
ar
X

iv
:1

40
8.

15
88

v2
  [

m
at

h.
D

S]
  1

 M
ay

 2
01

5

Synchronization under matrix-weighted Laplacian

S. Emre Tuna∗

September 26, 2018

Abstract

Synchronization in a group of linear time-invariant systems is studied
where the coupling between each pair of systems is characterized by a
different output matrix. Simple methods are proposed to generate a (sep-
arate) linear coupling gain for each pair of systems, which ensures that
all the solutions converge to a common trajectory. Both continuous-time
and discrete-time cases are considered.

1 Introduction

Synchronization (consensus) of linear systems with general dynamics (as op-
posed to first- or second-order integrators) has been thoroughly investigated
in the last decade. Early results established the convergence of the solutions
of coupled systems to a common trajectory via static linear feedback under the
condition that the network topology is fixed [10, 11]. Later, time-varying topolo-
gies were allowed in [12]. As the limitations of the static feedback have gradually
been overcome, more general results employing dynamic feedback emerged; see,
for instance, [9, 5] for fixed and [8, 6] for time-varying topologies.

All of the above-mentioned works, in fact the majority of the studies on
synchronization of dynamical systems, cover the simple case

ẋi =

q
∑

j=1

aij(xj − xi) , i = 1, 2, . . . , q (1)

(where aij ∈ R≥0 and xi ∈ R
n) as a corollary of their main result. An

equivalent representation of these systems reads ẋ = −[L1 ⊗ In]x where x =
[xT

1 xT
2 · · · x

T
q ]

T and L1 ∈ R
q×q is the (weighted) Laplacian matrix [7] whose

spectral properties have proved extremely useful in the analysis and design of
multi-agent systems.

A pleasant thing about (1) is that its geometric meaning is clear: “Each
agent moves towards the weighted average of the states of its neighbors.” as

∗The author is with Department of Electrical and Electronics Engineering, Middle East

Technical University, 06800 Ankara, Turkey. Email: tuna@eee.metu.edu.tr

1

http://arxiv.org/abs/1408.1588v2


stated in [3]. In fact, in the Euler discretization

x+
i = xi + ε

q
∑

j=1

aij(xj − xi) =

q
∑

j=1

wijxj (2)

the righthand side becomes the weighted average for ε > 0 small enough. There
are many ways to define average and, qualitatively speaking, what any average
attempts to achieve is to compute some sort of center of the points considered
in the computation. Therefore an excusable and sometimes even useful choice
for weighted arithmetic mean is obtained by replacing the scalar weights wij

in (2) by symmetric positive semidefinite matrices Pij = PT
ij ≥ 0 satisfying

∑

j Pij = In. This suggests on (1) the modification

ẋi =

q
∑

j=1

Qij(xj − xi)

where Qij ∈ R
n×n are symmetric positive semidefinite matrices replacing the

scalar weights aij . (We take Qii = 0.) Whence follows the dynamics ẋ = −Lx
where

L =











∑

j Q1j −Q12 · · · −Q1q

−Q21

∑

j Q2j · · · −Q2q

...
...

. . .
...

−Qq1 −Qq2 · · ·
∑

j Qqj











qn×qn

(3)

is the matrix-weighted Laplacian. In graph theoretical terms one can say that
the graph (with q vertices) associated to this L is such that to each edge a
nonzero positive semidefinite matrix Qij is assigned. Note that for the standard
Laplacian the associated graph’s edges are assigned weights aij that are merely
positive scalars.

This paper deals with linear time-invariant systems. We consider a synchro-
nization problem where the matrix-weighted Laplacian naturally appears as a
tool for both analysis and design. In particular, we study a group of systems
whose uncoupled dynamics (described by the matrix A) are identical and the
communication between each pair (i, j) of systems has to be realized via a (pos-
sibly) different output matrix Cij . Our goal for this setup is to generate linear
gains Gij to couple the pairs so that all the solutions in the group converge
to a common trajectory. For A neutrally stable, we achieve this goal under
detectability (of the pairs (Cij , A) for Cij 6= 0) and symmetry (Cij = Cji). We
also touch the more general situation (where A is allowed to yield unbounded
solutions) and establish synchronization under some additional conditions con-
cerning detectability and the strength of connectivity of the network topology.
We cover both continuous- and discrete-time cases. Synchronization in an ar-
ray where each pair of systems are connected through a different output matrix
Cij giving rise to the matrix-weighted Laplacian is yet a relatively unexplored
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area. Among the few works investigating this generalized Laplacian matrix (in
a system-theoretic setting) are [1, 2], where the authors analyze its spectral
properties and study certain relevant applications in distributed control and
estimation.

2 Motivation

In this section we provide two example arrays of coupled identical systems where
the matrix-weighted Laplacian L appears naturally, describing the interconnec-
tion of individual systems. The first array is mechanical, the latter electrical.

2.1 Coupled mass-spring systems

z[p]z[1]
m1

k1 k2

m2 mp

kp+1

z[2]

Figure 1: Mass-spring system.

Consider the individual system in Fig. 1, where p masses are connected by
linear springs. Let z[i] ∈ R be the displacement of the mass mi > 0 from
the equilibrium. The spring constants are denoted by ki > 0. Letting z =
[z[1] z[2] · · · z[p]]T the model of this system reads Mz̈ + Kz = 0 where M =
diag(m1, m2, . . . , mp) and

K =















k1 + k2 −k2 0 · · · 0
−k2 k2 + k3 −k3 · · · 0
0 −k3 k3 + k4 · · · 0
...

...
...

. . .
...

0 0 0 · · · kp + kp+1















Let now an array be formed by coupling q replicas of this system in the arrange-
ment shown in Fig. 2. If we let zi ∈ R

p denote the displacement vector for the ith

system and b
[k]
ij = b

[k]
ji ≥ 0 represent the viscous friction (damping) between the

kth masses of the systems i and j, we can write the dynamics of the coupled sys-

tems as Mz̈i+Kzi+
∑q

j=1 Bij(żi− żj) = 0 where Bij = diag(b
[1]
ij , b

[2]
ij , . . . , b

[p]
ij ).

Letting xi = [zTi żTi ]
T denote the state of the ith system we at once obtain

ẋi =

[

0 Ip
−M−1K 0

]

xi +

q
∑

j=1

[

0 0
0 M−1Bij

]

(xj − xi) (4)

Under the coordinate change below

ξi :=

[

K1/2 0

0 M1/2

]

xi
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we can transform (4) into

ξ̇i = Sξi +

q
∑

j=1

Qij(ξj − ξi) (5)

where

S :=

[

0 K1/2M−1/2

−M−1/2K1/2 0

]

and Qij :=

[

0 0
0 M−1/2BijM

−1/2

]

Note that S is skew-symmetric and Qji = Qij = QT
ij ≥ 0. Finally, stacking the

individual states into a single vector ξ = [ξT1 ξT2 · · · ξ
T
q ]

T the dynamics of the
array take the form

ξ̇ = ([Iq ⊗ S]− L)ξ

where L is as defined in (3).

Sys. 3

m1 m2 mp

m1 m2 mp

m1 m2 mpSys. 2

Sys. 1

b
[2]
12b

[1]
12

b
[1]
23 b

[2]
23

b
[p]
12

b
[p]
23

Figure 2: Array of coupled mass-spring systems.

2.2 Coupled LC oscillators

z[p]

C1 C2 Cp+1

LpL1 L2

z[1] z[2]

Figure 3: LC oscillator system.

Consider the individual system in Fig. 3, where p linear inductors (Li > 0)
are connected by linear capacitors (Ci > 0). The node voltages are denoted
by z[i] ∈ R. Letting z = [z[1] z[2] · · · z[p]]T the model of this system reads
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Cz̈ + L−1z = 0 where L = diag(L1, L2, . . . , Lp) and

C =















C1 + C2 −C2 0 · · · 0
−C2 C2 + C3 −C3 · · · 0
0 −C3 C3 + C4 · · · 0
...

...
...

. . .
...

0 0 0 · · · Cp + Cp+1















This time we form the array by coupling q replicas of this system in the arrange-
ment shown in Fig. 4. If we let zi ∈ R

p denote the node voltage vector for the ith

system and g
[k]
ij = g

[k]
ji ≥ 0 be the conductance of the resistor connecting the kth

nodes of the systems i and j, we can write the dynamics of the coupled systems

as Cz̈i + L−1zi +
∑q

j=1 Gij(żi − żj) = 0 where Gij = diag(g
[1]
ij , g

[2]
ij , . . . , g

[p]
ij ).

Letting xi = [zTi żTi ]
T denote the state of the ith system we at once obtain

ẋi =

[

0 Ip
−C−1L−1 0

]

xi +

q
∑

j=1

[

0 0
0 C−1Gij

]

(xj − xi) (6)

Under the coordinate change below

ξi :=

[

L−1/2 0
0 C1/2

]

xi

we can transform (6) into

ξ̇i = Sξi +

q
∑

j=1

Qij(ξj − ξi) (7)

where

S :=

[

0 L−1/2C−1/2

−C−1/2L−1/2 0

]

and Qij :=

[

0 0

0 C−1/2GijC
−1/2

]

Note that S is skew-symmetric and Qji = Qij = QT
ij ≥ 0. Finally, as was

the case with the mechanical array, the dynamics of the electrical array reads
ξ̇ = ([Iq ⊗ S]− L)ξ where L is the matrix-weighted Laplacian (3).

3 Problem definition

In this paper we consider a group of linear systems

ẋi = Axi + ui , i = 1, 2, . . . , q (8a)

Yi = {Ci1(x1 − xi), Ci2(x2 − xi), . . . , Ciq(xq − xi)} (8b)

with A ∈ R
n×n, where xi ∈ R

n is the state and ui ∈ R
n is the (control)

input of the ith system. The output set Yi contains the relative measurements
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L2

g
[1]
12 g

[2]
12 g

[p]
12

g
[p]
23g

[1]
23 g

[2]
23

Sys. 1

Sys. 2

Sys. 3

LpL1

Figure 4: Array of LC oscillator systems.

available to the ith system, where Cij ∈ R
mij×n and Cii = 0. Associated to the

set {Cij}, we let the graph G = (V , E) represent the network topology, where
V = {v1, v2, . . . , vq} is the set of vertices and a pair (vj , vi) belongs to the set
of edges E when Cij 6= 0.

The problem we study is the stabilization of the synchronization subspace
of the systems (8). In particular, we search for a simple method for choosing
the gains Gij ∈ R

n×mij such that under the controls

ui =

q
∑

j=1

GijCij(xj − xi) (9)

the systems (8) (asymptotically) synchronize. That is, the solutions satisfy
‖xi(t) − xj(t)‖ → 0 as t → ∞ for all indices i, j and all initial conditions. We
establish synchronization under two different sets of conditions. We first study
the general case where the uncoupled dynamics ż = Az are allowed to have un-
bounded solutions and provide certain sufficient conditions for synchronization.
Later we will show that if A is neutrally stable, which was the case with the
mechanical and electrical arrays considered earlier, then synchronization can be
achieved under much weaker assumptions.

4 Synchronization under CL-detectability

In this section we study synchronization under the assumption below.

Assumption 1 The following conditions hold on the systems (8).

1. Cij = Cji for all i, j.

2. G is connected.∗

∗Note that G becomes undirected under the first condition.
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3. There exists a symmetric positive definite matrix P ∈ R
n×n such that

ATP + PA < CT
ijCij for all Cij 6= 0 . (10)

Remark 1 Detectability of a pair (Cij , A) is equivalent to the existence of a
symmetric positive definite matrix Pij ∈ R

n×n satisfying ATPij+PijA < CT
ijCij .

(This is sometimes called the Lyapunov test for detectability [4].) The third
condition of Assumption 1 therefore imposes a certain kind of uniformity on the
detectability of the systems (8) by letting the detectability of all the individual
pairs (Cij , A) with Cij 6= 0 be established by a common Pij = P . Therefore,
referring to the condition (10), we will henceforth use the term CL-detectability,
where C stands for common and L for Lyapunov.

Before we state our first theorem we introduce some notation related to the
graph G = (V , E) associated to the systems (8). The degree di of the vertex vi
is the number of edges satisfying (vj , vi) ∈ E . We let Γ = [γij ] ∈ R

q×q denote
the unweighted, normalized Laplacian matrix defined as follows.

γij =







−1/q , (vj , vi) ∈ E
di/q , j = i

0 , elsewhere

When G is undirected and connected, Γ is symmetric positive semidefinite with
eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λq ≤ 1. In that case we write λ2(Γ) to denote
the smallest nonzero eigenvalue of Γ. Let 1 ∈ R

q be the vector of all ones and
define J := Iq − q−111T . Note that J is the unweighted, normalized Laplacian
matrix of a complete graph and satisfies λ2(J) = 1 thanks to J2 = J . Since J
and Γ share the same eigenvectors (for G undirected and connected), one can
readily establish the bounds

Γ ≤ J ≤ λ2(Γ)
−1Γ . (11)

Theorem 1 Consider the systems (8) under Assumption 1. Let α ≥ (2q)−1

and Gij := αP−1CT
ij where P satisfies (10). Then under the controls (9) the

systems synchronize if

ε > (λ2(Γ)
−1 − 1)σ (12)

where ε := min
Cij 6=0

λmin(C
T
ijCij −ATP − PA) and σ := λmax(A

TP + PA).

Proof. Under the suggested controls, dynamics of the systems (8) become

ẋi = Axi +

q
∑

j=1

αP−1CT
ijCij(xj − xi) , i = 1, 2, . . . , q . (13)

Letting x = [xT
1 xT

2 · · · x
T
q ]

T and Qij := CT
ijCij we can rewrite (13) as

ẋ =
(

[Iq ⊗ A]− α[Iq ⊗ P−1]L
)

x =: Ψx (14)

7



where L is the matrix-weighted Laplacian (3). Since Cij = Cji the matrix L is
symmetric. It is also positive semidefinite because we can write

xTLx =
∑

j>i

(xj − xi)
TQij(xj − xi) =

∑

j>i

‖Cij(xj − xi)‖
2 .

Similarly, we can also write

xT
(

[Γ⊗ (ATP + PA)]− q−1L
)

x

= q−1
∑

j>i

(xj − xi)
T (ATP + PA−Qij)(xj − xi)

≤ −q−1
∑

j>i

ε‖xj − xi‖
2

= −εxT [Γ⊗ In]x . (15)

By construction L[1⊗ In] = 0. This allows us to write

L[J ⊗ In] = L[(Iq − q−111T )⊗ In]

= L[Iq ⊗ In]− q−1L[1⊗ In][1
T ⊗ In]

= L . (16)

By symmetry we also have [J ⊗ In]L = L. Define V : Rqn → R as V (x) :=
xT [J ⊗ P ]x. We will employ V as a Lyapunov function for the synchronization
subspace {x : xi = xj for all i, j} ⊂ R

qn. To this end, let us now study the time
derivative of V along the solutions of the array (14). Using (11), (15), and (16)
we can write

ΨT [J ⊗ P ] + [J ⊗ P ]Ψ = [J ⊗ (ATP + PA)]− α(L[J ⊗ In] + [J ⊗ In]L)

= [J ⊗ (ATP + PA)]− 2αL

≤ [J ⊗ (ATP + PA)]− q−1L

= [(J − Γ)⊗ (ATP + PA)]

+[Γ⊗ (ATP + PA)]− q−1L

≤ σ[(J − Γ)⊗ In]− ε[Γ⊗ In]

≤ (λ2(Γ)
−1 − 1)σ[Γ⊗ In]− ε[Γ⊗ In]

= −(ε− (λ2(Γ)
−1 − 1)σ)[Γ⊗ In] .

Therefore we have established

d

dt
V (x(t)) ≤ −δ x(t)T [Γ⊗ In]x(t) (17)

where δ := ε − (λ2(Γ)
−1 − 1)σ. Now, since [Γ ⊗ In] is positive semidefinite,

(17) implies the following. If (12) holds, i.e., δ > 0, then the solutions converge
to the set {x : xT [Γ ⊗ In]x = 0}, which is no other than the synchronization
subspace. �

When the graph G is complete, Γ equals J and λ2(Γ) = 1. Then the condi-
tion (12) is satisfied automatically thanks to (10). Hence the result below.
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Corollary 1 Consider the systems (8) under Assumption 1. Let Gij := αP−1CT
ij

where P satisfies (10) and α > 0. Then under the controls (9) the systems syn-
chronize for α large enough and G complete.

Note that any α ≥ (2q)−1 is large enough by Theorem 1.

5 Synchronization under neutral stability

In the previous section we established synchronization of the systems (8) under
the CL-detectability condition (10). In this section we show that this condition
can be relaxed if the uncoupled dynamics harbor only bounded solutions. To
this end, we make the assumption below.

Assumption 2 The following conditions hold on the systems (8).

1. Cij = Cji for all i, j.

2. G is connected.

3. A is neutrally stable.†

4. The pair (Cij , A) is detectable‡ for all Cij 6= 0.

In Section 2 we observed that (after an appropriate coordinate change) both
the mass-spring systems (5) and the LC oscillators (7) were represented by
the highly-structured array dynamics ξ̇ = ([Iq ⊗ S] − L)ξ, where S was skew-
symmetric and the matrix-weighted Laplacian L was symmetric. This special
righthand side, though it seems to pertain only to a narrow class of phenomena,
in fact yields readily to generalization. For this reason we study it in the next
lemma, which we will later extend to the main theorem of this section.

Lemma 1 Consider the group of systems

ξ̇i = Sξi +

q
∑

j=1

HT
ijHij(ξj − ξi) , i = 1, 2, . . . , q (18)

where S ∈ R
n×n and Hij ∈ R

mij×n with Hii = 0. Let H be the graph associated
to the set {Hij}. Assume that the following hold on the pair (S, {Hij}).

(C1) Hij = Hji for all i, j.

(C2) H is connected.

(C3) S is skew-symmetric.

†In the continuous-time sense. That is, A has no eigenvalue on the open right half-plane

and for each eigenvalue on the imaginary axis the corresponding Jordan block is one-by-one.
‡In the continuous-time sense. That is, no eigenvector of A with eigenvalue on the closed

right half-plane belongs to the null space of Cij .
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(C4) The pair (Hij , S) is observable for all Hij 6= 0.

Then the systems synchronize. Moreover, the solutions ξi(t) remain bounded.

Proof. Letting ξ = [ξT1 ξT2 · · · ξ
T
q ]

T and Qij := HT
ijHij we can rewrite (18) as

ξ̇ = ([Iq ⊗ S]− L)ξ

where L is the matrix-weighted Laplacian (3). Since Hij = Hji the matrix L is
symmetric. It is also positive semidefinite because we can write

xTLx =
∑

j>i

(xj − xi)
TQij(xj − xi) =

∑

j>i

‖Hij(xj − xi)‖
2 .

Thanks to the skew-symmetry of S we have

([Iq ⊗ S]− L)T + ([Iq ⊗ S]− L) = [Iq ⊗ (S + ST )]− (L + LT ) = −2L .

Thus for the Lyapunov function V (ξ) = 2−1ξT ξ = 2−1‖ξ‖2 we can write

d

dt
V (ξ(t)) = −ξ(t)TLξ(t) .

Since L is positive semidefinite the solution ξ(t) has to be bounded. (Hence
the boundedness of the solutions ξi(t).) In particular, by LaSalle’s invariance
principle, ξ(t) should converge to the largest invariant set within the the inter-
section {ξ : ξT ξ ≤ ‖ξ(0)‖2} ∩ {ξ : ξTLξ = 0} =: M ⊂ R

qn. To complete the
proof therefore it should suffice to show that in this largest invariant set we have
ξi = ξj for all i, j.

Now let ξ(t) be a solution that belongs identically to M. Suppose there
exist indices i1, ip such that

ξi1 (t) 6= ξip(t) (19)

for some t ≥ 0. Since ξ(t) belongs identically toM we have Lξ(t) ≡ 0. In other
words

Hij(ξj(t)− ξi(t)) ≡ 0 (20)

for all i, j. Then (18) is reduced to

ξ̇i = Sξi(t) (21)

for all i. By (20), (21), and the observability of the pairs (Hij , S) (for Hij 6= 0)
we can therefore write ξi(t) ≡ ξj(t) for all Hij 6= 0. Since the graph H
is connected we can find indices i2, i3, . . . , ip−1 such that Hiℓiℓ+1

6= 0 for
ℓ = 1, 2, . . . , p − 1. Then we have ξiℓ(t) ≡ ξiℓ+1

(t) for ℓ = 1, 2, . . . , p − 1,
which implies ξi1(t) ≡ ξip(t). This contradicts (19). �

A pleasant pair of byproducts of Lemma 1 are the following twin corollaries
on the mechanical and electrical arrays studied in Section 2.
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Corollary 2 Consider the coupled mass-spring systems (4). Let the graph as-
sociated to the set {Bij} be connected and the pairs (M−1Bij , M

−1K) be ob-
servable for all Bij 6= 0. Then the systems synchronize.

Corollary 3 Consider the coupled LC oscillators (6). Let the graph associated
to the set {Gij} be connected and the pairs (C−1Gij , C

−1L−1) be observable for
all Gij 6= 0. Then the oscillators synchronize.

In order to extend Lemma 1 to a general result we will need the following
fact. (Most readers shall find the statement obvious. Still, for the sake of
completeness, a demonstration is provided.)

Lemma 2 Let A ∈ R
n×n be neutrally stable and the signal w : R≥0 → R

n

satisfy ‖w(t)‖ ≤ ce−αt for some constants c, α > 0. Then for each solution x(t)
of the system ẋ(t) = Ax(t)+w(t) there exists v ∈ R

n such that ‖x(t)−eAtv‖ → 0
as t→∞.

Proof. If A is stable (i.e., all its eigenvalues are in the open left half-plane)
then we can choose v = 0. Otherwise let T ∈ R

n×n be a transformation matrix
such that

T−1AT =

[

S 0
0 F

]

=: Ã

where S ∈ R
n1×n1 is skew-symmetric and F ∈ R

n2×n2 stable. Apply the co-
ordinate change z = [zT1 zT2 ]

T = T−1x with z1 ∈ R
n1 and z2 ∈ R

n2 and let
[w̃1(t)

T w̃2(t)
T ]T = T−1w(t) with w̃1(t) ∈ R

n1 and w̃2(t) ∈ R
n2 . Then we can

write

ż1(t) = Sz1(t) + w̃1(t)

ż2(t) = Fz2(t) + w̃2(t)

which yield

z1(t) = eStz1(0) +

∫ t

0

eS(t−τ)w̃1(τ)dτ

z2(t) = eFtz2(0) +

∫ t

0

eF (t−τ)w̃2(τ)dτ .

Note that

lim
t→∞

z2(t) = 0 (22)

because F is stable and w̃2(t) is exponentially decaying. Let

a :=

∫ ∞

0

e−Sτ w̃1(τ)dτ

11



which is well defined because eSt is orthogonal (therefore bounded) and w̃1(t)
is exponentially decaying. In particular, we have

lim
t→∞

∫ ∞

t

eS(t−τ)w̃1(τ)dτ = 0 . (23)

Finally the below choice

v := T

[

z1(0) + a
0

]

should work. To see that we write

‖x(t)− eAtv‖ = ‖Tz(t)− TeÃtT−1v‖

≤ ‖T ‖
(

‖z1(t)− eSt(z1(0) + a)‖2 + ‖z2(t)‖
2
)1/2

= ‖T ‖

(

∥

∥

∥

∥

∫ ∞

t

eS(t−τ)w̃1(τ)dτ

∥

∥

∥

∥

2

+ ‖z2(t)‖
2

)1/2

.

The result follows by (22) and (23). �

The below algorithm is where we construct the gains Gij that ensure syn-
chronization under Assumption 2. The algorithm is followed by the main result
of this section.

Algorithm 1 Given A ∈ R
n×n that is neutrally stable and the set of matrices

{Cij} with Cij ∈ R
mij×n, obtain the set {Gij} with Gij ∈ R

n×mij as follows. Let
n1 ≤ n be the number of eigenvalues of A on the imaginary axis and n2 := n−n1.
If n1 = 0 let Gij := 0. Otherwise, first choose U ∈ R

n×n1 and W ∈ R
n×n2

satisfying

[U W ]−1A[U W ] =

[

S 0
0 F

]

where S ∈ R
n1×n1 is skew-symmetric and F ∈ R

n2×n2 stable. Then let Gij :=
UUTCT

ij.

Theorem 2 Consider the systems (8) under Assumption 2. Let the gains Gij

be constructed according to Algorithm 1. Then under the controls (9) the systems
synchronize. Moreover, the solutions xi(t) remain bounded.

Proof. For n1 = 0 the matrix A is stable and the result follows trivially. Let
us hence consider the n1 ≥ 1 case. Under the suggested controls, dynamics of
the systems (8) become

ẋi = Axi +

q
∑

j=1

UUTCT
ijCij(xj − xi) , i = 1, 2, . . . , q . (24)
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The fist step of the proof is to mold (24) into something we have already studied.
To this end, let U † ∈ R

n1×n and W † ∈ R
n2×n be such that

[

U †

W †

]

= [U W ]−1 .

Then define ξi ∈ R
n1 and ηi ∈ R

n2 through the following change of coordinates
[

ξi
ηi

]

=

[

U †

W †

]

xi .

Now, by letting Hij := CijU , we can transform (24) into

ξ̇i = Sξi +

q
∑

j=1

HT
ijHij(ξj − ξi) +

q
∑

j=1

HT
ijCijW (ηj − ηi) (25a)

η̇i = Fηi (25b)

thanks to the identities U †U = In1
and W †U = 0. The first step is complete.

In the second step we show that the following nominal systems

ξ̇nomi = Sξnomi +

q
∑

j=1

HT
ijHij(ξ

nom
j − ξnomi ) (26)

synchronize. This we can do by Lemma 1 provided that we show that the
conditions (C1)-(C4) are satisfied by the pair (S, {Hij}). We have (C1) because
Cij = Cji. We have (C3) because S is skew-symmetric by Algorithm 1. Let
H be the graph associated to the set {Hij}. Since G is connected, the equality
H = G would imply (C2). And to show H = G it is enough that we establish
Hij 6= 0 ⇐⇒ Cij 6= 0. To this end, we make two simple observations. First,
(Hij , S) is observable when (Cij , A) is detectable. Second, the observability of
(Hij , S) demands Hij 6= 0. These observations, in the light of the fact that the
pair (Cij , A) is detectable for all Cij 6= 0, allow us to construct the following
chain of implications.

Cij 6= 0 =⇒ (Cij , A) detectable
⇑ ⇓

Hij 6= 0 ⇐= (Hij , S) observable

This chain gives us not only the equivalence Hij 6= 0⇐⇒ Cij 6= 0 but also the
condition (C4). This completes the second step.

We begin the last step by stacking the states ξ = [ξT1 ξT2 · · · ξTq ]
T , η =

[ηT1 ηT2 · · · η
T
q ]

T and rewriting (25) as

[

ξ̇
η̇

]

=

[

[Iq ⊗ S]− L D
0 [Iq ⊗ F ]

] [

ξ
η

]

(27)

where the structure of D ∈ R
qn1×qn2 plays no role in our analysis and L is

the matrix-weighted Laplacian (3) with Qij = HT
ijHij . By Lemma 1 the solu-

tions of the systems (26) are bounded. This implies that the block [Iq ⊗ S]−L

13



has to be neutrally stable. Also, since F is stable by Algorithm 1, the block
[Iq ⊗F ] is stable. Hence the block triangular system matrix in (27) is neutrally
stable, guaranteeing the boundedness of the solutions of the systems (25). Con-
sequently, the solutions xi(t) of the systems (24) remain bounded. To show that
all xi(t) converge to a common trajectory we once again look at the system (27).
The solution η(t) and, in particular, the term Dη(t) decay exponentially because
[Iq ⊗ F ] is stable. Since [Iq ⊗ S] − L is neutrally stable, Lemma 2 applies to

the dynamics ξ̇(t) = ([Iq ⊗ S] − L)ξ(t) + Dη(t) and allows us to assert that
there exists some v ∈ R

qn1 such that ‖ξ(t) − e([Iq⊗S]−L)tv‖ → 0 as t → ∞. In
other words the solutions ξi(t) converge to the solutions ξnomi (t) of the nomi-
nal systems (26) with ξnom(0) = v, i.e., ‖ξi(t) − ξnomi (t)‖ → 0. We know by
Lemma 1 that the nominal solutions ξnomi (t) converge to a common trajectory.
This allows us to claim for the actual solutions that ‖ξi(t) − ξj(t)‖ → 0 for all
i, j. We also have ‖ηi(t) − ηj(t)‖ → 0 since η(t) → 0. The synchronization of
the systems (24) then follows because

‖xi(t)− xj(t)‖ = ‖U(ξi(t)− ξj(t)) +W (ηi(t)− ηj(t))‖

≤ ‖U‖ · ‖ξi(t)− ξj(t)‖ + ‖W‖ · ‖ηi(t)− ηj(t)‖ .

Hence the result. �

6 Discrete-time problem

In the last two sections we have established synchronization in an array of cou-
pled linear systems in continuous time under different sets of conditions. In
Section 4 the key assumption for synchronization was the CL-detectability (10)
and in Section 5 it was the neutral stability of the uncoupled dynamics. Now
we ask the following question. Can synchronization be established in discrete
time under analogous assumptions? Our answer is only partial: neutral stabil-
ity (through appropriate coupling) does indeed yield synchronization in discrete
time. As for synchronization under CL-detectability§ all our attempts to gen-
erate the discrete-time counterpart of Theorem 1 have so far proved futile.

In this section we study the discrete-time version of the problem that was
attended to in Section 5. The road map we adopt is parallel to that of the
continuous-time case, causing at times some pardonable repetitions. Consider
the group of discrete-time linear systems

x+
i = Axi + ui , i = 1, 2, . . . , q (28a)

Yi = {Ci1(x1 − xi), Ci2(x2 − xi), . . . , Ciq(xq − xi)} (28b)

where x+
i denotes the state of the ith system at the next time instant, A ∈ R

n×n,
and Cij ∈ R

mij×n with Cii = 0. As before, we let the graph G (associated to the

§In the discrete-time sense. That is, there exists a common symmetric positive definite

matrix P satisfying ATPA− P < CT
ij
Cij for all Cij 6= 0.
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set {Cij}) represent the network topology. Here, analogous to the continuous-
time problem, we search for a simple method for choosing the gains Gij ∈
R

n×mij such that under the controls

ui = ε

q
∑

j=1

GijCij(xj − xi) (29)

(for ε > 0 sufficiently small) the systems (28) synchronize. That is, the solutions
satisfy ‖xi(k)− xj(k)‖ → 0 as k →∞ (k ∈ N) for all indices i, j and all initial
conditions. We make the following assumption.

Assumption 3 The following conditions hold on the systems (28).

1. Cij = Cji for all i, j.

2. G is connected.

3. A is neutrally stable.¶

4. The pair (Cij , A) is detectable‖ for all Cij 6= 0.

As in continuous-time case, we first analyze a simpler problem (Lemma 3)
which inspires a method to generate the coupling gains Gij . This method is
then elaborated in Algorithm 2 and why it should work is demonstrated in our
discrete-time main result Theorem 3.

Lemma 3 Consider the group of systems

ξ+i = Qξi + εQ

q
∑

j=1

HT
ijHij(ξj − ξi) , i = 1, 2, . . . , q (30)

where Q ∈ R
n×n and Hij ∈ R

mij×n with Hii = 0. Let H be the graph associated
to the set {Hij}. Assume that the following hold on the pair (Q, {Hij}).

(D1) Hij = Hji for all i, j.

(D2) H is connected.

(D3) Q is orthogonal.

(D4) The pair (Hij , Q) is observable for all Hij 6= 0.

Let L be the matrix-weighted Laplacian (3) with Qij := HT
ijHij and ε̄ > 0 satisfy

L ≥ ε̄L2. Then for all ε ∈ (0, ε̄] the systems synchronize under the controls (29).
Moreover, the solutions ξi(k) remain bounded.

¶In the discrete-time sense. That is, A has no eigenvalue with magnitude larger than one

and for each eigenvalue on the unit circle the corresponding Jordan block is one-by-one.
‖In the discrete-time sense. That is, no eigenvector of A with eigenvalue on or outside the

unit circle belongs to the null space of Cij .
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Proof. Suppose ε ∈ (0, ε̄]. Then we have 2L − εL2 ≥ L. Letting ξ =
[ξT1 ξT2 · · · ξ

T
q ]

T we can rewrite (30) as

ξ+ = [Iq ⊗Q](Inq − εL)ξ .

Since Hij = Hji the matrix L is symmetric. It is also positive semidefinite (see
the proof of Lemma 1). Since Q is orthogonal we have

([Iq ⊗Q](Inq − εL))T [Iq ⊗Q](Inq − εL)− Inq

= (Inq − εL)[Iq ⊗ (QTQ)](Inq − εL)− Inq

= (Inq − εL)2 − Inq

= −2εL+ ε2L2 .

Therefore employing the Lyapunov function V (ξ) = ξT ξ = ‖ξ‖2 we can write

V (ξ(k + 1))− V (ξ(k)) = −εξT (k)(2L− εL2)ξ(k)

≤ −εξT (k)Lξ(k) .

Since L is positive semidefinite the solution ξ(k) has to be bounded. (Hence
the boundedness of the solutions ξi(k).) In particular, by LaSalle’s invariance
principle, ξ(k) should converge to the largest invariant set within the the inter-
section {ξ : ξT ξ ≤ ‖ξ(0)‖2} ∩ {ξ : ξTLξ = 0} =: M ⊂ R

qn. Using the same
simple arguments employed in the proof of Lemma 1, one can show that in this
largest invariant set we have ξi = ξj for all i, j. �

The following fact is the discrete-time version of Lemma 2. It will find use
in the proof of the discrete-time main result.

Lemma 4 Let A ∈ R
n×n be neutrally stable and the signal w : N→ R

n satisfy
‖w(k)‖ ≤ ce−αk for some constants c, α > 0. Then for each solution x(k) of the
system x(k+1) = Ax(k)+w(k) there exists v ∈ R

n such that ‖x(k)−Akv‖ → 0
as k →∞.

The below algorithm is where we construct the gains Gij that ensure syn-
chronization under Assumption 3. The statement following the algorithm is the
discrete-time counterpart of Theorem 2.

Algorithm 2 Given A ∈ R
n×n that is neutrally stable and the set of matrices

{Cij} with Cij ∈ R
mij×n, obtain the set {Gij} with Gij ∈ R

n×mij as follows. Let
n1 ≤ n be the number of eigenvalues of A on the unit circle and n2 := n− n1.
If n1 = 0 let Gij := 0. Otherwise, first choose U ∈ R

n×n1 and W ∈ R
n×n2

satisfying

[U W ]−1A[U W ] =

[

Q 0
0 F

]

where Q ∈ R
n1×n1 is orthogonal and F ∈ R

n2×n2 stable∗∗. Then let Gij :=
UQUTCT

ij .

∗∗In the discrete-time sense. That is, all the eigenvalues of A are on the open unit disk.
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Theorem 3 Consider the systems (28) under Assumption 3. Let the gains
Gij be constructed according to Algorithm 2. Also let L be the matrix-weighted
Laplacian (3) with Qij := UTCT

ijCijU and ε̄ > 0 satisfy L ≥ ε̄L2. Then for
all ε ∈ (0, ε̄] the systems synchronize under the controls (29). Moreover, the
solutions xi(k) remain bounded.

Proof. For n1 = 0 the matrix A is stable and the result follows trivially. Let
us hence consider the n1 ≥ 1 case. Under the suggested controls, dynamics of
the systems (28) become

x+
i = Axi + ε

q
∑

j=1

UQUTCT
ijCij(xj − xi) , i = 1, 2, . . . , q . (31)

The fist step of the proof is to mold (31) into something we have already studied.
To this end, let U † ∈ R

n1×n and W † ∈ R
n2×n be such that

[

U †

W †

]

= [U W ]−1 .

Then define ξi ∈ R
n1 and ηi ∈ R

n2 through the following change of coordinates
[

ξi
ηi

]

=

[

U †

W †

]

xi .

Now, by letting Hij := CijU , we can transform (31) into

ξ+i = Qξi + εQ

q
∑

j=1

HT
ijHij(ξj − ξi) + εQ

q
∑

j=1

HT
ijCijW (ηj − ηi) (32a)

η+i = Fηi (32b)

thanks to the identities U †U = In1
and W †U = 0. The first step is complete.

In the second step we claim that the following nominal systems

ξnomi (k + 1) = Qξnomi (k) + εQ

q
∑

j=1

HT
ijHij(ξ

nom
j (k)− ξnomi (k)) (33)

synchronize. The claim follows from Lemma 3 once the conditions (D1)-(D4) are
shown to be satisfied by the pair (Q, {Hij}). This we can achieve by emulating
the part the proof of Theorem 2 where the conditions (C1)-(C4) were shown to
hold for the systems (18).

We begin the last step by stacking the states ξ = [ξT1 ξT2 · · · ξTq ]
T and

η = [ηT1 ηT2 · · · η
T
q ]

T . Then (32) can be rewritten as

[

ξ+

η+

]

=

[

[Iq ⊗Q](Inq − εL) D
0 [Iq ⊗ F ]

] [

ξ
η

]

(34)

for some D ∈ R
qn1×qn2 . By Lemma 3 the solutions of the systems (33) are

bounded. This implies that the block [Iq ⊗ Q](Inq − εL) has to be neutrally

17



stable. Also, since F is stable by Algorithm 2, the block [Iq⊗F ] is stable. Hence
the block triangular system matrix in (34) is neutrally stable, guaranteeing the
boundedness of the solutions of the systems (32). Consequently, the solutions
xi(k) of the systems (31) remain bounded. To show that all xi(k) converge to
a common trajectory we once again look at the system (34). The solution η(k)
and, in particular, the termDη(k) decay exponentially because [Iq⊗F ] is stable.
Since [Iq ⊗ Q](Inq − εL) is neutrally stable, Lemma 4 applies to the dynamics
ξ(k + 1) = [Iq ⊗ Q](Inq − εL)ξ(k) + Dη(k) and allows us to assert that there
exists some v ∈ R

qn1 such that ‖ξ(k)−([Iq⊗Q](Inq−εL))
kv‖ → 0 as k →∞. In

other words the solutions ξi(k) converge to the solutions ξnomi (k) of the nominal
systems (33) with ξnom(0) = v, i.e., ‖ξi(k) − ξnomi (k)‖ → 0. We know by
Lemma 3 that the nominal solutions ξnomi (k) converge to a common trajectory.
This allows us to claim for the actual solutions that ‖ξi(k)− ξj(k)‖ → 0 for all
i, j. We also have ‖ηi(k) − ηj(k)‖ → 0 since η(k)→ 0. The synchronization of
the systems (31) then follows. �

7 Notes

All the results in the paper rest on the symmetry of the underlying matrix-
weighted Laplacian matrix. In other words, we only consider the case where
the graph (whose edges are assigned matrix values) representing the network
topology is undirected. Now, for synchronization problems involving a scalar-
weighted Laplacian, the symmetry assumption has long been shed because it is
redundant. This raises the following question. Can we still guarantee synchro-
nization if we remove the symmetry condition on the matrix-weighted Lapla-
cian? A more technical, but much easier to answer version of this question is:
Can we remove the condition (C1) from Lemma 1? The answer is no. Below is
a counterexample.

Example 1 Consider the following three coupled systems in R
2

ẋi = Sxi +

3
∑

j=1

HT
ijHij(xj − xi) , i = 1, 2, 3 (35)

with Hii = 0 and

H12 =

[

1.9006 1.8406
1.8406 4.0758

]

, H13 =

[

1.0382 0.9603
0.9603 6.2512

]

,

H21 =

[

3.8896 3.1418
3.1418 4.7041

]

, H23 =

[

6.4288 −1.6342
−1.6342 1.5263

]

,

H31 =

[

2.2944 −1.9328
−1.9328 6.5011

]

, H32 =

[

4.9157 −3.9794
−3.9794 3.6283

]

.

All these nonzero Hij are nonsingular. Now, the graph H associated to the
set {Hij} is complete because Hij 6= 0 for all i 6= j. Therefore H is connected.
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Take S ∈ R
2×2 to be the zero matrix S = 0. Then S is trivially skew-symmetric.

Also, all the pairs (Hij , S) are observable for Hij 6= 0 since the nonzero Hij

are full column rank. Hence the systems (35) satisfy the conditions (C2)-(C4)
of Lemma 1. The only condition being violated is (C1) because Hij 6= Hji.
Without this condition the symmetry of the Laplacian

L =





HT
12H12 +HT

13H13 −HT
12H12 −HT

13H13

−HT
21H21 HT

21H21 +HT
23H23 −HT

23H23

−HT
31H31 −HT

32H32 HT
31H31 +HT

32H32





is broken and the synchronization is not achieved for this example. In particular,
the array dynamics ẋ = −Lx has an unstable eigenvalue λ = 4.0312 whose
eigenvector does not belong to the synchronization subspace {x : x1 = x2 =
x3} ⊂ R

6.

The previous example sheds some light on the symmetry issue by saying that
the undirectedness of the network graph (though it might still be a conservative
constraint) is not altogether removable when one wants to achieve synchroniza-
tion under matrix-weighted Laplacian. Another issue we would like to address,
in order to have a better feel of the degree of necessity of certain assumptions, is
related to the condition (12) in Theorem 1. Once ε and σ are fixed, since λ2(Γ)
is a measure of graph connectivity, the equation (12) can be interpreted as: the
more connected the network graph the more likely the synchronization. In fact,
as stated in Corollary 1, in the limiting case where the graph is complete, the
synchronization is certain under the feedback gains Gij = αP−1CT

ij for large
enough coupling coefficient α. One can also show that when all the output
matrices are identical (up to a scaling) Cij = ρijC (with ρij = ρji) connect-
edness of the graph is enough for synchronization (for large enough α). Now
it is impossible not to ask the next question. Can we remove the completeness
assumption from Corollary 1? The answer is once again negative as shown by
the counterexample below.

Example 2 Consider five systems in R
3 with dynamics (8). We take

A =





0.4429 0.4871 0.7504
0.7265 −1.5839 −1.8779
0.0154 1.3969 1.5767





This system matrix A is not stable due to an eigenvalue at λ = 0.9678. As for
the output matrices, the nonzero Cij are

C12 = C21 = [ 1 0 0 ] ,

C23 = C32 = [ 3.3036 0.1565 0.1265 ] ,

C34 = C43 = [ 3.7854 1.3147 3.4819 ] ,

C45 = C54 = [ 4.6054 1.8354 3.1269 ] .
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The associated graph G with five vertices {v1, v2, . . . , v5} has a simple chain
structure v1 ←→ v2 ←→ v3 ←→ v4 ←→ v5. Hence G is connected, but not com-
plete. Also, these systems are CL-detectable (10) with the following symmetric
positive definite matrix

P =





0.6209 −0.1396 −0.2605
−0.1396 0.0677 0.0997
−0.2605 0.0997 0.1815





In particular, we have

λmax(A
TP + PA− CT

ijCij) ≤ −0.0047 for all Cij 6= 0 .

Note that all the conditions listed in Assumption 1 are satisfied for our example.
Suppose now that we couple these five systems through the feedback gains Gij =
αP−1CT

ij (suggested in Corollary 1) where we leave the coupling coefficient α >
0 as a design parameter. Since the graph G is not complete, Corollary 1 is
silent, meaning that we have to resort to simulation results to determine whether
synchronization can be achieved for large enough α. Consider now the matrix Ψ
representing the coupled array dynamics (14). In our case, Ψ ∈ R

15×15 has 15
eigenvalues. Out of these 15 eigenvalues, the three of them, say λ1, λ2, λ3, equal
the three eigenvalues of A and their eigenvectors belong to the synchronization
subspace {x : x1 = x2 = x3 = x4 = x5} ⊂ R

15. For synchronization to take
place, it is necessary that all the remaining eigenvalues λ4, λ5, . . . , λ15 are in
the open left half-plane. Fig. 5 displays the variation of ρ := maxi≥4 Re(λi)
with respect to α. Note that ρ never gets negative. In fact it seems to satisfy
ρ(α) ≥ 0.0418 for all α. Hence, for the example at hand, synchronization cannot
be achieved by adjusting the coupling coefficient.

References

[1] P. Barooah and J.P. Hespanha. Graph effective resistance and distributed
control: spectral properties and applications. In Proc. of the IEEE Con-
ference on Decision & Control, pages 3479–3485, 2006.

[2] P. Barooah and J.P. Hespanha. Estimation from relative measurements:
electrical analogy and large graphs. IEEE Transactions on Signal Process-
ing, 56:2181–2193, 2008.

[3] Y. Cao, W. Yu, W. Ren, and G. Chen. An overview of recent progress in
the study of distributed multi-agent coordination. IEEE Transactions on
Industrial Informatics, 9:427–438, 2013.

[4] J.P. Hespanha. Linear Systems Theory. Princeton, 2009.

[5] Z. Li, Z. Duan, G. Chen, and L. Huang. Consensus of multi-agent sys-
tems and synchronization of complex networks: A unified viewpoint. IEEE
Transactions on Circuits and Systems I: Regular Papers, 57:213–224, 2010.

20



10
0

10
1

10
2

10
3

10
4

0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

α

ρ

Figure 5: Variation of ρ with respect to the coupling coefficient α.

[6] Z. Li, W. Ren, X. Liu, and L. Xie. Distributed consensus of linear multi-
agent systems with adaptive dynamic protocols. Automatica, 49:1986–1995,
2013.

[7] R. Olfati-Saber and R.M. Murray. Consensus problems in networks of
agents with switching topology and time delays. IEEE Transactions on
Automatic Control, 49:1520–1533, 2004.

[8] J.H. Seo, J. Back, H. Kim, and H. Shim. Output feedback consensus for
high-order linear systems having uniform ranks under switching topology.
IET Control Theory & Applications, 6:1118–1124, 2012.

[9] J.H. Seo, H. Shim, and J. Back. Consensus of high-order linear systems
using dynamic output feedback compensator: Low gain approach. Auto-
matica, 45:2659–2664, 2009.

[10] S.E. Tuna. Synchronizing linear systems via partial-state coupling. Auto-
matica, 44:2179–2184, 2008.

[11] S.E. Tuna. Conditions for synchronizability in arrays of coupled linear
systems. IEEE Transactions on Automatic Control, 54:2416–2420, 2009.

[12] T. Yang, S. Roy, Y. Wan, and A. Saberi. Constructing consensus controllers
for networks with identical general linear agents. International Journal of
Robust and Nonlinear Control, 21:1237–1256, 2011.

21


	1 Introduction
	2 Motivation
	2.1 Coupled mass-spring systems
	2.2 Coupled LC oscillators

	3 Problem definition
	4 Synchronization under CL-detectability
	5 Synchronization under neutral stability
	6 Discrete-time problem
	7 Notes

