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Abstract

We consider the problem of computing an approximate banded solution of the continuous-time Lyapunov equationAX+XAT =
P , where the coefficient matrices A and P are large, symmetric banded matrices. The (sparsity) pattern of A describes the
interconnection structure of a large-scale interconnected system. Recently, it has been shown that the entries of the solution
X are spatially localized or decaying away from a banded pattern. We show that the decay of the entries of X is faster if the
condition number of A is smaller. By exploiting the decay of entries of X, we develop two computationally efficient methods
for approximating X by a banded matrix. For a well-conditioned and sparse banded A, the computational and memory
complexities of the methods scale linearly with the state dimension. We perform extensive numerical experiments that confirm
this, and that demonstrate the effectiveness of the developed methods. The methods proposed in this paper can be generalized
to (sparsity) patterns of A and P that are more general than banded matrices. The results of this paper open the possibility
for developing computationally efficient methods for approximating the solution of the large-scale Riccati equation by a sparse
matrix.

1 Introduction

Large-scale interconnected systems consist of the in-
terconnection of a large number of dynamical subsys-
tems [1–15]. The focus of this paper is on the large-scale
interconnected systems described by state-space mod-
els with (sparse) banded matrices 1 . The importance of
this class of interconnected systems is best illustrated by
the fact that state-space models with banded matrices
are obtained by discretizing Partial Differential Equa-
tions (PDEs) using the finite difference or finite element
methods [16,17]. Each discretization node or a group of
discretization nodes can be seen as a subsystem, and the
discretization mesh can be interpreted as a network of
dynamical systems [17,18].
The Lyapunov equation is ubiquitous in systems and
control theory and in signal processing [19]. For us, the
most interesting application of the Lyapunov equation,
is in the methods for solving the optimal control (esti-
mation) problems of large-scale systems [20,21]. Namely,
the solution of the Linear Quadratic (LQ) optimal con-
trol problem can be found by solving the Riccati equa-
tion. A widely used method for solving the Riccati equa-
tion is the Newton method [20,22–27]. In each step of the
Newton method it is necessary to solve the Lyapunov or

? Corresponding author: A. Haber, email address: aleksan-
dar.haber@gmail.com.
1 The results of this paper can be extended to matrices with
more general sparsity patterns.

Sylvester equations (or the Stein equation for discrete-
time systems, see for example [28]). Further applications
of the Lyapunov and Sylvester equations can be found
in [19,21].
The goal of this paper is to analyze the solution of the
Lyapunov equation for large-scale interconnected sys-
tems and to develop computationally efficient methods
for approximating the solution by a (sparse) banded ma-
trix. Specifically, we consider the large-scale, continuous-
time Lyapunov equation:

AX +XAT = P (1)

where A ∈ RNn×Nn is a (symmetric) negative definite,
banded matrix describing the global dynamics of an in-
terconnected system, X ∈ RNn×Nn is a solution that
we are searching for, P ∈ RNn×Nn is a banded, negative
definite matrix, N is a large number representing the to-
tal number of subsystems and n� N is the state order
of subsystems. Obviously, finding the solution of (1) is
a computationally challenging task. The computational
challenges in solving the Lyapunov equation for large-
scale systems are perhaps best described by the author
of the recent survey [21] on linear matrix equations: ”A
distinctive feature in the large-scale setting is that coef-
ficient matrices (the matrices A and P ) may be sparse,
the solution matrix is usually dense and thus impossible
to store in memory... For A in the order of 104 or larger
the solution cannot be stored explicitly...”

A large variety of methods for solving the large-scale
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Lyapunov equation are coping with this problem by
searching for a low rank approximation X̃ = ZZT to
the ”true” solution X, where Z is the ”tall” matrix that
is computed and stored [21]. However, the approximate

solution in the form of X̃ = ZZT is a completely dense
(fully populated) matrix. Taking into account that the
Newton method solves the Riccati equation by solving
series of the Lyapunov equations, the solution to the
Riccati equation is also dense. This implies that the
feedback matrix of the LQ control law is also dense.
However, for the distributed control of large-scale inter-
connected systems, we would like to compute a sparse
feedback matrix [10, 29, 30]. Namely, a sparse feedback
matrix enables us to implement the controller on a net-
work of sensors, actuators and computing units that
communicate locally. On the other hand, due to the fact
that the computational and memory complexities of
multiplying a vector with a sparse matrix are linear, a
sparse feedback matrix implies that the centralized LQ
control law can be implemented with linear complexity.
If it were possible to accurately approximate the solu-
tion of the Lyapunov equation by a sparse matrix, then
by using the inexact Newton methods [23] it would be
possible to determine a sparse approximate solution
of the Riccati equation. That is, if the solution of the
Lyapunov equation can be accurately approximated by
a sparse matrix, then the LQ feedback matrix can also
be approximated by a sparse matrix.
In [29–31], several methods have been developed for
computing sparse, optimal feedback gains. However,
the computational and memory complexities of these
methods are O(N3) and O(N2), respectively, and conse-
quently, these methods are not applicable to large-scale
systems.
The above explained problems motivate us to search for
the answers to the following questions:

(1) Is the solution X spatially localized? Under the
term of a ”spatially localized matrix”, we understand
a matrix whose entries decay quickly in magnitude
outside a (sparsity) pattern (for example, outside a
bandwidth of a matrix) [32]. Off-diagonally decaying
matrices [32–34] are typical examples of spatially lo-
calized matrices. Roughly speaking, the off-diagonal
elements are bounded by an exponential function that
decays away from the main diagonal.
(2) Can the solution of (1) be accurately approximated
by a banded matrix, possibly sparse 2 , and can this
approximate solution be computed with O(N) compu-
tational and memory complexities? There is a strong
correlation between this question and the first one, be-
cause if a matrix is spatially localized then it can be
accurately approximated by a sparse matrix [1].

2 Under the term of a ”sparse banded matrix”, we under-
stand a banded matrix whose bandwidth is much smaller
than its dimensions.

Regarding the first question, it has already been shown
that X is a spatially localized matrix. Namely, the Lya-
punov equation can be rewritten as a linear system of
equations, in which the coefficient matrix is a Kronecker
sum of the matrix A and the identity matrix. In [35,36],
it has been shown that the inverses of symmetric, pos-
itive definite, banded matrices with a Kronecker sum
structure are off-diagonally decaying matrices (with a
non-monotonic decay) and several bounds on the off-
diagonal decay rate have been derived. These important
results imply that X is a spatially localized matrix [37].
However, because the upper-bounds on the off-diagonal
decay rate presented in [35–37] have a relatively com-
plex integral form, they need to be evaluated numeri-
cally. Consequently, from these bounds it might be hard
to draw important conclusions on how the condition
number of banded A influences the decay rate of entries
of X. It should come as no surprise that the condition
number of A dominantly determines the decay rate of
X, because it is well-known that the decay rates of ma-
trix functions, such as A−1, are primarily determined
by the condition number of A [34]. On the other hand,
in [32, 35], it has been shown that the matrix exponen-
tial of A, denoted by exp (tA), where t is time, is also
an off-diagonally decaying matrix.

By exploiting the fact that the solution of the Lyapunov
equationX and the matrix exponential exp (tA) are spa-
tially localized matrices, we develop two computation-
ally efficient methods for approximating X by a banded
matrix. Furthermore, we show that the decay of entries
ofX is faster if the condition number ofA is smaller. Our
results indicate that for a well-conditioned and sparse
banded A, the proposed methods are able to approxi-
mate the matrix X with O(N) complexity. The results
of this paper open the possibility for developing compu-
tationally efficient methods for approximating the solu-
tion of the large-scale Riccati equation by a sparse ma-
trix. Furthermore, the results of this paper can also be
generalized to diagonalizable banded matrices A, and to
matrices with more general (sparsity) patterns, see Sec-
tion 3.2.

This paper is organized as follows. In Section 2, we
present the problem formulation. In Section 3, we ana-
lyze the decay of entries of X and we present a method
for estimating the a priori pattern of an approximate
solution. In Section 4, we develop two methods for ap-
proximating X. In Section 5, we present numerical ex-
periments, and in Section 6 we present conclusions.

2 Problem formulation

2.1 Notation

The notation X = [xi,j ] denotes a matrix whose (i, j)
entry is xi,j , whereas X = [Xi,j ] denotes a block ma-
trix whose (i, j) entry is the matrix Xi,j . The notation
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z = col (z1, z2, . . . , zM ) stands for z = [zT1 zT2 . . . zTM ]T .
An N ×N matrix X = [xi,j ] is called a banded matrix if
there exists an even positive integer s, such that xi,j = 0
when |i− j| > s/2 [34]. The number s is called the band-
width ofX and we say that the matrixX is s-banded [34].
For example, a tridiagonal matrix is 2-banded. If s� N ,
thenX is called a sparse banded matrix. If the matrixX1

has the bandwidth s1 and the matrix X2 has the band-
width s2, then the product X1X2 has the bandwidth
equal to s1 + s2. The notations ‖X‖2 and ‖X‖F denote
the 2-norm and the Frobenius norm of X, respectively.
The symbol ⊗ denotes the Kronecker product, and the
operator vec (X) is a standard ”vec” operator [38]. The
(column) vector qj denotes a vector that has all zeros
except 1 on the position j [37]. For example, a matrix Z,
having only one non-zero element zi,j at position (i, j),
can be represented by Z = qizi,jq

T
j .

We consider a subsystem Si:

Si

{
ẇi(t) = Ai,iwi(t) +

∑i+b
j=i−b,j 6=iAi,jwj(t)

yi(t) = Ciwi(t)
(2)

where wi(t) ∈ Rn is the local state of the subsystem
Si and yi(t) ∈ Rr is the local output, Ai,j ∈ Rn×n and
Ci ∈ Rr×n and t is time. The state-space model of the
global system S is:

S

{
ẇ(t) = Aw(t)

y(t) = Cw(t)
(3)

where w(t) = col (w1(t), . . . ,wN (t)),
y(t) = col (y1(t), . . . ,yN (t)), A ∈ RNn×Nn and C ∈
RNr×Nn. The vectors w(t) ∈ RNn and y(t) ∈ RNr are
called the global state and global output, respectively.
We assume that the total number of subsystems N is a
large number and that n� N . Furthermore, we assume
that b � N . That is, we assume that the matrix A is a
sparse banded matrix. The bandwidth of A is denoted
by m� N . We assume that the matrix A is symmetric
and asymptotically stable (although all the methods in
this paper can be generalized to banded diagonalizable
matrices and to matrices with more general patterns, see
Section 3.2). Finally, we assume that the matrix P in
(1) is a sparse, banded matrix with the bandwidth equal
to l, where l � N . For example, the model (3) can be
obtained by discretizing the 2D or 3D partial differential
equations using the finite difference methods [16,17].

Methods for solving (1) will be built upon on the follow-
ing two representations of the solutionX [37,39]. Taking
into an account the symmetry of A, the (unique) solu-
tion of (1) has the integral representation [39]:

X = −
∫ ∞
0

exp (tA)P exp (tA) dt (4)

By vectorizing (1), we obtain:

Ax = p, (5)

x = A−1p (6)

where A ∈ R(Nn)2×(Nn)2 , x,p ∈ R(Nn)2 are defined by:

A = I ⊗A+A⊗ I, x = vec (X) , p = vec (P ) (7)

and where I is an Nn × Nn identity matrix. Based on
the fact that the entries of the solution X are decaying
away from a banded pattern (in some cases they exhibit
a damped oscillatory behavior) [35–37], in the sequel
we will develop two methods for approximating X by a
(sparse) banded matrix. The first method looks for an
approximate solution by solving a least-squares problem
formed on the basis of (5). The least-squares problem is
formed by eliminating the columns ofA and the elements
of x corresponding to the small elements of X that are
predicted by the decaying property. The second method
consists of the following two steps. In the first step, the
integral in (4) is approximated by a banded matrix. This
approximation is obtained by exploiting the fact that
exp (tA) is an off-diagonally decaying matrix [32, 35].
In the second step, the accuracy of this approximate
solution is additionally improved by using the gradient
projection method [40]. We start with the analysis of the
decaying behavior of entries of X.

3 Decay rate analysis and a priori pattern of X

The goal of this section is to analyze the influence of
the condition number of A on the decay of entries of X,
and to develop a method for the prediction of the a pri-
ori (sparsity) pattern of the approximate solution. Im-
portant insights obtained in this section will be used in
Section 4 to develop computationally efficient approxi-
mation methods.

Definition 1 [32, 34, 36, 41] We say that an Nn×Nn
matrix Z = [zi,j ] is an off-diagonally decaying matrix if

there exist τ > 0 and ρ ∈ (0, 1) such that |zi,j | ≤ τρ|i−j|

for all i, j = 1, . . . , Nn. �

The constant ρ is referred to as the decay rate of Z [41].
We will use theoretical results developed in [32,34–36,42]
to analyze the decay rate of X, as well as to provide
insights on how the condition number of A influences
the decay rate.

3.1 The influence of the condition number ofA on decay
of X

The constants a and b are defined by a = λmin (A) and
b = λmax (A), where λmin (·) and λmax (·) denote mini-
mal and maximal eigenvalues, respectively. Given that
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the matrix A is a symmetric, asymptotically stable ma-
trix, we have that a < 0 and b < 0 and |b| ≤ |a|. The
complexity analysis of computing a and b is discussed in
Section 4.3. The condition number of A will be denoted
by κ. It follows that κ = a/b.

For presentation clarity, we will first consider a special
case, when the matrix P is a diagonal matrix, and sub-
sequently we will consider a more general case when the
matrix P is a banded matrix (or even fully populated).
Let us suppose that P = γI, γ < 0. Then, because A

is symmetric, it can be verified that X = ((2/γ)A)
−1

satisfies (1). Due to the fact that γ < 0, we have X =

((2/γ)A)
−1

= (|γ|/2) (−A)
−1

. Because by assumptionA
is asymptotically stable, symmetric matrix, the matrix
−A is positive definite, and consequently, from Theorem

2.4 in [34], it follows that (−A)
−1

is an off-diagonally de-
caying matrix. This further implies that X = [xi,j ] is an

off-diagonally decaying matrix, that is, |xi,j | ≤ τρ|i−j|,
where

τ =
|γ|
2
K1, K1 =

1

|b|
max {1, (1 +

√
κ)

2

2κ
},

ρ =

(√
κ− 1√
κ+ 1

) 2
m

(8)

From (8) we see that the decay rate of X depends on
the condition number of A. Specifically, if A is well-
conditioned (κ is close to 1), then the decay rate 3 is fast
(the number ρ is small). Now, does X exhibit a similar
behavior when P is a sparse banded matrix? Not surpris-
ingly, the answer is yes. Before we show this, it should be
first observed that the matrix A is also an off-diagonally
decaying matrix. Namely, from [39] (Theorem 13.16) it
follows that:

λmax (A) = 2λmax (A) = 2b, λmin (A) = 2λmin (A) = 2a
(9)

This implies that the condition numbers of A and A are
equal. On the other hand, because A is m-banded, the
matrix A is m1-banded, with m1 = Nnm [36]. Further-
more, the matrix A is negative definite. Similarly to the
analysis of the decay rate of X (for the case of a diag-
onal P ), applying the results of Theorem 2.4 in [34] to
−A, we conclude that A−1 is an off-diagonally decaying
matrix, with the decay rate specified by:

τ1 =
1

2|b|
max {1, (1 +

√
κ)

2

2κ
}, ρ1 =

(√
κ− 1√
κ+ 1

) 2
m1

(10)

3 Beside κ, we see that the minimal singular value |b| of A
determines the off-diagonally decaying behavior. Through-
out the paper we will assume that |b| is not very small, which
implies that the decaying behavior of A is primarily deter-
mined by κ.

By comparing (8) and (10), we conclude that the decay
rates ρ of X (for the case of diagonal P ) and ρ1 of A−1,
have the same exponential base (determined by κ). Fur-
thermore, we see that because m1 is by several orders
of magnitude larger than m, the decay rate of A−1 is
slower than the decay rate of X. However, the matrix
A−1 is much larger than X. Furthermore, taking into
account the sizes and the bandwidths of the correspond-
ing matrices, the entries of both matrices that are far
away from the corresponding main diagonals or band-
widths, are small when the matrix A is well-conditioned.
To further analyze the decay rate of X, we represent the
matrix P = [pi,j ] as follows [37]:

P =

Nn∑
i=1

Nn∑
j=1

P i,j (11)

where P i,j = qipi,jq
T
j and where qi and qj are defined

in Section 2.1. For notation simplicity and presentation
clarity, in (11) and throughout the rest of this section, we
have formally ignored the fact that most of the entries of
P are zero (the matrix P is l-banded, so its entries pi,j for
which |i− j| > l/2, are equal to zero). While interpret-
ing the results, it should be kept in mind that the sum-
mation in (11) and in subsequent expressions, should be
performed only with respect to the indices (i, j) belong-
ing to the bandwidth region. Let Xi,j ∈ RNn×Nn be the
solution of the Lyapunov equation:

AXi,j +Xi,jA = P i,j = qipi,jq
T
j (12)

where i, j = 1, . . . , Nn. Then, because of the linearity
of the Lyapunov equation it follows that its solution can
be decomposed as follows [37]:

X =

Nn∑
i=1

Nn∑
j=1

Xi,j (13)

where each of Xi,j is the solution of (12). The decompo-
sition (13) enables us to prove the following theorem.

Theorem 2 Let xi,j = vec
(
Xi,j

)
and let the element of

xi,j on the position s, s = 1, . . . , (Nn)2, be denoted by
xi,js , then

|xi,js | ≤ |pi,j |τ1ρ
|φ(i,j)−s|
1 (14)

where φ(i, j) = (j − 1)Nn+ i and ρ1 and τ1 are defined
in (10). Moreover, let the element of x = vec (X) on the
position s be denoted by xs, then

|xs| ≤ τ1
Nn∑
i=1

Nn∑
j=1

|pi,j |ρ|φ(i,j)−s|1 (15)
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Proof: After applying vec (·) operator to (12), we ob-
tain:

Axi,j = pi,jq(j−1)Nn+i, xi,j = pi,jA−1q(j−1)Nn+i
(16)

and according to our notation the vector q(j−1)Nn+i
has 1 on the position (j − 1)Nn + i. Let the φ(i, j) =
((j − 1)Nn+ i)-th column ofA−1 be denoted by θ(i,j) ∈
R(Nn)2 . Let the element of θ(i,j) on the position s be de-

noted by θ
(i,j)
s . From (16) it follows that xi,j is equal to

the φ(i, j)-th column of A−1 multiplied by a constant
pi,j :

xi,j = pi,jθ(i,j) (17)

Given that A−1 is an off-diagonally decaying matrix,
the absolute values of elements of its each column are
bounded by an exponential function that decays away
from the element on the main diagonal. The element of
θ(i,j) that is on the main diagonal of A−1 is the element

θ
(i,j)
r for which r = φ(i, j). All this implies that for the

entries on the φ(i, j)-th column of A−1 we can write:

|θ(i,j)s | ≤ τ1ρ|φ(i,j)−s|1 (18)

From (17) and (18) we obtain (14). By vectorizing (13)
and using (14), we can similarly prove (15). �

Although conservative compared to the bounds in [35–
37], the bounds in (14) and (15) can be used to analyze
the dependence of the decay rate of X on the condition
number of A. Namely, the upper bound (14) on the en-
tries xi,js of the vector xi,j , has a maximum value for the
entry s = φ(i, j). When, on the other hand, xi,j is trans-
formed back to a matrix format, this maximum corre-
sponds to the (i, j) entry of Xi,j . Roughly speaking, we
also see that the entries of Xi,j that are further away
from the entry (i, j), are bounded by a function that de-
cays as the distance between these entries and the entry
(i, j) is increased. The decay rate is determined by the
condition number of A (or equivalently by the condition
number of A). If A is well-conditioned, this decay is fast.
Now, taking into account that P is sparse and banded,
we have that the upper bounds have maximal values for
the entries (i, j) located in the bandwidth region of P .
On the other hand, from (13), we see that the decaying
behavior of X is determined by the sum of locally de-
caying behaviors of each individual Xi,j (it should be
remembered that the sum in (13) is only performed over
the indices (i, j) for which pi,j is not zero, that is, for the
entries inside the bandwidth of P ). This leads us to the
conclusion that the elements ofX that are far away from
the bandwidth of P should be relatively small for well
conditioned A. This insights and the insights provided
in Section 3.2, will enable us to develop computationally
efficient algorithms for approximating X in Section 4.

3.2 Predicting the sparsity pattern of X

In Section 4, we will develop computationally efficient
methods for approximating X. To develop these meth-
ods, we need to chose an a priori (sparsity) pattern of
X. From the previous discussion, we may conclude that
if the matrix A is well-conditioned then the entries of X
that are far away from the bandwidth region of P are
small. Consequently, the a priori pattern can be chosen
as a (sparse) banded matrix. By neglecting the entries of
x that are outside this pattern, we can reduce the dimen-
sion of the linear system (5), and we can obtain its so-
lution by solving a least squares problem. Furthermore,
the reduced coefficient matrix of this system is sparse,
and this sparsity can be exploited to quickly compute
the solution.

However, a banded a priori pattern can sometimes be
suboptimal in the sense that the ”true” solution X has a
large number of small entries inside of the banded a pri-
ori pattern (this can happen for example when the en-
tries of X exhibit an oscillatory behavior). This can lead
to unnecessary increase of the computational and mem-
ory complexities of the proposed algorithms. Is there a
more optimal a priori pattern, that can more accurately
capture the ”true” behavior of the entries of X? More-
over, we might ask ourselves what should be an a priori
pattern in the case of more general patterns of the coef-
ficient matrices A and P?

Due to the Kronecker sum structure of A, the entries of
A−1 exhibit a dominantly oscillatory behavior [35–37].
Relatively good estimates of this behavior are presented
in [35–37]. Moreover, from [35–37] it follows that for
problems for which A is a Kronecker sum, A = I ⊗Z1 +
Z1⊗I, where Z1 is a sparse banded matrix, the entries of
X also exhibit an oscillatory behavior. These important
insights can be used to design a priori patterns that op-
timally (meaning that the number of non-zero elements
is smaller than the number of non-zero elements of a
banded matrix) capture the ”true” behavior of the en-
tries of X. For example, these results can indicate that
the a priori pattern of X should be a multi-banded ma-
trix (matrix that has series of zero and non zero diagonals
below or above the main diagonal, examples are shown
in Fig. 9(b) and Fig. 10(d)). On the other hand, decay
bounds available in the literature indicate that the re-
sults of this paper can be generalized to non-symmetric
matrices A and A. Namely, Theorem 3.5 in [32] proves
that functions of diagonalizable banded matrices also
exhibit a form of the off-diagonal decay. Moreover, from
Theorem 3.4 in [32], it follows that functions of more
general class of diagonalizable sparse matrices (not nec-
essarily banded) are spatially localized. The practical
potential of the results presented in [35–37] for determin-
ing the optimal a priori pattern of X will be investigated
in our future work.

In this paper, we will present a relatively simple ap-
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proach that can give us additional insights into a more
optimal a priori pattern of X. Furthermore, this ap-
proach can be applied to a more general class of sparse
matrices A and P , such as sparse multi-banded matri-
ces or even non-symmetric matrices. Namely, using the
Neumann representation of the matrix inverse or the
fact that a matrix satisfies its characteristic polynomial,
in [43] it has been shown that a relatively good guess of
the a priori pattern of A−1 is given by the pattern of the
following matrix:

C = I +A+A2 + . . .+Az1 (19)

For simplicity and without the loss of generality, in (19)
we will assume that zero entries of C are not created by
incidental cancellations of non-zero entries of matrices
produced by taking and summing up powers of A [43].
If A is m1-banded, then from (19) it follows that C is
z1m1-banded. Next, if the matrix A is (sparse) banded,
then the matrix C will also be banded, for small values of
z1. Also, under the same conditions, multi-banded struc-
ture of A or consequently of A, will be preserved in C.
The fundamental question that needs to be asked is how
large z1 should be such that the majority of the signifi-
cant entries of A−1 are captured by the sparsity pattern
of C, and is there a connection between z1 and the con-
dition number of A? The answers to these questions can
be obtained by analyzing the accuracy of the expansions
from which the expression (19) originates. However, this
might be a nontrivial problem. Instead, we use an alter-
native way to show that for well-conditioned A, a rela-
tively good guess of the a priori pattern ofA−1 is formed
by summing up a relatively low powers ofA in (19). This
will be shown by considering the Newton-Schultz itera-
tion [44] for approximating 4 A−1. The Newton-Schultz
iteration is defined by [44]:

Bk+1 = Bk (2I −ABk) , k = 0, 1, 2, . . . (20)

where Bk is the approximation of A−1 at the k-th iter-
ation. The iteration is initialized by B0:

B0 =
2

a21 + b21
AT (21)

where a1 and b1 are the maximal and minimal singular
values of A, respectively. The accuracy at the k-th itera-
tion of the Newton-Schultz iteration is measured by the
norm of Ek = I−ABk. Using the fact that a1 = 2|a| and
b1 = 2|b| (see (9)), and using the results of [44], it can be

4 The Newton-Schultz iteration will only be used to argue
about the relationship between the condition number and
the a priori pattern, and it will not be used to compute the
a priori pattern.

easily shown that (see for example Theorem 3.1 in [1])

‖Ek‖2 ≤
(
κ2 − 1

κ2 + 1

)2k

(22)

Similarly to (19), the Newton-Schultz iteration (20) tells
us that the relatively good guess of the a priori pattern
of A−1 is given by the sum of powers of A. This can be
easily shown by starting from the initial guess (21), and
by propagating the recursion (20). It should be remem-
bered that from the (sparsity) pattern point of view, in
which we only focus on the structure but not on the
exact numerical values of the entries, the patterns pro-
duced by (19) and (20) can be made to be identical,
and are mainly determined by the maximal powers of A
that are determined by the parameters z1 and k. Fur-
thermore, the bound (22) tells us that if the matrix A
is well-conditioned (it should be remembered that the
condition numbers of A andA are equal), then the num-
ber k that produces a good approximation accuracy of
the Newton-Schultz iteration is relatively small. Under
the condition that A is sparse multi-banded, small k or
equivalently, small z1, produces sparse multi-banded C.
That is, the parameter z1 in (19), that primarily deter-
mines the structure of the a priori pattern, should be
small for well-conditioned A.

Taking into account (6) and (19), we have that the pat-
tern of the vectorized solution x can be estimated by the
pattern (or non-zero entries) of the vector x2:

x2 = Cp (23)

For a largeN , the vector x2 cannot be computed directly
from (23), simply because it is impossible to explicitly
form the powers of A. Instead, the vector x2 should be
expressed as the sum ofAlp, l = 1, 2, . . . , z1. Then, using
the main properties of the Kronecker sum, these terms
should be written as matrices (by reversing the vector-
izing operation that is used to form (6)), and summed
up together to form the matrix representation of x2. For
example, the term Ap, when transformed back to a ma-
trix format, has the following form AP +PA. Similarly,
the term s2 = A2p can be written as

s2 = (I ⊗A+A⊗ I)p1, p1 = (I ⊗A+A⊗ I)p
(24)

and when transformed back to a matrix format S2, the
term s2 has the following form:

S2 = AP 1 + P 1A, P 1 = AP + PA (25)

The equation (25) implies that the entries Alp can be
computed recursively, involving Lyapunov-like opera-
tors 5 of the form (25). That is, the a priori pattern, de-

5 This is not a Lyapunov equation because P is known.
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fined by (23), can be efficiently computed by performing
operations on (Nn)×(Nn) sparse (multi) banded matri-
ces. Our numerical experience shows that the complex-
ity of computing a priori pattern for small values of z1,
is negligible compared to the complexity of the methods
for approximating X, presented in Section 4.

Finally, it should be observed that the initial guess of
the a priori pattern of X, given by (19), can be used for
other classes of sparse matrices A and P , such as non-
symmetric banded matrices for example.

4 Methods for computing sparse approximation
to X

Using the insights from previous sections, in this section
we develop two methods for computing (sparse) banded
approximations to X.

4.1 First method

For presentation clarity and brevity, in this section we
will restrict our attention to banded a priori patterns of
X. All the methods can be extended to multi-banded or
even more general a priori patterns, see also Section 3.2
and numerical experiments in Section 5.3.

Due to the fact that the a priori pattern is a banded
matrix, the entries of x corresponding to the entries of
X outside the a priori bandwidth, should be eliminated.
Let Xy be a y-banded, Nn×Nn, binary matrix whose
non-zero entries denote the a priori pattern of X. Let us
assume that y � nN , that is, the matrix Xy is sparse

and banded. Define the vector xy = vec
(
Xy

)
. Let the

vector x̃y ∈ RN1 be defined by taking non-zero elements
of xy and stacking them on top of each other. Given that
the matrix Xy is sparse and banded, we have that N1 �
(Nn)2 (N1 is in the order of Nn). Let the matrix Ã1 ∈
R(Nn)2×N1 be defined by eliminating the columns of A
corresponding to the zero entries of xy. Depending on the
bandwidth y and the pattern and the bandwidth of A,
this elimination of columns of A might induce zero rows
of Ã1, that together with the corresponding elements of
p can be further eliminated. After these row eliminations
of Ã1 and p, we obtain the matrix Ã2 ∈ RN2×N1 and
the vector p2 ∈ RN2 . We assume that N2 ≥ N1 and
that N2 is in the order of Nn. The approximate solution
to the Lyapunov equation can be found by solving the
following least-squares problem:

min
x̃

∥∥∥p2 − Ã2x̃
∥∥∥2
2

(26)

where x̃ ∈ RN1 . The solution of (26) can be found by
solving the normal system of equations:

Âx̃ = ÃT2 p2 (27)

where Â = ÃT2 Ã2 and Â ∈ RN1×N1 . The problem (26)-
(27) can be efficiently solved using the Conjugate Gradi-
ent Least-Squares (CGLS) method [45,46], without the
need to explicitly form the normal equations. One itera-
tion of the CGLS method takes about 2nz(Ã2) + 3N1 +

2N2 flops, where nz(Ã2) stands for the number of non-

zero elements of Ã2 [46].

It is well-known that the convergence of the CG methods
is fast for well-conditioned problems [45]. More precisely,
the convergence of the CGLS method is determined by
the factor 6 (κ1− 1)/(κ1 + 1), where κ1 is the condition

number of Â, for more details see Chapter 7 of [46]. Due

to the fact that the matrix Ã2 is formed from the matrix
A and Â = ÃT2 Ã2, it follows that the condition num-

ber of Â is related to the condition number of A or to
the condition number of A. However, a theoretical study
of this relationship is nontrivial and it is left for fur-
ther research. Our numerical simulations indicate that
if the matrix A is well-conditioned, the matrix Ã2 in-
herits this numerical property. Furthermore, the matrix
Â is also relatively well-conditioned (although the con-

dition number of Â is usually larger than the condition
number of A). On the other hand, we showed that for a
well-conditioned A, the entries of X decay quickly away
from a banded pattern or from the main diagonal, and
consequently, the bandwidth y of the a priori pattern
Xy can be chosen to be much smaller than Nn, with-
out seriously compromising the accuracy. That is, for a
well-conditioned A, we have that N1 and N2 are natu-
rally in the order of Nn. All these observations, together
with the experience gathered by performing numerical
simulations, indicate that for well-conditioned problems,
the solution to (27) can be determined efficiently, with
O(N) computational and memory complexities, see also
Remark 3. Theoretical analysis that can support our ob-
servations is left for a future research.

Remark 3 For a relatively ill-conditioned A, the con-
vergence rate of the CGLS method can be improved by em-
ploying the preconditioning techniques. To preserve the
sparsity of the problem, techniques that employ sparse ap-
proximate inverse preconditioners can be used [47–49].

4.2 Second method

Here we will develop a second method for approximat-
ing X. This method is based on the approximation of
exp (tA) by a banded matrix. Using this approximation
we approximate the integral representation (4). Such a
solution is then used as an initial guess for the gradient
projection method.

6 Factor closer to one implies slower convergence, and closer
to zero means faster convergence.
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In [32,35] it has been shown that the matrix exponential
of a symmetric banded matrix is an off-diagonally decay-
ing matrix. A relatively non-conservative upper bound
on the off-diagonal decay rate of the matrix exponen-
tial is derived in Theorem 4.2 in [35]. This decay bound
depends on the extreme eigenvalues a and b of A. How-
ever, the influence of the condition number on the decay
rate of exp (tA), is still an open problem 7 . Due to the
fact that exp (tA) is an off-diagonally decaying matrix,
it can be approximated by a banded matrix using the
Chebyshev series [32, 50], see also Remark 5. First, we
transform the matrix function exp (tA) into a complex
function exp (tz), where z is a complex number, belong-
ing to a domain that contains the spectrum of A, that
is, z ∈ [a, b]. It is obvious that the eigenvalues of tA are
in the interval [ta, tb]. The next step is to transform this
interval into the interval [−1, 1]. This can be achieved
by defining a new variable w as follows:

w =
2tz − t(a+ b)

t(b− a)
(28)

It can be easily seen that when tz ∈ [ta, tb] then w ∈
[−1, 1]. From (28) we have:

tz =
t

2
((b− a)w + a+ b) (29)

Using (29), we have:

exp (tz) = exp

(
t

2
((b− a)w + a+ b)

)
(30)

Let A1 be a matrix corresponding to the complex vari-
able w. By substituting w with A1 and z by A in (28),
we obtain:

A1 =
2

b− a
A− a+ b

b− a
I (31)

The eigenvalues ofA1 belong to the interval [−1, 1]. Sim-
ilarly, from (29) we obtain:

tA =
t

2
((b− a)A1 + (a+ b)I) (32)

By substituting tA in exp (tA) with (32), we define the
function f (A1):

f (A1) = exp

(
t

2
((b− a)A1 + (a+ b)I)

)
(33)

It is obvious that f (A1) = exp (tA). Consequently, the
behavior of f (A1) is identical to the behavior of exp (tA).

7 It should be expected that the decay rate is faster for well-
conditioned matrices, because it very well known that the
decay rate of matrix functions, such as A−1, is faster if the
condition number of A is smaller.

Consider the matrix A1 defined in (31). Taking into ac-
count that the spectrum of A1 belongs to the interval
[−1, 1], the truncated Chebyshev series expansion of the
matrix exponential (33) is defined by [32,51]:

f(A1) ≈ f̃(A1),

f̃(A1) =
c1
2
I +

M∑
k=2

ckTk (A1) =

M∑
k=1

′ckTk (A1) (34)

where ck ∈ R are the Chebyshev coefficients, Tk (A1) ∈
RNn×Nn are the Chebyshev (matrix) polynomials of the

first kind, and the symbol
∑M
k=1

′ means that the first
term in the sum is halved [52]. The Chebyshev matrix
polynomials are defined by [32,51]:

T1 = I, T2 = A1, Tk+1 = 2A1Tk − Tk−1, k = 2, 3, . . .
(35)

The Chebyshev coefficients can be approximated by [32,
51] (see Remark 4):

ck ≈
2

R

R∑
j=1

f (cos (θj)) cos ((k − 1) θj) (36)

where θj = π
(
j − 1

2

)
/R and R is a sufficiently large

positive integer. The function f (cos (θj)) in (36) is de-
fined as follows. First, by formally substituting in (33)
the matrix A1 with w, and I with 1, we define:

f (w) = exp

(
t

2
((b− a)w + a+ b)

)
(37)

Then, substituting in (37) the argument w with cos (θj)
we obtain:

f (cos (θj)) = exp (tq̂j) , q̂j =
(b− a) cos (θj) + a+ b

2

Remark 4 An alternative method for computing the
Chebyshev coefficients of the exponential function is
based on the Bessel functions, see the equation (2.1)
in [50]. �

Remark 5 In the case of non-symmetric matrices A,
the Chebyshev approximation method cannot be directly
used to approximate the matrix exponential. In the case
of non-symmetric problems, the Faber polynomials need
to be used, as demonstrated in [53].

The Chebyshev approximation error is defined by εM =∥∥∥f(A1)− f̃(A1)
∥∥∥
2
. It can be easily shown that (see for
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example, Section 4.1 in [32]):

εM ≤
∞∑

k=M+1

|ck| (38)

That is, the approximation error does not depend (ex-
plicitly) on the dimensions of A1. On the other hand,
in [50] it has been shown that:

εM ≤
∞∑

k=M+1

|ck| ≤ 2 exp (tb)K2(M,a, t) (39)

whereK2(M,a, t) is a constant depending onM , b and t,
for more details see the equations (2.2) and (2.3) in [50].
By approximately computing the right-hand side of (38),
or by computing (39), we can find the maximum order
of the Chebyshev polynomials M for which the approx-
imation error is below a predefined small number. How-
ever, if M is large, then the Chebyshev approximation
f̃(A1) is a dense matrix. Namely, from (35) we see that
each Chebyshev polynomial can be expressed as the sum
of powers of A1. Due to the fact that A1 is m-banded,

Ak1 is km-banded, k = 1, . . . ,M . That is, for large k,

the matrix Ak1 becomes fully populated. Given that N
is large, it might be impossible to compute and to store
Ak1 . This implies that in order to ensure that the matrix

f̃(A1) is (sparse) banded and to guarantee that it can be
computed and stored withO(N) complexity,M needs to
be kept small. If the off-diagonal decay rate of exp (tA)
is fast, then our numerical results show that even for a
small M , the approximation accuracy is relatively good.
However, if the off-diagonal decay rate is not fast, select-
ing a relatively small M can seriously compromise the
approximation accuracy.
One of the ways to resolve this problem is to employ the
numerical dropping technique [1, 32]. Namely we intro-
duce the following modification in (35):

Tk+1 = D (2A1Tk − Tk−1) , k = 2, 3, . . . (40)

where the bandwidth projection operator D (Z), acting
on an arbitrary matrix Z = [zi,j ], is defined by:

D (Z) =

{
zi,j , |i− j| ≤ d/2

0, |i− j| > d/2
(41)

where d is the prescribed bandwidth. By setting to zero
entries of 2A1Tk − Tk−1 that are outside the bandwidth
d (that should be relatively small compared to Nn), the
bandwidth projection operator ensures that each Cheby-
shev polynomial Tk+1 remains a (sparse) banded matrix.
In this way we can select a large M and ensure that the
matrix f̃(A1) can be computed with O(N) memory and
computational complexities, for more details see Section
4.3. The parameter d can be selected using the results

of Theorem 4.2 in [35], or using simple heuristics. More-
over, using the results of [35–37] it is possible to con-
struct a projection operator in (40), that projects Tk+1

onto a more optimal matrix pattern. Finally, the results
of Section 3.2 can be extended to construct a more op-
timal projection operator.
We have observed that for small values of d and for rela-
tively ill-conditioned A, the modified Chebyshev recur-
rence (40) might diverge. To improve the accuracy of
the Chebyshev approximation and to increase the sta-
bility of (40), instead of applying D (·) in every iteration
of (40), it can be applied in every second or third itera-
tion. However, this strategy increases the computational
complexity.

After we presented the method for approximating
exp (tA), we turn our attention to the problem of ap-
proximating the integral in (4). From Theorem 4.3
in [54], we have that X can be approximated by:

X̃ = −
q∑

j=−q
ψωj exp (ψtjA)P exp (ψtjA) (42)

where q is a positive integer, and

ψ =
3

2|b+ ε1|
, ωj =

(
q + q exp

(
−2jq−1/2

))−1/2
tj = log

(
exp

(
jq−1/2

)
+
√

1 + exp
(
2jq−1/2

))
(43)

where ε1 � |b| is a small number. In [54] it has been
shown that the approximation error exponentially de-
creases with

√
q:∥∥∥X − X̃∥∥∥

2
≤ K (A) ‖P‖2 exp (−√q) (44)

where the constant K (A) depends on a and b. That
is, as q approaches infinity, the approximation error ap-
proaches zero.
Consider the matrix exp (ψtjA) in (42). Let t̃j = ψtj . For
each t̃j we can compute the Chebyshev approximation

f̃j (A1) of the matrix exponential exp
(
t̃jA
)
. By substi-

tuting in (42) the matrix exp
(
t̃jA
)

with f̃j (A1), we de-
fine the approximate solution of the Lyapunov equation:

X̃1 = −
q∑

j=−q
ψωj f̃j (A1)P f̃j (A1) (45)

Let us assume that each of the matrices f̃j (A1), j =
−q, . . . , q, are computed using the Chebyshev approx-
imation with the bandwidth projection operator (40).

Consequently, the matrices f̃j (A1) are sparse, banded
matrices with the bandwidth equal to d. Given that the
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bandwidth of P is equal to l, we have that the total band-
width of f̃j (A1)P f̃j (A1) is 2d + l. Given that d � N
and l � N , we have that 2d + l � N , that is, the ma-
trix f̃j (A1)P f̃j (A1) is a sparse banded matrix. Further-
more, because the sum of matrices of equal bandwidths
does not increase the bandwidth of the resulting sum, we
have that X̃1 is a sparse banded matrix with the band-
width equal to 2d+ l. If q � N , then it is obvious that
(45) can be computed with O(N) computational and
memory complexities, for more details see Section 4.3.

Next, we improve the accuracy of the approximate so-
lution X̃1 by using it as an initial guess of the decision
variable of the constrained matrix least-squares prob-
lem [55]:

min
X

∥∥P −AX −XAT∥∥2
F

(46)

subject to X ∈ Xd1 (47)

where Xd1 denotes the set of all banded matrices with
the bandwidth of d1. The gradient projection method for
solving (47) has the following form [40]:

Xk+1 = D1 (Xk − δkGk) , k = 0, 1, 2, . . . (48)

where D1 (·) is the bandwidth projection operator de-
fined in (41) for the bandwidth of d1, k is the iteration
index, δk is the step size and Gk is the gradient defined
by [55]:

Gk = −2ATRk − 2RkA (49)

Rk = P −AXk −XkA
T (50)

To define the step size δk, we first define the following
two quantities:

F1 (Xk) =
∥∥P −AXk −XkA

T
∥∥2
F
,

Xk (δ) = D1 (Xk − δGk) (51)

Keeping these definitions in mind, the step size is deter-
mined by the Armijo rule along the projection arc [40]:

δk = ζhkδ (52)

where hk is equal to the first nonnegative integer h for
which:

F1 (Xk)− F1

(
Xk

(
ζhδ
))
≥ σGTk

(
Xk −Xk

(
ζhδ
))
(53)

and σ ∈ (0, 1), ζ ∈ (0, 1) and δ > 0. To summarize, the
proposed method consists of the following two steps

(1) Compute the matrix X̃1 defined in (45).

(2) Set X0 = X̃1 and propagate the iteration (48) until
convergence or the maximal number of iterations
has been reached.

The convergence rate of the projected gradient method
is well-studied in the literature, see for example [40].
Briefly speaking, the convergence rate is similar to the
convergence rate of the unconstrained steepest descent
method, and it depends on the condition number of A.
For well-conditioned problems the convergence is rela-
tively fast. However, for ill-conditioned problems it can
be slow. One of the ways to improve the convergence for
ill-conditioned problems is to use scaled gradient projec-
tion methods, for more details see Chapter 2 of [40]. The
optimization problem (46)-(47) can also be solved using
other methods, for example using the matrix version of
MINRES method with numerical droppings [45,47,56].

4.3 Complexity analysis

Let us analyze the complexity of the steps needed to
compute the initial guess. The first computationally de-
manding step is to compute the extreme eigenvalues a
and b of A. This step can be performed efficiently using
the ARPACK software or MATLAB functions eigs (·)
and svds (·), that are based on the Implicitly Restarted
Arnoldi methods [57]. Generally speaking, one iteration
of the methods implemented in ARPACK or in MAT-
LAB, can be computed withO(N) complexity, where the
convergence rate depends on the spectral properties of
A. The storage requirement for computing the extreme
eigenvalues is O(N) [57]. Due to the fact that the initial
guess is later on improved using the gradient projection
method, we can tolerate some inaccuracies in computing
extreme eigenvalues. That is, the tolerances for comput-
ing the extreme eigenvalues can be relaxed with the goal
of achieving overall O(N) computational complexity.

Let us now turn our attention to the Chebyshev approx-
imation of the matrix exponential (34) and the integral
approximation (45). In Appendix 6.1, we have shown
that the computational complexity of these steps scales
approximately linearly with N , M and q (assuming all
other parameters are fixed), while on the other hand, it
scales quadratically with d, where it is assumed that the
bandwidth projection operator (40) is applied. For a rel-
atively precise operations count see Appendix 6.1. Mem-
ory complexity scales withO(N), assuming that d� N .
Similarly it can be shown that the computational com-
plexity of one iteration of the gradient projection method
(48) scales linearly with N and d1, while the memory
complexity scales with O(N), assuming that d1 � N .

5 Numerical Experiments

We demonstrate the effectiveness of the developed meth-
ods on three examples. Numerical simulations are per-
formed in MATLAB on a laptop computer with 4 GB of
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RAM, with processor specifications: Intel(R) Core(TM)
i5-2410M CPU @ 2.30 GHz 2.30 GHz.

5.1 First example: 2D heat equation

We consider a model describing the temperature change
of a thermally actuated deformable mirror used in ex-
treme ultraviolet lithography [17,58–60]. Heat equation
constants, discretization grid and discretization steps are
defined in Chapter 2 of [17]. The structure of this model
is equivalent to a model obtained by the finite-difference
discretization of the Laplace operator on a rectangular
domain. The matrices A and P are block tri-diagonal,
with the main block diagonals defined by:

Ai,i =



a e 0 0 0 0

e a e 0 0 0

0 e a e 0 0

0 0 e a e 0

0 0 0 e a e

0 0 0 0 e a


, Pi,i = −



1 0.2 0.2 0.2 0.2 0.2

0.2 1 0.2 0.2 0.2 0.2

0.2 0.2 1 0.2 0.2 0.2

0.2 0.2 0.2 1 0.2 0.2

0.2 0.2 0.2 0.2 1 0.2

0.2 0.2 0.2 0.2 0.2 1


(54)

The off-diagonal blocks of A are given by Ai,i−1 =
Ai,i+1 = eI6,6, where a = −1.36, e = 0.34 and I6,6
is a 6 × 6 identity matrix. For the matrix P we have:
Pi,i−1 = Pi,i+1 = [−0.1] (6 × 6 matrices whose entries
are equal to−0.1). The total number of local subsystems
N will be varied. The sparsity patterns of A and P , for
N = 10, are shown in Fig.1.

0 20 40 60
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20
30
40
50
60

nz = 268

0 20 40 60

20

40

60
nz = 1008

(a) (b)

Fig. 1. Sparsity patterns: (a)A. (b) P , ”nz” denotes the num-
ber of non-zero elements. Results are generated for N = 10.

We start with the Chebyshev approximation of the ma-
trix exponential. For t = 1, we compute exp(tA) using
the built-in MATLAB function expm (·). The surface
plot (”city plot”) of this matrix is shown in Fig. 2.

Fig. 2. Surface plot of exp (tA) for t = 1.

Next, for t = 1 and N = 100, we approximate exp(tA)
using the Chebyshev method. ForM = 7 in (34), the ap-
proximation error is εM = 4.4 × 10−7, and the sparsity
pattern of the approximate matrix exponential is shown
in Fig. 3(a). These results confirm that exp (A) can be
approximated by a sparse banded matrix with high ac-
curacy [32,42].

0 5 10 15
10

-20

10
0

i
|c

i|
nz=38824

(b)(a)

t=0.1
t=1
t=10

Fig. 3. (a) Sparsity pattern of the approximation of exp (A).
(b) The dependence of the Chebyshev coefficients on t.

In Fig. 3(b), we illustrate the dependence of the Cheby-
shev coefficients on time t. It can be observed that as t
increases, the Chebyshev coefficients decay more slowly.
This numerically illustrates very-well known fact that
for the fixed approximation order M , the accuracy of
approximating exp (tA) using the Chebyshev approxi-
mation is better if t is smaller [32,42]. This also implies
that as tj is increased in (42), to keep the accuracy of
approximating exp (ψtjA) constant, we need to increase
the order of the Chebyshev approximation M .

We now turn our attention to the problem of approxi-
mating X. We will compare the approximate solution
computed using the proposed methods with the ”true”
solution XT computed using the built-in MATLAB
function lyap (·). This solution is a dense matrix and its
surface plot is shown in Fig. 4. The oscillatory behavior
of entries of XT is due to the Kronecker sum structure
of A, see Section 3.2.
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Fig. 4. The surface plot of the ”true” solution XT computed
using the function lyap (·). N = 12.

Our first goal is to numerically investigate the accuracy,
and then the complexity of the proposed methods. We
first investigate how the bandwidth of the approximate
solutions affects the accuracy. We only show the results
for the first method because the results for the second
method are similar. The stopping criteria for the CGLS
method is based on the following scalar [46]:

η =

∥∥∥ÃT2 (p2 − Ã2x̃
k
)∥∥∥

2∥∥∥ÃT2 (p2 − Ã2x̃0
)∥∥∥

2

(55)

where x̃k is the solution of (26)-(27) computed at the k-
th iteration of the CGLS, and x̃0 is an initial guess that
we chose as a zero vector. We stop the CGLS method
when η is below 10−6. Once the approximate solution has
been computed with a prescribed tolerance, we quantify
its (relative) accuracy by:

ε =
∥∥∥X̃ −XT

∥∥∥
2
/ ‖XT ‖2 (56)

where X̃ is an approximate solution. Figure 5(a) shows
the dependence of the accuracy (56) on the bandwidth
of the approximate solution. The results are generated
for N = 200. As the bandwidth increases, the accu-
racy improves, as expected. It has been observed that
the number of the iterations of the CGLS increases as
the bandwidth increases (number of iterations to reach
the stopping criteria defined by η). For example, for the
bandwidth of 20 it is 45, and for the bandwidth of 300
it is 235. The condition number of A is 39. Figure 5(b)
shows the row 600 of the true and the approximate so-
lution, and the error between them, computed for the
bandwidth of 200.
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Fig. 5. (a) Dependence of the accuracy (56) on the bandwidth
of the approximate solution. (b) Absolute value of the row
600 of the ”true” and approximate solutions, and the error.
Both (a) and (b) are generated for N = 200.

Next, we illustrate the dependence of the accuracy (56)
on the parameter q in (45). We generate the results for
N = 250, bandwidth of 140 in the iteration (40), and
the Chebyshev order of M = 20. The approximation
defined in (45) has a total bandwidth of 294. The re-
sults are shown in Fig. 6(a). As expected, the accuracy
is improved by increasing q and it confirms the exponen-
tial dependence predicted by (44). In Fig. 6(b) we show
the accuracy dependence on the number of iterations of
the gradient projection method (48). The initial guess is
computed on the basis of (45) for q = 30.
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Fig. 6. (a) Dependence of the accuracy (56) on the parameter
q in the equation (45). (b) Accuracy dependence on the
number of iterations of the gradient projection method (48).
Results are generated for N = 250 and bandwidth of 140.

Finally, we test the computational and memory com-
plexities of the proposed methods. We vary N , and mea-
sure the time necessary to compute the approximate so-
lutions. The results are generated for the bandwidth of
150. We also compare the complexity of the proposed
methods with the complexity of the MATLAB function
lyap (·). In order to compare the two methods, we chose
their parameters such that their accuracy (56) is approx-
imately equal and below 0.03 (for larger N it takes a lot
of time or even it is impossible to compute the ”true” so-
lution, so these parameters are determined heuristically,
such that the accuracy is guaranteed for N ≤ 600). In
the case of the first method, we stop the CGLS itera-
tion when η < 10−6. In the case of the second method,
the parameters are: q = 60, M = 20 and the gradient
projection iteration (48) is stopped after 50 iterations.
Figure 7(a) shows the computational complexities of the
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first and second methods, together with the computa-
tional complexity of the function lyap (·). Figure 7(b)
shows the memory complexity.
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Fig. 7. Complexity of the first method, the second method
and the MATLAB function lyap (·). (a) Computational com-
plexity. (b) Memory complexity.

From 7(a) it can be observed that the first method
has the lowest computational complexity. The second
method has a higher computational complexity than the
first method, however, its memory complexity is lower.
Computational and memory complexities of the first
and the second method scale approximately linearly
with N . This enables us to compute the approximate
solution for larger values of N . For figure clarity, we
presented results for N up to 1500. However, we tested
the second method for problems up to N = 104. The
second method needs less than 50 minutes to compute
the solution for N = 104. Due to the fact that we are
not able to compute the ”true” solution for such a
large problem, we are not able to precisely quantify the
accuracy of this approximate solution, but we expect
that the accuracy is bounded by (44). Low memory
complexity of the second method allows us to compute
the solution even for much larger N (by extrapolating
the results we estimate that for N = 105, the second
method can compute the approximate solution in less
than 8 hours). Finally, from Figure 7 we can observe
the O(N3) computational and O

(
N2
)

memory com-
plexities of the function lyap (·). This function has the
highest computational and memory complexities.

5.2 Second example: randomly generated A

Next, we illustrate the accuracy of the first method on
a randomly generated model. Using the MATLAB func-
tion rand (·), we generate the matrices Ai,j , j = i −
1, i, i + 1 as a 6 × 6 random matrices. After construct-
ing the block tri-diagonal matrix A from these matrices,
we define the following matrix W = 1

2

(
A+AT

)
+ νI,

where the parameter ν has been chosen such that the
matrix W is asymptotically stable. The matrix P is de-
fined in the previous example. The surface plot of XT
for the pair of the coefficient matrices (W,P ) and for
N = 30, is shown in Fig. 8(a).
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Fig. 8. Randomly generated model. (a) Surface plot of XT ,
N = 30. (b) Accuracy of the first method, N = 200.

From Fig. 8(a) we see that the off-diagonal decay rate
of X is fast, which directly follows from the fact that
the matrix W is well-conditioned (its condition number
is approximately 52). Finally, in Fig. 8(b) we show the
accuracy dependence on the bandwidth, that improves
as the bandwidth increases. The second method gives
similar results and for the sake of brevity is omitted.

5.3 Third example: 3D heat equation

We consider a 3D heat equation describing temperature
change of a rectangular glass plate (diffusivity constant
3.4× 10−7) used in optical systems [17]. The heat equa-
tion is discretized using the finite difference method with
the spatial discretization step of 0.001 (all the units are
in the SI system). The dimension of the grid in the z
direction is fixed to 6, whereas in the x − y plane(s) it
is defined by an N1 × N1, where N1 is the parameter
that is varied. In total the grid has 6×N2

1 points. Such
a discretization grid can be seen as an interconnection
of N = N2

1 subsystems Si,j , where each subsystem’s
state consists of the temperatures in the z-direction:
{Ti,j,1, Ti,j,2, . . . , Ti,j,6}. That is, the local order of each
Si,j is n = 6, for more details see Chapter 2 of [17].
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Fig. 9. Discretized 3D heat equation. (a) Surface plot of XT .
(b) Sparsity pattern of A. N = 25.

The matrix P is equal to the matrix used in the first
example. The surface plot of XT and sparsity pattern
of A are shown in Fig. 9(a) and 9(b), respectively, for
N = 25, (N1 = 5). Similarly to the first example, from
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Fig. 9(a) we see that XT shows an off-diagonally decay-
ing, oscillatory behavior.
We quantify the accuracy (56) of the first method (re-
sults obtained by the second method are similar). For
the CGLS we use the tolerance η = 10−6. We construct
the model for N1 = 30 which gives in total N = 900
local subsystems (A ∈ R5400×5400). The condition num-
ber of A is 72 and it increases as N is increased. Figure
10(a) shows the accuracy for an a priori pattern equal to
a banded matrix. As expected, the accuracy improves as
the bandwidth increases. However, the improvement is
slower compared to the first example, see Fig. 5(a). This
is because XT for the third example, has more domi-
nant off-diagonal peaks than in the first example, as it
can be observed in Fig. 9(a). Similarly to the first ex-
ample, we noticed that the number of CGLS iterations
increases (iterations to reach the prescribed tolerance)
as the bandwidth is increased. Figure 10(b) shows the
accuracy for an a priori patten equal to a multi-banded
matrix computed using the methodology proposed in
Section 3.2. Such an a priori pattern is shown in Fig.
10(d) for z1 = 8. Finally, Fig. 10(c) shows the percent-
age of the non-zero elements of the approximate solution
for the two types of patterns. From Figures 10(a)-(c)
we conclude that multi-banded a priori pattern achieves
better accuracy with a smaller number of non-zero ele-
ments compared to the purely banded a priori pattern.
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Fig. 10. Discretized 3D heat equation. (a) Accuracy (56) as
a function of bandwidth for strictly banded a priori pattern.
(b) Accuracy for the a-priori pattern computed using the
method of Section 3.2 (multi-banded pattern shown in (d) for
z1 = 9 ). (c) Comparison of the percentage of the non-zero
elements (denoted by ”nz”) of a-priori sparsity patterns used
to generate plots (a) and (b). (d) Plot of the multi-banded
a-priori sparsity pattern, whose performance is shown in (b),
the pattern is generated using the method in Section 3.2 for
z1 = 8.

6 Conclusions

We considered the problem of computing a banded, ap-
proximate solution of the Lyapunov equation (1), in
which the coefficient matrices are banded, symmetric
matrices. We analyzed how the condition number of the
coefficient matrix A influences the decay rate of the so-
lution X. We showed that the decay rate is faster if the
condition number of A is smaller. We proposed two com-
putationally efficient methods for approximating the so-
lution by a banded matrix. Our results indicate that for
a well-conditioned, sparse banded matrix A, it is possi-
ble to compute a sparse, banded approximate solution of
the Lyapunov equation withO(N) complexity. In the fu-
ture work, the proposed methods will be used to develop
computationally efficient methods for approximating the
solution of the Riccati equation by a sparse matrix.

Appendix

6.1 Computational complexity analysis of the second
method

Due to the fact that we deal with (sparse) banded matri-
ces, to estimate the computational complexity, we will
not count multiplications and additions/subtractions
of an arbitrary number with zero, because depend-
ing on the implementation (such as MATLAB sparse
matrix toolbox), such operations do not require com-
puting power. Let us assume that we have two banded,
Nn × Nn matrices X1 and X2 with bandwidths d1
and d2, respectively. The matrix resulting from their
multiplication X3 = X1X2 is a banded matrix with
the bandwidth of d3 = d1 + d2. The rows of X3:
d3/2 + 2, . . . , Nn − d3/2 − 1 have d1 + d2 + 1 non-zero
entries, and remaining rows have smaller number of en-
tries. For simplicity, we will assume that every row of
X3 has d1 + d2 + 1 non-zero entries. To compute every
entry on such a row, it takes maximum dm + 1 multipli-
cations and dm additions, where dm = min(d1, d2). So
in total, the number of operations that are necessary to
compute X3 is smaller than Nn(d1 + d2 + 1)(2dm + 1)
operations. Under the same simplifications, we conclude
that the number of operations necessary to compute
X4 = X1±X2 is smaller than Nn(dm + 1), and number
of operations necessary to multiply a scalar c and the
matrix X1 is smaller or equal to Nn(d1 + 1).
Let us now turn our attention to the Chebyshev ap-
proximation of the matrix exponential. The complexity
of computing A1 using (31) is much smaller than the
complexity of subsequent operations and for simplicity
it will be ignored. Consider the iteration (40) in which
Tk has a bandwidth of d (produced by applying the
operator D (·) in the iteration k − 1) and the matrix
A has a bandwidth of m, d > m. It takes less than
Nn(m + 1) + Nn(d + m + 1)(2m + 1) operations to
compute 2A1Tk (multiplication of A1 by a scalar and
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multiplication of two banded matrices) plus additional
Nn(d+1) operations to compute 2A1Tk−Tk−1. That is,
the number of operations to compute one iteration (40)
is less than o1 = Nn(m+d+2+(d+m+1)(2m+1)). For
simplicity, we will ignore the operation count of the op-
erator D (·), because it depends on the implementation
details. Due to the fact that we need M − 2 iterations
to compute all the matrices Tk (we ignore complexity of
computing T1 and T2), and because we need to multiply
them with a scalar and add them together, the total
number of operations to compute the approximation
(34), is smaller than o2 = (M − 2)o1 + 2NnM(d + 1).
The resulting matrix has the bandwidth of d.
Let us now focus on (45). Assuming that the bandwidth
l of P is smaller than d, and using similar reasoning
it can be concluded that the number of iterations is
smaller than

o3 = (2q + 1)(o2 +Nn(d+ l + 1)(2l + 1)

+Nn(2d+ l + 1)(2d+ 1) +Nn(d+ 1))

The important conclusion from the above analysis is that
the complexity approximately scales linearly with Nn,
M and q, while on the other hand it scales quadratically
with d.
Similar analysis can be performed for the gradient pro-
jection method. However, it is hard to give a relatively
precise estimate, because the number of step-size evalua-
tions (53) in each iteration, cannot be predicted a priori.
However, assuming that the number of step-size evalu-
ations is very small, and using analysis similar to the
Chebyshev approximation, it can be concluded that the
computational complexity of every step of the gradient
projection method scales linearly with Nn and d1 (there
is no need to perform multiplications of two banded ma-
trices of the bandwidths of d1).
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