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Abstract

We study incremental stability and convergence of switched (bimodal) Filippov systems via contraction analysis. In particular,
by using results on regularization of switched dynamical systems, we derive sufficient conditions for convergence of any two
trajectories of the Filippov system between each other within some region of interest. We then apply these conditions to the
study of different classes of Filippov systems including piecewise smooth (PWS) systems, piecewise affine (PWA) systems and
relay feedback systems. We show that contrary to previous approaches, our conditions allow the system to be studied in metrics
other than the Euclidean norm. The theoretical results are illustrated by numerical simulations on a set of representative
examples that confirm their effectiveness and ease of application.
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1 Introduction

Incremental stability has been established as a power-
ful tool to prove convergence in nonlinear dynamical
systems (Angeli, 2002). It characterizes asymptotic
convergence of trajectories with respect to one another
rather than towards some attractor known a priori.
Several approaches to derive sufficient conditions for
a system to be incrementally stable have been pre-
sented in the literature (Angeli, 2002; Russo et al., 2010;
Lohmiller and Slotine, 1998; Forni and Sepulchre, 2014;
Pavlov et al., 2006).

A particularly interesting and effective approach
to obtain sufficient conditions for incremental sta-
bility of nonlinear systems comes from contraction
theory (Lohmiller and Slotine, 1998; Jouffroy, 2005;
Aminzare and Sontag, 2014). A nonlinear system is said
to be contracting if initial conditions or temporary state
perturbations are forgotten exponentially fast, imply-
ing convergence of system trajectories towards each
other and consequently towards a steady-state solution
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which is determined only by the input (the entrainment
property, e.g. Russo et al. (2010)). A vector field can be
shown to be contracting over a given K-reachable set
by checking the uniform negativity of some matrix mea-
sure µ of its Jacobian matrix in that set (Russo et al.,
2010). Classical contraction analysis requires the system
vector field to be continuously differentiable.

In this paper, we consider an important class of non-
differentiable vector fields known as piecewise smooth
(PWS) systems (Filippov, 1988). A PWS system con-
sists of a finite set of ordinary differential equations

ẋ = fi(x), x ∈ Si ⊂ R
n (1)

where the smooth vector fields fi, defined on disjoint
open regions Si, are smoothly extendable to the clo-
sure of Si. The regions Si are separated by a set Σ of
codimension one called the switching manifold, which
consists of finitely many smooth manifolds intersecting
transversely. The union of Σ and all Si covers the whole
state space U ⊆ R

n.

Piecewise smooth systems are of great significance in
applications, ranging from problems in mechanics (fric-
tion, impact) and biology (genetic regulatory networks)
to variable structure systems in control engineering (slid-
ing mode control (Utkin, 1992)) – for an overview see
the monograph by (di Bernardo et al., 2008).
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The theoretical study of PWS systems is important.
Firstly, the classical notion of solution is challenged in at
least two distinct ways. When the normal components
of the vector fields either side of Σ are in the same direc-
tion, the gradient of a trajectory is discontinuous, lead-
ing to Carathéodory solutions (Filippov, 1988). In this
case, the dynamics is described as crossing or sewing.
But when the normal components of the vector fields on
either side of Σ are in the opposite direction, a vector
field on Σ needs to be defined. The precise choice is not
unique and depends on the nature of the problem under
consideration. One possibility is the use of differential
inclusions. Another choice is to adopt the Filippov con-
vention (Filippov, 1988), where a sliding vector field f s

is defined on Σ. In this case, the dynamics is described
as sliding.

Some results have been presented in the literature to
extend contraction analysis to non-differentiable vector
fields. An extension to piecewise smooth continuous
(PWSC) systemswas outlined in (Lohmiller and Slotine,
2000) and formalized in (di Bernardo et al., 2014). Con-
tracting hybrid systemswere analysed in (Lohmiller and Slotine,
2000) while the stability analysis of hybrid limit cycles
using contractionwas presented in (Tang and Manchester,
2014). An extension of contraction theory, related
to the concept of weak contraction (Sontag et al.,
2015), to characterize incremental stability of slid-
ing mode solutions of planar Filippov systems was
first presented in (di Bernardo and Liuzza, 2013) and
later extended to n-dimensional Filippov systems in
(di Bernardo and Fiore, 2014). Finally, incremental sta-
bility properties of piecewise affine (PWA) systems were
discussed in (Pavlov et al., 2007) in terms of conver-
gence, a stability property related to contraction theory
(Pavlov et al., 2004).

In this paper, we take a different approach to the
study of contraction in n-dimensional Filippov systems
than the one taken in (di Bernardo and Liuzza, 2013;
di Bernardo and Fiore, 2014). In those papers, the slid-
ing vector field f s was assumed to be defined everywhere
and then the contraction properties of its projection
onto the switching manifold was considered (together
with a suitable change of coordinates). In the current
paper, we adopt a new generic approach which directly
uses the vector fields fi and does not need the explicit
computation of the sliding vector field f s. Our method
has a simple geometric meaning and, unlike other meth-
ods, can also be applied to nonlinear PWS systems.

Instead of directly analysing the Filippov system, we
first consider a regularized version; one where the switch-
ing manifold Σ has been replaced by a boundary layer
of width 2ε. We choose the regularization method of So-
tomayor and Teixeira (Sotomayor and Teixeira, 1996).
We then apply standard contraction theory results to
this new system, before taking the limit ε → 0 in order
to recover results that are valid for our Filippov system.

2 Mathematical preliminaries and background

2.1 Matrix measures

Given a real matrix A ∈ R
n×n and a norm | · | with

its induced matrix norm ‖·‖, the associated matrix
measure (also called logarithmic norm (Dahlquist,
1958; Lozinskii, 1958; Ström, 1975)) is the function
µ : Rn×n → R defined as

µ(A) := lim
h→0+

‖I + hA‖ − 1

h

where I denotes the identity matrix. The following ma-
trix measures associated to the p−norm for p = 1, 2,∞
are often used

µ1(A) = max
j



ajj +
∑

i6=j

|aij |





µ2(A) = λmax

(

A+AT

2

)

µ∞(A) = max
i



aii +
∑

j 6=i

|aij |





Thematrixmeasure µ has the following useful properties
(Vidyasagar, 2002; Desoer and Haneda, 1972):

(1) µ(I) = 1, µ(−I) = −1.
(2) If A = ∅, where∅ denotes a matrix with all entries

equal to zero, then µ(A) = 0.
(3) −‖A‖ ≤ −µ(−A) ≤ Reλi(A) ≤ µ(A) ≤ ‖A‖ for

all i = 1, 2, . . . , n, where Reλi(A) denotes the real
part of the eigenvalue λi(A) of A.

(4) µ(cA) = c µ(A) for all c ≥ 0 (positive homogene-
ity).

(5) µ(A+B) ≤ µ(A) + µ(B) (subadditivity).
(6) Given a constant nonsingular matrix Q, the matrix

measure µQ,i induced by the weighted vector norm
|x|Q,i = |Qx|i is equal to µi(QAQ

−1).

The following theorem can be proved (Vidyasagar, 1978;
Aminzare and Sontag, 2014).

Theorem 1 There exists a positive definite matrix P
such that PA + ATP < 0 if and only if µQ,2(A) < 0,

with Q = P 1/2.

We now present results on the properties of matrix mea-
sures of rank-1 matrices, since we will need these in the
sequel. We believe that Lemma 1 is an original result.
For any two vectors x, y ∈ R

n, x, y 6= 0, the matrix
A = xyT has always rank equal to 1. This can be easily
proved observing that xyT = [y1x y2x . . . ynx].
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Proposition 1 For any two vectors x, y ∈ R
n, x, y 6= 0

and for any norm we have that µ(xyT ) ≥ 0.

Proof. The proof follows from property 3 of matrix
measures as listed above, that is, for any matrix and any
norm µ(A) ≥ Reλi(A), for all i, whereReλi(A) denotes
the real part of the eigenvalues λi(A) of A. Therefore,
since a rank-1 matrix has n−1 zero eigenvalues its mea-
sure cannot be less than zero.

The following important result holds for the measure of
rank-1 matrices induced by Euclidean norms.

Lemma 1 Consider the Euclidean norm | · |Q,2, with

Q = P 1/2 and P = PT > 0. For any two vectors x, y ∈
R

n, x, y 6= 0, the following result holds

µQ,2(xy
T ) = 0 if and only if Px = −a y, a > 0,

otherwise µQ,2(xy
T ) > 0.

Proof. Firstly we prove that µ2(xy
T ) = 0 if and only

if x and y are antiparallel, i.e. x = −a y for some a > 0.
Indeed, from the definition of Euclidean matrix mea-
sure, µ2(xy

T ) is equal to the maximum eigenvalue of
the symmetric part As ≡ (A+AT )/2 of the matrix
A = xyT . The characteristic polynomial pλ(As) of As is
(Bernstein, 2009, Fact 4.9.16)

pλ(As) =λ
n−2

{

λ2 − xT yλ−
1

4

[

xTxyT y − xT yyTx
]

}

=λn−2

{

λ2 − xT yλ−
1

4

[

|x|22|y|
2
2 − (xT y)2

]

}

.

This polynomial has always n−2 zero roots and (in gen-
eral) two further real roots. It can be easily seen from
Descartes’ rule that their signs must be opposite. There-
fore, the only possibility for them to be nonpositive is
that one must be zero while the other is negative. Using
again Descartes’ rule, this obviously happens if and only
if x and y are antiparallel.

Now, assume that µQ,2(xy
T ) = 0 then, using prop-

erty 6 of matrix measures, we have µQ,2(xy
T ) =

µ2

(

QxyTQ−1
)

= µ2

(

Qx(Q−1y)T
)

= 0, and, from the

result proved above, Qx and Q−1y must be antiparal-
lel, i.e. Qx = −aQ−1y for some a > 0, or equivalently
Px = −a y.

To prove sufficiency, suppose that Px = −a y, a > 0,
then Qx = −aQ−1y and therefore, using again the
result above, we have µQ,2(xy

T ) = µ2(Qxy
TQ−1) =

a−1µ2(−Qx(Qx)
T ) = 0.

Note that when x or y (or both) are equal to 0 then by
property 2 of matrix measures µ(xyT ) = 0.

2.2 Incremental stability and contraction theory

Before starting our analysis for PWS systems, we present
some key results on the contraction properties of smooth
systems. Let U ⊆ R

n be an open set. Consider the sys-
tem of ordinary differential equations

ẋ = f(t, x) (2)

where f is a continuously differentiable vector field de-
fined for t ∈ [0,∞) and x ∈ U , that is f ∈ C1(R+ ×
U,Rn). We denote by ψ(t, t0, x0) the value of the solu-
tion x(t) at time t of (2) with initial value x(t0) = x0.
We say that a set C ⊆ R

n is forward invariant for system
(2), if x0 ∈ C implies ψ(t, t0, x0) ∈ C for all t ≥ t0.

Definition 1 Let C ⊆ R
n be a forward invariant set and

|·| some norm in C. System (2) is said to be incrementally
exponentially stable in C if for any two solutions x(t) =
ψ(t, t0, x0) and y(t) = ψ(t, t0, y0) there exist constants
K ≥ 1 and c > 0 such that ∀t ≥ t0, ∀x0, y0 ∈ C

|x(t) − y(t)| ≤ K e−c(t−t0) |x0 − y0|. (3)

Results in contraction theory can be applied to a quite
general class of subsets C ⊆ R

n, known as K-reachable
subsets (Russo et al., 2010).

Definition 2 Let K > 0 be any positive real number.
A subset C ⊆ R

n is K-reachable if, for any two points
x0 and y0 in C there is some continuously differentiable
curve γ : [0, 1] → C such that γ(0) = x0, γ(1) = y0 and
|γ′(r)| ≤ K|y0 − x0|, ∀ r.

For convex sets C, we may pick γ(r) = x0+r(y0−x0), so
γ′(r) = y0−x0 and we can takeK = 1. Thus, convex sets
are 1-reachable, and it is easy to show that the converse
holds.

The main result of contraction theory for smooth
systems is as follows Lohmiller and Slotine (1998);
Russo et al. (2010).

Theorem 2 Let C ⊆ U be a forward-invariant K-
reachable set. If there exists some norm in C, with asso-
ciated matrix measure µ, such that, for some constant
c > 0 (the contraction rate)

µ

(

∂f

∂x
(t, x)

)

≤ −c ∀x ∈ C, ∀t ≥ t0, (4)

that is, the vector field (2) is contracting in C, then sys-
tem (2) is incrementally exponentially stable in C with
convergence rate c.
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As a result, if a system is contracting in a (bounded)
forward invariant subset then it converges towards
an equilibrium point therein (Russo et al., 2010;
Lohmiller and Slotine, 1998).

In this paper we analyse contraction properties of dy-
namical systems based on norms and matrix measures.
Other more general definitions exist in the litera-
ture, for example results based on Riemannian metrics
(Lohmiller and Slotine, 1998) and Finsler-Lyapunov
functions (Forni and Sepulchre, 2014). The relations
between these three definitions and the definition of
convergence (Pavlov et al., 2004) have been investigated
in (Forni and Sepulchre, 2014).

2.3 Filippov systems

Switched (or bimodal) Filippov systems are dynamical
systems ẋ = f(x) where f(x) is a piecewise continuous
vector field having a codimension one submanifold Σ as
its discontinuity set and defined as

f(x) =

{

f+(x) if x ∈ S+

f−(x) if x ∈ S− (5)

where f+, f− ∈ C1(U,Rn). The vector field f(x) can be
multivalued at the points of Σ. The submanifold Σ is
defined as the zero set of a smooth function H : U → R,
that is

Σ := {x ∈ U : H(x) = 0} (6)

where 0 ∈ R is a regular value of H , i.e. ∀x ∈ Σ

∇H(x) =

[

∂H(x)

∂x1
. . .

∂H(x)

∂xn

]

6= 0.

Σ is called the switching manifold. It divides U in two
disjoint regions, S+ := {x ∈ U : H(x) > 0} and
S− := {x ∈ U : H(x) < 0}. We distinguish the follow-
ing regions on Σ:

(1) The crossing region is Σc := {x ∈ Σ : Lf+H(x) ·
Lf−H(x) > 0};

(2) The sliding region is Σs := {x ∈ Σ : Lf+H(x) <
0, Lf−H(x) > 0};

(3) The escaping region is Σe := {x ∈ Σ : Lf+H(x) >
0, Lf−H(x) < 0};

whereLf±H(x) := ∇H(x) f±(x) is the Lie derivative of
H(x) with respect to the vector field f±(x), that is the
component of f±(x) normal to the switching manifold
at the point x. In the sliding region we adopt the widely
used Filippov convention (Filippov, 1988). We define a
sliding vector field f s, which is the convex combination
of f+ and f− that is tangent to Σ, given for x ∈ Σs by

f s(x) = (1 − λ)f+(x) + λf−(x), λ ∈ [0, 1] (7)

with λ such that ∇H(x) f s(x) = 0.

Remark 1 In the following we assume that solutions of
systems (5) and (7) are defined in the sense of Filippov
and that for (5) right uniqueness (Filippov, 1988, pag.
106) holds in U . Therefore, the escaping region is ex-
cluded from our analysis.

There are a few results on the incremental stability
of piecewise smooth systems; notably for piecewise
affine (PWA) systems and piecewise smooth continuous
(PWSC) systems.

Definition 3 (PWA systems) A bimodal PWA sys-
tem is a system of the form

ẋ =

{

A1x+ b1 +Bu if hTx > 0

A2x+ b2 +Bu if hTx < 0
(8)

where x, h ∈ R
n, u ∈ R

m, and Ai ∈ R
n×n, B ∈ R

n×m,
bi ∈ R

n, i = 1, 2, are constant matrices and vectors,
respectively.

Theorem 3 (Pavlov et al., 2007) System (8) is incre-
mentally exponentially stable if there exist a positive def-
inite matrix P = PT > 0, a number γ ∈ {0, 1} and a
vector g ∈ R

n such that

(1) PAi +AT
i P < 0, i = 1, 2,

(2) ∆A = ghT ,
(3) P∆b = −γh,

where ∆A := A1 −A2 and ∆b = b1 − b2.

Remark 2 The first condition requires the existence of
a common Lyapunov function V (x) = xTPx for the
two modes. The second condition assumes that the lin-
ear part of the two modes is continuous on the switch-
ing plane. There are two cases in the third condition (see
Pavlov et al., 2007, Remark 4). For γ = 0, the PWA sys-
tem (8) is continuous. For γ = 1, the discontinuity is
due only to the bi and, together with the first condition,
implies that the two modes of the PWA system (8) are
simultaneously strictly passive.

The original theorem in (Pavlov et al., 2007, Theorem 2)
is stated in terms of convergence instead of incremental
stability. These two notions are proved to be equivalent
on a compact set in (Rüffer et al., 2013).

Definition 4 (PWSC systems) The piecewise smooth
system (1) is said to be continuous (PWSC) if the fol-
lowing conditions hold:

(1) it is continuous for all x ∈ R
n and for all t ≥ t0

(2) the function fi(t, x) is continuously differentiable
for all x ∈ Si, for all t ≥ t0 and for all i. Further-
more the Jacobian ∂fi

∂x (t, x) can be continuously ex-
tended on the boundary ∂Si.
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Theorem 4 (di Bernardo et al., 2014) Let C ⊆ U be a
forward-invariant K-reachable set. Consider a PWSC
system such that it fulfills conditions for the existence
and uniqueness of a Carathéodory solution. If there ex-
ists a unique matrix measure such that for some positive
constants ci

µ

(

∂fi
∂x

(t, x)

)

≤ −ci,

for all x ∈ S̄i, for all t ≥ t0 and for all i, then the system is
incrementally exponentially stable in C with convergence
rate c := mini ci.

A similar result using Euclidean norms was previously
presented in (Pavlov et al., 2006, Theorem 2.33) in terms
of convergent systems. An extension of Theorem 4 to
the case where multiple norms are used was presented
in (Lu and di Bernardo, 2015, 2016).

2.4 Regularization

Our approach to contraction analysis of Filippov sys-
tems is via regularization. There are several ways to reg-
ularize system (5). We shall adopt the method due to So-
tomayor and Teixeira (Sotomayor and Teixeira, 1996),
where a smooth approximation of the discontinuous vec-
tor field is obtained by means of a transition function.

Definition 5 A PWSC function ϕ : R → R is a tran-
sition function if

ϕ(s) =







1 if s ≥ 1,

∈ (−1, 1) if s ∈ (−1, 1),

−1 if s ≤ −1,

(9)

and ϕ′(s) > 0 within s ∈ (−1, 1).

Definition 6 The ϕ-regularization of a bimodal Filip-
pov system (5) is the one-parameter family of PWSC
functions fε : U → R

n given for ε > 0 by

fε(x)=
1

2

[

1+ϕ
(

H(x)
ε

)]

f+(x)+
1

2

[

1−ϕ
(

H(x)
ε

)]

f−(x)

(10)

The region of regularization where this process occurs is

Sε := {x ∈ U : −ε < H(x) < ε}.

Note that outside Sε the regularized vector field fε co-
incides with the PWS dynamics, i.e.

fε(x) =

{

f+(x) if x ∈ S+ \ Sε

f−(x) if x ∈ S− \ Sε
(11)

A graphical representation of the different regions of the
state space of the regularized vector field fε is depicted
in Figure 1.

Fig. 1. Regions of state space: the switching manifold
Σ := {x ∈ U : H(x) = 0}, S+ := {x ∈ U : H(x) > 0},
S− := {x ∈ U : H(x) < 0} (hatched zone) and
Sε := {x ∈ U : −ε < H(x) < ε} (grey zone).

Sotomayor and Teixeira showed that the sliding vector
field f s can be obtained as a limit of the regularized
system in the plane. For Rn, a similar result was given
in (Llibre et al., 2008, Theorem 1.1). Here we recover
their results directly via the theory of slow-fast systems
(Kuehn, 2015) as follows.

Lemma 2 Consider f in (5) with 0 ∈ U and its reg-
ularization fε in (10). If for any x ∈ Σ we have that
Lf+H(x) 6= 0 or Lf−H(x) 6= 0 then there exists a sin-
gular perturbation problem such that fixed points of the
boundary-layer model are critical manifolds, on which the
motion of the slow variables is described by the reduced
problem, which coincides with the sliding equations (7).
Furthermore, denoting by xε(t) a solution of the regular-
ized system and by x(t) a solution of the discontinuous
system with the same initial conditions x0, then

|xε(t)− x(t)| = O(ε)

uniformly for all t ≥ t0 and for all x0 ∈ U .

Proof. For the sake of clarity, we assume without loss
of generality that Σ can be represented, through a local
change of coordinates around a point x ∈ Σ, by the
function H(x) = x1. We use the same notation for both
coordinates. Hence our regularized system (10) becomes

ẋ =
1

2

[

1 + ϕ
(

x1

ε

)]

f+(x) +
1

2

[

1− ϕ
(

x1

ε

)]

f−(x) (12)

We now write (12) as a slow-fast system. Let x̂1 =
x1/ε, so that the region of regularization becomes x̂1 ∈
(−1, 1), and x̂i = xi for i = 2, . . . , n. Then (12) can be

5



written as

ε ˙̂x1 =
1

2

[

1 + ϕ(x̂1)
]

f+
1 (x̂) +

1

2

[

1− ϕ(x̂1)
]

f−
1 (x̂),

˙̂xi =
1

2

[

1 + ϕ(x̂1)
]

f+
i (x̂) +

1

2

[

1− ϕ(x̂1)
]

f−
i (x̂),

(13)

for i = 2, . . . , n, where x̂ = (x̂1, x̂2, . . . , x̂n). The variable
x̂1 is the fast variable and the variables x̂i for i = 2, . . . , n
are the slow variables. When ε = 0, we have

0 =
1

2

[

1 + ϕ(x̂1)
]

f+
1 (x̂) +

1

2

[

1− ϕ(x̂1)
]

f−
1 (x̂),

˙̂xi =
1

2

[

1 + ϕ(x̂1)
]

f+
i (x̂) +

1

2

[

1− ϕ(x̂1)
]

f−
i (x̂),

(14)

for i = 2, . . . , n, obtaining the so-called reduced prob-
lem. From the hypotheses we know that f+

1 (x̂) 6= 0 or
f−
1 (x̂) 6= 0, hence we can solve for ϕ from the first equa-
tion

ϕ(x̂1) = −
f+
1 (x̂) + f−

1 (x̂)

f+
1 (x̂)− f−

1 (x̂)
, (15)

that substituted into the second equation in (14) gives

˙̂xi =
f+
1 (x̂)f−

i (x̂)− f+
i (x̂)f−

1 (x̂)

f+
1 (x̂)− f−

1 (x̂)
, i = 2, . . . , n. (16)

If we now rescale time τ = t/ε and write ()
′

= d/dτ ,
then (13) becomes

x̂
′

1 =
1

2

[

1 + ϕ(x̂1)
]

f+
1 (x̂) +

1

2

[

1− ϕ(x̂1)
]

f−
1 (x̂),

x̂
′

i =
ε

2

[

1 + ϕ(x̂1)
]

f+
i (x̂) +

ε

2

[

1− ϕ(x̂1)
]

f−
i (x̂),

(17)

for i = 2, . . . , n. The limit ε = 0 of (17)

x̂
′

1 =
1

2

[

1 + ϕ(x̂1)
]

f+
1 (x̂) +

1

2

[

1− ϕ(x̂1)
]

f−
1 (x̂),

x̂
′

i = 0, i = 2, . . . , n,

is called the boundary-layer model. Its fixed points can be
obtained by applying the Implicit Function Theorem to
x̂

′

1 = 0, that gives x̂1 = h(x2, . . . , xn), since ϕ
′(x̂1) > 0

for x̂1 ∈ (−1, 1) by definition. This in turn implies that
x1 = ε h(x2, . . . , xn).

It now follows directly that the flow of the reduced prob-
lem on critical manifolds of the boundary-layer problem
coincides with that of the sliding vector field f s as in (7)
when the same change of coordinates as in the beginning
is considered, i.e. such that ∇H = [1 0 . . . 0]. In fact,
after some algebra we get

f s(x) =

[

0,
f+
1 f

−
2 − f+

2 f
−
1

f+
1 − f−

1

, . . . ,
f+
1 f

−
n − f+

n f
−
1

f+
1 − f−

1

]T

that coincides with (16).

Furthermore, it is a well known fact in singular perturba-
tion problems (Khalil, 2000, Theorem 11.1) that, start-
ing from the same initial conditions, the error between
solutions x̂(t) of the slow system (13) and solutions of
its reduced problem (that, as said, coincide with solu-
tions xs(t) of the sliding vector field) is O(ε) after some
tb > t0 when the fast variable x̂1 has reached a O(ε)
neighborhood of the slow manifold, i.e. |x̂(t) − xs(t)| =
O(ε), ∀t ≥ tb. However, in our case the singular per-
turbation problem is defined only in Sε where any point
therein is distant from the slow manifold at most 2ε,
therefore the previous estimate is defined uniformly for
all t ≥ t0 and in any norm due to their equivalence in
finite dimensional spaces. On the other hand, from (11)
outside Sε the regularized vector field is equal to the dis-
continuous vector field and therefore the error between
their solutions is uniformly 0.

3 Contracting Filippov systems

In this section we present our two main results, Theo-
rems 5 and 6, for switched Filippov systems. Theorem
5, using Lemma 2, shows that if the regularized system
ẋ = fε(x) is incrementally exponentially stable so it is
the Filippov system from which it is derived. Theorem
6 then gives sufficient conditions for the discontinuous
vector field to be incrementally exponentially stable.

Theorem 5 Let C ⊆ U be a forward-invariant K-
reachable set. If there exists a positive constant ε̄ < 1
such that for all ε < ε̄ the regularized vector field fε
(10) is incrementally exponentially stable in C with con-
vergence rate c, then in the limit for ε → 0+ any two
solutions x(t) = ψ(t, t0, x0) and y(t) = ψ(t, t0, y0), with
x0, y0 ∈ C, of the bimodal Filippov system (5) converge
towards each other in C, i.e.

|x(t) − y(t)| ≤ K e−c(t−t0)|x0 − y0|, ∀t ≥ t0. (18)

Proof. From Lemma 2 we know that the error between
any two solutions xε(t) and yε(t) of the regularized vec-
tor field fε and their respective limit solutions x(t) and
y(t) of the discontinuous system is O(ε), i.e. |xε(t) −
x(t)| = O(ε) and |yε(t) − y(t)| = O(ε), ∀t ≥ t0. There-
fore, from the hypothesis of fε being incrementally ex-
ponentially stable, (3) holds and applying the triangular
inequality of norms we have

|x(t) − y(t)| ≤ |x(t) − xε(t)|+ |xε(t)− y(t)|

≤ |x(t) − xε(t)|+ |xε(t)− yε(t)|

+ |yε(t)− y(t)|

≤ K e−c(t−t0)|xε(t0)− yε(t0)| + 2O(ε)
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for xε(t0), yε(t0) ∈ C and for every t ≥ t0. The theorem
is then proved by taking the limit for ε→ 0+.

If the chosen transition function ϕ is a C1(R) function,
then the regularized vector field fε isC

1(U,Rn) and The-
orem 2 can be directly applied to study its incremen-
tal stability. On the other hand, if the transition func-
tion is not C1 but it is at least a PWSC function as in
Definition 4, with S1 = (−∞,−1), S2 = (−1, 1) and
S3 = (1,+∞), then the regularized vector field fε is it-
self a PWSC vector field and Theorem 4 applies. This is
the case for ϕ(s) = sat(s). This function is C0(R) but
its restrictions to each subsets S1, S2 and S3 are smooth
functions. We will use it as an example in the sequel.

Before presenting our next theorem, we first introduce
the following lemma.

Lemma 3 The Jacobian matrix of the regularized vector
field (10) is

∂fε
∂x

(x) = α(x)
∂f+

∂x
(x) + β(x)

∂f−

∂x
(x)

+ γ(x)
[

f+(x) − f−(x)
]

∇H(x)
(19)

where

α(x) :=
1

2

[

1 + ϕ

(

H(x)

ε

)]

β(x) :=
1

2

[

1− ϕ

(

H(x)

ε

)]

γ(x) :=
1

2ε
ϕ′

(

H(x)

ε

)

and α(x) ∈ [0, 1], β(x) ∈ [0, 1] and γ(x) ≥ 0, ∀x ∈
U, ∀ε > 0. Note that for any transition functions α(x)+
β(x) = 1, for all x.

Proof. The regularized vector field fε can be rewritten
as

fε(x) = α(x)f+(x) + β(x)f−(x)

therefore, taking the derivative with respect to x, we
obtain

∂fε
∂x

(x) = α(x)
∂f+

∂x
(x) + β(x)

∂f−

∂x
(x)

+ f+(x)
∂α

∂x
(x) + f−(x)

∂β

∂x
(x).

(20)

Observing that

∂α

∂x
(x) =

1

2

∂ϕ

∂s

(

H(x)

ε

)

∂

∂x

[

H(x)

ε

]

=
1

2ε
ϕ′

(

H(x)

ε

)

∇H(x) = γ(x)∇H(x)

and

∂β

∂x
(x) = −

∂α

∂x
(x),

replacing them into (20), we finally obtain (19).

Note that if ϕ is PWSC then the Jacobian matrix (19)
is a discontinuous function but its restriction to Sε is
continuous.

Theorem 6 Let C ⊆ U be a forward-invariant K-
reachable set. A bimodal Filippov system (5) is incre-
mentally exponentially stable in C with convergence rate
c := min {c1, c2} if there exists some norm in C, with
associated matrix measure µ, such that for some positive
constants c1, c2

µ

(

∂f+

∂x
(x)

)

≤ −c1, ∀x ∈ S̄+ (21)

µ

(

∂f−

∂x
(x)

)

≤ −c2, ∀x ∈ S̄− (22)

µ
([

f+(x)− f−(x)
]

∇H(x)
)

= 0, ∀x ∈ Σ. (23)

Proof. The transition function ϕ is a PWSC function
hence the resulting regularized vector field fε is also
PWSC, i.e. it is continuous in all U and such that its
restrictions to the subsets S̄+ \ Sε, S̄

− \ Sε and S̄ε are
continuously differentiable. Therefore Theorem 4 can be
directly applied and we have that fε is contracting in C
if there exist positive constants c1, c2, c3 such that

µ

(

∂f+

∂x
(x)

)

≤ −c1, ∀x ∈ S̄+ \ Sε (24)

µ

(

∂f−

∂x
(x)

)

≤ −c2, ∀x ∈ S̄− \ Sε (25)

µ

(

∂fε
∂x

(x)

)

≤ −c3, ∀x ∈ S̄ε. (26)

Thus, by Lemma 3, substituting (19) into (26) and using
the subadditivity and positive homogeneity properties
of the matrix measures, we obtain

µ

(

∂fε
∂x

(x)

)

≤ α(x)µ

(

∂f+

∂x
(x)

)

+ β(x)µ

(

∂f−

∂x
(x)

)

+ γ(x)µ
([

f+(x)− f−(x)
]

∇H(x)
)

(27)
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Therefore, conditions (24)-(26) are satisfied if

µ

(

∂f+

∂x
(x)

)

≤ −c1, ∀x ∈ S̄+ ∪ S̄ε (28)

µ

(

∂f−

∂x
(x)

)

≤ −c2, ∀x ∈ S̄− ∪ S̄ε (29)

µ
([

f+(x) − f−(x)
]

∇H(x)
)

= 0, ∀x ∈ S̄ε (30)

and c3 ≥ min {c1, c2}. Finally, considering that S̄ε →
Σ in the limit for ε → 0+, we obtain conditions (21)-
(23). Therefore, by virtue of Theorem 5, these conditions
are sufficient for the bimodal Filippov system (5) to be
incrementally exponentially stable.

Remark 3 If ϕ is C1(R) it can be easily proved (by us-
ing Lemma 3 and the subadditivity property of matrix
measures) that conditions (28)-(30) are sufficient for the
measure of the Jacobian of fε(x) to be negative definite
over the entire region of interest.

The first two conditions (21) and (22) in Theorem 6 guar-
antee that the regularized vector field fε is contracting
outside the region Sε, and therefore imply that any two
trajectories in C \ Sε converge towards each other expo-
nentially. Condition (23) assures that the third term in
(27) does not diverge as ε→ 0+ and therefore that neg-
ative definiteness of the measures of the Jacobian ma-
trices of two modes, f+ and f−, is enough to guarantee
incremental exponential stability of fε inside Sε.

Theorem 6 gives conditions in terms of a generic norm.
When a specific norm is chosen, it is possible to further
specify the conditions of Theorem 6, as we now show.

Proposition 2 Assume that through a local change of
coordinates around a point x ∈ Σ the switching mani-
fold Σ is represented by the function H(x) = x1 and let
∆f(x) = f+(x) − f−(x) = [∆f1(x) . . . ∆fn(x)]

T . Let
D = diag{d1, . . . , dn}, with di > 0 ∀i, be a diagonal ma-
trix and P = Q2 be a positive definite matrix. Assuming
that ∆f(x) 6= 0 ∀x ∈ Σ, then

(1) µD,1(∆f(x)∇H) = 0 if and only if

{

∆f1(x) < 0

|∆f1(x)|≥|d2∆f2(x)d
−1
1 |+ · · ·+|dn∆fn(x)d

−1
1 |

(2) µQ,2(∆f(x)∇H) = 0 if and only if P∆f(x) =
−a∇HT , a > 0.

(3) µD,∞(∆f(x)∇H) = 0 if and only if ∆f(x) and
∇HT are antiparallel.

Proof. The matrix (∆f(x)∇H) has rank equal to 1

Fig. 2. Geometrical interpretation of condition (23) using
Euclidean norm (with Q = I) and ∞-norm in R

2. The hor-
izontal line is Σ. Sliding is represented in a) and b), while
crossing occurs in c), d), e), f). In all cases the difference
vector field ∆f is antiparallel to ∇H .

and, since ∇H = [1 0 . . . 0], it can be written as

∆f(x)∇H =















∆f1(x) 0 . . . 0

∆f2(x) 0 . . . 0
...

...
. . .

...

∆fn(x) 0 . . . 0















(1) From (Vidyasagar, 1978, Lemma 4) we have

µD,1(∆f(x)∇H) =

= max{∆f1(x) + |d2∆f2(x)d
−1
1 |+ · · ·+

+ |dn∆fn(x)d
−1
1 |; 0; . . . ; 0}.

This measure is equal to zero if and only if

∆f1(x)+ |d2∆f2(x)d
−1
1 |+ · · ·+ |dn∆fn(x)d

−1
1 | ≤ 0.

(2) The proof for µQ,2 comes from Lemma 1.
(3) Again, from (Vidyasagar, 1978, Lemma 4) we have

µD,∞(∆f(x)∇H) =

= max{∆f1(x); |d2∆f2(x)d
−1
1 |; . . . ;

|dn∆fn(x)d
−1
1 |}.

The above measure is equal to zero if and only if
∆f1(x) < 0 and ∆f2(x) = · · · = ∆fn(x) = 0, that
is if ∆f(x) is antiparallel to ∇HT .

Hence, using the ℓ1-norm there always exist a matrix
D and a change of coordinates such that the condition
holds assuming that the scalar product between ∇H
and ∆f is negative, that is ∇H(x)∆f(x) < 0, ∀x ∈ Σ.
Moreover, using the Euclidean norm a matrix P such
that the condition holds exists only if∇H(x)∆f(x) < 0,
∀x ∈ Σ, as proved next.

Proposition 3 Assume that ∆f(x̄) 6= 0 with x̄ ∈ Σ,
then a Euclidean norm | · |Q,2, with Q > 0, such
that µQ,2(∆f(x̄)∇H(x̄)) = 0 exists if and only if
∇H(x̄)∆f(x̄) < 0.

8



Proof. Firstly, note that from Proposition 2 and from
Lemma 1 we know that µQ,2(∆f(x̄)∇H(x̄)) = 0 if and
only if a matrix P = Q2 exists such that P∆f(x̄) =
−a∇H(x̄), a > 0. Now, from the definition of positive
definite matrices, it follows that given the two nonzero
vectors ∆f(x̄) and ∇H(x̄) such a positive definite ma-
trix P exists if and only if −∇H(x̄)∆f(x̄) > 0, that is
∇H(x̄)∆f(x̄) < 0 1 .

Furthermore, note that when ∆f(x) = 0, ∀x ∈ Σ,
that is when the system is continuous on Σ as in the
case of PWSC systems, we have that µ(∆f(x)∇H(x)) =
µ(∅) = 0. Therefore condition (23) is always satisfied
and Theorem 6 coincides with Theorem 4.

In Figure 2 the geometrical interpretation of condition
(23) in R

2 is shown schematically when either the Eu-
clidean norm (with Q = I) or the∞-norm are used. One
significant advantage of our method is that it can deal
with nonlinear PWS systems, as we shall now demon-
strate. All simulations presented here were computed
using the numerical solver in (Piiroinen and Kuznetsov,
2008).

Example 1 Consider the PWS system (5) with

f+(x)=

[

−4x1

−9x2 − x22 − 18

]

, f−(x)=

[

−4x1

−9x2 + x22 + 18

]

andH(x) = x2. We can easily check that all three condi-
tions of Theorem 6 are satisfied in the ℓ1-norm. Indeed,
for the first condition we have

µ1

(

∂f+

∂x
(x)

)

= max{−4; −2x2 − 9} = −4

because −2x2 − 9 < −9, ∀x ∈ S+. Similarly for the
second condition we have

µ1

(

∂f−

∂x
(x)

)

= max{−4; 2x2 − 9} = −4

because 2x2 − 9 < −9, ∀x ∈ S−. Finally, for the third
condition we have

µ1

([

f+(x) − f−(x)
]

∇H(x)
)

=

=µ1

([

0 0

0 −2x22 − 36

])

=

=max{0; −2x22 − 36} = 0, ∀x ∈ Σ.

1 Sufficiency follows directly from the definition of positive
definiteness of the matrix P .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
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5

t[s]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Fig. 3. Norm of the difference between two trajectories for
(a) Example 1 and (b) Example 2. Initial conditions are
respectively x0 = [2 2]T ∈ S+, y0 = [3 − 2]T ∈ S− and
x0 = [0 − 1]T ∈ S−, y0 = [0 − 0.5]T ∈ S−. The dashed
lines represent the analytical estimates (18) with (a) c = 4
and (b) c = 1/2, and K = 1.

Therefore the PWS system considered here is incremen-
tally exponentially stable in all R2 with convergence rate
c = 4. In Figure 3a we show numerical simulations which
confirm the analytical estimation (18).

Example 2 Consider the PWS system (5) with

f+(x)=







−2x1 −
2

9
x22 +2

x1 − x2 − 3






, f−(x)=







−2x1 +
2

9
x22 −2

x1 − x2 + 3







and H(x) = x2. For the first condition of Theorem 6 we
have

µ1

(

∂f+

∂x
(x)

)

=max

{

−1; −1 +
4

9
|x2|

}

=

=− 1 +
4

9
|x2|

Therefore f+ is contracting in the ℓ1-norm for |x2| <
9/4. If we want to guarantee a certain contraction rate c

9



we need to consider the subset |x2| < 9/4(1− c) instead.
An identical result holds for f−. Finally, for the third
condition of Theorem 6 we have

µ1

([

f+(x) − f−(x)
]

∇H(x)
)

=

=µ1













0 −
4

9
x22 + 4

0 −6












=

=max

{

0; −2 +
4

9
x22

}

= 0

for all x ∈ Σ, that is x2 = 0. We can conclude that the
PWS system taken into example satisfies Theorem 6 in
the subset C = {x ∈ R

2 : |x2| < 9/8} and therefore it
is incrementally exponentially stable with convergence
rate c = 1/2 therein. This is confirmed by numerical
simulations shown in Figure 3b.

4 Application to PWA systems

Proposition 4 The PWA system (8) is incrementally
exponentially stable in a forward-invariant K-reachable
set C ⊆ U with convergence rate c := min {c1, c2} if there
exists some norm in C, with associated matrix measure
µ, such that for some positive constants c1, c2 and for all
x ∈ Σ

µ (A1) ≤ −c1 (31)

µ (A2) ≤ −c2 (32)

µ
(

∆AxhT
)

= 0 (33)

µ
(

∆bhT
)

= 0 (34)

Proof. The proof follows directly from Theorem 6 not-

ing that ∂f+

∂x = A1,
∂f−

∂x = A2, f
+(x)−f−(x) = ∆Ax+

∆b, and ∇H(x) = hT . Indeed

µ
([

f+(x)− f−(x)
]

∇H(x)
)

=

=µ
(

[∆Ax +∆b]hT
)

≤ µ
(

∆AxhT
)

+ µ
(

∆bhT
)

.

Remark 4 When Euclidean norms | · |Q,2 are used,

with Q = P 1/2, the conditions of Proposition 4 become
the same as those in Theorem 3. It is easy to show that
the conditions of Theorem 3 are sufficient for those
of our Proposition to hold. In fact, from Theorem 1,
condition 1 of Theorem 3 on the matrices A1 and A2

implies that their measures µQ,2(A1) and µQ,2(A2) are
negative definite. Condition 2 of Theorem 3 implies that
in any norm µ

(

∆AxhT
)

= µ
(

g (hTx)hT
)

= 0 since

hTx = 0, ∀x ∈ Σ. Condition 3 of Theorem 3 can be
rewritten as Q∆b = −Q−1h, therefore µQ,2

(

∆bhT
)

=

µ2

(

Q∆bhTQ−1
)

= µ2

(

−Q−1h (Q−1h)T
)

= 0 for

Lemma 1, since vectors Q−1h and −Q−1h are antipar-
allel.

Example 3 Consider a PWA system of the form (8)
with

A1 =

[

−2 −1

1 −3

]

, b1 =

[

−1

−3

]

,

A2 =

[

−2 −1

1 −4

]

, b2 =

[

2

4

]

,

and B = [0 1]T , h = [0 1]T . Using the ℓ1-norm the
first two conditions of Proposition 4 are satisfied, in fact
µ1(A1) = −1 and µ1(A2) = −1. The third condition is
also satisfied since we have that

µ1(∆Axh
T ) = µ1

([

0 0

0 x2

])

= x2 = 0, ∀x ∈ Σ.

Finally, the fourth condition is satisfied as it can be eas-
ily proved that µ1(∆bh

T ) = 0. Therefore, from Propo-
sition 4, the PWA system considered here is incremen-
tally exponentially stable. In Figure 4a we show numer-
ical simulations of the norm of the difference between
two trajectories for this PWA system. Similar qualita-
tive behavior was observed for different choices of the
initial conditions. The dashed line is the estimated ex-
ponential decay from (18) with c = 1 and K = 1. It can
be seen that as expected from the theoretical analysis
|x(t)− y(t)|1 ≤ e−t|x0 − y0|1, ∀t ≥ 0.

The evolution of the system state x2(t) is reported in
Figure 4b when the periodic signal u(t) = 6 sin(2π t) is
chosen as a forcing input. As expected for contracting
systems, all trajectories converge towards a unique peri-
odic (non-smooth) solution with the same period of the
excitation u(t) (confirming the entrainment property of
contracting systems reported e.g. in Russo et al. (2010)).

4.1 Relay feedback systems

We present here a similar result for relay feedback sys-
tems.

Proposition 5 A relay feedback system of the form

ẋ =Ax− b sgn(y)

y = cTx
(35)

where A ∈ R
n×n, b, c ∈ R

n, is incrementally expo-
nentially stable in a forward-invariant K-reachable set
C ⊆ U with convergence rate c̄ if there exists some norm
in C, with associated matrix measure µ, such that for
some positive constant c̄

µ (A) ≤ −c̄ (36)

µ
(

−bcT
)

= 0. (37)
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Fig. 4. Norm of the difference between two trajectories for
(a) Example 3 and (c) Example 4. Initial conditions are
respectively x0 = [4 4]T ∈ S+, y0 = [3 − 1]T ∈ S− and
x0 = [2 2]T ∈ S+, y0 = [2 − 2]T ∈ S−. The dashed
lines represent the analytical estimates (18) with K = 1
and c = 1. Panel (b) depicts the time evolution of the state
x2(t) of Example 3 from different initial conditions and with
u(t) = 6 sin(2π t) set as a periodic input signal.

Proof. The proof follows observing that the relay feed-
back system is a PWA system of the form

ẋ =

{

Ax− b if cTx > 0

Ax+ b if cTx < 0

with A1 = A2 = A, ∆A = ∅, ∆b = −2b and
h = c. Therefore applying Proposition 4 to it we get

µ
(

∆AxhT
)

+µ
(

∆bhT
)

= 0+µ
(

−2bcT
)

= 2µ
(

−bcT
)

,
and the assertion is proved.

Remark 5 It is known that if a smooth system is con-
tracting in a forward invariant set then it must converge
towards an equilibrium point, hence it cannot converge to
a limit cycle. We show here that if conditions (36) and
(37) hold then a planar relay feedback system (35) can-
not converge to a limit cycle either. In Euclidean norms
condition (36) implies from Theorem 1 that A is Hur-
witz, this in turn implies that its trace is negative, i.e.
tr(A) < 0. Condition (37) implies from Lemma 1 that
Pb = c where P is a positive definite matrix, this means
that cT b = (Pb)T b = bTPb > 0 for any b 6= 0. The regu-
larized vector field of (35) is

fε(x) = Ax− b ϕ

(

cTx

ε

)

If ϕ ∈ C1 so it is also fε and its divergence is

div(fε(x)) =

{

tr(A) − 1
εϕ

′
(

cTx
ε

)

cT b, if x ∈ Sε

tr(A), if x /∈ Sε

Since we know that ϕ′(s) ≥ 0 for all s and ε > 0, we
can conclude that conditions (36) and (37) imply that
div(fε(x)) < 0 for all x ∈ R

2 and, from Bendixson-
Dulac theorem (Khalil, 2000, Lemma 2.2), ẋ = fε(x)
cannot have limit cycles. Hence, fromTheorem 5 the relay
feedback system from which fε was derived cannot exhibit
limit cycles.

Example 4 Consider a relay feedback system (35)
with

A =

[

−2 −1

1 −3

]

, b =

[

1

3

]

, cT =
[

0 1
]

Using the linear transition function ϕ(s) = sat(s) the
corresponding regularized vector field (10) becomes

fε(x) =















Ax− b if cTx > ε
(

A−
1

ε
bcT
)

x if − ε < cTx < ε

Ax+ b if cTx < −ε

Outside Sε the Jacobian of fε is equal to A, and hence
its measure does not depend on ε. On the other hand,
since using the ℓ1-normwe have that µ1(A) = max{−2+
|1|; −3 + | − 1|} = −1, and µ1(−bc

T ) = max{0; −3 +
| − 1|} = 0, then when x ∈ Sε

µ

(

∂fε
∂x

)

≤ µ(A) +
1

ε
µ(−bcT ) = −1.
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Therefore the regularized vector field fε remains con-
tracting in the ℓ1-norm for any value of ε, as should be
expected since conditions of Proposition 5 are satisfied
in this norm. Hence, from Theorem 5 we can conclude
that the relay feedback system taken into example is in-
crementally exponentially stable in the ℓ1-norm. In Fig-
ure 4c, we show numerical simulations of the evolution of
the difference between two trajectories for this system.
The dashed line is the estimated exponential decay from
(18) with c̄ = 1 and K = 1. An approach to contrac-
tion analysis of switched Filippov systems not requiring
the use of regularization is currently under investigation
and will be presented elsewhere.

5 Conclusions

We presented a methodology to study incremental sta-
bility in generic n-dimensional switched (bimodal) Fil-
ippov systems characterized by the possible presence of
sliding mode solutions. The key idea is to obtain condi-
tions for incremental stability of these systems by study-
ing contraction of their regularized counterparts. We
showed that the regularized vector field is contracting
if a set of hypotheses on its modes are satisfied. In con-
trast to previous results, our strategy does not require
explicit computation of the sliding vector field using Fil-
ippov’s convex method or Utkin’s equivalent control ap-
proach. Moreover, different metrics rather than the Eu-
clidean norms can be effectively used to prove conver-
gence. The theoretical results were applied on a set of
representative examples including piecewise smooth sys-
tems, piecewise affine systems and relay feedback sys-
tems. In all cases, it was shown that the conditions we
derived are simple to apply and have a clear geometric
interpretation. We wish to emphasize that the tools we
developed could be instrumental not only to carry out
convergence analysis of Filippov systems but also to syn-
thesize switched control actions based on their applica-
tion (di Bernardo and Fiore, 2016).
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