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Abstract

This paper addresses the problem of bounding the trajectories of nonlinear systems (transient and ultimate bounds) from ini-
tial conditions in given sets, when subject to possibly nonvanishing disturbances constrained by some finite-interval integral
bounds, with a suitable controller. The so-called robustly-inescapable sets are determined from such initial conditions and
disturbance bounds. In order to get numerical results, the approach considers embedding the nonlinear dynamics in a convex
combination of polynomials, and solving sum-of-squares (SOS) problems on them, optimising some inescapable-set size pa-
rameters. Determination of approximate (locally) optimal solutions usually requires an iterative evaluation of SOS problems,
because of products of decision variables.
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1 Introduction

Domain of attraction (DA) estimates for undisturbed
nonlinear dynamic systems can be obtained from Lya-
punov level sets [7]. In order to get a systematic numeri-
cal procedure, smooth nonlinear systems can be embed-
ded onto a parameter varying dynamics (linear –LPV–,
or polynomial –PPV–) via quasi-LPV modelling [20] or
Taylor-series approaches [17,6], valid in a local region.
With these models and semidefinite programming, con-
servative estimates of the DA can be obtained [5,7,10,16].

In disturbed systems, domain of attraction analysis
must be transformed to: (a) bounding some integral
norm of the state or (b) determining inescapable (a.k.a.
disturbance-invariant) sets [3,11].

In case (a), well-known literature uses Linear Matrix In-
equality (LMI) conditions in order to guarantee a bound
on the induced L2 7→ L2 norm [8], the energy-to-peak
L2 7→ L∞ [15], or the peak-to-peak L∞ 7→ L∞ case [1].

In case (b), inescapable sets are strongly related to
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peak-to-peak bounding. However, the optimal con-
troller minimizing the L1 norm (induced peak to peak)
of continuous-time linear systems cannot be expressed
in terms of LMIs (in [1], the ?-norm is minimized as
a bound for it). A straightforward extension of [1] to
polytopic systems appears in, for instance, [18], but
there are no significant alternative proposals in nonlin-
ear/polynomial literature to the authors’ knowledge.
The concept of inescapable set is refined considering
transient and ultimate bounds in [9], being a solution
provided for the linear switching case. There are other
approaches to set invariance, such as probabilistic ones
[14], or transient bounds in adaptive control [2], out of
the scope of this paper.

In quasi-LPV/PPV cases, precise evaluation of in-
escapable sets is of key importance: as such models are,
in general, only locally valid, it must be ensured that
the trajectories do not exit the model-validity region,
say, Ω. Determining the set of initial conditions such
that Ω is inescapable from them (and, eventually, some
closed-loop performance is attained) is the motivation
of this work. The concrete objectives of this paper are:

(1) Considering a class of non-vanishing disturbances
characterized by known bounds β(t, h) on the in-
tegral of some functions over the interval [t− h, t],

Preprint submitted to Automatica 23 May 2016



being 2-norm, peak bounds and static uncertainty
particular cases.

(2) Giving sufficient conditions to guarantee some tran-
sient and ultimate inescapable sets from a given ini-
tial condition set, as well as guaranteeing that cer-
tain set is reached in finite time (guaranteed visit).

(3) Proposing optimisation setups on the above prob-
lems for some relevant cases.

The structure of the paper is as follows: next section
discusses preliminary concepts and problem statement,
Section 3 presents a sufficient Lyapunov-like inescapabil-
ity inequality, Section 4 casts the problem for PPV sys-
tems as SOS conditions, an academic example is shown
in Section 5 and a conclusions section closes the paper.

2 Notation and problem statement

Consider a nonlinear continuous-time system

ẋ(t) = f(x(t)) +B(x(t))u(t) + e(x(t), w(t)) (1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rc is the
control input, w(t) ∈ Rd is an external disturbance
vector and f(·), B(·), e(·, ·) are smooth functions of the
state with appropriate dimensions. State-feedback con-
trol u(t) := u(x(t)) will be considered in the sequel.

Disturbances w(·) and state will be assumed to fulfill
some integral constraints, stated a priori :∫ h

0

Lk(w(t− τ), x(t− τ)) dτ ≤ β[k](t, h)

∀t ≥ h ≥ 0, ∀k = 1, . . . , S (2)

where β[k](t, h) is known, β[k](t, 0) = 0, β
[k]
h (t, h) :=

∂β[k]

∂h is continuous and nonnegative in 0 ≤ h ≤ t,
and Lk(·, ·) are known continuous functions. Shorthand
Lk(t− τ) will be used instead of Lk(w(t− τ), x(t− τ)).
Time-invariant bounds will be shorthanded omitting the
dependence of β[k] on t; k will be omitted when S = 1.

The triplets of functions of time (x(t), u(t), w(t)), for
t ≥ 0, compatible with the model (1) and constraints (2)
will be denoted as G. The constraints imply, when h→ 0,

instantaneous constraints Lk(w(t), x(t)) ≤ β
[k]
h (t, 0),

motivating definition of W(x) := {w : Lk(w, x) ≤
supt≥0 β

[k]
h (t, 0)} for later use.

Let us denote, if suitable limits exist:

β̄[k](t, h) := h−1β[k](t, h), β̄[k]
∞ := lim inf

t→∞
β̄[k](t, t) (3)

Constraints (2) can be used, e.g., to assert disturbance
power constraints with L = wTw: β̄(t, h)1/2 is a bound
for the root mean square (RMS) average value in an
interval of h time units; β̄(t, t)1/2 denotes the maximum

RMS value of w prior to time t; if β̄∞ ≥ ε, non-vanishing
disturbances are admissible; β(t, h) = γh would model
peak bounds ‖w(t)‖2 ≤ γ; setting βh(t, h) = γ(t − h)

would model ‖w(t)‖2 ≤ γ(t). If β
[k]
h is high, the bounds

approximate those of impulsive disturbances in a limit
case. As a last example, a set of finite-time power bounds∫ Ti

0
wtw ≤ γi, such that 0 = T0 < T1 < · · · < Tn, γ1 <

· · · < γn can be asserted with β(t, h) = κ · γn + γi for κ
and i such that κ · Tn + Ti−1 ≤ h ≤ κ · Tn + Ti.

Other cases, such as Lk = wTMww− γxTMxx, β[k] = 0
can be used to take system uncertainty into account.

Given G and an initial-condition set Θi, the following
definitions will be used throughout the paper:

Definition 1 A set ΘT is inescapable from Θi with a
controller u(x) if

(x(·), u(x(·)), w(·)) ∈ G and x(0) ∈ Θi

⇒ x(t) ∈ ΘT ∀t ≥ 0 (4)

Definition 2 A set Θ∞ is ultimately inescapable from
Θi with a controller u(x) if there exists tU ≥ 0 such that

(x(·), u(x(·)), w(·)) ∈ G and x(0) ∈ Θi

⇒ x(t) ∈ Θ∞ ∀t ≥ tU (5)

Definition 3 A set Θv ⊂ Ω is a guaranteed-visit set
from Θi with a controller u(x) if:

(x(·), u(x(·)), w(·)) ∈ G and x(0) ∈ Θi

⇒ ∃tv ≥ 0 such that x(tv) ∈ Θv (6)

By definition, an inescapable set is ultimately in-
escapable, and both are, too, guaranteed-visit ones.

Problem statement: The goal of this paper is set-
ting up sufficient conditions to determine sets fulfilling
the above definitions for model (1) and constraints (2),
generalising the related results cited in the introduction.

Defining semialgebraic sets with polynomial bound-
aries (defined by strict –open sets– or non-strict –closed
sets– inequalities) and polynomial Lk(w, x), f(x), B(x),
e(x,w), u(x) (or convex combination thereof) will allow
posing sufficient conditions as sum-of-squares problems
for which software tools exist allowing to obtain numer-
ical solutions; these issues will be discussed in section 4.

3 Inescapability conditions

Theorem 1 If there exist an open region Ω ⊂ Rn, a
controller u(x), a nonnegative function V (x) and scalars
α ≥ 0, λk ≥ 0, k = 1, . . . , S, fulfilling

V̇ (x(t)) + αV (x(t))−
S∑
k=1

λkLk(w(t), x(t)) ≤ 0 (7)
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for all x(t) ∈ Ω,w(t) ∈ W(x(t)), then, the time evolution
of V (x(t)) can be bounded by

V (x(t)) ≤ ψ(V0, α, λ, t)

:= e−αtV0 +

S∑
k=1

λk

∫ t

0

β
[k]
h (t, τ)e−ατ dτ (8)

for every trajectory (x(t), u(x(t)), w(t)) ∈ G if the closed
set Θ(τ) := {x : V (x) ≤ ψ(V0, α, λ, τ)} fulfills Θ(τ) ⊂ Ω
for all 0 ≤ τ ≤ t, and x(0) ∈ Θ(0); actually, Θ(0) = {x :
V (x) ≤ V0}.

Thus, defining ψmax(V0, α, λ) := supτ≥0 ψ(V0, α, λ, τ),
the set ΘT := {x : V (x) ≤ ψmax(V0, α, λ)}, is in-
escapable from Θi with controller u(x) if

Θi ⊂ Θ(0) and ΘT ⊂ Ω (9)

Proof: Consider the first-order differential equation:

V̇ (t) + αV (t) =

S∑
k=1

λkLk(w(t), x(t))− g(t) (10)

where g(t) ≥ 0 for all t, does exist by (7). The solution
of (10) is the convolution formula:

V (t) = e−αtV (x(0))+

∫ t

0

(

S∑
k=1

λkLk(t−τ)−g(t−τ))e−α·τ dτ

As both g and e−ατ are nonnegative, if V (x(0)) ≤ V0:

V (t) ≤ e−αtV0 +

S∑
k=1

λk

∫ t

0

Lk(t − τ)e−α·τ dτ (11)

Considering H(t, h) :=
∫ h

0
Lk(t − τ) dτ , as H(t, 0) = 0,

integration by parts formulae (applied twice) gets:∫ t

0

Lk(t−τ)e−ατ dτ = H(t, t)e−αt+α

∫ t

0

H(t, τ)e−ατ dτ

≤ β[k](t, t)e−αt + α

∫ t

0

β[k](t, τ)e−ατ dτ

=

∫ t

0

β
[k]
h (t, τ)e−ατ dτ

so, carrying out the above for each k, (11) can be used
to get (8). The condition Θ(τ) ⊂ Ω for τ ≤ t ensures
that the trajectories do not exit the open region where
(7), and consequently (8), were valid. As Θ(τ) ⊂ ΘT for
all τ ≥ 0, (9) ensures that Θ(τ) ⊂ Ω for all τ ≥ 0. Thus,
(8) holds for all t ≥ 0 and, hence, ΘT is inescapable. �

Corollary 1 If conditions in the Theorem 1 hold, then
(a) if α > 0, the set Θ∞ := {x : V (x) ≤ ϑ}∩ΘT , for any
ϑ > ψ∞(α, λ), being ψ∞(α, λ) := lim sup

t→∞
ψ(V0, α, λ, t),

is ultimately inescapable from Θi; (b) If V0 = 0 and
β[k](t1, h) = β[k](t2, h) for all t1, t2, for all k, then
ΘT = Θ∞.

Proof: (a) As α > 0, e−αt tends to zero for large t, so

lim sup
t→∞

ψ(V0, α, λ, t) = ψ∞(α, λ) ≤ ψmax(V0, α, λ)

Hence, for any ϑ > ψ∞(α, λ) there exists tU such that
V (x(t)) ≤ ϑ for all t ≥ tU . Inescapability of ΘT ensures,
too, that V (x(t)) ≤ ψmax(V0, α, λ) ∀t ≥ tU . Now, Θ∞
in the Corollary statement is the level set {x : V (x) ≤
min(ϑ, ψmax(V0, α, λ))}.

(b) As β
[k]
h ≥ 0, assuming V0 = 0 and β[k] being inde-

pendent of t entails that the bound ψ(0, α, λ, t) increases
monotonically with t, so ψmax(0, α, λ) = ψ∞(α, λ). �

Assertion (b) entails that, with time-invariant con-
straints, “inescapable” and “ultimately inescapable”
sets proven by Theorem 1 coincide if V0 = 0.

Particular cases. The bounds for V (t) from the
above theorem generalise some particular cases in liter-
ature. Indeed, infinite integral bound

∫∞
0
wTw ≤ γ ends

up in V (t) ≤ e−αt(V0 + γ), appearing in, for instance,
[8], and, for α > 0, peak bound β(t, h) = γh yields

V (t) ≤ e−αtV0 +
γ

α
(1− e−αt) (12)

discussed in [1]. Component-wise disturbance bounds [4]
can also be trivially considered.

Note: With α > 0, there might exist V0 6= 0 achieving
the same ΘT than the one resulting with V0 = 0, for
any V0 such that ψmax(V0, α, λ) = ψmax(0, α, λ). For in-
stance, with peak-bounded disturbances we have, from
(12), that any V0 ≤ γ/α ensures ΘT = {V (x) ≤ γ/α}.

Assumption 1 On the sequel, ψmax and ψ∞ will be as-
sumed to be known 2 functions, as they can be determined
from β.

Lemma 1 If β̄
[k]
∞ is finite for all k, and there exist Ω,

u(x), V (x), V0, α > 0, λk proving that ΘT is inescapable
from some Θi by Theorem 1, with finite ψmax(V0, α, λ),
then, for any ε > 0, the set

Θv := {x : V (x) ≤ ψv(α, λ) + ε}

being ψv(α, λ) := α−1
∑
k λkβ̄

[k]
∞ , is a guaranteed-visit

set from Θi with controller u(x).

Proof: From (11), V (x(t)) ≤ η(t), being η the time re-
sponse of the first-order linear system, initial conditions
and input below:

η̇(t) + αη(t) = ν(t); η(0) = V0, ν(t) =
∑
k

λkLk(t)

2 Depending on the actual choice of β[k] such functions
might either have an analytical expression or need to be de-
termined by numerical integration. Also, their partial deriva-
tives with respect to V0 and α will be assumed to be known
in later results, again by symbolic or numeric computation.
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Also, no trajectory in G can produce ν(t) rendering
η(t) < 0 as V is non-negative. Now, as 0 ≤ η(t) ≤ ψmax,
with ψmax finite by assumption, we can assert that

0 ≤ t−1
∫ t

0
η(τ) dτ ≤ ψmax for t > 0, and that lim inf

of the average η exists due to η being bounded. As
η = α−1(ν − η̇), for t > 0 we have

1

t

∫ t

0

η(τ) dτ =

S∑
k=1

λk
1

αt

∫ t

0

Lk(τ) dτ +
1

αt
(η(t)−η(0))

≤ α−1
S∑
k=1

λkβ̄
[k](t, t) +

1

αt
(η(t)− η(0)) (13)

As the required limits exist we can prove that

lim inf
t→∞

1

t

∫ t

0

η(t) dt ≤ α−1
∑
k

λkβ̄
[k]
∞ (14)

thus, for any ε > 0 there exists t > 0 such that
1
t

∫ t
0
η(t) dt ≤ α−1

∑
k λkβ̄

[k]
∞ + ε. Now, the mean-value

theorem for integrals ensures that there exists t1 ≤ t
achieving a value η(t1) lower or equal than its average
in [0, t]. So, Θv will be entered at such time t1. �

With the above results, the state is guaranteed to never
leave ΘT , and ultimately lie and not escape from Θ∞, en-
tering, too, Θv at least once with controller u(x). Clearly,
any Θ(τ) in Theorem 1 is a guaranteed-visit set from
Θ(0); however, Θv is independent of V0. This will be use-
ful in next section, being V0 a decision variable there.

Tight constraints. β[k] might be arbitrary, but some
choices of them are unnecessarily conservative. Conser-
vatism can be reduced via the lemma below:

Lemma 2 Given an arbitrary β[k](t, h), there exists

β∗(t, h) ≤ β[k](t, h) for which
∫ h

0
Lk(t− τ) dτ ≤ β∗(t, h)

and

β∗(t, h) = min

(
β[k](t, h), inf

0<ξ<h
(β∗(t, ξ) + β∗(t− ξ, h− ξ))

)
(15)

Proof: For any 0 < ξ < h:∫ h

0

Lk(t−τ) dτ =

∫ ξ

0

Lk(t−τ) dτ+

∫ h

ξ

Lk(t−τ) dτ =∫ ξ

0

Lk(t− τ) dτ +

∫ h−ξ

0

Lk(t− ξ − τ) dτ

So, we can assert∫ h

0

Lk(t−τ) dτ ≤ inf
0<ξ<h

(
β[k](t, ξ) + β[k](t− ξ, h− ξ)

)
(16)

Hence, we can bound the integral in interval [0, h] from
previously-obtained bounds for intervals [0, ξ], and
[0, h− ξ], being ξ arbitrary. Given this bound, it is con-
servative to use a function where the assertion below
does not hold for all t, h:

β[k](t, h) ≤ inf
0<ξ<h

(
β[k](t, ξ) + β[k](t− ξ, h− ξ)

)
(17)

Indeed, in such a case, generating a new function

β∗1 (t, h) = min

(
β[k](t, h), inf

0<ξ<h

(
β[k](t, ξ) + β[k](t− ξ, h− ξ)

))
would reduce conservatism if β∗1 were used instead of
β[k]. Obviously β∗1 could be plugged in at the right-hand
side and the process repeated, obtaining β∗2 , β∗3 , . . . until
convergence, letting β∗ := β∗∞. The recursion would give
rise to a final β∗ verifying (15). �

4 Polynomial analysis and controller design

In some cases, conditions in Theorem 1 can be handled
via SOS software, if a polynomial V (x) is sought and
ẋ in (1) is polynomial or convex combination thereof,
obtained with [6,17] from non-polynomial f , B and e:

f(x) :=

r∑
i=1

µi(x)fi(x), B(x) :=

r∑
i=1

µi(x)Bi(x),

e(x,w) :=

r∑
i=1

µi(x)ei(x,w) (18)

with µi ≥ 0,
∑
µi = 1. A polynomial u(x) may also be

proposed, or extended to u(x) :=
∑r
i=1 µi(x)ui(x). A

component-wise input constraint will be also considered:∣∣∣u[j](x)
∣∣∣ ≤ ςj ∀x ∈ Ω (19)

where u[j] denotes the j-th element of the input vector.

Given two semialgebraic sets R, Q, notation PS[R ⊂ Q]
will denote any sufficient condition for setR being a sub-
set ofQ, such as the Positivstellensatz ones in [21], imple-
mentations in [12], etc. These well-known conditions in-
volve some multipliers as additional decision variables 3 .
Let us denote as T := {(x,w) : x ∈ Ω, w ∈ W(x)}.

Theorem 2 Given user-defined semialgebraic sets Ω,
Θi, ΘV and Θf , being Ω an open set, if there exists a poly-
nomial function V (x), a level value V0, scalars ε1 > 0,
ε2 > 0, α > 0, λk ≥ 0, a controller u(x) and Positivstel-
lensatz multipliers fulfilling conditions:

PS
[
T ⊂

{
(x,w) :

∂V

∂x
(f(x) +B(x)u(x)

+e(x,w)) + α · V −
S∑
k=1

λkLk(w, x) ≤ 0

}]
(20)

3 For instance, a particular choice for PS[R ⊂ Q] with R =
{r(x) ≥ 0} andQ = {q(x) > 0} could be the existence of υ >
0 and polynomial multipliers τ1(x), τ2(x) such that τ1(x),
τ2(x) and τ1(x)r(x)− τ2(x)(q(x)− υ) are SOS polynomials
(the quadratic case ends up in the S-procedure); actually
R ⊂ {q(x) ≥ υ}. The reader is referred to the cited works
for software and implementation details.
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PS[ Θi ⊂ {x : V (x) ≤ V0} ] (21)

PS [ {x : V (x) ≤ ψmax(V0, α, λ)} ⊂ Ω ] (22)

PS [{x : V (x) ≤ ψ∞(α, λ) + ε1} ⊂ Θf ] (23)

PS [{x : V (x) ≤ ψv(α, λ) + ε2} ⊂ ΘV ] (24)

PS [{x : V ≤ ψmax(V0, α, λ)} ⊂

{x : ς2j − (u[j](x))2 ≥ 0}
]
∀j (25)

Then Ω is robustly inescapable and Θf is ultimately in-
escapable from Θi with u(x), fulfilling the bound (19) for
any trajectory starting in {x : V (x) ≤ V0} which, by
(21), contains Θi. Also ΘV is a guaranteed-visit set.

Proof: Expression (20) is a sufficient condition for (7),
and so they are (21) and (22) for (9). Then, (23) forces
the ultimately inescapable set Θ∞ to be inside the pre-
fixed Θf , and (25) ensures (19) on ΘT . Last, (24) ensures
Θv ⊂ ΘV . �

In case ψ∞ = ψmax, from Corollary 1(a), ε1 can be set
to 0. Also, in the case α = 0, (23) and (24) should be
removed. Convex sums in both (18) and the control law
will, too, need sufficient copositive sum relaxations of
(20), such as Polya [19, Sec. 7.1].

Optimisation. If one set (either Θi, Θf , ΘV or Ω) is
replaced by a parameterised prefixed-shape set Hσ =
{x : maxk=1,...,kM hk(x) ≤ σ}, leaving the other two sets
fixed, Theorem 2 can be reformulated as an optimisation
problem. Then, size parameter σ or some performance/
disturbance bounds can be suitably optimised in order
to solve problems such as:

P1: Smallest inescapable set from given initial condi-
tions. Given an initial condition set Θi, set Ω =
int(Hσ) and minimise the size parameter σ.

P2: Largest admissible initial condition set. Given Ω,
maximise σ such that Hσ ⊂ {V ≤ V0}.

P3: Smallest ultimately inescapable set from given ini-
tial conditions. Given an initial condition set Θi,
minimise σ such that Θ∞ ⊂ Hσ.

P4: Smallest guaranteed-visit set from given initial con-
ditions. Given an initial condition set Θi, minimise
σ such that Θv ⊂ Hσ.

P5: Closed-loop performance goal. Optimising some
classic (quadratic cost bound, norm bound, etc.)
performance criteria subject to some of the above
inescapability conditions.

P6: Disturbance bounds. Optimising parameters in β[k]

subject to particular inescapability conditions.

Numerically, conditions in Theorem 2 are nonconvex 4

because of the product αV and ∂V
∂xB(x)u(x), and the dif-

4 Only in some very particular cases of bound β and linear
polytopic systems, quadratic V (x), Theorem 2 reduces to
cases in literature in the introduction, some of them convex.

ferent Positivstellensatz multipliers which may multiply
V (x), u(x) or the parameters V0, ψmax, ψ∞, etc. Also,
ψmax(V0, α, λ) and ψ∞(α, λ) are nonlinear in their argu-
ments (perhaps needing approximate numerical evalua-
tion). In order to handle nonlinearity in decision vari-
ables with SDP software, a gradient-based iterative lin-
earisation [13], possibly converging to a local optimum,
will be pursued, as follows:

Algorithm. Consider some decision variablesQ and a
generic problem of minimising f(Q), subject to a polyno-
mial g(Q, x) being SOS, denoted as SOS(g(Q, x)). Here,
f is maybe non-convex in Q. The algorithm below will
succeed in finding a local minimum (∇ denotes gradient
with respect to Q):

(1) Start with k = 0, and a feasible solution Qk := Q0.
Such solution, problem dependent, might involve
particular cases in literature, constraint softening
in initial iterations, etc., see example below.

(2) Minimise the linearised f(Qk) +∇f(Qk) · δQ, sub-
ject to SOS(g(Qk, x) +∇g(Qk, x) · δQ). Note that
this is a convex SOS problem on the new decision
variables δQ. Denote as δQ∗ the optimal solution.

(3) Starting with j = 0, define λ := 2−j , and increase j
until 5 Qk+1 = Qk+λδQ∗ fulfills f(Qk+1) < f(Qk)
and SOS(Qk+1, x) or j = jMAX .

(4) If j = jMAX , then STOP (a local minimum has
been reached if step λ gets negligible). ELSE, set
k = k + 1 and go to step 2.

5 Example

Let us consider the following nonlinear system:

ẋ =

(
−3 0.5

0 −4.1 + 3.8 sin(x1)

)
x+

(
0

1

)
u+

(
0.9

−0.56

)
w

(26)
in a modelling region Ω defined as an open circle with
radius R. The control action bound in (19) has been set
to ς = 1. Note that the origin is an equilibrium point.

A single disturbance bound (2) with L(w, x) = w2 has
been considered, with β̄(h)1/2 (not depending on t) de-
picted in Figure 1: disturbances with a high RMS value
in short time are allowed; however, the allowed RMS av-
erage is a decreasing function of h (up to an infinite-time
average β̄∞ = 0.1). Figure 1 has been obtained with
β(h) = 0.1h+ 0.5e−h + 0.4h · e−0.1h.

The non-linearity sin(x1), modelled via a Taylor series
approach (degree 3), can be expressed as

sin(x1) = µ1(x1)(x1−x3
1/6)+µ2(x1)(x1+g(R)x3

1) (27)

5 Note that, if ∇f(Qk) 6= 0, there exists a small enough
λ > 0 such that f(Qk + λδQ∗) < f(Qk), so if the gradient
points inwards of the feasible set, some j will exist for sure.
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Fig. 1. Chosen RMS bound function β̄1/2 in an interval h.

being g(R) = (sin(R)−R)/R3 for R > 0,

µ1(x1) =
sin(x1)− (x1 + g(R)x31)

(−g(R)− 1/6)x31

and µ2 = 1−µ1. Replacing (27) in (26), we get a repre-
sentation (18). Then, with such model, some examples of
application of Theorem 2 will be now shown. Multipliers
and implementation details are omitted for brevity.

Case 1: Inescapable set from origin. By Corollary 1(b),
transient and ultimate inescapable sets are identical in
this particular case, i.e., Θ∞ = ΘT , as we set V0 = 0. The
objective is minimising the radius

√
σ of a circular region

Θf = Hσ := {xTx ≤ σ}, problem P3 (equivalent to P1).
Quadratic and linear structures have been arbitrarily
chosen for V (x) and u(x), respectively.

In order to obtain such σ, the initial Ω is set as a small
“seed” circle around the origin. Then, feasible deci-
sion variable values in Theorem 2 are obtained without
considering constraint (22), solving problem P3 for the
smallest circular Θf . Subsequently, if Θf 6⊂ Ω, Ω is
enlarged so that it is slightly larger than Θf , and com-
putations are repeated until such situation does not
arise (details omitted for brevity).

As a result of the above, setting Θf to be the circle of
radius 0.269 and Ω an open circle of radius R = 0.27
results in a feasible problem for Theorem 2. The linear
controller u(x) = 2.9019x1 − 3.7984x2 can be used to
prove an inescapable set starting from equilibrium (Θi =

0) given by the small purple ellipsoid Θ
[Θi=0]
T in Figure

2. The set Θf is the dotted black circle labelled as R1.

Case 2: computation of largest initial condition set for
a given inescapable region Ω (problem P2). Let us set
Ω as the open circle of radius R=3, and a degree 4
choice for polynomial V (x). A polynomial controller u =∑2
i=1 µi(x)ui(x) with gains (28),(29) below, proves that

initial conditions in the blue Θi set in Figure 2 make
Ω (outer gray circle) inescapable from them (indeed ΘT

is almost tangent to the boundary of Ω, see the brown
curve; the value of ν in footnote 3 was 10−3). The set has
been obtained in an iterative maximisation of the min-
imum radius

√
σ of Θi := Hσ, resulting in

√
σ = 2.56

(dotted red circle labelled asR2). Finally, the green curve
in Figure 2 depicts the boundary of the guaranteed-visit

set Θv with the obtained V (x), α, λ and ε = 10−3 by
Lemma 1.

u1(x) = −0.065691x31 + 0.016334x21x2 − 0.036757x1x
2
2

− 0.0014564x21 − 0.030947x1x2 + 0.51542x1

+ 0.016334x21x2 − 0.036757x1x
2
2 + 0.0084773x32

− 0.030947x1x2 − 0.011761x22 − 0.23688x2 (28)

u2(x) = −0.043735x31 + 0.0058491x21x2 − 0.014259x1x
2
2

+ 0.002483x21 − 0.063374x1x2 + 0.3396x1

+ 0.0058491x21x2 − 0.014259x1x
2
2 − 0.0090187x32

− 0.063374x1x2 − 0.011354x22 − 0.15678x2 (29)

Fig. 2. Inescapable, guaranteed-visit and initial sets for Case
1 (purple, dashed black) and Case 2 (rest of lines).

6 Conclusions

This paper identifies four interrelated sets in the dy-
namic behaviour of a nonlinear system subject to non-
vanishing disturbances, constrained by finite-interval in-
tegral bounds. The relevant sets are: 1) the initial condi-
tion set, 2) inescapable (at any time) sets, 3) ultimately
inescapable sets, when t is large and 4) guaranteed-visit
sets. Level sets of a Lyapunov-like function constrain the
shape of such sets.

Inescapable sets are needed in proving controller validity
when models are local. Also, the guaranteed-visit set
Θv gives the opportunity of “capturing” the state near
the origin and changing the control law to another with
better provable performance (left for further research).

When the involved models are polynomials (or convex
combinations thereof) some sufficient sum-of-squares
conditions can be set up in order to solve some optimisa-
tion problems on the size of one of the sets given bounds
for the remaining ones. In many cases, such conditions
are nonconvex so iterative procedures are needed.
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[14] E. Kofman, J. A. De Doná, and M. M. Seron. Probabilistic
set invariance and ultimate boundedness. Automatica,
48(10):2670–2676, 2012.

[15] R. M. Palhares and Pedro L.D. Peres. Robust filtering with
guaranteed energy-to-peak performance an LMI approach.
Automatica, 36(6):851 – 858, 2000.

[16] J. L. Pitarch, A. Sala, and C. V. Ariño. Closed-form estimates
of the domain of attraction for nonlinear systems via fuzzy
polynomial models. IEEE Trans. on Cybernetics., 44(4):526–
538, Apr 2014.

[17] A. Sala and C. Ariño. Polynomial fuzzy models for nonlinear
control: A Taylor series approach. Fuzzy Systems, IEEE
Transactions on, 17:1284–1295, aug 2009.

[18] J. V. Salcedo, M. Mart́ınez, and S. Garćıa-Nieto. Stabilization
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