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Abstract

The design of unknown-input decoupled observers and filters requires the assumption of an existence condition in the literature.
This paper addresses an unknown input filtering problem where the existence condition is not satisfied. Instead of designing a
traditional unknown input decoupled filter, a Double-Model Adaptive Estimation approach is extended to solve the unknown
input filtering problem. It is proved that the state and the unknown inputs can be estimated and decoupled using the extended
Double-Model Adaptive Estimation approach without satisfying the existence condition. Numerical examples are presented
in which the performance of the proposed approach is compared to methods from literature.
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1 Introduction

Faults and model uncertainties such as disturbances can
be represented as unknown inputs. The problem of fil-
tering in the presence of unknown inputs has received
intensive attention in the past three decades.

It is common to treat the unknown inputs as part of
the system state and then estimate the unknown inputs
as well as the system state [18]. This is an augmented
Kalman filter, whose computational load may become
excessive when the number of the unknown inputs is
comparable to the states of the original system [10].
Friedland [10] derived a two-stage Kalman filter which
decomposes the augmented filter into two reduced-order
filters. However, Friedland’s approach is only optimal in
the presence of a constant bias [18]. Hsieh and Chen de-
rived an optimal two-stage Kalman filter which perfor-
mance is also optimal for the case of a random bias [18].

On the other hand, unknown input filtering can be
achieved by making use of unbiased minimum-variance
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estimation [16,21,5,14,15,3]. Kitanidis [21] first devel-
oped an unbiased recursive filter based on the assump-
tion that no prior information about the unknown input
is available [12]. Hou and Patton [14] used an unknown-
input decoupling technique and the innovation filtering
technique to derive a general form of unknown-input
decoupled filters [14,15]. Darouach, Zasadzinski and
Boutayeb [7] extended Kitanidis’ method using a pa-
rameterizing technique to derive an optimal estimator
filter. The problem of joint input and state estimation,
when the unknown inputs only appear in the system
equation, was addressed by Hsieh [15] and Gillijns and
De Moor [11]. Gillijns and De Moor [12] further pro-
posed a recursive three-step filter for the case when the
unknown inputs also appear in the measurement equa-
tion. However, their approach requires the assumption
that the distribution matrix of the unknown inputs in
the measurement equation is of full rank. Cheng et al.
[4] proposed a global optimal filter which removed this
assumption, but this filter is limited to state estimation
[1]. Later, Hsieh [17] presented a unified approach to
design a specific globally optimal state estimator which
is based on the desired form of the distribution matrix
of the unknown input in the measurement equation [17].

However, all the above-mentioned filters require the as-
sumption that an existence condition is satisfied. This
necessary condition is given by Hou and Patton [14] and
Darouach, Zasadzinski and Boutayeb [7], in the form
of rank condition (5). Hsieh [17] presents different de-
coupling approaches for different special cases. However,
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these approaches also have to satisfy the existence con-
dition (5). In some applications, such as that presented
in the current paper, the existence condition is not satis-
fied. Therefore, a traditional unknown input decoupled
filter can not be designed.

Recently, particle filters are also applied to unknown in-
put estimation [13,8,28]. These filters can cope with sys-
tems with non-Gaussian noise and have a number of ap-
plications such as for robot fault detection [2,9,30]. In
this paper, the performance of unknown input estima-
tion using particle filters will be compared with that of
our approach.

This paper proposes an extended Double-Model Adap-
tive Estimation (DMAE) approach, which can cope with
the unknown input filtering problem when a traditional
unknown input filter can not be designed. The original
DMAE approach, which was proposed by Lu et al. [22]
for the estimation of unknown inputs in the measure-
ment equation, is extended to allow estimation of the
unknown inputs which appear both in the system equa-
tion and the measurement equation. The unknown in-
puts are augmented as system states and are modeled
as random walk processes. The unknown inputs in the
system equation are assumed to be Gaussian random
processes of which covariances are estimated on-line. It
is proved that the state and unknown inputs can be
estimated and decoupled while not requiring the exis-
tence condition. Two illustrative examples are given to
demonstrate the effectiveness of the proposed approach
with comparison to other methods from literature such
as the Robust Three-Step Kalman Filter (RTSKF) [12],
the Optimal Two-Stage Kalman Filter (OTSKF) [18]
and the particle filters [13,8].

The structure of the paper is as follows: the preliminar-
ies of the paper are given in Section 2, formulating the
filtering problem when the existence condition for a tra-
ditional unknown input decoupled filter is not satisfied
and generalizing the DMAE approach. In Section 3, the
extension of the DMAE approach to the filtering prob-
lem when the unknown inputs appear both in the system
equation and the measurement equation is presented.
Furthermore, the on-line estimation of the covariance
matrix of the unknown inputs is introduced. It is proved
that the state and the unknown inputs can still be esti-
mated and decoupled in Section 4. In Section 5, two il-
lustrative examples are given to show the performance of
the proposed approach with comparison to some exist-
ing unknown-input decoupled filters. Finally, Section 6
concludes the paper.

2 The DMAE approach

This section presents the problem formulation and the
DMAE approach.

2.1 Problem formulation

Consider the following linear time-varying system:

xk+1 = Akxk +Bkuk + Ekdk + wk (1)

yk = Hkxk + Fkfk + vk (2)

where xk ∈ Rn represents the system states, yk ∈ Rm

the measurements, dk and fk are the unknown inputs.
Specifically, dk ∈ Rnd the disturbances, fk ∈ Rnf are
the output faults. wk and vk are assumed to be un-
correlated zero-mean white noise sequences with covari-
ance Qk and Rk respectively. uk, the known inputs,
is omitted in the following discussion because it does
not affect the filter design [14]. Without loss of gener-
ality, we consider the case: n = m = nd = nf and
rank Hk = rank Ek = rank Fk = m, which implies all
the states are influenced by dk and fk. It should be noted
that the approach proposed in this paper can be readily
extended to the case when n 6= m or rankHk 6= rankEk.

The unknown inputs are denoted as d′k, i.e., d′k =

[
dk

fk

]
∈

Rnd′ . Then, model (1) and (2) can be reformulated into
the general form as given in Hou and Patton [14] and
Darouach, Zasadzinski and Boutayeb [7]:

xk+1 = Akxk + E′kd
′
k + wk (3)

yk = Hkxk + F ′kd
′
k + vk (4)

In this paper, E′k = [Ek 0], F ′k = [0 Fk]. The existence
of an unknown-input decoupled filter must satisfy the
following existence condition [14,7]:

rank

[
F ′k HkE

′
k

0 F ′k

]
= rank [F ′k] + rank

[
E′k

F ′k

]
(5)

In our case, since rankHk = m, the left-hand side of con-
dition (5) is 2m while the right-hand side is 3m. There-
fore, the above existence condition does not hold, which
means that all the unknown-input filters mentioned in
the introduction can not be directly implemented.

In this paper, we consider the consecutive bias fault es-
timation of a system subjected to disturbances, as de-
scribed in Eqs. (1) and (2). Although the existence con-
dition of designing a traditional unknown input decou-
pled filter is not satisfied, it will be shown that the un-
known inputs can still be decoupled using an extended
DMAE approach.

Remark 1. The model described by Eqs. (1) and (2) is
useful for applications where the disturbances appear in
the system equation and the faults appear in the mea-
surement equation, such as bias fault estimation in air-
craft air data sensors [22].
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Fig. 1. Block diagram for the DMAE approach

2.2 The DMAE approach

The DMAE1 approach proposed in Lu et al. [22] con-
siders the model (1) and (2) for dk = 0 (nd = 0). It is
referred to as the DMAE approach in this paper, which
is generalized in the following.

The DMAE [22], which is a modified approach of
multiple-model-based approach [23,24], is composed of
two Kalman Filters (KFs) operating in parallel: a no-
fault (or fault-free) filter and an augmented fault filter.
These two filters are based on two modes of the system:
fault-free (fk = 0) and faulty (fk 6= 0). The two filters
use the same vector of measurements Y and vector of
input u, and are based on the same equations of motion,
while each hypothesizes a different fault scenario. The
state vector of the no-fault filter xnf and that of the
augmented fault filter xaf are as follows:

xnf,k = xk, xaf,k =

[
xnf,k

fk

]
(6)

where “nf” means no fault and “af” means augmented
fault. It can be noted that the state vector of the aug-
mented fault filter is the state vector of the no-fault filter
with augmentation of the fault vector fk.

At time step k, each of the filters produces a state es-
timate x̂0i (k) and a vector of innovations γi(k). The
principle is that the KF which produces the most well-
behaved innovations, contains the model which matches
the true faulty model best [23,24]. The block diagram of
the DMAE is given in Fig. 1.

A hypothesis test uses the innovation γi(k) and the in-
novation covariance matrix Ci(k) of the filters in order
to assign a conditional probability to each of the filters.
Let a denote the fault scenarios of the system. If we de-
fine the hypothesis conditional probability pi(k) as the
probability that a is assigned ai for i = 1, 2 (a1 = nf ,
a2 = af), conditioned on the measurement history up to
time step k:

pi(k) = Pr[a = ai|Y (k) = Yk], i = 1, 2 (7)

then the conditional probability of the two filters can be
updated recursively using the following equation:

pi(k) =
fyk|a,Yk−1

(yk|ai, Yk−1)pi(k − 1)
2∑

j=1

fyk|a,Yk−1
(yk|aj , Yk−1)pj(k − 1)

, i = 1, 2

(8)
where Yk−1 is the measurement history vector which is
defined as Yk−1 = {y(1), y(2), .., y(k − 1)}.
fyk|a,Yk−1

(yk|ai, Yk−1) is the probability density function
which is given by the following Gaussian form [24]:

fy(k)|a,Yk−1
(y(k)|ai, Yk−1)

=βi(k) exp{−γTi (k)C−1i (k)γi(k)/2} (9)

where

βi(k) =
1

(2π)m/2|Ci(k)|1/2 (10)

In Eq. (10), |•| denotes the determinant of the covariance
matrix Ci(k) which is computed by the KF at time step
k. The filter which matches the fault scenario produces
the smallest innovation which is the difference between
the estimated measurement and the true measurement.
Therefore, the conditional probability of the filter which
matches the true fault scenario is the highest between
the two filters. After the computation of the conditional
probability, the state estimate of the nonlinear system
x̂(k) can be generated by the weighted state estimate
x̂i(k) of the two filters:

x̂(k) =

2∑

i=1

x̂i(k)pi(k)

= x̂nf (k)pnf (k) + x̂af (k)paf (k). (11)

The fault is only estimated by the augmented fault filter

and the estimate is denoted as f̂(k). The probability-
weighted fault estimate of the DMAE approach f̄(k) is
calculated as follows:

f̄(k) = f̂(k)paf (k) (12)

The core of the DMAE approach is selective reinitial-
ization. The flow chart of the selective reinitialization
algorithm is presented in Fig. 2.

In the algorithm, x̂0nf (x̂0af ) and x̂nf (x̂af ) denote the state

estimate of the no-fault (augmented fault) filter before
and after the reinitialization, respectively. P 0

nf (P 0
af ) and

Pnf (Paf ) denote the covariance of state estimate error of
the no-fault (augmented fault) filter before and after the
reinitialization, respectively. x̂t, pt and Pt are the vectors
which contain the state estimate, model probability and
the covariance matrix of state estimation error of the no-
fault filter and the fault filter respectively. imax,k is the
index of the model with the maximum model probability

3



pt,1 = pnf ; pt,2 = paf

x̂t,1 = x̂0
nf,j ; x̂t,2 = x̂0
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[
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0

0 P f
0

]
x̂nf = x̂t,imax,k

Pnf = Pt,imax,k

Yes No

Fig. 2. Flow chart of the Selective Reinitialization algorithm.
Note n refers to the dimension of x̂nf .

at time step k. xf0 and P f
0 are the parameters which are

used for the initialization of the fault filter.

3 Extension of the DMAE approach

The DMAE approach can achieve an unbiased estima-
tion of xk and fk when dk = 0 [22]. However, when
dk 6= 0, the unknown-input filtering problem becomes
more challenging. Since the existence condition (5) is
no longer satisfied, traditional unknown-input decoupled
filters can not be designed.

In this section, the DMAE is extended to the case when
dk 6= 0. In order to achieve this, the state vectors of the
no-fault filter and augmented fault filter are changed to:

x̄nf,k =

[
xk

dk

]
, x̄af,k =

[
x̄nf,k

fk

]
(13)

where x̄nf,k ∈ Rn+nd and x̄af,k ∈ Rn+nd+nf . The state
vector of the augmented fault filter is that of the no-
fault filter augmented with the fault vector. Therefore,
the state vector of the no-fault filter can be inferred from
that of the augmented fault filter and vice versa.

The random walk process provides a useful and general
tool for the modeling of unknown time-varying processes
[10,27,15]. dk can be modeled by a random walk process
[27,15] as:

dk+1 = dk + wd,k, (14)

where wd,k is a white noise sequence with covariance:
E{wd,k(wd,l)

T } = Qd
kδkl. fk is also modeled as a random

walk process as:

fk+1 = fk + wf,k, (15)

where wf,k is a white noise sequence with covariance:

E{wf,k(wf,l)
T } = Qf

kδkl. Then, the system model and
measurement model of the no-fault filter can be de-
scribed as follows:

x̄nf,k+1 = Ānf,kx̄nf,k + w̄nf,k (16)

yk = H̄nf,kx̄nf,k + vk (17)

where

Ānf,k =

[
Ak Ek

0 I

]
, H̄nf,k = [Hk 0], w̄nf,k =

[
wk

wd,k

]

(18)

The model of the augmented fault filter is as follows:

x̄af,k+1 = Āaf,kx̄af,k + w̄af,k (19)

yk = H̄af,kx̄af,k + vk (20)

where

Āaf,k =

[
Ānf,k 0

0 I

]
, H̄af,k = [H̄nf,k Fk], w̄af,k =

[
w̄nf,k

wf,k

]

(21)

Since the difference from the DMAE in Lu et al. [22] is
the augmentation of dk, only the covariance related to
wd,k, i.e., Qd

k is discussed below. It should be noted that
Qd

k is usually unknown, the optimality of the filter can
be compromised by a poor choice of Qd

k [21,15]. If Qd
k is

not properly chosen, it can influence the estimation of
dk as well as xk.

This paper proposes a method to adapt Qd
k by making

use of the augmented fault filter of the DMAE approach.
To compensate for the effect of a bad choice of Qd

k on
the estimation of xk, the system noise vector w̄nf,k in
Eqs.(16), (18) and (21) is modified to:

w̄nf,k =

[
wk + w′k

wd,k

]
(22)

where w′k is the noise used to compensate for the effect of
a bad choice ofQd

k on the estimation of xk. In this paper,
we approximate w′k by Ekwd,k. Therefore, w̄nf,k is

w̄nf,k =

[
wk + Ekwd,k

wd,k

]
(23)
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Let ˆ̄xaf,k−1|k−1 denote the unbiased estimate of x̄af,k−1

given measurements up to time k−1. x̂k−1|k−1, d̂k−1|k−1
and f̂k−1|k−1 denote the estimates of xk−1, dk−1 and
fk−1, respectively. The innovation of the augmented
fault filter is:

γaf,k = yk − H̄af,k ˆ̄xaf,k|k−1

= HkAk−1x̃k−1|k−1 +HkEk−1d̃k−1|k−1 + Fkf̃k−1|k−1
+Hkwk−1 +HkEk−1wd,k−1 + Fkwf,k−1 + vk

(24)

with

x̃k−1|k−1 := xk−1 − x̂k−1|k−1 (25)

d̃k−1|k−1 := dk−1 − d̂k−1|k−1 (26)

f̃k−1|k−1 := fk−1 − f̂k−1|k−1 (27)

Therefore, the innovation covariance of the augmented
fault filter is:

Caf,k = E{γaf,kγTaf,k}
= HkAk−1P

x
k−1|k−1A

T
k−1H

T
k

+HkEk−1P
d
k−1|k−1E

T
k−1H

T
k + FkP

f
k−1|k−1F

T
k

+HkAk−1P
xd
k−1|k−1E

T
k−1H

T
k +HkAk−1P

xf
k−1|k−1F

T
k

+HkEk−1P
dx
k−1|k−1A

T
k−1H

T
k +HkEk−1P

df
k−1|k−1F

T
k−1

+ Fk−1P
fx
k−1|k−1A

T
k−1H

T
k + FkP

fd
k−1|k−1E

T
k−1H

T
k +Rk

+HkQk−1H
T
k +HkEk−1Q

d
k−1E

T
k−1H

T
k + FkQ

f
kF

T
k

(28)

where the covariance matrices are defined as follows:

P x
k|k := E[x̃k|kx̃

T
k|k], P d

k|k := E[d̃k|kd̃
T
k|k]

P f
k|k := E[f̃k|kf̃

T
k|k], P xd

k|k := E[x̃k|kd̃
T
k|k]

P dx
k|k := E[d̃k|kx̃

T
k|k], P xf

k|k := E[x̃k|kf̃
T
k|k]

P fx
k|k := E[f̃k|kx̃

T
k|k], P df

k|k := E[d̃k|kf̃
T
k|k]

P fd
k|k := E[f̃k|kd̃

T
k|k].

The actual Caf,k is approximated as follows [26,29]:

Ĉaf,k =
1

N

k∑

j=k−N+1

γaf,jγ
T
af,j (29)

Qd
k can be approximated by the main diagonal of

E−1k−1H
−1
k Q̃k(HT

k )−1(ET
k−1)−1 (30)

with Q̃k is a diagonal matrix defined as:

Q̃k := diag(max{0, Q̂k,11}, ...,max{0, Q̂k,mm}) (31)

where Q̂k,jj , j = 1, 2, ...,m is the jth diagonal element

of Q̂k which is denoted as:

Q̂k = (Ĉaf,k −HkQk−1H
T
k − FkQ

f
kF

T
k −Rk) (32)

The restriction Q̃k,jj ≥ 0, j = 1, 2, ...,m in Eq. (31) is to
preserve the properties of a variance [19].

4 Unknown input decoupled filtering

This section proves that the unknown input decoupled
filtering can be achieved using the extended DMAE ap-
proach which does not need to satisfy the existence con-
dition (5). Let l (l ≥ 1) denote the time step when the
first fault occurs and le denote the time step when the
first fault is removed, which means fk = 0 when k < l
and fk 6= 0 when l ≤ k ≤ le. Without loss of generality,
it will be proven that fk can be estimated when k ≤ le.

4.1 Unknown input estimation during k < l

Theorem 1 During k < l, an unbiased estimate of dk
can be achieved by the fault-free filter of the extended
DMAE approach.

PROOF. When k < l, fk = 0. The fault-free model
matches the true fault scenario while the augmented
fault filter does not. Therefore, according to the DMAE
approach, imax,k = 1 during this time period.

The system model during this period is as follows:

xk+1 = Akxk + Ekdk + wk (33)

yk = Hkxk + vk (34)

Under this situation, dk can be estimated using the fault-
free filter whose convergence condition will be discussed
later. 2

The estimation of dk and fk when l ≤ k ≤ le will be
discussed in the following.

4.2 Unknown input estimation at k = l

For the sake of readability, the subscript “af” will be
discarded for the remainder of the section. All the vari-
ables with a bar on top in the remainder of this section
refer to the augmented fault filter.

5



Using the DMAE approach, the Kalman gain K̄l can be
partitioned as follows:

K̄l =




Kx
l

Kd
l

Kf
l


 (35)

where Kx
l , Kd

l and Kf
l are the Kalman gains associated

with xk, dk and fk, respectively.

Lemma 2 Let x̂l−1|l−1 and d̂l−1|l−1 be unbiased, if xf0
is chosen to be 0 or sufficiently small, then fl can be

estimated by the augmented fault filter if and only if Kf
l

satisfies

Kf
l Fl = I. (36)

PROOF. The innovation of the augmented filter is

γ̄l = el + Flfl (37)

where el is defined as

el := HlAl−1x̃l−1|l−1 +HlEl−1d̃l−1|l−1
+Hlwl−1 +HlEl−1wd,l−1 + vl (38)

Since x̂l−1|l−1 and d̂l−1|l−1 are unbiased (this can be
achieved by the DMAE1 in Lu et. al [22] since fk = 0
when k < l), E[el] = 0.

Consequently, the expectation of γ̄l is:

E[γ̄l] = Flfl. (39)

The estimation of the fault can be given by

f̂l|l = f̂l|l−1 +Kf
l γ̄l

= f̂l−1|l−1 +Kf
l γ̄l (40)

Since imax,k = 1 when k < l, according to the flow chart
of the selective reinitialization algorithm given in Fig. 2,
Eq. (40) can be further written into

f̂l|l = xf0 +Kf
l γ̄l (41)

Substituting (37) into (41), yields

f̂l|l = Kf
l Flfl +Kf

l el (42)

Consequently, the expectation of f̂l|l

E[f̂l|l] = E[Kf
l Flfl]. (43)

Therefore, it can concluded that fl can be estimated if

and only if Kf
l satisfies

Kf
l Fl = I. 2 (44)

Theorem 3 Let x̂l−1|l−1 and d̂l−1|l−1 be unbiased, then
fl can be estimated by the augmented fault filter of the

DMAE approach by choosing a sufficiently large P f
0 and

a sufficiently small xf0 .

PROOF. Define the following covariance matrix:

P̄l−1|l−1 := E[˜̄xl−1|l−1 ˜̄xTl−1|l−1]

where ˜̄xl−1|l−1 = x̄l−1 − ˆ̄xl−1|l−1.

Due to the selective reinitialization algorithm given in

Fig. 2, P f
l−1|l−1 = P f

0 . Therefore, the covariance of the

state prediction error P̄l|l−1 can be computed and par-
titioned as follows:

P̄l|l−1 = Āl−1




P x
l−1|l−1 P

xd
l−1|l−1 0

P dx
l−1|l−1 P

d
l−1|l−1 0

0 0 P f
0


 Ā

T
l−1

+




Ql−1 + El−1Q
d
l−1E

T
l−1 El−1Q

d
l−1 0

Qd
l−1E

T
l−1 Qd

l−1 0

0 0 Qf
l−1




(45)

=




P x
l|l−1 P

xd
l|l−1 0

P dx
l|l−1 P

d
l|l−1 0

0 0 P f
l|l−1


 (46)

where

P x
l|l−1 := Al−1P

x
l−1|l−1A

T
l−1 + El−1P

d
l−1|l−1E

T
l−1

+Al−1P
xd
l−1|l−1E

T
l−1 + El−1P

dx
l−1|l−1A

T
l−1

+Ql−1 + El−1Q
d
l−1E

T
l−1

P d
l|l−1 := P d

l−1|l−1 +Qd
l−1

P xd
l|l−1 := Al−1P

xd
l−1|l−1 + El−1P

d
l−1|l−1 + El−1Q

d
l−1

P dx
l|l−1 := P dx

l−1|l−1A
T
l−1 + P d

l−1|l−1E
T
l−1 +Qd

l−1E
T
l−1

P f
l|l−1 := P f

0 +Qf
l−1
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Define

C̄l := H̄lP̄l|l−1H̄
T
l +Rl. (47)

Substituting Eqs. (21) and (46) into the above equation,
it follows that

C̄l = HlP
x
l|l−1H

T
l + FlP

f
l|l−1F

T
l +Rl (48)

Consequently, the Kalman gain of the augmented filter
can be calculated and partitioned as follows:

K̄l = P̄l|l−1H̄
T
l C̄
−1
l

=




P x
l|l−1H

T
l

P dx
l|l−1H

T
l

P f
l|l−1F

T
l


 C̄

−1
l (49)

If P f
0 is chosen sufficiently large, then P f

l|l−1 ≈ P f
0 and

C̄l ≈ FlP
f
0 F

T
l . It follows that

K̄l =




P x
l|l−1H

T
l C̄
−1
l

P dx
l|l−1H

T
l C̄
−1
l

F−1l


 (50)

Therefore, Kf
l = F−1l . It follows from Lemma 2 that fl

can be estimated. 2

4.3 Unknown input estimation during l < k ≤ le

Theorem 4 Provided that fk has been estimated at k =
l, dk can be estimated by the augmented fault filter of the
extended DMAE approach.

PROOF. During this period, the augmented fault
model matches the true fault scenario. Therefore,
imax,k = 2, which means that the fault-free filter is reini-
tialized by the fault filter during this period. Since this
paper considers bias fault, fk is constant for l < k ≤ le.
Therefore, during this period, we can set:

ˆ̄xk|k−1 =

[
x̂∗k|k−1

f̂l|l

]
, P̄k|k−1 =

[
P ∗k|k−1 0

0 P f
l|l

]

ˆ̄xk|k =

[
x̂∗k|k

f̂l|l

]
, P̄k|k =

[
P ∗k|k 0

0 P f
l|l

]
, K̄k =

[
K∗k

0

]
,

(51)

where

x̂∗k|k−1 :=

[
x̂k|k−1

d̂k|k−1

]
, P ∗k|k−1 :=

[
P x
k|k−1 P

xd
k|k−1

P dx
k|k−1 P

d
k|k−1

]
,

x̂∗k|k :=

[
x̂k|k

d̂k|k

]
, P ∗k|k :=

[
P x
k|k P

xd
k|k

P dx
k|k P

d
k|k

]
,K∗k :=

[
Kx

k

Kd
k

]

(52)

are updated by the normal Kalman filtering procedure.
It can be seen that during this period, the estimation of
the fault and the covariance are:

f̂k|k = f̂l|l, P
f
k|k = P f

l|l, l < k ≤ le (53)

It can be inferred that the model of the fault filter is
equivalent to:

xk+1 = Akxk + Ekdk + wk (54)

yk = Hkxk + Fkf̂l|l + vk (55)

As can be seen, the only unknown input is dk since the
fault filter treats fk as a known input during this period.
Since a known input does not affect the design of a filter
[14], the convergence condition of this fault filter is the
same as that of the fault-free filter based on Eqs. (33)
and (34).

Therefore, dk can be estimated using the augmented
fault filter under the same condition as for the model
described by Eqs. (33) and (34). 2

4.4 Error analysis

In the previous sections, it is assumed that x̂l−1|l−1 and

d̂l−1|l−1 are unbiased. We analyze the estimation error

of fl when x̂l−1|l−1 and d̂l−1|l−1 are biased.

Through Eq. (44), Eq. (42) can be further rewritten into

f̂l|l = fl + F−1l el (56)

Substitute Eq. (38) into Eq. (56), it follows

f̂l|l = fl + F−1l (HlAl−1x̃l−1|l−1 +HlEl−1d̃l−1|l−1
+Hlwl−1 +HlEl−1wd,l−1 + vl) (57)

The estimation error of fl as a function of x̃l−1|l−1 and

d̃l−1|l−1 can be obtained as follows:

f̃l|l = fl − f̂l|l (58)

= F−1l (HlAl−1x̃l−1|l−1 +HlEl−1d̃l−1|l−1
+Hlwl−1 +HlEl−1wd,l−1 + vl) (59)
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If x̃l−1|l−1 and d̃l−1|l−1 are unbiased, the expectation of

f̃l|l is zero, which means the fault estimate is unbiased.

If x̃l−1|l−1 and d̃l−1|l−1 are biased, assume

¯
aI ≤ Al−1 ≤ āI,

¯
fI ≤ Fl−1 ≤ f̄ I, (60)

¯
hI ≤ Hl−1 ≤ h̄I,

¯
eI ≤ El−1 ≤ ēI, (61)

¯
exI ≤ x̃l−1|l−1 ≤ ēxI, ¯

edI ≤ d̃l−1|l−1 ≤ ēdI, (62)

¯
wI ≤ wl−1 ≤ w̄I,

¯
wdI ≤ wd,l−1 ≤ w̄dI, (63)

¯
vI ≤ vl−1 ≤ v̄I. (64)

Then it follows that the fault estimation error is bounded
by the following:

[
¯
h(

¯
a
¯
ex +

¯
e
¯
ed +

¯
w +

¯
e
¯
wd) +

¯
v

f̄
,
h̄(āēx + ēēd + w̄ + ēw̄d) + v̄

¯
f

]

(65)

4.5 Discussion

For the model given in Eqs. (33) and (34), the conver-
gence condition for time-invariant case has been given
by Darouach et al. [6], which is given as follows:

rank

[
zI −A −E
H 0

]
= n+ nd,∀z ∈ C, |z| ≥ 1 (66)

This convergence condition is also required by tradi-
tional unknown input filters such as those in Darouach,
Zasadzinski and Boutayeb [7] and Cheng et al. [4].

The system considered in this paper is linear and the
noise is assumed to be Gaussian. If the system is non-
linear, the DMAE should be extended using Unscented
Kalman Filters [20,22] or particle filters [13,8,28]. If the
system noise is non-Gaussian, then it should be extended
by making use of particle filters [13,8,28]. However, this
is out of the scope of the present paper.

5 Illustrative examples with comparison to ex-
isting methods

In this section, two examples similar to that in [27], [7]
and [16] are provided to demonstrate the performance
of the extended DMAE approach. Note that both E and
F are of full rank in this example.

The system is described by model (1) and (2) where

A =

[
−0.0005 −0.0084

0.0517 0.8069

]
, B =

[
0.1815

1.7902

]
, (67)

E =

[
0.629 0

0 −0.52504

]
, H =

[
1 0

0 1

]
, F =

[
1 0

0 1

]
, (68)

Q =

[
0.0022 0

0 0.0022

]
, R =

[
0.012 0

0 0.012

]
(69)

The input uk is: uk = −0.5 when 200 < k ≤ 300, oth-
erwise uk = 0.5. fk is given by the red solid lines in
Fig. 3(c). It can be noted that the number of unknown
inputs in [27], [7] and [16] is nd (nd = 2) while this paper
deals with 2nd unknown inputs.

In both examples, since E′k = [Ek 0], F ′k = [0 Fk], con-
dition (5) is not satisfied. In addition, rank yk < rank
d′k. Consequently, all the unknown input decoupled fil-
ters in the introduction are not applicable to solve the
problem, except for special cases when dk = 0 or fk = 0.

N in Eq. (29) is set to be 10. In both examples, Qf
k = 0,

Qd
k is updated by the main diagonal of the matrix given

in (30), xf0 = [10−3, 10−3]T , P f
0 = 102I.

Example 1. In this example, dk is a constant bias vec-
tor, which is shown by the red solid lines in Fig. 3(b).
The condition (5) is not satisfied. Therefore, traditional
unknown input filters, which require the satisfaction of
condition (5), can not be implemented.

The extended DMAE approach is implemented. The
true and estimated pnf and paf using the extended
DMAE approach are well matched. The probability-
weighted estimates of xk, dk, which are calculated using
Eq. (11), are shown in Fig. 3(a) and 3(b), respectively.
The probability-weighted estimate of fk (calculated us-
ing Eq. (12)) is shown in Fig. 3(c). As can be seen, xk,
dk and fk can all be estimated.

Example 2. In this example 1 , the disturbances, which

are taken from [25], are stochastic. dk =

[
d1,k

d2,k

]
is gen-

1 The implementation of this work is available at:
https://www.researchgate.net/profile/Peng_Lu15/
publications?pubType=dataset
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Fig. 3. Results of the DMAE approach, example 1
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Fig. 4. Errors of estimation of f1 and f2 using the RTSKF
and the DMAE approach, case 1, example 2

erated using the following model [25]:

[
di,k

d
′

i,k

]
=


 0 1

− V 2

L2
gi

−2 V
Lgi



[
di,k−1

d
′

i,k−1

]

+


 σi

√
3V
Lgi

(1− 2
√

3)σi
√

( V
Lgi

)3


w′d,k, i = 1, 2 (70)

where V = 35, σ1 = 0.5, σ2 = 0.8, Lg1 = 2500, Lg2 =
1500 and w′d,k ∼ N(0, 1). The generated dk is shown by

the red solid lines in Fig. 5(b). It should be noted that
the DMAE approach still models dk as a random walk
process since dk is treated as an unknown input.

Three cases are considered for this example. The first
two cases are special cases. In these two cases, the ex-
istence condition (5) is satisfied. Therefore, some of the
approaches mentioned in the introduction can still be
used.

Case 1 dk = 0, fk 6= 0

In this case,Ek is a zero matrix. Therefore, condition (5)
is satisfied. The probability-weighted estimate of fk us-
ing the extended DMAE is the same as in Fig. 3(c). The
RTSKF in Gillijns and De Moor [12] is also applied and
the errors of estimation of fk compared to the DMAE
are shown in Fig. 4. In addition, particle filters [13,8] are
also applied. The model used for estimation of fk is also
the random walk. 100 particles are used. The root mean
square errors (RMSEs) of estimation of f1 and f2 using
the RTSKF, the particle filter [13,8] and the extended
DMAE are shown in Table 1.

Case 2 dk 6= 0, fk = 0
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Table 1
RMSEs of the fault and disturbance estimation for Example
2

Methods d1 d2 f1 f2

Case 1
RTSKF [12] - - 0.0103 0.0102

PF [13,8] - - 0.1549 0.1496

DMAE - - 0.0060 0.0047

Case 2
OTSKF [18] 0.0697 0.1442 - -

PF [13,8] 0.1088 0.2035 - -

DMAE 0.0709 0.1459 - -

Case 3
[12,11,18,13,8,15] N/A N/A N/A N/A

DMAE 0.0845 0.1655 0.0230 0.0283

In this case, Fk is a zero matrix. Therefore, condition (5)
is also satisfied. The true and estimated pnf and paf using
the extended DMAE approach are shown in Fig. 5(a).
The probability-weighted estimate of dk is presented in
Fig. 5(b). The results using the methods in Heish [15],
Heish and Chen [18], and Gillijns and De Moor [11], are
similar to that of the DMAE. Particle filter is also ap-
plied. The model used for estimation of dk is the random
walk. The RMSEs of estimation of d1 and d2 using the
OTSKF in Heish [18], the particle filter [13,8] and the
extended DMAE are shown in Table 1.

Case 3 dk 6= 0, fk 6= 0

In this case, condition (5) is not satisfied. Thus, all the
conventional filters mentioned in the introduction are
not applicable.

The true and estimated pnf and paf using the ex-
tended DMAE approach are also well matched. The
probability-weighted estimates of xk, is shown in Fig. 6.
The probability-weighted estimates of dk and fk are the
same as in Figs. 5(b) and 3(c) respectively. It can be
seen that despite the fact that the existence condition
for traditional unknown-input decoupled filters is not
satisfied, xk, dk and fk can all be estimated using the
extended DMAE approach. The RMSEs of the estima-
tion of dk and fk using the extended DMAE approach
are shown in Table 1.

Finally, the sensitivity of the DMAE with respect to
errors in Qk and Rk is discussed. To demonstrate the
sensitivity with respect to errors in Qk, Rk is fixed and
Qk is multiplied with a coefficient kQ. The sensitivity
result of the RMSE of fault estimation with kQ ranging
from 10−3 to 103 is shown in Fig. 7(a). To show the
sensitivity with respect to Rk errors, Qk is fixed and Rk

is multiplied with a coefficient kR. The sensitivity result
of the RMSE of fault estimation with kR ranging from
10−3 to 103 is shown in Fig. 7(b).

It can be seen from Fig. 7(a) and 7(b) that the min-
imum RMSEs are obtained when kQ = 1 or kR = 1.
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(a) True and estimated model probabilities, case 2, example 2
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Fig. 5. Results of the DMAE approach, case 2, example 2

However, it is also noted that the extended DMAE ap-
proach is more sensitive to Rk errors. The RMSE of the
fault estimation increases to 0.063 whenQk is multiplied
with 103 and increases to 1.79 when Rk is multiplied
with 103. This is expected since in section 3, the process
noise w̄nf,k is adapted while the output noise vk is not
adapted. Therefore, selection of Rk should be performed
with more caution.

6 Conclusion

In this paper, the unknown input decoupling problem
is extended to the case when the existence condition of
traditional unknown input filters is not satisfied. It is
proved that the states, disturbances and faults can be es-
timated using an extended DMAE approach which does
not require the existence condition. Therefore, it can
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be applied to a wider class of systems and applications.
Two illustrative examples demonstrate the effectiveness
of the extended DMAE approach. Future work would
consider extending the DMAE to deal with systems with
non-Gaussian noise.
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