-loop data, we
assume that 1) the data matrix Zid has full row rank, and
2) either the controller has at least one-step delay or the
plant model has no direct feedthrough (D = 0) [6, 33].

With sufficiently large p, the estimation bias CΦpXidZ−id
can be neglected. Then the stochastic identification er-
rors are

∆Ξ̂ = Ξ̂− Ξ ≈ EidZ−id. (11)

Hence according to (11), the identification errors in
Markov parameters can also be written as

∆Hu
i = Ĥu

i −Hu
i = EidM

u
i ,

∆Hy
i = Ĥy

i −H
y
i = EidM

y
i ,

(12)

where Ĥu
i and Ĥy

i represent the estimated Markov pa-

rameters in Ξ̂ given by (10), Mu
i and My

i are the corre-
sponding blocks of Z−id, i.e.,

Z−id =
[
Mu
p My

p · · · Mu
1 My

1 Mu
0

]
, My

0 = 0. (13)

The innovation covariance can be estimated by [16,19]

Σ̂e = cov
(
Yid − Ξ̂Zid

)
. (14)

For the sake of brevity, we shall not distinguish between
the estimated innovation covariance Σ̂e and its true value
Σe in the rest of this paper.

3 Predictor-based receding horizon fault esti-
mation

In this section, we will construct an RH fault estimator
based on the predictor form of the system (2). Here we
consider the predictor form instead of the original system
model (2) in order to pave the way for data-driven design.

Consider a sliding window with a length of L sampling
instants. Define stacked data vectors in this window as
uk,L, yk,L, fk,L, and ek,L, respectively for the signals u,
y, f , and e; e.g.,

uk,L =
[
uT (k0) · · · uT (k)

]T
, (15)

with k0 = k − L+ 1. For the predictor form (3), let OL
denote its extended observability matrix with L block
elements, and T?

L be the lower triangular block-Toeplitz
matrix with L block columns and rows, with ? repre-
senting u, y, or f :

OL =


C

CΦ
...

CΦL−1

 , T?
L =


H?

0 0 . . . 0

H?
1 H?

0

. . .
...

...
...

. . . 0

H?
L−1 H

?
L−2 · · · H?

0

 .
(16)

Given the I/O data over the sliding window [k0, k], the
stacked residual signal rk,L in [k0, k] can be computed by

rk,L = yk,L −Ty
Lyk,L −Tu

Luk,L, (17)

according to the predictor form (3). We can further write
down the transitions from unknown initial state, faults
and noises to the stacked residual signal rk,L as

rk,L = OLx(k0) + Tf
Lfk,L + ek,L. (18)

With Assumption 2, (18) can be simplified as

rk,L =
[
OL Tf

L,τ

]
︸ ︷︷ ︸

ΨL,τ

[
x(k0)

fk−τ,L−τ

]
︸ ︷︷ ︸

fx
k−τ,L−τ

+ek,L,
(19)

where τ is the relative degree of the fault subsystem

(A,E,C,G), Tf
L,τ represents the first L − τ block-

columns of Tf
L defined similar to (16), fk−τ,L−τ is

defined in the same way as in (15).

With (19), we can formulate the receding horizon fault
estimation (RHFE) problem

min
fx
k−τ,L−τ

∥∥rk,L −ΨL,τ f
x
k−τ,L−τ

∥∥2

Σ−1
e,L

(20)

in the LS sense, with

Σe,L = IL ⊗ Σe (21)

denoting the covariance matrix of ek,L. It has non-unique
solutions because ΨL,τ may not have full column rank.
One solution to the problem (20) is

f̂xk−τ,L−τ =
(

ΨT
L,τΣ−1

e,LΨL,τ

)(1)

ΨT
L,τΣ−1

e,Lrk,L. (22)
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We will show in the following theorem, however, that the
last nf entries of f̂xk−τ,L−τ , i.e.,

f̂ (k − τ) = Inf f̂xk−τ,L−τ (23)

with Inf = [ 0 Inf ] ∈ Rnf×(n+nf (L−τ)), represent an

(asymptotically) unbiased estimate of f (k − τ) under
certain conditions. The estimation delay τ in (23) is
caused by the relative degree in Assumption 2.

Theorem 1 Let τ and ν denote the relative degree
and the observability index of the fault subsystem
(Φ, Ẽ, C,G), respectively.

(i) The τ -delay fault estimate f̂(k − τ) defined in
(23) is unbiased for all L ≥ ν + τ if and only if

(Φ, Ẽ,Oτ+1,H
f
τ ) has no transmission zeros, with

Hf
τ =

[
(Hf

0 )T (Hf
1 )T · · · (Hf

τ )T
]T
. (24)

(ii) The τ -delay fault estimate f̂(k−τ) is asymptotically
unbiased for L→∞ if and only if all transmission
zeros of (Φ, Ẽ,Oτ+1,H

f
τ ) are stable.

The proof is given in Appendix B.

Instead of including the unknown initial state as in the
RHFE problem (20), the essential idea of [12] is to find
a lower triangular block-Toeplitz matrix Tg

L such that

Tg
L · T

f
L,τ = I and the estimation error caused by the

unknown initial state exponentially decays with L. The
condition for unbiasedness in [12] requires that the in-
verse system related to Tg

L is stable. However this has
several drawbacks: it does not clarify how the unbiased-
ness condition is related to the system property of the
underlying plant; and moreover, for the case of sensor
faults in an open-loop unstable plant, the method in [12]

cannot find a stable left inverse matrix Tg
L for Tf

L,τ .

On the contrary, Theorem 1 clearly states that the con-
dition for unbiasedness is related to the invariant zeros
of the fault subsystem in the underlying plant. An imme-
diate benefit is that our proposed RH fault estimator can
ensure (asymptotically) unbiased estimates for sensor
faults in an open-loop unstable plant, as long as the fault
subsystem has no unstable transmission zeros.

Remark 1 The unbiasedness condition of the τ -delay
fault estimate stated in Theorem 1 has close links with
the τ -delay left inversion in [15,23] and the τ -delay input
and initial-state reconstruction in [20]. However, the τ -
delay left inversion in [15, 23] requires the initial state
to be known a priori, while the τ -delay input and initial-
state reconstruction in [20] requires observability of the
pair (Φ, C) to simultaneously reconstruct the initial state

with the unknown input. Although it seems that the RHFE
problem (20) jointly estimates initial state and faults, we
are actually only interested in the fault estimate without
unbiased reconstruction of the unknown initial state. This
is an intuitive reason why Theorem 1 can cope with the
unknown initial state in the case that (Φ, C) is detectable.

Remark 2 Theorem 1 above generalizes Theorems 1
and 2 in [35] in two aspects: 1) Theorems 1 and 2 in [35]
are limited to the case τ = 0, while Theorem 1 here
applies to general relative degrees; 2) Theorems 1 and 2
in [35] focus on the fault estimator constructed with the
original system (2), while in this work we construct in
Theorem 1 the fault estimator with the predictor (3).

It should be noted that an RHFE problem similar to
(20) can also be formulated using the original system
(2), see [35]. Its equivalence to our RHFE problem (20)
is shown in the following theorem.

Theorem 2 If both the original system model (2) and its
predictor form (3) are accurately available, the τ -delay

fault estimate f̂(k− τ), computed by (22) and (23) based
on the predictor form (3), is equivalent to the fault es-
timate proposed as Equation (15) in [35] based on the
original system model (2).

The proof of Theorem 2 is given in Appendix C. The
above equivalence implies that the predictor gainK does
not affect the statistics of the fault estimation error, and
the condition of unbiasedness in Theorem 1 holds for the
RH fault estimation using the original form.

4 Data-driven nominal receding horizon fault
estimator

In this section, we will parameterize the RH fault esti-
mator introduced in Section 3 with the predictor Markov
parameters, and then provide the nominal data-driven
design method without considering identification errors.

In order to construct the LS fault estimator (22), we first
need to construct the block-Toeplitz matrices Tu

L, Ty
L,

and Tf
L from the predictor Markov parameters according

to (16). Then, we need the extended observability matrix
OL. One possible approach is to identify OL from the
block-Hankel matrix

Ho
L,m =


Hu

1 Hu
2 · · · Hu

m

Hu
2 Hu

3 · · · Hu
m+1

...
...

. . .
...

Hu
L Hu

L+1 · · · Hu
L+m−1

 (25)

through a model reduction step [33]. But this model re-
duction step would make the fault estimation error de-
pend nonlinearly on the identification errors. In order to

5



avoid this difficulty, we substitute OLx(k0) = Ho
L,mζm

into (19) by exploiting the following property:

R (OL) = R
(
Ho
L,m

)
(26)

for m ≥ n. Then (19) can be rewritten as

rk,L =
[

Ho
L,m Tf

L,τ

]
︸ ︷︷ ︸

ΥL,τ

[
ζm

fk−τ,L−τ

]
︸ ︷︷ ︸

fζ
k−τ,L−τ

+ek,L, (27)

where Tf
L,τ consists of the firstL−τ block-columns of Tf

L

defined in (16). By doing so, the fault estimation error
becomes linear with regards to the identification errors,
as shown later in (43). Based on (27), an LS problem
similar to (20) can be formulated, and one solution is

f̂ζk−τ,L−τ =
(

ΥT
L,τΣ−1

e,LΥL,τ

)(1)

ΥT
L,τΣ−1

e,Lrk,L. (28)

Similarly to (23), we obtain the fault estimate

f̂ (k − τ) = Inf f̂
ζ
k−τ,L−τ , (29)

with Inf =
[

0 Inf

]
∈ Rnf×(nu·m+ny(L−τ)).

Theorem 3 The sufficient and necessary condition for
unbiased estimation in Theorem 1 applies to the fault
estimate defined in (28)-(29).

The proof is given in Appendix D.

Combining (17), (28), and (29) yields the RH fault esti-
mator as below:

f̂(k − τ) = Gnrk,L = Gn

[
I −Ty

L −Tu
L

] [ yk,L

uk,L

]
,

(30)

Gn = Inf
(

ΥT
L,τΣ−1

e,LΥL,τ

)(1)

ΥT
L,τΣ−1

e,L, (31)

where Gn represents the nominal RH fault estimator
based on the residual signal rk,L.

Without considering the identification errors, the data-
driven design of nominal RH fault estimator can now be
summarized in Algorithm 1. For the sake of brevity, we

do not list the estimated fault Markov parameters Ĥf
i

and their estimation errors for simultaneous sensor and
actuator faults, because they can be straightforwardly
derived similarly to (32) and (33). Thus all our proposed
algorithms in this paper can be directly extended to deal
with simultaneous sensor and actuator faults.

Algorithm 1 Data-driven nominal RH fault estimation

1) Collect identification data from the fault-free con-
dition, and form the data matrices Yid and Zid

with sufficiently large p [33].

2) Compute the sequence of Markov parameters Ξ̂

and the innovation covariance Σ̂e via (10) and
(14); extract the identified Markov parameters

Ĥu
i and Ĥy

i from Ξ̂ according to (9); and extract

Ĥf
i according to (4)-(7):
• for jth sensor faults:

Ĥf
i = −(Ĥy

i )[j] for i > 0, and Ĥf
0 = I [j];

(32)
• or for lth actuator faults:

Ĥf
i = (Ĥu

i )[l] (i ≥ 0). (33)

3) Select sufficiently large L. Construct the esti-

mates of Σe,L in (21), Ty
L, Tu

L, Tf
L in (16), Ho

L,m in

(25), and ΥL,τ in (27) as Σ̂e,L, T̂y
L, T̂u

L, T̂f
L, Ĥo

L,m,

and Υ̂L,τ by using Σ̂e and the identified Markov

parameters {Ĥu
i , Ĥ

y
i , Ĥ

f
i }. Form T̂f

L,τ with the

first L− τ block-columns of T̂f
L.

4) Compute the nominal fault estimator according
to (30) and (31).

5 Data-driven robust receding horizon fault es-
timation

The data-driven nominal design in Algorithm 1 might
give biased fault estimates due to errors in the identified
Markov parameters. To address this problem, this sec-
tion proposes an offline robust design which regards the
online I/O data as unknown in the design stage.

5.1 Data-driven robust design

Since the Markov parameters related to faults are ex-
tracted from Ĥu

i or Ĥy
i via (33) or (32), the identifica-

tion errors of Ĥf
i can be expressed as

∆Hf
i = EidM

f
i , (34)

where

Mf
i =

{
(Mu

i )
[j]

for faults of the jth actuator

− (My
i )

[j]
for faults of the jth sensor

(35)

with Mu
i and My

i defined in (12)-(13).

With (12) and (34), the estimated matrices T̂y
L, T̂u

L,

6



T̂f
L,τ , Ĥo

L,m and Υ̂L,τ in Algorithm 1 can be written as

Ĥo
L,m = Ho

L,m + ĒidM̄o
L,m, T̂y

L = Ty
L − ĒidM̄y

L, (36)

T̂u
L = Tu

L + ĒidM̄u
L, T̂f

L,τ = Tf
L,τ + ĒidM̄f

L,τ , (37)

Υ̂L,τ = ΥL,τ + ĒidM̄Υ, (38)

where M̄o
L,m is the block-Hankel matrix constructed

with Mu
1 ,M

u
2 , · · · ,Mu

L+m−1 similarly to Ho
L,m in (25),

M̄?
L is the block-Toeplitz matrix constructed with

M?
0 ,M

?
1 , · · · ,M?

L−1 similarly to T?
L in (16) with ? rep-

resenting u, y, or f ,

Ēid = diag (Eid,Eid, · · · ,Eid)︸ ︷︷ ︸
L blocks

, (39)

M̄Υ =
[

M̄o
L,m M̄f

L,τ

]
, (40)

and M̄f
L,τ consists of the first L − τ block-columns of

M̄f
L.

Based on (36)-(38), we can write down the residual signal
r̂k,L considering identification errors according to (17)-
(19) and (27):

r̂k,L = yk,L − T̂y
Lyk,L − T̂u

Luk,L

= ΥL,τ f
ζ
k−τ,L−τ + ek,L +

(
Ty
L − T̂y

L

)
yk,L

+
(
Tu
L − T̂u

L

)
uk,L

=
(

Υ̂L,τ − ĒidM̄Υ

)
fζk−τ,L−τ + ek,L

− Ēid

[
−M̄y

L M̄u
L

]
︸ ︷︷ ︸

M̄z
L

[
yk,L

uk,L

]
︸ ︷︷ ︸

zk,L

.

(41)

Similarly to Gn in (30), let the matrix G denote the τ -
delay fault estimator based on the residual r̂k,L, i.e.,

f̂(k − τ) = Gr̂k,L. (42)

It follows from (41) that the fault estimation error is

∆f(k − τ) = f̂(k − τ)− Inf f
ζ
k−τ,L−τ

=
(
GΥ̂L,τ − GĒidM̄Υ − Inf

)
︸ ︷︷ ︸

Tf (G)

fζk−τ,L−τ

− GĒidM̄z
L︸ ︷︷ ︸

Tz(G)

zk,L + Gek,L

(43)
where Inf is defined in (29). It can be seen that Ēid

appears as multiplicative uncertainty coupled with the

true augmented fault signal fζk−τ,L−τ and the online I/O
data zk,L.

We regard fζk−τ,L−τ and zk,L as unknown but energy

bounded. Hence fζk−τ,L−τ and zk,L in the first two terms

of (43) lead to an estimation bias, while the online in-
novation signal ek,L in the third term causes zero mean,
stochastic estimation errors. We would like to reduce
the estimation bias by minimizing the matrix 2-norms
‖Ts (G)‖2 (s = f, z), and at the same time minimize the

Frobenius norm tr
(
GΣe,LGT

)
by using the available in-

novation covariance Σe,L. These three objectives are for-
mulated by the following mixed-norm problem:

Gr,off = arg min
G

tr
(
GΣe,LGT

)
s.t. Ē

(
Ts (G) T T

s (G)
)
≤ γ2

sI, s = f, z
(44)

where the matrix G denotes the τ -delay fault esti-
mator (42), Ē denotes mathematical expectation over
the identification innovations Ēid, γf > 0 and γz > 0
are the user-defined parameters to achieve a trade-
off between estimation error variance and bias. Note
that the matrix 2-norms ‖Ts (G)‖2 (s = f, z) are af-
fected by the stochastic identification innovations Ēid

according to (43), hence their mathematical expecta-
tions are used in (44). Note also that it is straightfor-
ward to prove Ē

(
T T
s (G) Ts (G)

)
≤ γ2

sI holds if and

only if Ē
(
Ts (G) T T

s (G)
)
≤ γ2

sI in (44) holds. Here

we use Ē
(
Ts (G) T T

s (G)
)

in (44), because it brings a
clear geometrical interpretation for parameter tuning
as explained later in Section 5.2. With the tedious but
straightforward derivations summarized in Appendix E,
the above problem (44) can be explicitly written as

Gr,off = arg min
G

tr
(
GΣe,LGT

)
(45a)

s.t.
[
G Inf

] [ Πf −Υ̂L,τ

−Υ̂T
L,τ Inf

][
GT

IT
nf

]
≤ γ2

fI (45b)

GΠzGT ≤ γ2
zI, (45c)

with Πf and Πz defined in (E.5) and (E.6), respec-
tively. The mixed-norm problem (45) can be easily trans-
formed into an equivalent semi-definite programming
(SDP) problem that can be solved efficiently [3]. Since
the optimization problem (45) is determined only by the
identification data and does not involve any online I/O
data, it can be solved offline to obtain the robust fault
estimator denoted as Gr,off .

5.2 Parameter tuning using geometric interpretation

Next, we will provide a systematic method to tune the
two user-defined parameters γ2

f and γ2
z by using a geo-

metric interpretation of the mixed-norm problem (45).
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With some matrix manipulations, we can see that the
constraints (45b) and (45c) define two ellipsoids

Ωf =
{
G
∣∣∣(G − G0) Πf (G − G0)

T ≤ G0ΠfGT
0 − I + γ2

fI
}
,

(46)
Ωz =

{
G
∣∣GΠzGT ≤ γ2

zI
}
, (47)

respectively, with G0 = Inf Υ̂T
L,τΠ−1

f . Since the objective

function (45a) can be regarded as a measure of the dis-
tance from G to the origin 0nf×(ny·L), the optimization
problem (45) is equivalent to finding the point Gr,off in
the set Ωf

⋂
Ωz that is closest to the origin, as shown in

Fig. 1.

First, we would like to find the region of γ2
f and γ2

z so that

the optimization problem (45) is feasible and non-trivial.
In the case that the origin 0nf×(ny·L) ∈ Ωf

⋂
Ωz, we

would have the trivial solution Gr,off = 0nf×(ny·L) which
makes no sense for fault estimation. Hence 0nf×(ny·L) /∈
Ωf and Ωf 6= ∅ are both required, which implies the
region of γ2

f as below according to (46):

1− λmin

(
G0ΠfGT

0

)
= γ2

f,min ≤ γ2
f < 1. (48)

For a given γ2
f satisfying (48), we solve the following

optimization problem{
Gmin, γ

2
z,min

}
= arg min

G,γ2
z

γ2
z

s.t. (45b) and (45c)
(49)

whose solution gives the minimal γ2
z , referred to as

γ2
z,min, that ensures Ωf

⋂
Ωz 6= ∅. Therefore, we should

select γ2
z ∈

[
γ2
z,min,∞

)
to ensure feasibility of the op-

timization problem (45). The ellipsoid Ωz,min in Fig. 1
represents the ellipsoid Ωz with γ2

z = γ2
z,min, and its in-

tersection with the ellipsoid Ωf includes only the single
point Gmin.

By discarding the constraint (45c) from the problem (45)
and fixing γ2

f at the same given value as in (49), we
formulate another problem

G1 = arg min
G

tr
(
GΣe,LGT

)
s.t. (45b)

(50)

Because the optimal solution G1 gives the shortest dis-
tance from the origin to the ellipsoid Ωf , and more-
over 0nf×(ny·L) /∈ Ωf , the solution G1 must lie at the
boundary of the ellipsoid Ωf , as shown in Fig. 1. Define
γ2
z,1 = λmax

(
Ē
(
Tz (G1) T T

z (G1)
))

. Let the ellipsoid Ωz,1
in Fig. 1 represent the set Ωz with γ2

z = γ2
z,1, and it has

the solution G1 at its boundary.

Similarly to the above obtained solution G1 of the
problem (50), the solution Gr,off of the problem (45) also
lies at the boundary of the ellipsoid Ωf . This allows the
three terms of the fault estimation error in (43) to be
explained using Fig. 1:

1) The bias related to the first term Tf (G) fζk−τ,L−τ is
determined by the size of the ellipsoid Ωf ;

2) The bias related to the second term Tz (G) zk,L is
determined by the size of the ellipsoid Ωz (Gr,off)
with Gr,off lying on its boundary, i.e., the ellipsoid
Ωz with γ2

z = λmax

(
Ē
(
Tz (Gr,off) T T

z (Gr,off)
))

;
3) The fault estimation error variance related to the

third term Gek,L is represented by the distance from
the origin to the optimal solution Gr,off .

With the above basic geometric interpretation, we can
analyze the performance trade-offs of the robust fault

estimator Gr,off when tuning γ2
f ∈

[
γ2
f,min, 1

)
and γ2

z ∈[
γ2
z,min,∞

)
, as shown in Table 1. First, we fix γ2

f and tune

γ2
z . In this case, the ellipsoid Ωf is fixed, which makes the

first bias term in the first two rows of Table 1 remain con-
stant. With the fixed γ2

f , by increasing γ2
z from γ2

z,min to-

wards γ2
z,1, the intersection set Ωf

⋂
Ωz becomes larger,

and the optimal solution Gr,off moves from the point Gmin

along the boundary of the ellipsoid Ωf towards the point
G1. When we further increase γ2

z for γ2
z ≥ γ2

z,1, the op-
timal solution Gr,off of the problem (45) would remain
located at the point G1, because G1 satisfies both con-
straints (45b) and (45c) and gives the shortest distance
to the origin according to the problem (50). Therefore,
the size of the ellipsoid Ωz (Gr,off), which determines the
second estimation bias term in the first two rows of Table
1, monotonically increases for γ2

z ∈
[
γ2
z,min, γ

2
z,1

)
and re-

mains constant for γ2
z ∈

[
γ2
z,1,∞

)
. The distance from

the origin to Gr,off , which determines the fault estima-
tion error variance in the first two rows of Table 1, mono-
tonically decreases for γ2

z ∈
[
γ2
z,min, γ

2
z,1

)
and remains

constant for γ2
z ∈

[
γ2
z,1,∞

)
. For the third row of Table

1, we tune γ2
f and select a sufficiently large value of γ2

z

that ensures the problem (45) to be feasible. With γ2
f in-

creasing, the size of the ellipsoid Ωf , which determines
the first bias term in the third row of Table 1, monoton-
ically increases. Meanwhile, the optimal solution Gr,off ,
which lies at the boundary of the ellipsoid Ωf , moves
closer to the origin. Therefore, both the second bias term
and the fault estimation error variance in the third row
of Table 1, which are determined by the size of the ellip-
soid Ωz (Gr,off) and the distance from the origin to the
point Gr,off , monotonically decrease.

We summarize the data-driven robust design in Algo-
rithm 2. The nominal design Gn obtained from Algo-
rithm 1 can be used as a benchmark for tuning γ2

f and γ2
z

in Step 2 of Algorithm 2. For example, compared to the
nominal design, the robust design achieves smaller aver-
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Table 1
Trade-offs between fault estimation bias and error variance of the robust fault estimator Gr,off at time instant k when tuning user-
defined parameters γ2

f and γ2
z in (45): “Constant”, “↗”, and “↘” means that the performance criterion in the corresponding

column remains constant, monotonically increases, and monotonically decreases with regard to the user-defined parameter
specified in the corresponding row, respectively.

User-defined First bias term Second bias term Variance

parameters Ē
∥∥∥Tf (Gr,off) fζk−τ,L−τ

∥∥∥2

2
Ē ‖Tz (Gr,off) zk,L‖22 tr

(
Gr,offΣe,LGT

r,off

)
γ2
z ∈

[
γ2
z,min, γ

2
z,1

]
Constant ↗ ↘

γ2
z ∈

[
γ2
z,1,∞

)
Constant Constant Constant

γ2
f ∈

[
γ2
f,min, 1

)
↗ ↘ ↘

fW

( )r,offzW G

( ),min minzW G

( ),1 1zW G

O

minG

r,offG

1G

0G

Fig. 1. Geometric interpretation of the mixed-norm problem
(45): the constraints (45b) and (45c) define the ellipsoid Ωf
centered at G0 and the ellipsoid Ωz centered at the origin O,
respectively. Lying at the boundary of the ellipsoid Ωf , the
optimal solution Gr,off gives the shortest distance measured
by the objective function (45a) from the origin to the inter-
section set Ωf

⋂
Ωz. With γ2

z = γ2
z,min, the ellipsoid Ωz be-

comes Ωz,min (Gmin) in green which intersects with the ellip-
soid Ωf at a single point Gmin. At the boundary of the ellip-
soid Ωf , G1 gives the shortest distance from the origin to the
ellipsoid Ωf . The ellipsoids Ωz,1 (G1) in blue and Ωz (Gr,off)
in red represent the ellipsoids Ωz with G1 and Gr,off lying at
the boundary, respectively.

aged worst-case bias if γ2
s ≤ λmax

(
Ē
(
Ts (Gn) T T

s (Gn)
))

(s = f, z).

Algorithm 2 Data-driven robust RH fault estimation

1) Complete the steps 1-3 in Algorithm 1; compute

Mu
i , My

i , and Mf
i according to (13) and (35).

2) Tune γ2
f ∈

[
γ2
f,min, 1

)
and γ2

z ∈
[
γ2
z,min,∞

)
ac-

cording to the performance trade-offs shown in
Table 1, where γ2

f,min and γ2
z,min are obtained from

the optimization problems (48) and (49) respec-
tively.

3) Solve the problem (45) to compute the robust RH
fault estimator Gr,off .

6 Data-driven robust receding horizon fault es-
timation with online optimization

The online I/O data is regarded as unknown in Algo-
rithm 2. In order to better exploit the available online
data, this section proposes an online mixed-norm opti-
mization approach. This can further reduce the estima-
tion errors when the online I/O data have large ampli-
tudes, at the expense of increased computational burden.

6.1 Online mixed-norm problem

With the notation

β̄k,L = M̄z
Lzk,L, (51)

we divide β̄k,L into L row blocks as in

β̄k,L =
[
βT
k,1 β

T
k,2 · · · βT

k,L

]T
, (52)

with βk,i ∈ RN . Then the term GĒidM̄z
Lzk,L in (43) can

be rewritten as

GĒidM̄z
Lzk,L = GĒidβ̄k,L

=G


Eidβk,1

Eidβk,2
...

Eidβk,L

 = G


βT
k,1 ⊗ Iny
βT
k,2 ⊗ Iny

...

βT
k,L ⊗ Iny


︸ ︷︷ ︸

Γk,L

vec (Eid) (53)

according to the property of Kronecker product [4].
Based on (53), the estimation error in (43) becomes

∆f(k − τ) = Tf (G) fζk−τ,L−τ − GΓk,Lvec (Eid) + Gek,L.

(54)
Then the statistics of vec (Eid), i.e.,

E
(

vec (Eid) vec (Eid)
T
)

= IN ⊗ Σe,
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can be exploited to evaluate the fault estimation error
variance. Therefore, we formulate the following opti-
mization problem similarly to (44):

Gr,on = arg min
G

tr
(
GΣe,LGT + GΓk,L (IN ⊗ Σe) ΓT

k,LGT
)

s.t. Ē
(
Tf (G) T T

f (G)
)
≤ γ2

fI

(55)
with the user-defined parameter γf . The constraint in
the above optimization problem (55) can be explicitly
written as (45b). The optimization problem (55) has to
be solved at each time instant to update the robust fault
estimator Gr,on because Γk,L in the cost function is de-
termined by the online I/O data according to (51)-(53).

6.2 Parameter tuning using geometric interpretation

Since the online mixed-norm problem (55) has the struc-
ture similar to that of the offline mixed-norm problem
(45), the performance trade-offs by tuning γf in (55) are
also similar to that explained in Table 1.

The proposed data-driven robust fault estimation with
online optimization is summarized in Algorithm 3. In
order to reduce the computational burden of online op-
timization, the problem (55) is implemented only if the
estimation bias of the offline designed fault estimator is
larger than a user-defined threshold α, as shown in Step
2 of Algorithm 3.

The offline designed fault estimator Gr,off from Algo-
rithm 2 can be used as a benchmark for tuning γ2

f in
Step 2.2 of Algorithm 3. For example, compared to Gr,off ,
the online optimization (55) achieves smaller averaged

worst-case bias if γ2
f ≤ λmax

(
Ē
(
Tf (Gr,off) T T

f (Gr,off)
))

.

Algorithm 3 Data-driven robust RH fault estimation
with online optimization

1) Follow Algorithm 2 to compute the offline de-
signed fault estimator Gr,off .

2) If λmin

(
Ē
(
Tz (Gr,off) T T

z (Gr,off)
))
‖zk,L‖22 > α (α

is a user-defined threshold), the online optimiza-
tion in the following steps is implemented; other-
wise, the offline designed estimator Gr,off is used.
2.1) Compute Γk,L according to (51)-(53).

2.2) Tune γ2
f ∈

[
γ2
f,min, 1

)
similarly to Step 2 of

Algorithm 2, with γ2
f,min defined in (48).

2.3) Solve the problem (55) to compute the robust
RH fault estimator Gr,on.

7 Simulation studies

Consider a continuous-time linearized vertical take-
off and landing (VTOL) aircraft model that has been

studied in [12–14,16]:

ẋc(t) = Acxc(t) +Bcuc(t),

yc(t) = Cc(t),

Ac =

[−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.01 0.0024 −4.0208
0.1002 0.3681 −0.707 1.42

0 0 1 0

]
,

Bc =

[
0.4422 0.1761
3.5446 −7.5922
−5.52 4.49

0 0

]
, Cc =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 1 1 1

]
.

With a sampling rate of 0.5 seconds, the discrete-time
model (2) is obtained, with D = 0 and F = I4. The
process and measurement noises, w(k) and v(k), are as-
sumed to be zero mean white noises, respectively with
covariances of Q = 0.16I4 and R = 0.64I4.

Since the open-loop plant is unstable, an empirical sta-
bilizing output feedback controller is used [12], i.e.,

u(k) = −
[

0 0 −0.5 0
0 0 −0.1 −0.1

]
y(k) + η(k), (56)

where η(k) is the reference signal.

In the identification experiment, the reference signal
η(k) is zero-mean white noise with the covariance of
diag (1, 1), which ensures persistent excitation. We col-
lect N = 1000 data samples from the identification
experiment. In the identification algorithm, the past
horizon is selected as p = 10.

The considered fault cases include:

• Actuator faults: E = B, G = D,

• Sensor faults: E = 04×2, G = [ 1 0 0 0
0 1 0 0 ]

T
.

The case of simultaneous actuator and sensor faults is
not included here, because all the considered algorithms
can be applied to the simultaneous scenario in a straight-
forward way, and their performance comparisons are the
same as in the case of separate actuator or sensor faults.

The simulated fault signals in both fault cases are the
same:

f(k) =


[

0 0
]T
, 0 ≤ k ≤ 50,[

sin (0.1πk) 1
]T
, k > 50.

We will compare the following fault estimation methods:

• Alg0: the RH fault estimator using accurate Markov
parameters, described in Section 4.

• DONG: the method proposed by [12].
• Alg1: the data-driven nominal RH fault estimator Gn

proposed in Algorithm 1;
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• Alg2: the data-driven robust RH fault estimator Gr,off

proposed in Algorithm 2; in Step 3 of Algorithm 2, we

select γ2
f = λmax

(
Ē
(
Tf (Gn) T T

f (Gn)
))

, and

γ2
z = 0.5

(
γ2
z,min + γ2

z,1

)
. (57)

• Alg3: the data-driven robust RH fault estimator Gr,on

with online optimization, proposed in Algorithm 3;
in Step 2 of Algorithm 3, we select α = 300 as the
threshold to determine whether or not the online opti-
mization should be implemented; γ2

f is set to the same
value as in Alg2.

We select the estimation horizon length L = 30 for the
considered five algorithms.

In order to show the necessity of compensating for the
identification errors, we make the identification-error-
effect term Tz (G) ·zk,L in (43) significantly large by set-
ting η(k) = 15. Fault estimates from the above five al-
gorithms are illustrated in Fig. 2, and the distributions
of their fault estimation errors are shown in Fig. 3. By
using accurate Markov parameters, Alg0 achieves unbi-
ased fault estimation in both fault scenarios. Note that
DONG cannot be directly applied to sensor faults in the
unstable open-loop VTOL model [12], hence it is not in-
cluded in Fig. 2 and 3(b) for sensor faults. Because of
neglecting the effect of identification errors, both Alg1
and DONG yield estimation biases even larger than the
amplitude of true faults. In comparison, Alg2 obtains
its robustness to identification error by solving an off-
line mixed-norm problem, as shown in Fig. 3(a). How-
ever, the poor performance of Alg2 in our sensor fault
case (Fig. 3(b)) shows the limitation of neglecting the
online availability of I/O data in the offline mixed-norm
problem. Compared to Alg2, Alg3 significantly reduces
estimation bias, as shown in Fig. 3(b), by formulating
an online mixed-norm problem to exploit online I/O
data. This performance improvement is achieved at the
cost of higher online computational burden. When im-
plemented with YALMIP [21] in the MATLAB2011b
environment, on a computer with a 3.4 GHz processor
and 8 GB RAM, the averaged and peak computational
time per sample of Alg3 are 1.70s and 2.05s for the es-
timation horizon length L = 30, while those of Alg2 are
8.37×10−6s and 3.17×10−5s respectively. We will inves-
tigate the computational efficiency of Alg3 for real-time
implementation in future work.

In order to illustrate the performance trade-offs of
Alg2, we set γ2

z as in (57) and tune γ2
f under the con-

dition of different reference signals η(k). Fig. 4 shows
how the fault estimation bias, error variance and root
mean square error (RMSE) vary with γ2

f , which can
be explained as follows using Table 1. According to
the fault estimation error analysis in (43), the fault

estimation bias is related to both Tf (Gr,off) fζk−τ,L−τ
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Fig. 2. True fault signal and fault estimates from different
algorithms.
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Fig. 3. Distribution of fault estimation errors when
η(k) = 15. Circles: 1000 estimation errors by dif-
ferent fault estimation algorithms based on 1000 on-
line I/O data samples. Ellipses: the 3σ-contour of
the approximated two-dimensional Gaussian distribution
of the 1000 estimation errors, i.e., the contour at[
f̂(k)− f(k)

]T
cov−1

(
f̂(k)

) [
f̂(k)− f(k)

]
= 3.

and Tz (Gr,off) zk,L. For η(k) = 0 or η(k) = 1, the
online I/O data zk,L have small amplitude, thus the
total estimation bias is dominated by the bias related
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to Tf (Gr,off) fζk−τ,L−τ which monotonically increases

with γ2
f according to the third row of Table 1. This

explains the fault estimation bias curves for η(k) = 0
and η(k) = 1 in Fig. 4. For η(k) = 2, the online I/O
data zk,L have relatively large amplitudes, hence for
relatively small values of γ2

f the total estimation bias is

dominated by the bias related to Tz (Gr,off) zk,L which
monotonically decreases with γ2

f , and for relatively large

values of γ2
f the total estimation bias is dominated by

the bias related to Tf (Gr,off) fζk−τ,L−τ which monoton-

ically increases with γ2
f , according to the third row of

Table 1. This explains the fault estimation bias curve
for η(k) = 2 in Fig. 4. The monotonic decrease of the
fault estimation error variances with γ2

f can be directly
explained with the third row of Table 1. As the objec-
tive function of the optimization problem (45), the fault

estimation error variance tr
(
Gr,offΣe,LGT

r,off

)
for dif-

ferent reference signals η(k) is the same because it does
not depend on the reference signal η(k). Combining the
increase of fault estimation bias and the decrease of
fault estimation error variance with γ2

f , there exist the

optimal γ2
f,∗ ∈

(
γ2
f,min, 1

)
such that the RMSE achieves

its minimal value, as can be seen in Fig. 4. It is also
shown that the minimal RMSE is achieved at a larger
value of γ2

f,∗ when the amplitude of η(k) increases,

because the online I/O data have larger amplitudes
with larger η(k), thus the decrease of the bias related
to Tz (Gr,off) zk,L dominates the fault estimation bias.
Based on the above insights, we can anticipate how the
estimation performance of Alg2 varies with different γ2

z
for a fixed γ2

f , as well as the performance trade-offs of
Alg3. Their performance curves are not plotted due to
the space limitation.

From the simulation results with different lenghts L of
the estimation horizon (omitted for the sake of brevity),
it can be seen that the fault estimation bias and vari-
ance of Alg0, Alg1, Alg2, and Alg3 decrease with the
increasing length L of the estimation horizon. Straight-
forward proof of this observation can be derived for Alg0
using accurate Markov parameters (following Section
3.4.3 of [18]), whereas analytical proof is difficult for
Alg1, Alg2, and Alg3 that rely on the identified Markov
parameters contaminated with identification errors.

8 Conclusions

This paper has investigated data-driven fault estimation
and its robustness against stochastic identification er-
rors. First, we proposed an RH fault estimator that can
be parameterized with the predictor Markov parame-
ters. Its condition for unbiasedness generalizes that of a
recently reported data-driven fault estimation method.
An immediate benefit is that our proposed method can
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Fig. 4. Estimation performance of Alg2 when tuning γ2
f under

different reference signal η(k)

be applied to sensor faults of an unstable open-loop plant
which could not be directly addressed previously. In the
formulated RH fault estimator, the identification errors
appear as multiplicative model uncertainty coupled with
the unknown faults and the online I/O data. Then, two
mixed-norm problems were formulated to enhance ro-
bustness. One can be solved offline by regarding the on-
line I/O data as unknown signals. The other further re-
duces estimation errors for larger I/O data by exploiting
their online availability in the mixed-norm problem, and
it requires online optimization. Based on geometric in-
terpretations of the mixed-norm problems, systematic
methods were given to tune the user-defined parameters
therein. Comparisons using a simulated aircraft model
illustrated the advantages and the effectiveness of our
proposed method.
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A Lemmas for Theorem 1

Lemma 1 Define xe(0) ∈ Rn, fe(i) ∈ Rnf , and re(i) ∈
Rny (i ≥ 0) as the initial state, input and output signal

of the fault subsystem (Φ, Ẽ, C,G), respectively. There
exists a non-zero initial state xe(0) such that re(0) =
re(1) = · · · = re(L) = 0 for all L ≥ ν + τ , if and only if

(i) Oτxe(0) = 0;
(ii) the system

xe(k + 1) =
[
Φ− Ẽ

(
Hf
τ

)−
CΦτ

]
︸ ︷︷ ︸

Kd

xe(k)

re(k) =
[
I −Hf

τ

(
Hf
τ

)−]
CΦτxe(k)

(A.1)

is unobservable;

13



(iii) the inputs {fe(i)} take the form

fe(i) = −
(
Hf
τ

)−
CΦτKi

dxe(0). (A.2)

In Lemma 1, re(0) = · · · = re(τ − 1) = 0 is ensured
because of the condition (i) and the zero Markov ma-

trices Hf
0 , H

f
1 , · · · , H

f
τ−1 according to Assumption 2,

while re(τ) = · · · = re(L) = 0 is ensured by the condi-
tions (ii) and (iii). Lemma 1 can be proved by slightly
modifying Lemmas A.1 and A.2 in [20].

From Lemma 1 we can see that perfect reconstruction
of system inputs {fe(i)} from system outputs {re(i)} is
impossible if the unobservable input signal (A.2) is non-
zero. Hence, next, we will investigate the link between
the unobservable input signal (A.2) and the system prop-

erty of (Φ, Ẽ, C,G).

By setting i = 0, (A.2) becomes

fe(0) = −
(
Hf
τ

)−
CΦτxe(0). (A.3)

Then, according to the condition (i) and the unobserv-
ability of the system (A.1), there must exist a scalar λ
and a non-zero xe(0) such that [37][

Kd−λI
Oτ[

I−Hfτ (Hfτ )
−]
CΦτ

]
xe(0) =

[
Φ−λI Ẽ
Oτ 0

CΦτ Hfτ

][
xe(0)
fe(0)

]
=
[

Φ−λI Ẽ

Oτ+1 Hf
τ

][
xe(0)
fe(0)

]
= 0,

(A.4)

where Hf
τ defined in (24) equals to

[
0
Hfτ

]
because

Hf
0 , H

f
1 , · · · , H

f
τ−1 are zero matrices according to As-

sumption 2. With (A.3) and (Kd − λI)xe(0) = 0 in
(A.4), we can rewrite fe(i) in (A.2) as

fe(i) = λife(0). (A.5)

The above analysis indicates that the unobservable in-
puts {fe(i) = λife(0)} are determined by the invariant

zero λ of (Φ, Ẽ,Oτ+1,H
f
τ ), as shown in the following

lemma:

Lemma 2 Considering the non-zero initial state xe(0)
in Lemma 1, there are two types of the invariant zeros
λ of the fault subsystem (Φ, Ẽ,Oτ+1,H

f
τ ) in (A.4): 1) λ

is an unobservable mode, then (A.4) implies fe(0) = 0,
thus the input signal {fe(i) = λife(0)} is constantly zero;
2) λ is a transmission zero, then fe(0) 6= 0, thus the
unobservable input signal {fe(i) = λife(0)} is non-zero.

Lemma 2 directly extends Lemmas 1 and 2 in [35] which
considers only the case τ = 0.

B Proof of Theorem 1

A solution f̂xk−τ,L−τ to the problem (20) satisfies

ΨT
L,τΣ−1

e,LΨL,τ f̂
x
k−τ,L−τ = ΨT

L,τΣ−1
e,Lrk,L. (B.1)

Let ∆fxk−τ,L−τ = f̂xk−τ,L−τ − fxk−τ,L−τ denote the esti-

mation error. By substituting (19) into (B.1), we have

ΨT
L,τΣ−1

e,LΨL,τ∆fxk−τ,L−τ = ΨT
LΣ−1

e,Lek,L,

which implies ΨT
L,τΣ−1

e,LΨL,τE
(

∆fxk−τ,L−τ

)
= 0 by

taking expectations on both sides. Therefore, the un-
biasedness condition of the estimate in (23) reduces to
the analysis of the linear equation

ΨL,τE
(
∆fxk−τ,L−τ

)
= 0 (B.2)

since N
(

ΨT
L,τΣ−1

e,LΨL,τ

)
= N (ΨL,τ ).

The rest of the proof follows the intuitive arguments
below. According to Lemma 1, (A.5), and the definition
of fxk−τ,L−τ in (19), there are three scenarios:

1) When (Φ, Ẽ,Oτ+1,H
f
τ ) has no invariant zeros,

the non-zero initial state xe(0) in Lemma 1 does
not exist according to (A.4), thus (B.2) implies

E
(

∆fxk−τ,L−τ

)
= 0, i.e., unbiased fault estimation.

2) When (Φ, Ẽ,Oτ+1,H
f
τ ) has invariant zeros, (B.2)

implies that for each invariant zero λ, the expected

error of the τ -delay fault estimate f̂(k − τ) is

E (∆f(k − τ)) = λL−τ−1E (∆f(k0)) (B.3)

in the estimation horizon [k0, k] (k0 = k − L+ 1).

2.1) If all the invariant zeros of (Φ, Ẽ,Oτ+1,H
f
τ )

correspond to unobservable modes, it follows
from the case 1) in Lemma 2 that the ex-
pected estimation error (B.3) is zero because
E (∆f(k0)) = 0.

2.2) If transmission zeros exist but are all stable,
i.e., |λ| < 1, it follows from the case 2) in
Lemma 2 that E (∆f(k0)) 6= 0 and the ex-
pected estimation error (B.3) asymptotically
reduced to zero as L goes to infinity.

The scenarios 1) and 2.1) correspond to the case (i) of
Theorem 1, and the scenario 2.2) corresponds to the case
(ii) of Theorem 1.
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C Proof of Theorem 2

For the original system model (2), the extended output
equation in the time window [k0, k] is

yk,L = OLx(k0) + T u
L uk,L + T f

L fk,L + T w
L wk,L + vk,L,

(C.1)

where OL, T u
L , T f

L , and T w
L are defined in the same

way as OL and Tu
L in (16). According to (C.1), we can

rewrite (17) and (18) as

rk,L = (I −Ty
L) (yk,L −T u

L uk,L)

= (I −Ty
L)
(
OLx(k0) + T f

L fk,L + T w
L wk,L + vk,L

)
= (I −Ty

L)
[

OL T f
L,τ

]
︸ ︷︷ ︸

Ψ̆L,τ

fxk−τ,L−τ + ek,L.

(C.2)
by following the relation between the original system

model (2) and its predictor form (3). Similarly to Tf
L,τ

in (19), T f
L,τ in (C.2) consists of the first L − τ block-

columns of T f
L .

Define r̆k,L = yk,L −T u
L uk,L and

Σ̆L = cov (T w
L wk,L + vk,L) .

Comparing (19) with (C.2) leads to

rk,L = (I −Ty
L) r̆k,L, ΨL,τ = (I −Ty

L) Ψ̆L,τ ,

Σe,L = (I −Ty
L) Σ̆L (I −Ty

L)
T
.

(C.3)

Then by substituting (C.3) into (22), the estimate of
fxk−τ,L−τ becomes

f̂xk−τ,L−τ =
(

Ψ̆T
L,τ Σ̆−1

L Ψ̆L,τ

)(1)

Ψ̆T
L,τ Σ̆−1

L r̆k,L, (C.4)

which is actually the LS estimate proposed in [35] based
on the original system model (2).

D Proof of Theorem 3

Split Tf
L,τ into two blocks as

[
T̆f
L,τ T̃f

L,τ

]
, with T̆f

L,τ

consisting of the first L− τ − 1 block-columns of Tf
L,τ ,

and T̃f
L,τ consisting of the last block-column of Tf

L,τ .
With these notations, unbiased fault estimation can be

proved by showing that T̃f
L,τE(∆f(k − τ)) = 0 because

T̃f
L,τ has full column rank according to Assumption 2.

According to (26), the following two expressions are

equivalent:

ε ∈R
([
OL T̆f

L,τ

])⋂
R
(
T̃f
L,τ

)
, (D.1)

ε ∈R
([

Ho
L,m T̆f

L,τ

])⋂
R
(
T̃f
L,τ

)
. (D.2)

Since the two sufficient conditions for (asymptotic) unbi-
asedness in Theorem 1 imply ε = 0 and ε→ 0 (L→∞)
for (D.1), it then follows from the equivalence between
(D.1) and (D.2) that the sufficient conditions in The-
orem 1 also imply ε = 0 and ε→ 0 (L→∞) for (D.2),

or equivalently, R
(
T̃f
L,τ

)
= {0} and R

(
T̃f
L,τ

)
→ {0}

(L→∞). Therefore we can conclude that the sufficient
conditions in Theorem 1 imply (asymptotically) unbi-
ased fault estimation for (D.2). Similarly, we can prove
the necessary condition for the (asymptotically) unbi-
ased fault estimation.

E Computation of Ē
(
Ts (G) T T

s (G)
)

By dividing M̄Υ in (40) into L row blocks as

M̄Υ =
[

MT
Υ,1 MT

Υ,2 · · · MT
Υ,L

]T
, (E.1)

with MΥ,i ∈ Rnf×(m·nu+(L−τ)nf ), we define PΥ as

PΥ =


tr(MΥ,1MT

Υ,1) tr(MΥ,1MT
Υ,2) ··· tr(MΥ,1MT

Υ,L)
tr(MΥ,2MT

Υ,1) tr(MΥ,2MT
Υ,2) ··· tr(MΥ,2MT

Υ,L)
...

...
. . .

...
tr(MΥ,LMT

Υ,1) tr(MΥ,LMT
Υ,2) ··· tr(MΥ,LMT

Υ,L)

 .
(E.2)

Pz is defined similarly to (E.2), by dividing M̄z
L in (41)

into L row blocks as in (E.1). Then,

Ē
(
Tf (G) T T

f (G)
)

=
[
G Inf

] [ Πf −Υ̂L,τ

−Υ̂T
L,τ Inf

][
GT

IT
nf

]
,

(E.3)

Ē
(
Tz (G) T T

z (G)
)

= GΠzGT (E.4)

with

Πf = Υ̂L,τ Υ̂T
L,τ + Ē

(
ĒidM̄ΥM̄T

ΥĒT
id

)
= Υ̂L,τ Υ̂T

L,τ + PΥ ⊗ Σe,
(E.5)

Πz = Ē
(
ĒidM̄z

L(M̄z
L)TĒT

id

)
= Pz ⊗ Σe. (E.6)
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