
D-Optimal InputDesign forNonlinearFIR-typeSystems:

ADispersion-basedApproach

Alexander De Cock a, Michel Gevers b, Johan Schoukens a

aELEC, Vrije Universiteit Brussel, 1050 Brussel, Belgium

bICTEAM, Louvain University, B1348 Louvain la Neuve, Belgium

Abstract

Optimal input design is an important step of the identification process in order to reduce the model variance. In this work
a D-optimal input design method for finite-impulse-response-type nonlinear systems is presented. The optimization of the
determinant of the Fisher information matrix is expressed as a convex optimization problem. This problem is then solved using
a dispersion-based optimization scheme, which is easy to implement and converges monotonically to the optimal solution.
Without constraints, the optimal design cannot be realized as a time sequence. By imposing that the design should lie in
the subspace described by a symmetric and non-overlapping set, a realizable design is found. A graph-based method is used
in order to find a time sequence that realizes this optimal constrained design. These methods are illustrated on a numerical
example of which the results are thoroughly discussed. Additionally the computational speed of the algorithm is compared
with the general convex optimizer cvx.

Key words: System identification, Input design, Nonlinear systems, Convex optimization,

1 Introduction

The quality of identified models depends to a large
extent on the experimental conditions under which
the measurement data for these models are obtained.
Therefore, experiment design is an important step in the
identification process. This was recognized in the early
days of the development of system identification theory,
where significant attention was paid to the design of
optimal experiments for the parametric identification
of linear time-invariant systems. The focus was on the
design of optimal inputs that maximize some scalar
function of the Fisher information matrix under a con-
straint on the power of the input signal [30,12]. The
motivation is that if the parameter estimator is asymp-
totically efficient, then its covariance matrix converges
to the inverse of the Fisher information matrix.
For linear stationary systems operating in open loop,
the Fisher Information matrix is an affine function of
the input spectrum. Therefore, the optimization is per-
formed by first computing the optimal input spectrum,
and then constructing an input signal for the experi-

Email addresses: adecock@vub.ac.be (Alexander De
Cock), Michel.Gevers@uclouvain.be (Michel Gevers),
Johan.Schoukens@vub.ac.be (Johan Schoukens).

ment that realizes this optimal input spectrum [30,12].
The development of identification for control, and more
generally of application-oriented identification [17], to-
gether with the advent of powerful semi-definite pro-
gramming tools, gave rise to novel optimal experiment
design techniques for linear time-invariant systems.
Experiment design methods were developed for closed-
loop identification with a fixed controller [19] as well
as for closed-loop identification with a “to be designed
controller” [16], and for an ever wider range of possible
design criteria and constraints. In addition, the dual
problem of least costly identification was addressed,
where the design aims at minimizing the cost of the
identification experiment (say, in terms of the input sig-
nal energy used) subject to a constraint on the achieved
model quality [1]. A survey of these results can be found
in [10].
For linear time-invariant systems, the solution of these
optimal experiment design problems consists of first
expressing the criterion and the constraints in terms of
a finite parametrization of the input spectrum (in the
case of open loop design) or of the joint input-output
spectrum (in the case of closed loop design), and re-
ducing the problem into a convex optimization problem
under Linear Matrix Inequality (LMI) constraints over
these parameters. This yields an optimal spectrum. The

This paper is a post-print of a paper submitted to and accepted for publication in Automatica.

c©2015. This manuscript version is made available under the CC-BY-NC-ND 4.0 license

https://creativecommons.org/licenses/by-nc-nd/4.0/ .

The publisher’s version of this paper is available under the DOI: http://dx.doi.org/10.1016/j.automatica.2016.04.052 .

ar
X

iv
:1

70
3.

08
40

1v
1 

 [
cs

.S
Y

] 
 2

4 
M

ar
 2

01
7

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.automatica.2016.04.052


second step then consists of constructing a stationary
signal that has this desired spectrum. A few results
have also been developed where the optimization is per-
formed directly with respect to the input samples of the
signal in time-domain; see e.g. [3].
Optimal experiment design for nonlinear systems is
considerably more difficult, because the criterion is typ-
ically non-convex, making global optimization more dif-
ficult, if not impossible. The main difficulty is that the
Fisher information matrix of the experiment is not only
dependent on the second order moments of the input
but also on higher order moments [18]. Thus, optimal
input design (OID) results for nonlinear systems have
so far been obtained only for simple design criteria in
the form of scalar functions of the information matrix,
and by restricting both the class of systems and the
class of input signals.
One subclass of nonlinear systems for which a number
of OID results have been obtained is the class of non-
linear finite-impulse-response-type (FIR-type) systems.
Constructing an OID for an example system out of this
class was performed for Gaussian signals in [11] and
for deterministic signals taking only a finite number of
possible values in [4]. The restriction to such multilevel
excitation signals is actually common to almost all re-
cent results on OID for classes of nonlinear systems. In
[22] a solution is proposed for nonlinear FIR systems
using a probabilistic parametrization of the multilevel
input signals, while in [7] these results are extended to
systems with fading memory using deterministic multi-
level input signals which are then characterized by the
relative frequency of each possible subsequence. A com-
mon feature of these results is the adoption of a linear
parametrization of the probability distributions, re-
spectively the relative frequencies, of the input signals,
leading to a convex formulation of the optimization cri-
terion.
The difficult step in all OID methods for classes of non-
linear systems proposed so far is to go from the optimal
distributions (or optimal relative frequencies) to the
generation of a realizable input sequence. A solution
based on graph-theoretical properties has recently been
proposed in [28]: realizable input sequences are ob-
tained by first computing the elementary cycles of the
associated graph, which define a convex polyhedron. As
we shall see, a significant part of the present paper is
devoted to this problem of signal generation; it is also
based on properties of the associated graph. By impos-
ing additional symmetry constraints on the admissible
subsequences, we propose a suboptimal solution that
is computationally cheaper than the solution based on
elementary cycles described in [28]. Additionally, we
show that the optimization time for our solution com-
pares favorably with that of a general purpose convex
optimizer cvx.
Methods considering a wider class of nonlinear systems
also exist. For example in [13] a particle filter approach
for the general class of nonlinear systems is presented,
while [29] presents an OID for a block structured non-

linear model consisting of linear dynamic and nonlinear
static blocks. However, unlike the design methods for
nonlinear FIR-type systems, these methods do not re-
sult in a convex optimization problem and can therefore
not guarantee convergence to a global optimum.
To conclude this general introduction, let us mention
that OID for nonlinear systems is particular interest-
ing in fields where the cost of single experiment is very
high. Examples of practically applied OID for nonlin-
ear systems can be found in the field of (bio)chemistry
[27], cellular biology [5] and medicine [9]. An extensive
overview of the current state-of-the-art can be found in
[8]. Contribution and relation with other work
This work is restricted to nonlinear FIR-type systems of
memory length n, whose inputs are deterministic input
sequences of length n, of which the sample values u(t)
can only take a finite set of possible values: {u1, ..., uA}.
Therefore each output sample of the system depends
on a subsequence (u(t), u(t − 1), ...u(t − n + 1)) of
the input sequence, and the total number of different
subsequences that can be presented to the system is
limited to a finite set of An possible sequences. The
Fisher information produced by a given input sequence
is therefore completely determined by the subsequences
it contains. For each input sequence of length N we can
define a corresponding frequency vector that indicates
how many times each subsequence is present in the
sequence. It will then be shown that the Fisher infor-
mation matrix can be written as a convex combination
of An elementary Fisher information matrices, where
the coefficients are the relative frequencies that indicate
how many times each subsequence appears in the input.
Different scalar functions can now be used as measure
of information. As long as it is a matrix nondecreasing
function [2] the problem remains convex and the global
optimum can be computed. In this paper we consider
D-optimal designs, meaning that the determinant of the
Fisher Information matrix is maximized. In addition
we have opted for a dispersion-based method, which
was already successfully applied in the linear case [21].
Advantages of this method are its intuitive interpreta-
tion, straightforward implementation and monotonic
convergence to the global minimum. In addition we
will illustrate with a short numerical example that the
dispersion algorithm can compete with general purpose
convex optimizers like cvx [24] in terms of computation
time.
The minimization of the maximum of the dispersion
function yields an optimal relative frequency vector. As
already explained, this optimal frequency vector may
not correspond to a realizable time sequence. To allevi-
ate this problem, constraints need to be incorporated
into the optimization problem. The space of frequency
vectors which satisfies these constraints forms a polyhe-
dron [28]. This allows one to represent every frequency
vector in the search space as a convex combination of a
set of corner points. Unfortunately, computing this set
of corner points is numerically expensive. Therefore, an
alternative way that approximates this set is proposed

2



in this paper. It is based on restricting the search space
to a constrained set of non-overlapping symmetric fre-
quency vectors.
Once a realizable and optimal frequency vector is found,
a time sequence satisfying this design needs to be de-
rived. To this end a graph-based method was suggested
in [22] and later elaborated in [28] for stochastic input
sequences. In this work a similar graph-based method is
presented for deterministic input sequences. The prob-
lems addressed in this paper have close connections
with those addressed in [22,28] and [7]. The main dif-
ference with [22,28] lies in the fact that in these papers
stochastic inputs are considered and that the problem
is parametrized with respect to the probability density
of the subsequences, instead of their relative frequency.
While this makes little difference when it comes to the
numerical computation of the designs, the interpreta-
tion of the results is quite different. Moreover, in [28] no
relation was made between the memory of the system
and the length of the subsequences used in the input
generation method. We study this relation in Section 8,
where we show that the designed input is only optimal
if both memories are equal. If the memory of the gener-
ation method is shorter than the memory of the system,
the search space becomes too restrictive. If the memory
of the generation is chosen longer, the same results are
obtained but at a higher computational cost.
In [7] an optimal deterministic input is computed for
the class of fading memory nonlinear systems. However,
unlike this paper, no sequence generation method was
presented in [7].
In addition to the use of a simple dispersion-based crite-
rion, the use of an alternative search space spanned by
a non-overlapping symmetric set that considerably re-
duces the computation time, another novel contribution
of this paper is the discussion of the interaction be-
tween the system memory and the subsequence length.
Overview
The paper is structured as follows. Section 2 formalizes
the optimal input design problem for the considered
class of systems. Section 3 shows how the associated
optimization problem can be solved based on the dis-
persion function. In Section 4 the problem of signal
generation is considered, and a graph-based method
is proposed. Section 5 discusses how the constraints
needed for signal generation can be incorporated into
the optimization. Section 6 illustrates our method on a
numerical example. In Section 7 the computation time
of the dispersion-based method is compared with cvx.
In Section 8 we motivate why the subsequence length
should be chosen equal to the memory length of the
system. Section 9 summarizes the obtained results.

2 Problem Statement

The goal of this paper is to find the most informative
input of given length N for a nonlinear FIR-type sys-
tem (as defined in Assumption 1 below) with a known

model structure, and disturbed with independent Gaus-
sian output noise. As a measure of information the de-
terminant of the Fisher information matrix is consid-
ered. Therefore the design is called D-optimal. When the
parameters are identified with such an input sequence,
and the estimator is assumed efficient, the volume of the
uncertainty ellipse in the parameter space is minimal
[30]. The following assumptions describe this problem
formally.

Assumption 1 The considered system is a member of
the class of nonlinear FIR-type systems with memory
length n and which are differentiable with respect to the
parameters of the system. This model class was first stud-
ied in [22] in the context of optimal input design.

y0(t, θ) = GNL(u0(t), u0(t− 1), .., u0(t− n+ 1), θ) (1)

where u0(t) is the noiseless input, y0(t, θ) is the noiseless
output, θ ∈ RNθ are the parameters of the model. Notice
that the output at time t only depends on the current
input sample and n− 1 previous input samples.
Additionally it is assumed that the system is identifiable
with respect to the parameters, meaning that there exists
an input sequence u(1), . . . , u(N) such that the outputs
{y0(t, θ), t = 1, . . . , N} and {y0(t, θ1), t = 1, . . . , N} of
the corresponding models (1) are identical only if θ1 = θ.

Assumption 2 The class of inputs will be restricted to
deterministic time sequences with a length of N samples,
whose amplitude can only take values from a finite, pre-
defined set of A values:

∀t : u(t) ∈ {u1, ..., uA} (2)

Assumption 3 The output y(t) of the true system is ob-
tained as the sum of a noise-free output y0(t, θ0) defined
by (1) with a “true” parameter vector θ0 and some addi-
tive independent identically distributed (i.i.d) Gaussian
noise e(t). The noise is also independent of the input sig-
nal u0.

u(t) = u0(t)

y(t) = y0(t, θ0) + e(t)

e(t)∼N(0, σ2)

Criterion The D-optimality criterion is used, which
means that the optimal input sequence uopt of length N
corresponds to the sequence for which the determinant
of the information matrix M is maximal:

uopt = arg
u

max(det(M))

Remark 1 Since the noise variance σ2 only scales the
Fisher information matrix, it will not alter the optimal
input design.

3



Given the noise assumption, M can be computed based
on the time domain data as (see [25]):

M =
1

σ2

(
∂y0

∂θ

)T (
∂y0

∂θ

)
(3)

where ∂y0
∂θ is a N × Nθ matrix containing the partial

derivatives of y0, and V T stands for the transpose of V .

Remark 2 For the computation of the optimal input, it
will be assumed that the true parameters of the system,
θ0, are known. While this may seem in contradiction with
the final goal of system identification it is a standard
assumption in the field of optimal input design [30].

3 Problem Solution

In order to solve the D-optimal input design problem, as
presented in the previous section, three important steps
will be made. First, the concept of the n-length subse-
quences is formally introduced. Second, it will be shown
that the Fisher information matrix can be expressed as
a weighted sum of the Fisher matrices associated to each
subsequence. This property is the key to solve the op-
timization problem efficiently. Third, it will be shown
how the problem can be solved with a dispersion-based
method similar to the one used in the linear case, as de-
scribed in [12,21].

3.1 Subsequences

Considering the system model, it is clear that each out-
put sample of the system depends only on a subsequence
(u(t), u(t− 1), ...u(t− n+ 1)) of the input sequence.

Definition 1 A subsequence is an ordered set of n val-
ues each, of which is drawn out of the predefined set
{u1, u2, ...uA}. In total An different subsequences can be
defined. The space that contains all possible subsequences

will be called C ∈ {Rn}A
n

.

Notation 1 Each index set (i1, ..., in) with i1, i2, ...in ∈
{1, 2, .., A} can be made to correspond to a unique integer
index k defined as follows:

k
∆
= i1 +

n∑
k=2

(ik − 1) ·A(k−1) (4)

Notice that (in, in−1, ..., i1) is the representation of k
in base A, that k ranges from 1 to An, and that (4)
defines a one-to-one mapping between k and the index
set (i1, i2, ..., in). Thus, the mapping (4) establishes the
equivalence:

k ⇐⇒ (i1, i2, ..., in) (5)

In the remainder of the paper we use indistinctly the
notation f(i1, i2, ..., in) or f(k) for a function f(.) of the
index set, where k and (i1, i2, ..., in) are related by (4).

Notation 2 In order to be able to refer to a specific sub-
sequence from C, the following notation is introduced:

c(i1, i2, ..., in) = (ui1 , ui2 , ..., uin)

∀i1, i2, ...in ∈ {1, 2, .., A}

Applying the mapping introduced in Notation 1, leads to

the following shorthand notation c(k)
∆
= c(i1, i2, ..., in).

3.2 Fisher information and frequency vector

From (3) it is clear that the ijth element of the Fisher
information matrix can be written as a sum over the
time samples:

M(i, j) =
1

σ2

N∑
t=1

fi,j(t, u, θ) (6)

where the function fi,j(t, u, θ) corresponds to the prod-
uct of the partial derivatives of y0 with respect to the
ith and jth parameter, evaluated at time instant t for a
given input sequence u.
Because the model class was restricted to FIR-type sys-
tems the functions fi,j depend at most on n successive
input values.

fi,j(t, u, θ) = fi,j(u(t), u(t− 1), ...u(t− n+ 1)), θ) (7)

In other words, the function fi,j(t, u, θ) depends on the
subsequence that ended at time t.

Remark 3 Notice that the first n−1 terms depend upon
samples which are not measured. Their value is set by
the initial conditions. It will be assumed that the signal is
periodic with period N . This allows us to determine the
values of these unknown samples.

Since the number of possible subsequences is fixed, the
number of different terms in (6) is also fixed. If we com-
pute the values of fij for each possible subsequence we
can reorder the sum over time such that we obtain a
weighted sum over all possible subsequences:

M(i, j) =
1

σ2

An∑
k=1

ξN (k) · fi,j(c(k), θ)

=

An∑
k=1

ξN (k)Mk(i, j) (8)

The weight ξN (k) indicates how often the subsequence
c(k) occurs in the sequence u(t) and is therefore called

4



the frequency of the sequence c(k). From (8) it is clear
that the Fisher information matrix for a given input se-
quence u is completely determined by the subsequences
that u contains.

Definition 2 The Fisher information matrix Mk cor-
responding to the kth subsequence will be called the kth

elementary Fisher matrix:

Mk(i, j) =
1

σ2

(
∂y0

∂θi

)T (
∂y0

∂θj

)
|c(k) (9)

where the partial derivatives are evaluated for the subse-
quence c(k).

Definition 3 The vector ξN (·) ∈ NAn , containing the
number of times each subsequence occurs in the input
design, is called the frequency vector of the design.

Remark 4 Given a time sequence u(t), the correspond-
ing frequency vector can be obtained by counting the num-
ber of times each subsequence occurs in the signal u(t).
The subsequences are counted as depicted in Fig.1. Notice
that a signal with N samples contains N subsequences,
due to the assumed periodicity of the signal (see Remark
3).

Fig. 1. Example of how the subsequences are counted in the
case of a FIR-type system with n = 3 and two amplitude val-
ues {u1, u2}. x represents an unknown sample which should
be resolved by the chosen initial conditions.

Normalizing (8) by the number of subsequences allows
us to rewrite the normalized Fisher information matrix
as a convex combination of the elementary matrices with
the relative frequencies as convex coefficients:

M(ξN )

N
=

An∑
k=1

ξ(k).Mk (10)

Notice that only the coefficients ξ(k) depend upon the
particular design used in the input u(t), t = 1, . . . , N .
The elementary information matrices Mk are indepen-
dent of the design and can be computed a priori given
the amplitude set A and the memory n of the FIR type
nonlinear system.

Definition 4 The frequency vector divided by the total
number N of subsequences in the design is called the rel-
ative frequency vector ξ(·) ∈ RAn+ . By construction the

normalized frequencies have the properties of convex co-
efficients, meaning that their values range from 0 to 1
and that their sum is exactly one:

∀k : ξ(k) = ξN (k)/N

ξ(k) ∈ [0, 1] and

An∑
k=1

ξ(k) = 1 (11)

Remark 5 By performing the optimization for the rel-
ative frequency vector ξ, we relax the problem by making
the search space continuous. However, the frequency vec-
tor ξN can only contain natural numbers. So, after denor-
malizing the frequency vector, the values will be rounded
to the nearest natural number. This may cause a slight
decrease in information.

Computing an optimal experiment consists of finding
the vector ξ that maximizes the determinant of the nor-
malized information matrix:

ξopt = argmaxξ(det(
M(ξ)

N
))

3.3 Dispersion function

In the previous subsection it was shown that the nor-
malized Fisher information matrix can be rewritten as
a convex combination of known elementary information
matrices. We now show that this allows us to use a
dispersion-based method in order to perform the opti-
mization. Instead of solving the optimization problem
directly, an equivalent problem is solved where the maxi-
mum of an auxiliary function, called the dispersion func-
tion, is minimized. The dispersion function, also called
response dispersion, was introduced in the experiment
design for identification arena in [12].

Definition 5 With the notations introduced above, the
dispersion function v(., .) is defined as:

v(ξ, k) = trace(M(ξ)−1 ·Mk) (12)

where M(ξ) is the information matrix computed for the
given design ξ, and Mk is the information matrix corre-
sponding to the kth subsequence.

Some useful properties of the dispersion function are
[12]:

• The maximal value of the dispersion can never be
smaller than the number of independent parameters
in the model Nθ.

• For any design ξ, the inner product
∑An

k=1 v(ξ, k) · ξ(k)
equals the number of free parameters in the model.

• The dispersion function can also be interpreted as a
normalized variance of the estimated model.

5



Theorem 1 The following characterizations of an opti-
mal design are equivalent:

(1) ξopt maximizes det(M)
(2) ξopt minimizes maxkv(ξ, k)
(3) maxkv(ξopt, k) = Nθ

where Nθ is the number of independent parameters in the
model.
Proof: see [12] Chapter 6, page 147.

Theorem 1 states that the design that maximizes the
determinant of the Fisher information matrix is the same
design that minimizes the maximum of the dispersion
function. Since a simple and efficient algorithm exists
that solves the latter problem, we shall adopt it for the
computation of our optimal experiment.

3.4 Optimization Algorithm

In [21] a simple and stable, monotonically converging al-
gorithm is presented, which finds the design that mini-
mizes the maximum of the dispersion function. This al-
gorithm can be summarized in four steps:

(1) Initialize with a uniform design: ξ(k) = 1/An

(2) Compute the dispersion function v(ξ, k) for the cur-
rent design using (12)

(3) Update the design in accordance with the disper-

sion function as follows ξnew(k) = v(ξ,k)
An .ξold(k)

(4) Stopping criterion: if (maxkv(ξnew, k) − Nθ) is
smaller than a predefined threshold, the optimal
solution is assumed to be found; else go to step 2.

The stopping criterion is based on the third expression
of Theorem 1. The monotonic convergence of the algo-
rithm is proven in [31]. In Section 7 the performance of
this dispersion-based algorithm will be compared to the
general purpose convex optimizer cvx.

Remark 6 Notice that once a particular frequency ξ(k)
becomes zero for some k, this frequency remains zero for
all subsequent iterations. Therefore, the computational
speed of the algorithm can be improved by only updating
the nonzero frequencies. This avoids unneeded evalua-
tions of the dispersion function.

4 Signal Generation

The optimal frequency vector ξN,opt can be interpreted
as an experiment of N measurements, where each mea-
surement consists of applying a single subsequence to the
system and measuring the corresponding output sample.
A naive way to perform the optimal design is to con-
catenate all the subsequences contained in ξN,opt (i.e. all
the subsequences c(k) for which ξN,opt(k) 6= 0), and only
measure the output samples which correspond to these
subsequences. This means that a signal with nN sam-
ples is used at the input, in order to collect N samples

at the output. Clearly this is not an efficient approach,
since only N out of the nN output samples are used for
parameter estimation.
It would be better to generate a periodic input sequence
with a period length of N samples, containing the N
needed subsequences. However, not every frequency vec-
tor has a corresponding input sequence of length N be-
cause the n−1 last inputs of subsequence c(k) for which
ξopt(k) 6= 0 may not correspond to the n− 1 first inputs
of another subsequence c(j) for which ξopt(j) 6= 0. In or-
der to derive conditions on the frequency vector which
guarantee the existence of at least one realizable time
sequence, a sequence generation method will be intro-
duced. This generation method will correspond with a
path through the associated graph of the frequency vec-
tor.

Definition 6 Given a subsequence of length n, the right
subsubsequence is defined as the subsequence of length n-
1 obtained by removing the first element of the original
subsequence. Similarly, the left subsubsequence is defined
as the subsequence of length n-1 obtained by removing the
last element of the original subsequence.

Definition 7 The graph associated with a frequency vec-
tor ξN (see Notation 1) is defined as follows:

• The graph contains An−1 nodes, each containing a dif-
ferent subsubsequence of length n-1

• Each subsequence of length n corresponds to a directed
edge connecting its left and right subsubsequence. The
edge starts in the left subsubsequence and ends in the
right one.

• Each edge has a multiplicity which corresponds to the
subsequence frequency ξN (i1, . . . , in) of its correspond-
ing subsequence.

Example 1 Consider a FIR-type system with n = 3 and
two amplitude levels {u1, u2}. In total 2(3−1) different
subsubsequences of length n-1 can be defined. So the asso-
ciated graph contains four nodes. Additionally 23 differ-
ent subsequences of length n can be defined. This means
that the graph contains eight edges. For example, the edge
corresponding to the subsequence u1u1u2 connects its left
subsubsequence u1u1 with its right subsubsequence u1u2.
The multiplicity of the edge connecting u1u1 with u1u2

equals its frequency ξN (1, 1, 2). If this reasoning is re-
peated for every subsequence, the graph in Fig.2 is ob-
tained.

If there exists a time sequence corresponding to the fre-
quency vector ξN , then this sequence can be obtained
by the following steps:

(1) Construct the graph associated with the frequency
vector ξN

(2) Find a path, starting from an arbitrary node, that
uses each edge exactly as many times as its multi-
plicity indicates.

6



Fig. 2. Associated graph in the case of n = 3 and two am-
plitude values

(3) For every edge in the path, add the last amplitude
value of the corresponding subsequence to the end
of the input sequence.

From the above, it can be concluded that a time se-
quence exists if there exists a path, starting from an ar-
bitrary node, that uses each edge exactly as many times
as its multiplicity indicates. In graph theory such a path
is called an Euler cycle. Some well known algorithms for
finding the Euler cycle (if it exists) are the algorithm of
Fleury [6] and the algorithm of Hierholzer. More recent
versions of these algorithms can be found in any text-
book on graph theory [15].
In order for an Euler cycle to exist, the associated graph
can not be disjoint and all vertices need to have a zero
degree, which means the sum of multiplicities for all out-
going edges minus the sum of multiplicities for all in-
coming edges needs to be zero.

Theorem 2 A periodic time sequence exists that realizes
a prescribed frequency vector ξN only if its associated
graph is not disjoint and the frequency vector satisfies the
following conditions:

∀i1, i2, ..., in−1 ∈ {1, ..., A}
A∑
j=1

ξN (j, i1, ..., in−1) =

A∑
j=1

ξN (i1, ..., in−1, j) (13)

or equivalently, using the scalar index k rather than the
vector index (i1, . . . , in), as defined in Notation 1:

∀m ∈ [1, . . . , An−1] :
A∑
j=1

ξN (j + (m− 1)A) =

A∑
j=1

ξN (m+ (j − 1)An−1) (14)

Proof: A time sequence has the correct frequency vector
ξN if a path can be constructed from the associated graph
whereby each edge is used exactly as many times as its

multiplicity indicates. In order for such a path to exist,
the sum of the multiplicities of the outgoing and incom-
ing edges need to be equal in every node, where each node
is defined by a (n − 1) vector index (i1, . . . , in−1). This
is precisely the constraint (13). Now fix a (n− 1) subse-
quence (i1, . . . , in−1), and let m denote the scalar index
for this (n− 1) subsequence, i.e.

m = i1 + (i2 − 1)A+ (i3 − 1)A2 + . . .+ (in−1 − 1)An−2

We now express the two indices of length n appearing in
(13) as a function of m:

(j, i1, . . . , in−1) = j + (i1 − 1)A+ (i2 − 1)A2

+ . . .+ (in−1 − 1)An−1

=mA−A+ j = j + (m− 1)A

With exactly the same procedure one gets

(i1, . . . , in−1, j) = m+ (j − 1)An−1

Remark 7 In order to illustrate that the equations in
(13) are not sufficient conditions for the existence of a
realizable time sequence for a given a frequency vector,
consider a disconnected graph which satisfies the con-
straints. In such a graph there is no single path connect-
ing all the nodes, meaning there is also no corresponding
time sequence.

Remark 8 In a stochastic framework, the frequency ma-
trix can be considered as mutual discrete probability dis-
tribution functions of the n stochastic variables. Imposing
that the signal is stationary, will lead to the same con-
straint as given in (13) [22]. The graph described above
can then be seen as a Markov chain used to generate a
realization of the frequency matrix.

5 Constrained Optimization

In the previous section it was shown that a frequency
vector can only be realized as a time sequence if it meets
the conditions (13). Therefore, these conditions will be
imposed during the optimization. Unfortunately the
dispersion-based algorithm cannot handle constraints
directly. Instead, the realizable search space will be rep-
resented as a convex set and the optimization will be
performed with respect to the new convex coefficients.
We now show that the set of relative frequency vectors
meeting the condition (13) are a convex set. First, it
should be noted that the relative frequencies are con-
vex coefficients (see (11)). Therefore the full search
space is contained in a convex polyhedron [2]. Second,
the constraints presented in (13) correspond to a set
of linear equality constraints, meaning they describe a
subspace centered at the origin. Combining these two
observations shows that the space of realizable relative
frequency vectors consists of the intersection between

7



a polyhedron and a subspace, which in turn is again a
polyhedron [2] and therefore a convex set.
Knowing that the search space is a convex polyhedron
allows us to express every realizable relative frequency
vector as a convex combination of the corner points:

∀k ∈ {1, 2, . . . , An} : ξγ(k) =

Nb∑
j=1

γ(j).ξbj (k) (15)

with γ(j) ∈ [0, 1] and

Nb∑
j=1

γ(j) = 1

where ξbj (k) are the mentioned corner points, Nb is the
number of corner points, γ(j) are the new convex coef-
ficients with respect to which the optimization will be
performed, and ξγ is the frequency vector corresponding
to the coefficient vector γ.
In [28] the same reasoning was followed. Additionally,
it was shown how the corner points that span the poly-
hedron could be constructed from the elementary cy-
cles present in the graph associated to the unity fre-
quency vector. However finding these elementary cycles
is a computationally heavy task and becomes infeasible
for medium sized graphs [14].

5.1 Non-overlapping Symmetric Set

As an alternative, we present a more restrictive convex
set that has the advantages that its corner points can
easily be computed. However, it can not be guaranteed
that this set contains the global optimum of the polyhe-
dron of realizable frequency vectors.

Definition 8 A set of vectors [ξb1 , ξb2 , ..., ξbNb ] in RAn is
called non-overlapping symmetric if they have the follow-
ing four properties:

(1) positivity constraint:
∀k, ∀j : ξbj (k) ≥ 0

(2) non-overlapping constraint:
∀k, ∃!j : ξbj (k) > 0

(3) unity sum constraint:

∀j :
∑An

k=1 ξbj (k) = 1
(4) symmetry constraint:
∀j, ∀i1, ..., in, ∀p ∈ Perm1,2,...,n :
ξbj (i1, i2, ..., in) = ξbj (ip1 , ip2 , ..., ipn)

where Nb indicates the number of vectors in the set,
Perm1,2,...,n stands for the set of all possible permutations
of the symbols {1, 2, ..., n}, and ∃!j means ’there exists
only one’.

Remark 9 The first property guarantees that the fre-
quencies are nonnegative. The second property guaran-
tees that the vectors don’t have the same nonzero element

positions, thereby making these vectors linearly indepen-
dent. The third property ensures that the sum of the fre-
quencies is one. The first three properties are needed in
order to impose (11) on ξγ . The fourth property imposes
symmetry on the frequency vector. This symmetry con-
straint implies that the constraint (13) is satisfied.

Remark 10 The number of non-overlapping symmetric
vectors Nb equals the number of degrees of freedom in a
symmetric tensor of order n and dimensionality A. For

example if n = 2, Nb = A(A+1)
2 , which correponds to the

degrees of freedom in a symmetric AxA matrix.

Example 2 In the case of n = 2 and two possible am-
plitude values (i.e. A = 2), the number of vectors in
the non-overlapping symmetric set is Nb = 3. The non-
overlapping symmetric set is given by the three frequency
vectors below:

ξb1 =


1

0

0

0

 , ξb2 =


0

0.5

0.5

0

 , ξb3 =


0

0

0

1


It is easy to check that the four constraints are satisfied.
Note that the fourth constraint reduces here to ξbj (1, 2) =
ξbj (2, 1) for j = 1, 2, 3 or, equivalently ξbj (2) = ξbj (3)
when the unique index k of (4) is used in lieu of (i1, i2).

5.2 Symmetric Designs

Assuming the use of a non-overlapping symmetric set,
the expression of the normalized information matrix can
be rewritten as a function of the weighting coefficients
γ(j) by substituting (15) into (10):

M

N
=

Nb∑
j=1

γ(j)

An∑
k=1

ξbj (k) ·Mk =

Nb∑
j=1

γ(j) ·Mγ(j) (16)

where Mγ(j) =
∑An

k=1 ξbj (k) ·Mk are the new elemen-
tary information matrices.
During the constrained optimization, the dispersion
function will be computed based on these Mγ(j). We
define:

vγ(ξγ , j)
∆
= trace(M(ξγ(k))−1 ·Mγ(j)) (17)

where the subscript γ indicates that vγ is computed from
the elementary information matrices Mγ(j). Notice that
the values and dimensions of the dispersion functions
vγ(ξγ , j) and v(ξγ , k) are different. This is because the
dispersion function evaluates the quality of the input
design relative to the considered search space.

8



5.3 Optimization Algorithm Revisited

By introducing the new elementary information matri-
ces Mγ(j) and the dispersion function vγ , and as a re-
sult of the convex properties of the coefficients γ(j), the
dispersion-based algorithm described in Subsection 3.4
can be reused to find the γopt(j) for which the determi-
nant is maximal. Revisiting the 4-step algorithm leads
to:

(1) Initialize with a uniform design: γ(j) = 1/Nb
(2) Compute the dispersion function vγ(ξγ , j) for the

current design using (17)
(3) Update the design in accordance with the disper-

sion function as follows γnew(j) =
vγ(ξγ ,j)
Nb

.γold(j)

(4) Stopping criterion: if (maxjvγ(ξγnew , j) − Nθ) is
smaller than a predefined threshold, the optimal
solution is assumed to be found; else go to step 2.

6 Numerical Example

The methods above will now be illustrated on the follow-
ing numerical example which consists of a finite impulse
response filter, followed by a polynomial nonlinearity:

y(t) = c1w(t)3 + c2w(t) + e(t)

w(t) = b1u(t) + b2u(t− 1)

u(t) ∈ [−1 : 2/9 : 1] and e(t) ∼ N(0, 1)

with b = (3; 1) and c = (1;−0.25). The value of c2 will
be fixed in order to make the problem identifiable. The
noise is zero mean Gaussian distributed with unity vari-
ance. The amplitude set contains 10 uniformly spaced
values between -1 and 1 (A=10). Because the system
has a memory length of two (n=2), 100 different subse-
quences should be considered.
Notice that this numerical problem leads to a complete
graph with 10 nodes and 100 edges. For such graph it is
proven that the number of elementary cycles is 1112073
and that computing all these cycles has a complexity
of 122328140 [20]. An implementation of Johnson’s al-
gorithm [20] in Matlab takes multiple days in order to
compute all these elementary cycles. Additionally the
optimization problem would need to consider 1112073
variables which is not feasible. In contrast the symmet-
ric design space contains only 55 frequency vectors that
can be compute in a couple of seconds.

6.1 Unconstrained optimization

First, the unconstrained optimization is performed.
This means that the relative frequencies ξ(k) are opti-
mized with the dispersion-based optimization method
described in subsection 3.4. The results for 1000 iter-
ations are plotted in Fig.3. In each iteration step the

0 500 1000

5

10

15

20
maximal dispersion

m
ax

(v
)

iteration index
0 500 1000

0

500

1000

1500

determinant of Fisher

iteration index

de
t(

F
i)

0 50 100
0

0.05

0.1

0.15

0.2
frequencies

ξ(
k)

0 50 100
0

0.5

1

1.5

2

2.5

3

3.5
dispersion

v(
ξ,

k)

index k index k

Fig. 3. Results without constraints. Top, left: maximal dis-
persion as function of the iteration index Top, right: de-
terminant of the normalized information matrix function of
the iteration index. Bottom,left: relative frequencies. Bot-
tom,right: dispersion function of the optimal design.

dispersion function, relative frequency vector and de-
terminant of the normalized information matrix are
computed and stored.
The top plots represent the evolution of the maximum
dispersion and of the determinant of the Fisher infor-
mation matrix as a function of the iterations. They
show that the method successfully lowers the maximal
value of the dispersion and at the same time increases
the determinant of the information matrix. Note that
in the end the maximal dispersion reaches the value of
3, which corresponds to the number of free parameters.
This indicates that the obtained solution is optimal (see
Theorem 1).
The optimal relative frequency vector at the end of the
iterations is depicted in the bottom left plot; it only
contains 6 entries that are different from zero. This
means that the optimal design is such that only 6 out
of the 100 possible subsequences are used to excite the
system. Each of them has the same frequency value. The
bottom right plot represents the value of the dispersion
function for each of the 100 subsequences.
Table 1 shows the subsequences of the optimal uncon-
strained design and their corresponding relative fre-
quencies, while Fig. 4 represents the associated graph.
Two observations should be made. First, the design does
not obey the constraints (13). As a result, the frequency
vector cannot be realized as a time sequence. Second,
the graph is disconnected, which means that not every
node can be reached from any other node.

9



index subsequence frequency

1 [-1;-1] 1/6

3 [-1;-10/18] 1/6

40 [-1/3,1] 1/6

61 [1/3;-1] 1/6

98 [1;10/18] 1/6

100 [1;1] 1/6

Table 1
Table containing the index, subsequences and relative fre-
quencies of the optimal unconstrained design ξopt.

1

-1/3

1/6 1/6

1/6

10/18 -1

1/3

1/6 1/6

1/6

-10/18

Fig. 4. Associated graph of the optimal unconstrained design.

6.2 Evolution of the Determinant

Now let us have a closer look at the evolution of the de-
terminant in Fig.3. For the first 10 to 20 iterations there
is a rapid increase in the determinant value. During these
iterations, the number of different subsequences is re-
duced drastically. After this rapid change, the evolution
of the determinant value becomes stable. Only the fre-
quencies of the remaining subsequences are changed but
the selection of subsequences stays the same. From this
observation it can be concluded that selecting the op-
timal subset of subsequences is more important for the
quality of the design than finding the optimal frequen-
cies of the selected subsequences.

6.3 Constrained optimization

Next, the optimization is performed using the non-
overlapping symmetric basis vectors obeying the con-
straints of Definition 8. This means that the optimiza-
tion is performed with respect to the coefficients γ(j) of
(16) using the elementary information matrices Mγ(j).
Again 1000 iterations are taken which leads to the plots
in Fig.5. Due to the symmetry constraint, only Nb = 55
coefficients need to be considered; hence γ(j) in the
bottom right plot ranges from 1 to 55. The determinant
increases monotonically while the maximal value of
the dispersion max(vγ(γopt, j)) is driven to its minimal
value of 3. This indicates that the final design is optimal
in its subspace of constrained designs.
Table 2 shows the relative frequencies of the optimal

0 500 1000
2

4

6

8

10

12

14

maximal dispersion

m
ax

(v
)

iteration index
0 500 1000

200

400

600

800

1000

1200
determinant of Fisher

iteration index

de
t(

F
i)

0 50 100
0

0.05

0.1

0.15

0.2
frequencies

ξ γ(k
)

0 20 40 60
0

0.5

1

1.5

2

2.5

3

3.5
dispersion

 index j

v γ(ξ
γ, j

)

index k

Fig. 5. Results with constraints. Top, left: maximal disper-
sion. Top, right: determinant of the normalized information
matrix. Bottom,left: relative frequencies of the optimal de-
sign. Bottom,right: dispersion function at the end of the it-
erations for each of the 55 subsequences.

index subsequence frequency

1 [-1;-1] 0.15

4 [-1;-1/3] 0.13

10 [-1,1] 0.09

31 [-1/3;-1] 0.13

70 [1/3;1] 0.13

91 [1;-1] 0.09

97 [1;1/3] 0.13

100 [1;1] 0.15

Table 2
Table containing the index, subsequences and realtive fre-
quencies of the optimal constrained design ξγopt .

constrained design which contains eight different sub-
sequences with different frequencies. As expected, the
design is symmetric, meaning that the subsequences
[u1, u2] and [u2, u1] have the same frequency. This al-
lows us to concatenate the subsequences without the
need of unwanted transition subsequences, leading to
a realizable design that is optimal in the constrained
space. The same conclusion can be made from the asso-
ciated graph in Fig. 6.

10



-1-1/3 1/30.15 0.15

0.13

0.13

0.13

0.13

0.09

0.09

1

Fig. 6. Associated graph of the optimal constrained design.

0 500 1000
2

4

6

8

10

12

14

16

X: 1000
Y: 4.192

iteration index

m
ax

(v
)

Maximal Dispersion

max(v(ξ))
max(v

γ
(ξ

γ
))

max(v(ξ
γ
))

Fig. 7. Maximal dispersion of the normalized information
matrix in the constrained case, computed for different ele-
mentary designs.

6.4 Computing the Dispersion

At first glance it seems contradictory that the optimal
unconstrained and constrained design have the same
maximum dispersion but different determinant val-
ues. However, the dispersion of the constrained design
vγ(ξγ , j) and the dispersion of the unconstrained design
v(ξ, k) can not be compared directly, because they are
based on different elementary information matrices. In
order to make a comparison possible, the dispersion of
the constrained solution ξγ,opt is computed with respect
to the elementary Fisher matrices Mk.
The results are plotted in Fig.7. From the left plot it is
clear that the dispersion function v(ξγ) is larger than
vγ(ξγ) and v(ξ). This indicates that the constrained
solution is not optimal in the full frequency space. This
is in accordance with the observation that the deter-
minant of the constrained design ξγopt is smaller than
the determinant of the unconstrained design ξopt. See
Table 3 for the exact determinant values.

6.5 Signal Generation

Both designs will be translated into a time sequence con-
taining 100 subsequences. During this process three ap-
proximations are considered.

• After denormalization, the values of ξN are rounded
to the nearest natural number.
• The unconstrained design needs additional transient

subsequences because condition (13) is violated.
• The constrained design needs additional transient

subsequences when the graph is disconnected.

0 10 20 30 40 50 60 70 80 90 100

−1

−0.5

0

0.5

1

constrained design

sample index

u(
t)

0 10 20 30 40 50 60 70 80 90 100
−4

−3

−2

−1

0

1

2

3
x 10

−3 frequency error

E
rr

(ξ
γ(k

))

index k

Fig. 8. Input sequence with constraints. Top: time domain
signal; Bottom: difference in frequency between optimal de-
sign and time sequence.

All these approximations lead to a decrease in the de-
terminant of M and alter the total subsequence count,
making the resulting time sequences suboptimal.
First, the time sequence for the constrained design is
generated. The resulting input sequence can be found
in the top plot of Fig 8. The bottom plot depicts the
difference in frequency between the optimal relative fre-
quency vector ξopt and the generated time sequence. All
errors are smaller than 10−2, meaning only rounding
errors are present.
The unconstrained design does not satisfy the con-
straints (13). Therefore, the design will be slightly al-
tered in order to find a time sequence which realizes the
unconstrained design as well as possible. The graph of
the altered design can be found in Fig. 9. Notice that
the graph is no longer disconnected and satisfies the
conditions in (13).
After altering the design a time sequence can be gener-
ated. The results can be found in Fig.10. The generated
sequence contains 104 samples due to roundoff errors.
If a sequence of exactly 100 samples is needed some
[1, 1] and [−1,−1] subsequences could be removed. The
positive frequency errors reflect the change in frequency
compared to the original subsequences. The negative
errors reflect the addition of the dotted arrows to the
design (see Fig.9).

6.6 Comparing Designs

Table 3 summarizes the performance of all previous de-
signs. In order to remove the influence of the signal
length, the Fisher matrix is computed based on the rela-
tive frequencies. As a reference for comparison, the max-
imum determinant out of 1000 randomly generated sig-
nals is also added.

11



1 -1/3

1/8

1/8

1/8

10/18 -11/3

1/8

1/8

1/8

-10/18

1/8

1/8

Fig. 9. Modified graph from the unconstrained design. Dot-
ted arrows were added and the relative frequencies were
renormalized.

0 20 40 60 80 100

−1

−0.5

0

0.5

1

altered unconstrained design

sample index

u(
t)

0 10 20 30 40 50 60 70 80 90 100
−0.15

−0.1

−0.05

0

0.05
frequency error

E
rr

(ξ
(k

))

index k

Fig. 10. Input sequence obtained from altered unconstrained
design. Top: time domain signal; Bottom: difference in fre-
quency between optimal design and time sequence for the
frequency vector.

Both the constrained and unconstrained designs perform
two orders of magnitude better than the best randomly
generated design. Out of the optimized designs, the un-
constrained design has the highest determinant value.
When this design is altered and realized as a time se-
quence, a decrease in the determinant can be observed,
but the resulting sequence still outperforms the con-
strained design. Notice that there is no difference in de-
terminant value between the constrained design and its
corresponding time sequence.
From these observations it can be concluded that it is
meaningful to compute both the constrained and uncon-
strained design. If the unconstrained design can easily
be altered to a realizable design, without too much loss
in performance, it should be preferred. If not, the con-
strained design presents a valuable alternative, because

solution type det(Fi)

max random signal 9.51e+01

unconstrained design 1.83e+03

unconstrained sequence 1.37e+03

constrained design 1.17e+03

constrained sequence 1.17e+03

Table 3
Normalized determinants of all considered designs and their
corresponding time sequences

it can always be realized.

7 Computation time

To evaluate the computational complexity of the
dispersion-based algorithm, we compared it with the
general purpose convex optimizer cvx (we choose the
SeDuMi as internal solver [26,24]). Both algorithms are
used to compute the optimal input for a given set of
problems. For each problem the computation of the op-
timal input is performed ten times and the median of
the computation time is used as measure of computing
speed.

7.1 Stopping Condition

In order to guarantee that the quality of the solution
computed by both solvers is equal, the determinant of
the Fisher information matrix of the cvx solution is used
as an absolute stopping criterion for the dispersion-based
algorithm. This means that the dispersion-based algo-
rithm keeps iterating until a solution with the same or
higher determinant value is found.

7.2 Problem Parameters

For all problems, the system consists of an FIR filter
followed by a polynomial nonlinearity. The filter coeffi-
cients correspond to the natural numbers between 1 and
n. The nonlinearity consists of a cubic and linear term
and has the same coefficients as in the numerical exam-
ple. It is assumed that the cubic parameter c1 is fixed
during the estimation. The optimization is performed
over the search space spanned by the non-overlapping
symmetric set.
Two distinct sets of problems will be solved. For the first
set of problems, we increase the number of amplitude
levels between -1 and 1 while keeping the system mem-
ory constant to 2. For the second set of problems, the
input set is fixed to [−1, 0, 1] but the length of the sys-
tem memory is increased.
The results of these simulations are depicted in Fig. 11.
Notice that only the time for the optimization is consid-
ered. The time needed to compute the non-overlapping
symmetric set, which is the same for both solvers, is de-
picted in Fig. 12.

12



7.3 Effect of the Amplitude Levels

The computation times for the first set of problems are
depicted in the left subplots. We see that the computa-
tion time increases with the number of amplitude lev-
els, regardless of the solver. This should be expected,
as more amplitude levels lead to a bigger search space.
For less than 20 amplitude levels the dispersion-based
algorithm computes faster than cvx. Past the 20 ampli-
tude levels the performance of the solution of cvx can-
not be perfectly matched by the solution provided by
dispersion-based algorithm, which leads to higher com-
putation times. When we relax the stopping condition
by allowing the dispersion-based algorithm to stop when
it reaches 99% of the determinant value found with cvx,
we see that the computation times of the dispersion-
based method are lower (see left, lower subplot in Fig.
11). However, the difference between the two methods
becomes smaller with increasing number of amplitude
levels.

7.4 Effect of the Memory Length

In the second set of problems, the input set is fixed but
the length of the system memory is increased. The com-
putation times for the second set of problems are de-
picted in the right subplots. We can see that the com-
putation time increases with the length of the mem-
ory of the system. This is normal because the mem-
ory length is exponentially proportional with the dimen-
sion of the search space. More importantly, we see that
the dispersion-based algorithm reaches the same perfor-
mance as cvx in shorter computation times. The differ-
ence is around two orders of magnitude.

7.5 Computing the Non-Overlapping Symmetric Set

Untill now, we only considered the time needed to
perform the optimization. However, before we can per-
form the optimization, we need to construct the non-
overlapping set and compute the Fisher information
matrix for each vector in this set. In Fig. 12 the com-
putation time for this step is depicted for increasing
problem sizes. In the top plot we see the evolution for a
fixed system memory and an increasing number of am-
plitude levels. In the bottom plot we see the evolution
for a fixed number of amplitude levels and an increasing
memory length. Especially from the bottom subplot it
becomes clear that computing the non-overlapping set is
the most time expensive step of the OID. For a memory
length of 10, computing the set takes already more than
6 minutes, while the optimization takes 2 to 3 seconds.

7.6 Summary of the Results

From the above results we can conclude that the
dispersion-based algorithm has a similar, if not better,

2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

computation time set 2 (perf.=100%)

n

tim
e 

(s
)

0 10 20 30 40 50
10

−4

10
−2

10
0

10
2

computation time set 1 (perf.=100%)

A

tim
e 

(s
)

2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

computation time set 2 (perf.=99%)

n

tim
e 

(s
)

0 10 20 30 40 50
10

−3

10
−2

10
−1

10
0

10
1

computation time set 1 (perf.=99%)

A

tim
e 

(s
)

cvx
dba

Fig. 11. Median computation times obtained after 10 runs for
the two problem sets. In blue the results for dispersion-based
method (dba). In red the results for cvx. Only the time for
the optimization process is considered.

0 5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

10
0

computation time for base non−overlapping symmetric set (Nb=2)

Nu

tim
e 

(s
)

3 4 5 6 7 8 9 10
10

−4

10
−2

10
0

10
2

10
4

computation time for non−overlapping symmetric set (Nu=3)

Nb

tim
e 

(s
)

Fig. 12. Median computation time for the non-overlapping
symmetric set, obtained after 10 runs.

performance compared to general purpose convex op-
timization algorithms for the presented optimal input
problem. However, it turns out that the highest com-
putational cost is not in the optimization of the design,
but in the computation of the set describing the search
space. As long as this bottle neck is not removed the
choice of optimization algorithm is not critical. For per-
formance comparison for large scale random optimal
problems we refer to [23], where it is shown that for
problems with 1000 variables or more, interior point
methods have the best performance.

8 System Memory vs Subsequence Length

Until now we have assumed that the length of the subse-
quences and the memory of the system are equal. In [28]
the connection between length of the subsequences and

13



memory length has not been examined. In this section
we will illustrate why it is optimal to choose the length of
the subsequences and the memory of the system equal.
The subsequence length determines the search space of
input sequences in which we try to find the optimal se-
quence. Remember that this search space corresponds
to a polyhedron of which the corner points can be found
through the elementary cycles of the associated graph.
The longer the subsequence length the more complex the
graph and the more corner points the polyhedron has.
The memory length of the system determines how any
sequence from search space of input sequences is mapped
onto a frequency vector. The longer the memory length,
the larger the frequency vector search space becomes.
As a result less sequences will be mapped on the same
frequency vector.
If we chose the subsequence length and memory length
equal, the corner points are mapped on a set of con-
vex independent frequency vectors. However, when the
memory length is smaller than the subsequence length,
this is no longer the case. Some of the frequency vec-
tors can now be written as a convex combination of the
others. In other words the effort made to compute the
additional corner points is wasted since the mapping to
the frequency vector space makes some corner points re-
dundant.
When the memory length of the subsystem is larger
than the subsequence length. All corner points will be
uniquely mapped to frequency vectors. However, com-
pared to the case of equal lengths, the search space is
now smaller. This reduction may exclude more informa-
tive designs that are still realizable.

9 Conclusion

In this work a solution to the problem of D-optimal in-
put design for nonlinear FIR-type systems with an input
taking a finite set of possible values has been presented.
By expressing the optimization problem with respect
to the relative frequency vector, instead of the time
sequence, the problem became convex. This convex
problem was solved with an unconstrained optimization
scheme based on the dispersion function.
However, it turned out that additional constraints are
needed in order to guarantee that the optimal design
can be realized as a time sequence. By imposing that the
solution should lie in the subspace described by a sym-
metric and non-overlapping basis, a realizable solution
was obtained that is optimal in its subspace of con-
strained solutions and remains numerically tractable.
In order to find a time sequence that realizes this op-
timal constrained design, the associated graph was
introduced. It was shown that a path, using all edges in
the graph as many times as their multiplicity indicates,
corresponds to a time sequence that realizes the design.
Comparing the realization of the constrained design
with the realizations of a random and unconstrained
design showed that the determinant was highest for the

unconstrained design. However, it can not be guaran-
teed that this design is realizable without a significant
loss in determinant value. Therefore, the constrained
design is proposed as an attractive alternative, because
it can always be realized.
The methods presented in this paper were applied on a
simple numerical example. Additionally the computa-
tional cost of the method was compared with the general
purpose convex optimizer cvx. From this comparison it
turned out that the dispersion based method has similar
or better performance for medium sized problems.

Acknowledgements

This work was supported in part by the Fund for Sci-
entific Research (FWO-Vlaanderen), by the Flemish
Government (Methusalem), by the Belgian Government
through the Inter university Poles of Attraction (IAP
VII) Program, and the ERC Advanced Grant SNLSID.

References

[1] X. Bombois, G. Scorletti, M. Gevers, P.M.J. Van den Hof,
and R. Hildebrand. Least costly identification experiment
for control. Automatica, 42(10):1651–1662, October 2006.

[2] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, New York, NY, USA, 2004.

[3] B.L. Cooley and J.H. Lee. Control-relevant experiment
design for multivariable systems described by expansions
in orthonormal bases. Automatica, 37(2):273–281, February
2001.

[4] A. De Cock, M. Gevers, and J. Schoukens. A preliminary
study on optimal input design for nonlinear systems. In
Decision and Control (CDC), 2013 IEEE 52nd Annual
Conference on, pages 4931–4936, Dec 2013.

[5] V. Dinh, Rundell AE., and GT. Buzzard. Experimental
design for dynamics identification of cellular processes. Bull
Math Biol., 76(3):597–626, 2014.

[6] M. Fleury. Deux problèmes de géométrie de situation.
Journal de mathématiques élémentaires, 2nd:257–261, 1883.

[7] M. Forgione, X. Bombois, P.M.J. Van den Hof, and
H. Hjalmarsson. Experiment design for parameter estimation
in nonlinear systems based on multilevel excitation. In
Control Conference (ECC), 2014 European, pages 25–30,
June 2014.

[8] G Franceschini and S Macchietto. Model-based design
of experiments for parameter precision: State of the art.
Chemical Engineering Science, 63:4846–4872, 2008.

[9] F Galvanin, M Barolo, S Macchietto, and F Bezzo. Optimal
design of clinical tests for the identification of physiological
models of type 1 diabetes mellitus. Industrial & Engineering
Chemistry Research, 48:1989–2002, 2009.

[10] M. Gevers, X. Bombois, R. Hildebrand, and G. Solari.
Optimal experiment design for open and closed-loop system
identification. Communications in Information and Systems,
11(3):197–224, 2011.

[11] M. Gevers, M. Caenepeel, and J. Schoukens. Experiment
design for the identification of a simple Wiener system.
In Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on, pages 7333–7338, Dec 2012.

14



[12] G.C Goodwin and R.L. Payne. Dynamic System
Identification: Experiment Design and Data Analysis, volume
136 of Mathematics in Science and Engineering. Academic
Press, 1977.

[13] R.B. Gopaluni, T. B. Schn, and A.G. Wills. Input design
for nonlinear stochastic dynamic systems - a particle filter
approach. In 18th IFAC World congress, Milano, Italy., 2011.

[14] K.A. Hawick and H.A. James. Enumerating circuits and loops
in graphs with self-arcs and multiple-arcs. In Proceedings
of the 2008 International Conference on Foundations of
Computer Science, 2008.

[15] H.Fleischner. Eulerian Graphs and Related Topics, volume
Part1,Volume 2 of Annals of Discrete Mathematics. Elsevier,
1990.

[16] R. Hildebrand, M. Gevers, and G. Solari. Closed-loop optimal
experiment design: solution via the moment extension. IEEE
Trans. Auto. Control, 60(7):1731–1744, July 2015.

[17] H. Hjalmarsson. System identification of complex and
structured systems. European Journal of Control, 15(3-
4):275–310, 2009.

[18] H. Hjalmarsson, J. Martensson, and B. Ninness. Optimal
input design for identification of non-linear systems: Learning
from the linear case. In American Control Conference, 2007.
ACC ’07, pages 1572–1576, July 2007.

[19] H. Jansson and H. Hjalmarsson. Optimal experiment design
in closed loop. In 16th IFAC World Congress on Automatic
Control, paper 04528, July 2005.

[20] D.B. Johnson. Finding all the elementary circuits of a
directed graph. SIAM Journal on Computing, 4:77–78, 1975.

[21] J.Schoukens and R.Pintelon. Identification of Linear
Systems: A Practical Guideline to Accurate Modeling.
Pergamon Press, 1991.

[22] C.A. Larsson, H. Hjalmarsson, and C.R. Rojas. On optimal
input design for nonlinear FIR-type systems. In Decision
and Control (CDC), 2010 49th IEEE Conference on, pages
7220–7225, Dec 2010.

[23] Zhaosong Lu and Ting Kei Pong. Computing optimal
experimental designs via interior point method. SIAM
Journal on Matrix Analysis and Applications, Vol. 34, No.
4:1556–1580, 2013.

[24] M.Grant and S.Boyd. CVX: Matlab software for disciplined
convex programming, version 2.1, March 2014.

[25] R. Pintelon and J. Schoukens. System Identification: A
Frequency Domain Approach. John Wiley & Sons, 2004.

[26] Jos F. Sturm. Using sedumi 1.02, a matlab toolbox for
optimization over symmetric cones. Optimization Methods
and Software, 11(1-4):625–653, 1999.

[27] D. Telen, F. Logist, R. Quirynen, B. Houska, M. Diehl,
and J. Van Impe. Optimal experiment design for nonlinear
dynamic (bio)chemical systems using sequential semidefinite
programming. AlChE J., 60:1728–1739, 2014.

[28] P. E. Valenzuela, C. R. Rojas, and H. Hjalmarsson. A
graph theoretical approach to input design for identification
of nonlinear dynamical models. Automatica, Vol 51:pp 233–
242, January 2015.

[29] T.L.. Vincent, C. Novara, K. Hsu, and K. Poolla. Input design
for structured nonlinear system identification. Automatica,
46:990–998, 2010.

[30] V.V.Federov. Theory of Optimal Experiments. Academic
Press, 1972.

[31] Y. Yu. Monotonic convergence of a general algorithm
for computing optimal designs. The Annals of Statistics,
38:1593–1606, 2010.

15


	1 Introduction
	2 Problem Statement
	3 Problem Solution
	3.1 Subsequences
	3.2 Fisher information and frequency vector
	3.3 Dispersion function
	3.4 Optimization Algorithm

	4 Signal Generation
	5 Constrained Optimization
	5.1 Non-overlapping Symmetric Set
	5.2 Symmetric Designs
	5.3 Optimization Algorithm Revisited

	6 Numerical Example
	6.1 Unconstrained optimization
	6.2 Evolution of the Determinant
	6.3 Constrained optimization
	6.4 Computing the Dispersion
	6.5 Signal Generation
	6.6 Comparing Designs

	7 Computation time
	7.1 Stopping Condition
	7.2 Problem Parameters
	7.3 Effect of the Amplitude Levels
	7.4 Effect of the Memory Length
	7.5 Computing the Non-Overlapping Symmetric Set
	7.6 Summary of the Results

	8 System Memory vs Subsequence Length
	9 Conclusion
	Acknowledgements
	References

