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Abstract

Motivated by the recent advances in the field of quantum computing, quantum systems

are modelled and analyzed as networks of decentralized quantum nodes which employ dis-

tributed quantum consensus algorithms for coordination. In the literature, both continuous

and discrete time models have been proposed for analyzing these algorithms. This paper

aims at optimizing the convergence rate of the discrete time quantum consensus algorithm

over a quantum network with N qudits. The induced graphs are categorized in terms of

the partitions of integer N by arranging them as the Schreier graphs. It is shown that the

original optimization problem reduces to optimizing the Second Largest Eigenvalue Modulus

(SLEM) of the weight matrix. Exploiting the Specht module representation of partitions of

N , the Aldous’ conjecture is generalized to all partitions (except (N)) in the Hasse diagram

of integer N . Based on this result, it is shown that the spectral gap of Laplacian of all

induced graphs corresponding to partitions (other than (N)) of N are the same, while the

spectral radius of the Laplacian is obtained from the feasible least dominant partition in

the Hasse diagram of integer N . The semidefinite programming formulation of the problem

is addressed analytically for N ≤ d2 + 1 and a wide range of topologies where closed-form

expressions for the optimal results are provided. For a quantum network with complete

graph topology, solution of the optimization problem based on group association schemes is

provided for all values of N .

Index terms— Quantum Networks, Distributed Consensus, Aldous’ Conjecture, Optimal

Convergence Rate
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1 Introduction

Consensus is essential to the coordinated control of dynamical systems modeled as networks of

autonomous agents, such as power grids and social networks [23, 14]. Reaching consensus as a

cooperative collective behaviors in networks of autonomous agents have been studied extensively

in the context of distributed control and optimization on networks [20, 12, 31]. Optimization

of the discrete time model of the classical distributed average consensus algorithm has been

addressed analytically in [13, 21, 22].

In the recent advances in the field of quantum distributed computing [4, 5, 8], quantum

systems are analyzed as networks of Quantum nodes that coordinate and carry out computation

without any centralized observation. In the literature, both continuous time and discrete time

models have been considered for analysis of the consensus algorithm over quantum networks. In

[28, 29, 30, 19], authors consider the continuous time model of the classical consensus dynamics

where their approach is based on the induced graphs of the quantum interaction graph. They

establish necessary and sufficient conditions for exponential and asymptotic quantum consensus,

respectively, for switching quantum interaction graphs. In [19], the convergence rate of the

continuous time quantum consensus is optimized and it is shown that the optimal convergence

rate is independent of the value of d in qudits. Authors in [17, 16, 18] employ the discrete time

model of the classical consensus algorithm to addressed the consensus in quantum networks.

They reinterpret the quantum consensus algorithm as a symmetrization problem, and they

derive the general conditions for convergence.

In this paper we optimize the convergence rate of the discrete time model of the quantum

consensus over a quantum network with N qudits. Unlike the results obtained for the continuous

time model [19], the convergence rate of the algorithm depends on the value of d is qudits.

First we expand the density matrix in terms of the generalized Gell-Mann matrices and show

that the induced graphs are the Schreier graphs. Then using the Young Tabloids, we sort the

induced graphs obtained from all possible partitions of the integer N . Exploiting the Specht

module representation of partitions of N , we have shown that the spectrum of the Laplacian

corresponding to the less dominant partition in the Hasse Diagram includes that of the one

level dominant partition. Therefore the Laplacian matrix corresponding to partition (1, 1, · · · , 1)

includes the corresponding spectrum of all other partitions. Based on this result and the Aldous’

conjecture [2] we have shown that the second smallest eigenvalues (λ2(L)) of the Laplacian of all
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partitions (except (N)) in the Hasse diagram are equal. This is the generalization of the Aldous’

conjecture to all partitions (except (N)) in the Hasse diagram of integer N . We have shown that

the problem of optimizing the convergence rate of the discrete time quantum consensus reduces

to optimizing the Second Largest Eigenvalue Modulus (SLEM) of the weight matrix which can

be formulated in terms of two eigenvalues, namely, the second smallest (λ2(L)) and the greatest

(λmax(L)) eigenvalues of the Laplacian matrix.

Applying the generalization of the Aldous’ conjecture, we have proved that λ2(L) can be

calculated from the Laplacian matrix corresponding to any of the partitions (other than n =

(N)), where the most suitable one is partition (N − 1, 1). Unlike λ2(L), the greatest eigenvalue

(λmax(L)) of the induced graphs corresponding to different partitions are not the same. Selecting

the appropriate induced graph that contains λmax(L) depends on the value of N and d. For

N ≤ d2, the greatest eigenvalue (λmax(L)) is obtained from Laplacian matrix corresponding

to partition (1, 1, · · · , 1) which is 2W , while for larger values of N , partition (1, 1, · · · , 1) is not

feasible and the greatest eigenvalue (λmax(L)) is included in partitions dominant to (1, 1, · · · , 1).

In the special case of N = d2 + 1, we have provided the semidefinite programming formulation

of the problem along with the optimal results. For values of N > d2 + 1, the problem should be

solved per-case.

In the final stage, we have analytically addressed the semidefinite programming formulation

of the problem for N ≤ d2 + 1 and a wide range of topologies and provided closed-form ex-

pressions for the optimal convergence rate and the optimal weights. For the special case of a

quantum network with complete graph topology as its underlying graph, we have included the

complete solution of the FDTQC problem for all values of N , where group association schemes

are employed for obtaining the spectrum of the induced graphs.

The rest of the paper is organized as follows. Section 2 presents some preliminaries including

relevant concepts in graph theory, Young tabloids, irreducible representations of finite groups,

permutation modules and Specht modules, Cayley and Schreier coset graphs. The discrete

time consensus algorithm and the semidefinite programming formulation of its optimization are

presented in Section 3. Section 4 describes optimization of the discrete time quantum consensus

problem and how it can be transformed into optimization of a classical discrete time consensus

problem. In Section 5 analytical optimization of the discrete time consensus problem and closed-

form expressions for the optimal results for a range of topologies have been presented. Section

6, concludes the paper.
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2 Preliminaries

In this section, we present the fundamental concepts from graph theory, irreducible represen-

tations of finite groups, Schure’s lemma, Permutation Modules, Specht Modules, Cayley and

Schreier coset graphs. Regarding Young tableau, SN group and its representation, the defini-

tions employed here in this paper are adapted from [25, 26]. A comprehensive preliminaries on

symmetric group, Young tabloids, Young subgroup and Hasse Diagrams are provided in [19,

Section 2.2].

2.1 Graph Theory

A graph is defined as G = {V, E} with V = {1, . . . , N} as the set of vertices and E as the set of

edges. Each edge {i, j} ∈ E is an unordered pair of distinct vertices. If no direction is assigned

to the edges, then the graph is called an undirected graph. Throughout this paper we consider

undirected simple graphs with no self-loops and at most one edge between any two different

vertices. The set of all neighbors of a vertex i is defined as Ni , {j ∈ V : {i, j} ∈ E}. A

weighted graph is a graph where a weight is associated with every edge according to proper

map W : E → R, such that if {i, j} ∈ E , then W ({i, j}) = wij ; otherwise W ({i, j}) = 0. The

edge structure of the weighted graph G is described through its adjacency matrix (AG). The

adjacency matrix AG is a N ×N matrix with {i, j}-th entry (AG(i, j)) defined as below

AG(i, j) =


wij if {i, j} ∈ E

0 Otherwise

i.e., the (i, j) − th entry of AG is 1 if vertex j is a neighbor of vertex i. If the graph G has no

self-loops AG(i, i) = 0, i.e., the diagonal elements of the adjacency matrix are all equal to zero.

For undirected graphs the adjacency matrix is symmetric, i.e., AG is symmetric. The degree of

a vertex i is the sum of the weights on the edges connected to vertex i, i.e. di =
∑N

j=1wij . The

degree matrix DG of G is the N × N diagonal matrix where its i-th diagonal element is equal

to the degree of vertex i and all non-diagonal elements are equal to zero. A graph is called

connected if there is a path between any two vertices in the graph. A graph is called a regular

graph if all the vertices have the same number of neighbors. The Laplacian matrix of graph G
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is defined as below,

LG(i, j) =


DG(i, i) if i = j

−AG(i, j) if i 6= j

This definition of the Laplacian matrix can be expressed in matrix form as LG = DG−AG , where

DG and AG are the degree and the adjacency matrices of the graph G. The Laplacian matrix

of an undirected graph is a symmetric matrix. The eigenvalues of the Laplacian matrix (LG)

are all nonnegative. Defining 1 and 0 as vectors of length N with all elements equal to one and

zero, respectively, hence for the Laplacian matrix we have LG × 1 = 0. In undirected graphs,

the associated Laplacian is a positive semidefinite matrix and its eigenvalues can be arranged

in non-decreasing order i.e. 0 = λ1(LG) ≤ λ2(LG) ≤ · · · ≤ λN (LG). The second smallest

eigenvalue λ2(LG) is known as the algebraic connectivity and reflects the degree of connectivity

of the graph [9]. First introduced in [9], this eigenvalue is named algebraic connectivity due to

its importance in connectivity properties of the graph. Since then the algebraic connectivity

has found applications in analysis of numerous problems including combinatorial optimization

problems such as the maximum cut problem, certain flowing process and the traveling salesman

problem [1]. The algebraic connectivity can be used to define the spectral gap. The spectral gap

gives insight into important properties of the graph such as the mixing time of random walks

[24]. In some cases, the term spectral gap is directly used to refer to λ2(LG). A necessary and

sufficient condition for the algebraic connectivity to be nonzero, is that the graph G is connected

[7]. If the algebraic connectivity of the graph G is nonzero then LG is an irreducible matrix i.e.

it is not similar to a block upper triangular matrix with two blocks via a permutation [11]. The

largest eigenvalue λN (LG) of the Laplacian matrix is known as the Laplacian spectral radius of

G.

2.2 Irreducible Representations of Finite Groups

Here we provide a brief preliminaries on irreducible representations of finite groups. The topics

covered in this subsection hold true for all finite groups in general, but in this paper, we have

used them specifically for permutation groups.

For a d-dimensional complex vector space V , the general linear group GL(V ) is the group of

all invertible linear transformations of V to itself which is isomorphic to the group of all d × d

invertible complex matrices denoted by GL(d,C).
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Definition 2.1. Matrix Representation

A matrix representation of a group G is a group homomorphism G
Φ−→ GL(d,C). Equivalently,

to each g ∈ G is assigned Φ(g) ∈ GL(d,C) such that

1. Φ(ε) = I the identity matrix, and

2. Φ(gh) = Φ(g)Φ(h) for all g, h ∈ G.

d is referred to as the dimension of the representation. From conditions 1 and 2 it can be

concluded that Φ(g−1) = Φ(g)−1

Definition 2.2. Equivalence of Representation

Two representations G
Φ−→ GL(d,C) and G

Θ−→ GL(d,C) of G over C, are equivalent if there

exist an invertible d× d matrix T such that for all g ∈ G, the relation Θ(g) = T−1Φ(g)T stands

true.

Definition 2.3. Group Characters

The trace of the matrix representation tr{Φ(g)} is referred to as the character of the group and

it is denoted by χ(g). Equivalent representations have the same character.

Definition 2.4. CG-module

The CG-module over vector space V is a group homomorphism G
Φ−→ GL(V ). Equivalently, V

is a CG-module if there is a multiplication, gv of elements of V by elements of G such that

1. gv ∈ V ;

2. (hg)v = h(gv);

3. 1v = v;

4. g(cv) = c(gv);

5. g(u+ v) = gv + gu; for all g, h ∈ G; v, u ∈ V and scalars c ∈ C.

Definition 2.5. CG algebra

By choosing the elements of the finite group G as a basis, one can define the vector space CG

over C where the elements of group acts naturally on this vector space. Hence it is a CG-

module called regular module. Since the vector space CG is closed under the multiplication of

its elements then it forms an algebra called CG-algebra.

Definition 2.6. Submodule

A subset W of the CG-module V is said to be a CG-submodule of V if W is a subspace and

wg ∈W for all w ∈W and all g ∈ G. Hence a CG-submodule of a CG-module V is a subspace

which is also an CG-module.
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Definition 2.7. Irreducible CG-module

A CG-module V is said to be irreducible if it is non-zero and it has no CG-submodules apart

from {0} and V . If V has a CG-submodule W which is not equal to {0} or V , then V is

reducible. Similarly, a representation G
Φ−→ GL(d,C) is irreducible if the corresponding CG-

module Cd given by gv = Φ(g)v ( where v ∈ Cd, g ∈ G) is irreducible; and Φ is reducible if Cd is

reducible. The number of inequivalent irreducible representations of G is equal to the number

of conjugacy classes.

Definition 2.8. Maschke’s Theorem

For the finite group G and a nonzero G-module V can be written as the direct sum of its

irreducible G-submodules, i.e. V = W (1) ⊕ W (2) ⊕ · · · ⊕ W (k). The matrix version of the

Maschke’s Theorem states that by suitable choice of basis, the matrix representation of the

elements of the group G can be made block diagonal, i.e.

Φ(g) = X(g) =



X(1)(g) 0 · · · 0

0 X(2)(g) · · · 0

...
...

. . .
...

0 0 · · · X(k)(g)


, ∀g ∈ G.

where each X(i)(g) is an irreducible matrix representation of G.

Schure’s Lemma

For a given irreducible representation X of G the only matrices T that commute with X(g) for

all g ∈ G are those of the form T = cI i.e., scalar multiples of the identity matrix.

2.3 Permutation Modules & Specht Modules

In this subsection, we introduce concepts from permutation modules and Specht modules.

Definition 2.9. row and column-stabilizer

Suppose that the tableau t has rows R1, R2, . . . , Rl and columns C1, C2, . . . , Ck. Then Rt =

SR1×SR2×· · ·×SRl and Ct = SC1×SC2×· · ·×SCk are the row-stabilizer and column-stabilizer

of t, respectively.

Note that the equivalence classes can be expressed as t = Rtt. Given a subset H ⊆ Sn, we

can form the group algebra sum H− =
∑

π∈H sgn(π)π. sgn(Π) for every permutation Π ∈ SN is

7



S. Jafarizadeh Optimizing the Discrete Time Quantum Consensus

defined as sgn(Π) = (−1)j if Π is a product of j transpositions. For n = (n1, n2, · · · , nK) ` N ,

the Young subgroup of SN corresponding to n is defined as Sn
def
= Sn1 × Sn2 × · · · × SnK ,

where Sn1 permutes 1, 2, · · · , n1, Sn2 permutes n1 + 1, n1 + 2, · · · , n1 + n2 and so on. The order

of the Young subgroup of n-shape is n1!n2! · · ·nK !. For column subgroup Ct, kt is defined as

kt
def
= C−t =

∑
π∈Ct sgn(π)π. Considering the definition of Ct and the fact that it is formed from

subgroups SC1 , SC2 , . . . , SCk then we have kt = kC1 kC2 · · · kCk .

Definition 2.10. polytabloid

Given t is a tableau, then the associated polytabloid is et = kt{t}.

Lemma 2.1. Let t be a tableau and π be a permutation, then kπt = πktπ
−1 and eπt = πet.

Definition 2.11. Specht module

For any partition n, the corresponding Specht module Sn is the submodule of Mn spanned by

the polytabloids et, where t is of shape n.

The Specht modules corresponding to different partitions are inequivalent and individually

SN -irreducible representations over the complex field C. Also they form a complete list of

irreducible Sn modules over C. For Specht module Sn, Sn ⊗ S(1n) is also an irreducible C-SN

module isomorphic to its dual or Sn
′

where n
′

is conjugate of partition n [27, Theorem 8.15] i.e.

for any given matrix representation of Specht module X(n) ∈ Sn

Xn(Π)sgn(Π) ∼= Xn
′
(Π) ∀Π ∈ SN . (1)

In the following we explain the Specht module for three important partitions.

1) n = (N): The e(1,2,...,N) = 1 2 · · · N is the only polytabloid and S(N) is the one-

dimensional Specht module corresponding to the trivial representation. Since ∀π ∈ SN , we have

πet = et.

2) n = (1,1,...,1︸ ︷︷ ︸
N

) = (1N ): Let t be the standard tableau and et as its only polytabloid as below

t =

1

2
...

N

, et =
∑
π∈SN

sgn(π)

π(1)

π(2)
...

π(N)

,

thus ∀π ∈ SN we have πet = sgn(π)et. Hence this is also a one-dimensional or scalar Specht

module.

8
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3) n = (N − 1, 1):

et =
i · · · k
j

− j · · · k
i

= j − i where j is defined as {t} =
i · · · k
j

def
= j

Thus S(N−1,1) = C[j − i|1 ≤ i < j ≤ N ] = {
∑N

i=1 cii|
∑N

i=1 ci = 0}. Note that the dimension

of the Specht module in this case is N − 1.

The permutation module decomposes as

Mn
′

=
⊕
nDn′

mn,n′S
n

(2)

with the diagonal multiplicity mn,n = 1. mn,n′ is the multiplicity of irreducible representation

Sn in Mn
′
. Based on the decomposition (2), the matrix representation of MN is block diagonal

where the blocks consists of irreducible Specht representations corresponding to all partitions

dominant to n. As an example, M (2,1,1) ∼= S(2,1,1) ⊗ S(2,2) ⊗ 2S(3,1) ⊗ S(4). Note that for

partition n
′

= (1, 1, . . . , 1), the permutation module Mn
′

is equivalent to regular module and

the coefficients mn,n′ are equal to the dimension of Specht module corresponding to partition n.

Therefore, the regular module includes all irreducible C-SN modules.

2.4 Cayley Graph & Schreier Coset Graph

Let H be a group and let S ⊆ H. The Cayley graph of H generated by S (referred to as the

generator set S), denoted by Cay(H,S), is the directed graph G = (V, E) where V = H and

E = {(x, xs)|x ∈ H, s ∈ S}. If S = S−1 (i.e., S is closed under inverse), then Cay(H,S) is an

undirected graph. If H acts transitively on a finite set Ω, we may form a graph with vertex set

V = Ω and edge set E = {(ν, νs)|ν ∈ Ω, s ∈ S}. Similarly, if Q is a subgroup in H, we may form

a graph whose vertices are the right cosets of Q , denoted (H : Q) and whose edges are of the

form E = {(Qh,Qhs)|Qh ∈ (H : Q), s ∈ S}. These two graphs are the same when Ω is the coset

space (H : Q), or when Q is the stabilizer of a point of Ω and is called the Schreier coset graph

Sch(H,S,Q).

3 Classical Discrete Time Consensus (DTC)

Consider a group of N agents with an undirected underlying connected graph G = (V, E), where

each edge {i, j} indicate bidirectional communication between agent i and agent j. Let xi be

the state of agent i. In the Discrete Time Consensus (DTC) algorithm, each agent’s dynamics

9
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evolves according to the following state update equation,

xi(t+ 1) = W i,i · xi(t) +
∑
j∈Ni

W i,j · xj(t) for i = 1, . . . , N. (3)

Here Ni is the set of neighbors of vertex i. W i,j is the weight assigned to the edge (i, j). In other

wordsW i,j is the weight assigned to the state of vertex j, when vertex i is updating its state. The

summation of agents’ states is preserved in each iteration of (3), thereforeW i,i = 1−
∑

j∈NiW i,j .

Defining the vector x = [x1, · · · , xN ]T as the vector of states, we can rewrite the above state

update formula in compact notation as below,

x(t+ 1) = W × x(t) (4)

The weight matrix W is a N×N square matrix with the same sparsity pattern as the adjacency

matrix of graph G and it can be written as W = I − LG , in terms of the Laplacian matrix of

graph G. The (i, j)-th element of W is the weight assigned to edge (i, j). Equation (4) implies

that the vector of states at time t is related to their initial state by equation x(t) = W t×x(0).

The intention of the distributed average consensus algorithm is to asymptotically compute the

average of the initial state of vertices, i.e. x =
(
1 · 1T /N

)
× x(0). In other words the weight

matrix W is selected so that the relation limt→∞ x(t) = limt→∞W
t × x(0) = 1×1T

N × x(0),

holds true, which is possible if the following is satisfied

lim
t→∞

W t =
1× 1T

N
. (5)

Here 1 is the column vector of all one.

The following are the necessary and sufficient conditions [10] for the matrix equation (5) to

hold true,

1T ×W = 1T , (6a)

ρ(W − 1× 1T /N) < 1. (6b)

Here ρ(·) is the spectral radius of a matrix. (6a) means that 1 is an eigenvector of W corre-

sponding to eigenvalue one, since the weight matrixW is a symmetric matrix. It can be deduced

from (6b) that all other eigenvalues of W are strictly less than one in magnitude. It can also be

10
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concluded from (6a) that the sum and the average of vertices’ states are preserved in each step

of the iteration (4). This is due to the fact that 1T ×X(t+ 1) = 1T ×W ×X(t) = 1T ×X(t).

In [10] it has been proved that the asymptotic convergence factor can be described in terms

of spectral radius as following

rasym(W ) = ρ(W − 1× 1T /N). (7)

The main focus here is on designing the optimal weight matrix for a given network so that

it results in the fastest asymptotic convergence rate. Based on (7), this can be described as the

following optimization problem where the objective function is the spectral radius of the matrix

W − 1 · 1T /N .

min
W

ρ(W − 1× 1T /N)

s.t. W ∈ S , W = W T , W × 1 = 1

(8)

where S = {W ∈ RN×N | W i,j = 0 if i, j 6∈ E and i 6= j}. The optimization problem

(8) is very similar to the Fastest Markov Chain problem. The only difference is that in (8) the

weights can have negative values whereas in the Fastest Markov Chain problem, the elements of

the transition probability matrix should be non-negative. If graph G is a connected graph then

there is a feasible W such that ρ(W − 1 · 1T /N) < 1. Note that the optimization problem (8)

is a convex problem since the weight matrix (W ) is a symmetric matrix.

For the spectral radius of a square matrix A ∈ CN×N we have ρ(A) = max
i

(|λi|), where

λ1, ..., λN are eigenvalues of the matrix A. Let λi(W ) for i = 1, ..., N be the eigenvalues of the

weight matrix W arranged in decreasing order. λ1(W ) = 1 since 1 is the eigenvector of W

corresponding to eigenvalue one. All eigenvalues of the matrix W − 1 × 1T /N are the same

as the weight matrix W , except the eigenvalue corresponding to eigenvector 1, which is zero.

Therefore, the spectral radius of W − 1× 1T /N is equal to max{λ2(W ),−λN (W )}. The term

max{λ2(W ),−λN (W )} is the Second Largest Eigenvalue Modulus (SLEM) of the weight matrix

W . Therefore the optimization problem (8) can be written in terms of the SLEM of the weight

matrix as below

min
W

max{λ2(W ),−λN (W )}

s.t. W = W T , W × 1 = 1, ∀{i, j} 6∈ E : W i,j = 0.

(9)

Authors in [10] have reformulated the optimization problem (9) as the following semidefinite

11
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programming problem,

min
s,W

s

s.t. − sI �W − 1× 1T /N � sI

W = W T , W × 1 = 1, ∀{i, j} 6∈ E : W i,j = 0.

(10)

I is the identity matrix and s is the scalar optimization variable that bounds the spectral norm

of matrix W −1×1T /N . A � B means that the matrix B−A is a positive semidefinite matrix.

We refer to problem (10) as the classical Fastest Discrete Time Consensus (FDTC) problem.

4 Discrete Time Quantum Consensus

4.1 Evolution of the Quantum Network

Considering the quantum network as a composite (or multipartite) quantum system with N

qudits, the state space of the quantum network is within the Hilbert space H⊗N = H⊗ . . .⊗H,

whereH is the d-dimensional Hilbert space over C. The state of the quantum system is described

by its density matrix (ρ), which is a positive Hermitian matrix with trace one (tr(ρ) = 1). An

underlying graph G = {V, E} is associated with the quantum network , where V = {1, . . . , N} is

the set of indices for the N qudits, and each element in E is an unordered pair of two distinct

qudits, denoted as {j, k} ∈ E with j, k ∈ V. Permutation group SN acts in a natural way on

V by mapping V onto itself. For each permutation π ∈ SN a unitary operator Uπ over H⊗N is

associated, as Uπ(Q1 ⊗ · · · ⊗ QN ) = Qπ(1) ⊗ · · · ⊗ Qπ(N), where Qi is an operator in H for all

i = 1, . . . , N . A special case of permutations is the swapping permutation or transposition where

π(j) = k, π(k) = j and π(i) = i for all i ∈ V and i /∈ j, k. We denote the swapping permutation

between the qudits indices j and k by πj,k and the corresponding swapping operator by Uj,k. In

[19, Appendix A] the swapping operator Uj,k has been expressed as linear combination of the

Cartesian product of Gell-Mann matrices.

In [17], the quantum channels [38], [39] are employed as the general framework for studying

the evolution of the quantum networks as an open-system. This is due to the fact that Quantum

channels are linear, completely positive (CP) and trace preserving (TP) maps from density

operators to density operators, i.e. φ : D(Hm) → D(Hm), and such maps admit an operator

sum representation (OSR) known as Kraus decomposition defined as φ(ρ) =
∑K

k=1AkρA
†
k, where

12
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∑K
k=1A

†
kAk = I and K ≤ (dim(H))2. Note that this representation is not unique but there

is a certain relation between all the possible representations [38]. A CPTP map is said unital

if φ(I) = I. A particular set of unital quantum channels is given by random unitaries [40].

A channel belongs to this class when it admits an OSR with K operators Ak =
√
pkUk, with

Uk ∈ U(Hm) and pk ≥ 0 such that
∑K

k=1 pk = 1:

φ(ρ) =
K∑
k=1

pkUkρU
†
k

Such a map can be thought of as a probabilistic mixture of unitary evolutions.

Let {Ui}Ki=1 be the kraus decomposition of a unital CP map φ(.) and defining Aφ = {ρ ∈

D(Hm)|ρUi − Uiρ = 0,∀i = 1, . . . ,K}, then ρ ∈ D(Hm) is a fixed point of φ, i.e., φ(ρ) = ρ, if

and only if ρ ∈ Aφ.

Let U(j,k) denote the pairwise swap operation of subsystems (j, k) on Hm. If the underlying

graph of the network (G) is connected, then the set of fixed points of any CP unital map of the

form

φ(ρ) = q0ρ+
∑

(j,k)∈E

qj,kU
†
(j,k)ρU(j,k) (11)

with q0 +
∑

(j,k)∈E qj,k = 1, q0, {qj,k} > 0 coincides with the set of permutation-invariant opera-

tors. Substituting q0 = 1−
∑

(j,k)∈E qj,k and replacing qj,k with wjk (the positive constant weight

over the edge {j, k}) in (11), we obtain the following state update equation for the quantum

network,

ρ(t+ 1) = ρ(t) +
∑
{j,k}∈E

wj,k

(
Ujk × ρ(t)q × U †jk − ρ(t)

)
. (12)

Note that in order to have the set of transpositions corresponding to the edges of the underlying

graph as the generator set S of the the symmetric group SN , the underlying graph should be

connected.

In [17] it is shown that the quantum consensus state of (12) is as below,

ρ∗ =
1

N !

∑
π∈SN

Uπρ(0)U †π. (13)

and the state update equation reaches this state (i.e. limt→∞ ρ(t) = ρ∗) provided that the

underlying graph of the quantum network is connected.

The rest of the analysis presented in this paper focuses on evaluating and optimizing the

convergence rate of the state update equation (12) to its quantum consensus state (13). In doing

13
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so, we expand the density matrix (ρ) as the linear combination of the generalized Gell-Mann

matrices (introduced in [19, Appendix A]) as below,

ρ =
1

2N

d2−1∑
µ1,µ2,...,µN=0

ρµ1,µ2,...,µN · λµ1 ⊗ λµ2 ⊗ · · · ⊗ λµN (14)

where N is the number of particles and ⊗ denotes the Cartesian product and λ matrices are

the generalized Gell-Mann matrices as in [19, Appendix A]. Note that due to Hermity of density

matrix, its coefficients of expansion ρµ1,µ2,...,µN are real numbers and due to unit trace of ρ we

have ρ0,0,...,0 = 1.

Using the decomposition of ρ in (14), its permutations can be written as below

Uj,k × ρ× U †j,k =
1

2N

d2−1∑
µ1,µ2,...µN=0

ρµ1,...µk,...,µj ,...,µN · λµ1 ⊗ · · ·λµj ⊗ · · ·λµk ⊗ · · · ⊗ λµN (15)

Note that in (15) due to permutation operators, the place of indices µj and µk in the index of

parameter ρ are interchanged. Substituting the density matrix ρ from (14) and its permutation

(15) in state update equation (12) and considering the independence of the matrices λµ1⊗λµ2⊗

· · ·λµN we can conclude the following for the state update equation (12),

ρµ1,··· ,µN (t+ 1) = ρµ1,··· ,µN (t)+∑
{j,k}∈E

wj,k
(
ρµ1,··· ,µk,··· ,µj ,··· ,µN (t)− ρµ1,··· ,µj ,··· ,µk,··· ,µN (t)

)
for all µ1, µ2, · · · , µN = 0, · · · , d2 − 1,

(16)

Following the same procedure, the tensor component of the quantum consensus state (13)

can be written as below

ρ∗µ1,µ2,...,µN =
1

N !

∑
π∈SN

ρπ(µ1),π(µ2),...,π(µN )(0) (17)

and for connected underlying graph, the state update equation (12) reaches quantum consensus,

componentwise as below

lim
t→∞

ρµ1,µ2,...,µN (t) = ρ∗µ1,µ2,...,µN ,

Comparing the set of equations in (16) with those of the DTC problem in (4) we can see that

the state update equation (12) is transformed into the classical DTC problem (4) with d2N − 1

14
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tensor component ρµ1,··· ,µN as the agents’ states. Defining XQ as a column vector of length d2N

with components ρµ1,...,µN , the state update equation of the classical DTC can be written as

below,

XQ(t+ 1) = XQ(t)−LQXQ(t). (18)

LQ is the corresponding Laplacian matrix defined as LQ =
∑
{j,k}∈E wj,k(Id2N − Uj,k), where

Uj,k is the swapping operator given in [19, Appendix A], provided that d is replaced with d2

which in turn results in Gell-Mann matrices of size d2 × d2. As explained in section 3, the

convergence rate of the obtained DTC problem is dictated by the Second Largest Eigenvalue

Modulus (SLEM) of the weight matrix WQ defined as,

SLEM = max{λ2(WQ),−λd2N (WQ)}, (19)

where the weight matrix (WQ) is WQ = I−LQ. Thus the corresponding Fastest Discrete Time

Consensus problem can be written as the following optimization problem,

max
s,WQ

s

s.t. − sI �WQ − 1× 1T /N ! � sI

WQ = W T
Q, WQ × 1 = 1, ∀{i, j} 6∈ E : WQ(i, j) = 0.

(20)

We refer to this problem as the Fastest Discrete Time Quantum Consensus (FDTQC) problem.

The state update equation (12) reaches quantum consensus (13), due to the fact that the

generating set is selected in a away that the whole group of SN can be generated and the

resultant Cayley graph of SN is connected. Even though, the quantum consensus is achieved but

surprisingly, the equations in (16) indicate that all agents are not able to exchange information

with each other. This is due to the fact that the underlying graph of the DTC problem obtained

from (16) is not connected and the consensus is not reachable in the same sense as in the classical

DTC problem, where the sufficient condition for reaching consensus is the connected underlying

communication graph.

From the right hand side of the equation (16), we can see that the tensor components ρµ1,··· ,µN

that can be transformed into each other by permuting their indices are communicating and

exchanging information with each other. These tensor components or agent states correspond

to Young tabloids of the same partition which in turn are equivalent to the agents in the classical
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DTC problem. Thus the agents belonging to the same partition form the connected components

of the underlying graph of the classical DTC problem (16).

As mentioned above the underlying graph is a cluster of connected components where each

connected graph component corresponds to a given partition of N into K integers, namely

N = n1 + n2 + · · · + nK , where K ≤ d2 and nj for j = 1, . . . ,K is the number of indices in

ρµ1,µ2,...,µN with equal values. For a given partition and its associated Young Tabloids, more

than one connected component can be obtained depending on the value of the µ indices. As an

example consider a quantum network with three qubits and the path graph as its underlying

graph. In this network the values that the µ indices can take are 0, 1, 2 and 3. For partition

n = (2, 1) and Young Tabloids tn(1, 1, 2), tn(1, 2, 1), tn(2, 1, 1) and µ1 = 0 and µ2 = 1 the

obtained underlying graph of the DTC problem is a path graph with three vertices where each

vertex corresponds to one of the Young Tabloids mentioned above. Now for the same partition

and Young Tabloids but different values of the µ indices (e.g. µ1 = 1 and µ2 = 0) the obtained

underlying graph of the DTC problem is same as that of the previous example. As a matter

of fact for this partition there are 12 connected components which are identical to each other.

Each one of these connected components has identical impact on the convergence rate of the

state update equation (12) to its quantum consensus state (13). Therefore for each partition we

consider only one of them and we refer to this graph as the induced graph. The only exception is

the case of N = d2 where there is only one connected component corresponding to the partition

that all indices are different from each other. These induced graphs are the same as those noted

in [28].

For the given partition n = (n1, n2, · · · , nK), using the Yamanouchi symbol (introduced in

[19, Section 2.2]) a Young tabloid of partition n is uniquely represented by the notation tn(r1, r2,

· · · , rN−1, rN ). Each Young tabloid tn(r1, r2, · · · , rN ) is equivalent to an agent in the induced

graph of the DTC problem and its corresponding coefficient (ρµr1 ,µr2 ,··· ,µrN ) is equivalent to the

state of that agent.

The DTC equation obtained from (16) for partition n is as below,

ρµr1(m),...,µrN (m)
(t+ 1) = ρµr1(m),...,µrN (m)(t)+∑

{j,l}∈E

wj,l ·
(
ρµπj,l(r1(m)),...,µπj,l(rN (m))

(t) − ρµr1(m),...,µrN (m)(t)

)
,

(21)

where m varies from 1 to ν = N !/(n1! · n2! · · ·nK !) and πj,l transposes the j-th and l-th Ya-
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manouchi symbols i.e. rj and rl. Note that for the agent states that their Yamanouchi symbols

(rj , rl) are equal, the value inside the summation above is zero.

We define the column vector Xn as the state vector of the associated DTC problem (21)

of a given partition n. This vector includes the tensor components corresponding to the Young

Tabloids of the partition n and it has ν = N !/(n1! · n2! · · ·nK !) elements. As mentioned above

the underlying graph of the DTC problem is a cluster of connected components, i.e. the weight

matrix WQ is a block diagonal matrix where each block corresponds to one of the connected

components, with state vector Xn. The state update equation (18) for the state vector Xn is

as below,

Xn(t+ 1) = W n ×Xn(t) (22)

with W n as the weight matrix which is one of the blocks in WQ.

The tensor component of the quantum consensus state (17) for partition n takes the following

form

ρ∗µr1 ,...,µrN
=

1

N !

∑
π∈SN

ρµπ(r1),...,µπ(rN ) (23)

As explained in [19, Section 2.2], SN acts transitively over the set of Young tabloids or agents

and consequently over the set of agent states ({{ρn(r1(1), r2(1), · · · , rN (1))}, · · · , {ρn(r1(ν),

r2(ν), · · · , rN (ν))}}) with the Young subgroup Sn as its stabilizer subgroup. Since the group

elements of the Young subgroup do not change the Yamanouchi symbols. Based on the one

to one correspondence between agent states and the right or left cosets of Sn in SN , it can be

concluded that the connected component is the Schreier coset graph of permutation group SN

with Young subgroup Sn and generating set consisting of transpositions associated with edges of

the underlying graph of the quantum network. For the case of trivial Sn (i.e. n = (1, 1, . . . , 1))

the Schreier coset graph is reduced to Cayley graph.

In the following we provide some of typical partitions with their corresponding connected

graph component.

The most simple case is the one that all indices are the same, i.e. the partition is n = (n1) =

(N). The Yamanouchi symbols for this partition are r1 = r2 = · · · = rN = 1 and the DTC

equation (21) is ρµ1,µ1,...,µ1(t) = ρµ1,µ1,...,µ1(0), for µ1 = 0, 1, . . . , d2 − 1. The induced graph

of this partition is the edgeless or the empty graph which is a graph without any edges. This

is the Schreier coset graph Sch(SN ,S, SN ). Due to lack of any information exchange between

agents, the agent states does not change by time and they maintain their initial values. Thus
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for the quantum consensus state (23) we have ρ∗µ1,µ1,...,µ1 = 1
N !

∑
π∈SN ρπ(µ1),π(µ1),...,π(µ1)(0) =

ρµ1,µ1,...,µ1(0), where the second equality above is based on the fact that agent state ρµ1,µ1,...,µ1

remains intact under the permutation π or any exchange of information.

The next nontrivial partition is the case where all µ indices are the same except for one of

them, i.e. n = (N − 1, 1) and the Yamanouchi symbols are as ri = 1 for i = {1, ..., N} \ {j} and

rj = 2. Thus the agent state can be written as ρµ1,...,µ1,µ2,µ1,...,µ1 where for ease of notation we

denote the agent state by the scalar variable xj for j = 1, . . . , N . Hence the DTC equation (21)

for the partition n = (N−1, 1) can be written as xj(t+1) = xj(t)+
∑

k∈N (j)wj,k(xk(t)− xj(t)),

where N (j) is the set of neighbours of vertex j in the graph G. Considering xj as the state

for vertex j, the equation above is same as the classical DTC problem over the underlying

graph G which in turn is the Schreier graph Sch(SN ,S, SN−1). For this particular partition the

induced graph of the partition is same as the underlying graph of quantum network (G). For the

quantum consensus state (17) of this partition we have ρ∗µ1,µ1,...,µ1,µ2 = ρ∗µ1,µ1,...,µ1,µ2,µ1 = · · · =

1
N

∑N
j=1 ρµ1,...,µ1, µ2︸︷︷︸

j-th

,µ1,...,µ1(0) = 1
N

∑N
j=1 xj(0). Note that in this case the quantum consensus

state is same as the final equilibrium state of the classical DTC problem.

For the case that all indices are different, namely for the partition n = (1, 1, . . . , 1), the

DTC problem is referred to as interchange Process [6]. This case is possible if N ≤ d2. The

Yamanouchi symbols for this partition take different values from 1 to N where no two symbols

are equal to each other. The quantum consensus state (17) for this partition is same as (23) with

the exception that no two µ indices have the same value. The induced graph of this partition

is the Schreier coset graph Sch(SN ,S, e) where e is the identity element of SN . This Schreier

coset graph is same as the Cayley graph (SN ,S).

As an example, consider the path graph with three vertices (denoted by GP3) as the un-

derlying graph of the quantum network. For partition n = (2, 1) over graph GP3 the induced

graph is as depicted in figure 1 (a) which is same as the underlying graph GP3. But for partition

n = (1, 1, 1) the induced graph obtained is a cycle graph as depicted in figure 1 (b).

4.2 Spectrum of Induced Graphs

Based on (22), Ln the Laplacian matrix of the induced graph corresponding to partition n can

be written as below,

Ln = W · Iν −AG(n)(w), (24)
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Figure 1: The induced graphs for a path graph with 3 vertices for partitions (a) n = (2, 1) and
(b) n = (1, 1, 1).

Where W =
∑
{i,j}∈E wi,j and AG(n)(w) =

∑
{i,j}∈E wi,jπi,j . AG(n)(w) is the weighted adja-

cency matrix of the induced Schreier graph corresponding to partition n and πi,j is the matrix

representation of transposition of i ↔ j in the permutation module M (n). AG(n)(w) is also

an element of the C-SN algebra. According to the decomposition (2), the matrix AG(n)(w) is

block diagonal where each one of the block matrices denoted by ÃG(n)(w) consists of matrix

representation of
∑
{i,j}∈E wi,jπi,j in irreducible Specht modules of all partitions dominant to n.

Therefore Ln is also block diagonal matrix and it can be written as below,

Ln = diag{mn,n′B(n′ )|∀n
′
D n} =



B(N) 0 · · · 0

0 B(N−1,1) · · · 0

...
...

. . .
...

0 0 · · · B(n)


, (25)

where B(n′ ) = W · Id(n′ ) − ÃG(n′ )(w) is the representation of Specht module for partition n
′
.

Note that B(N) is a 1 × 1 matrix which is equal to zero and it is the only block matrix which

has a zero eigenvalue. This is due to the connectivity of the induced Schreier graph. B(n′ ) is

repeated mn,n′ times in (25). For the partition n = (1, 1, . . . , 1), the Ln in (25) includes all

irreducible Specht modules.

From (1) for partition n and its conjugate n
′

we have ÃG(n′ )(w) =
∑
{i,j}∈E wij X

(n
′
) (Πij)

∼=
∑
{i,j}∈E wijX

(n)(Πij)sgn(Πij) = −
∑
{i,j}∈E wijX

(n)(Πij) = − ÃG(n)(w). This is followed

from the fact that the value of function sgn(Πi,j) in (1) for all transpositions (Πi,j) is −1. Thus

the eigenvalues of the matrices ÃG(n)(w) and ÃG(n′ )(w) are the negative of each other. As
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an example, the eigenvalues of the matrix ÃG(n)(w) corresponding to partitions n = (N) and

n = (1, 1, . . . , 1) are W and −W , respectively. Note that the matrix ÃG(n)(w) for both partitions

n = (N) and n = (1, 1, . . . , 1) is a 1× 1 matrix. For all other partitions, the eigenvalues of the

matrix ÃG(n)(w) are less than W in absolute value, since otherwise there would have been two

zero eigenvalues and the induced graph would be disconnected. Thus the eigenvalues W and

−W are nondegenerate.

Considering partition n and its one level dominant partition n
′
, from (25) it is obvious that

the Laplacian matrix Ln includes all blocks of its one level dominant partition n
′
. Therefore,

the Laplacian corresponding to the less dominant partition n includes the spectrum of the

Laplacian corresponding to the dominant partition (n
′
). Based on this it can be concluded that

the Laplacian corresponding to partition n = (1, 1, . . . , 1) includes the corresponding spectrum

of all other partitions. In [19] this has been introduced as the intertwining relation.

Authors in [6] have proved that the second smallest eigenvalues (λ2(Ln)) (i.e. the spectral

gap) of the Laplacian matrices corresponding to partitions (1, 1, . . . , 1) and (N − 1, 1) (known

as the interchange and the random walk processes, respectively) are equal. This is known as the

Aldous’ conjecture [2]. Considering this result and the intertwining relation described above, it

can be concluded that the second eigenvalues (λ2(Ln)) of all partitions (except n = (N)) in the

Hasse diagram are equal to each other. This is the generalization of the Aldous’ conjecture to

all partitions (except (N)) in the Hasse diagram of N .

Thus for optimizing the convergence rate, the second smallest eigenvalue (λ2(LQ)) can be

calculated from the Laplacian matrix corresponding to any of the partitions (other than n =

(N)). But partition n = (N − 1, 1) is the most suitable one since its induced graph is identical

to the underlying graph of the quantum network and also its corresponding Laplacian matrix

(L(N−1,1)) is the smallest among the Laplacian matrices of all partitions containing λ2(LQ).

Unlike λ2(Ln), the greatest eigenvalue (λmax(Ln)) of the induced graphs corresponding to

different partitions are not the same. Selecting the appropriate induced graph that contains

the greatest eigenvalue (λd2N (LQ)) depends on the value of N and d, which is explained in the

following.

For N ≤ d2, all Specht modules including B(1,1,...,1) are present in (25) and therefore, the

smallest eigenvalue of ÃG(1,1,...,1)(w) is −W and the greatest eigenvalue of the laplacian matrix

Ln of the induced graph (i.e. λmax(Ln)) corresponding to partition n = (1, 1, . . . , 1) is 2W . Thus
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the semidefinite programming formulation of the FDTQC problem can be written as below,

min s

s.t. I −L(N−1,1) − JN/N ≤ s · I,

− s ≤ 1− 2W

(26)

For N = d2 +1, the partition (1, 1, . . . , 1) is not feasible and the last matrix block included in

(25) is B(2,1(N−2)). Thus λd2N (LQ) is obtained from the matrix block B(2,1(N−2)) corresponding

to partition (2, 1(N−2)). Based on the relationB(n) = W ·Id(n)−ÃG(n)(w), the largest eigenvalue

of Ã(N−1,1)(w) corresponds to the smallest eigenvalue of B(N−1,1) which is the second smallest

eigenvalue λ2(LQ). Similarly, the smallest eigenvalue of Ã(2,1(N−2))(w) corresponds to the largest

eigenvalue of B(2,1(N−2)) which is the greatest eigenvalue λd2N (LQ). On the other hand since

partition (2, 1(N−2)) is the conjugate partition of (N−1, 1) then the eigenvalues of Ã(2,1(N−2))(w)

are negative of those of Ã(N−1,1)(w) and the smallest eigenvalue of Ã(2,1(N−2))(w) is negative

of the largest eigenvalue of Ã(N−1,1)(w). Therefore, the eigenvalues λ2(LQ) and λd2N (LQ) are

the smallest eigenvalue of W.I − Ã(N−1,1)(w) and the largest eigenvalue of W.I + Ã(N−1,1)(w),

respectively. Denoting the largest eigenvalue of Ã(N−1,1)(w) by MaxEig(Ã(N−1,1)(w)), the

eigenvalues λ2(LQ) and λd2N (LQ) are as below,

λ2(LQ) = W −MaxEig(Ã(N−1,1)(w))

λd2N (LQ) = W +MaxEig(Ã(N−1,1)(w)).

(27)

The SLEM (19) of the FDTQC algorithm is max{1 − λ2(LQ), |1 − λd2N (LQ)|}, where in the

optimal case 1−λ2(LQ) = λd2N (LQ)− 1 and using (27) we can conclude that W = 1. Thus the

semidefinite programming formulation of the FDTQC problem for N = d2 + 1 can be written

as below,

min s

s.t. I −L(N−1,1) − JN/N ≤ s · I,

W = 1

(28)

For values of N larger than d2 + 1, the solution to the FDTQC problem should be solved

per-case for each value of N . In this paper, we have provided the solution to complete graph

topology for all values of N .
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5 Optimization of the Second Largest Eigenvalue Modulus (SLEM)

In this section, optimal results for the FDTQC problem over different topologies and values of

N ≤ d2 + 1 is provided. For complete graph topology we have included the complete solution

of the FDTQC problem for all values of N .

First we provide the optimal weights and the SLEM for all topologies with N = 2, 3 and 4

vertices which lie in the category of N ≤ d2. Next the optimal results for a range of topologies

is reported where the FDTQC problem is solved by linear programming and semidefinite pro-

gramming methods. In the final subsection, we provide the complete solution of the FDTQC

problem over complete graph topology for all values of N .

For N ≤ d2, in the semidefinite programming formulation of the FDTQC problem (26),

the second constraint can be written as W ≤ (1 + s)/2. Replacing the second constraint with

W ≤ (1 + s)/2, semidefinite programming formulation of the FDTQC problem (26) reduces to

the following,

min s

s.t. I −L(N−1,1) − JN/N ≤ s · I,

W ≤ (1 + s)/2.

(29)

This is similar to the semidefinite programming formulation of the Fastest Continuous Time

Quantum Consensus (FCTQC) problem in [19] where the constant D (the upper limit on the

total amount of weights) is replaced with (1 + s)/2. Thus the same solution procedure as in [19]

can be applied for solving the FDTQC problem (29).

In the same way, for N = d2 + 1, the semidefinite programming formulation of the FDTQC

problem (28) is similar to the semidefinite programming formulation of the Fastest Continuous

Time Quantum Consensus (FCTQC) problem in [19] where the constant D is replaced with 1.

Therefore, the same solution procedure as in [19] can be applied for solving the FDTQC problem

(28) for N = d2 + 1.

Note that for both cases of N ≤ d2 and N = d2 + 1, the optimal value of λ2(LQ) (the

second smallest eigenvalue of the laplacian matrix LQ) is given in [19] while here we optimize

the SLEM (s) of the weight matrix which is max{1− λ2(LQ), λd2N (LQ)− 1}. Therefore to use

the results in [19], the λ2(LQ) in [19] and variable D should be replaced with SLEM (s) and the

corresponding values as described above, respectively.
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Table 1: All non-isomorphic connected topologies with N = 4 vertices along with their optimal
SLEM and weights

Topology SLEM Weights

Path 9/11
w0 = 4/11
w1 = 3/11

Star 5/7 w = 2/7

Lollipop (6 +
√

3)/11

w−1 = (9− 4
√

3)/66

w0 = (6 +
√

3)/33

w1 = (6 +
√

3)/22

Cycle 3/5 w = 1/5

Paw Graph 3/5
w0 = 0
w0 = 1/5

Complete Graph 1/2 w = 1/8

(a)

0w
1w 1w

w w

w
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w
ww
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w

w

w
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1w

0w
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Figure 2: All possible connected underlying topologies with N = 4 vertices which are non-
isomorphic. (a) Path graph, (b) Star graph, (c) Lollipop graph, (d) Cycle graph, (e) Paw graph,
(f) Complete graph.

5.1 Topologies with N = 2, 3 and 4 Vertices

Here we provide the optimal weights and the SLEM for all possible topologies with N = 3 and

4 vertices which are connected and non-isomorphic.

For a network with N = 2 vertices, the only connected and non-isomorphic topology is the

path graph with 2 vertices. The optimal value of the SLEM for this topology is 0 and the

optimal weight is 1/2. For a quantum network with N = 3 particles, there are two connected

topologies, namely path and triangle topologies. In the path topology with N = 3 vertices there

re two edges which have the same wight. The optimal value of SLEM and the weights are 3/5

and 2/5, respectively. In triangle topology, there are three edges which have the same weight.

Note that the triangle topology is a complete graph. The optimal SLEM and weights are 1/3

and 2/9, respectively.

In table 5.1, all possible connected topologies with N = 4 vertices (as depicted in figure 2)

are listed along with their optimal SLEM and weights. Note that this case lies in he category

of N ≤ 4.
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Table 2: The optimal SLEM and weights of topologies that FDTQC problem is solved using
linear programming.

Topology For N ≤ d2 For N = d2 + 1

Complete Graph
SLEM = (N − 2)/N SLEM = (N − 3)/(N − 1)

w = 2/N2 w = 2/(N2 −N)

Cycle
SLEM = N−1+cos(2π/N)

N+1−cos(2π/N) SLEM = N−2(1−cos(2π/N)
N

w = 1/(N + 1− cos(2π/N)) w = 1/N

Simple Star
SLEM = (2N − 3)/(2N − 1) SLEM = (N − 2)/(N − 1)

w = 2/(2N − 1) w = 1/(N − 1)

CPETG
SLEM = (2α− 1)/(2α+ 1) SLEM = (α− 1)/α

wi = 2/((1 + 2α)λi,2) wi = 1/(α · λi,2)

Prism
SLEM = 2N1N2−N1−N2−1

2N1N2−N1−N2+1 SLEM = 2N1N2−N1−N2−2
2N1N2−N1−N2

wi = 2
(2N1N2−N1−N2+1)Ni

wi = 2
(2N1N2−N1−N2)Ni

5.2 Optimization of the SLEM using Linear Programming

In this subsection, we provide the optimal weights and the SLEM for a number of topologies

where linear programming is employed for solving the FDTQC problem [3]. The optimal results

are listed in Table 5.2.

First topology reported in Table 5.2 is the complete graph topology where each vertex is

connected to every other vertex in the graph. Due to the symmetry of complete graph, all edges

in the graph have the same weight (denoted by w). Second topology in Table 5.2 is the Cycle

graph which is edge transitive and therefore the optimal weight on all edges is the same. In

simple star topology N − 1 vertices are connected to one central vertex. The Cartesian Product

of Edge Transitive Graphs (CPETG) is the result of Cartesian product of m edge-transitive

weighted graphs. The structure of the Laplacian matrix for this topology is described in [19].

λi,2 is the second smallest eigenvalue of the unweighted Laplacian of the i-th edge-transitive

matrix and α is α =
∑m

i=1 (Ñi · Ei)/(Ni · λi,2), where Ñi =
∏i
j=1Nj and Ni and Ei are the

number of vertices and edges in the i-th edge-transitive graph, respectively. The Prism topology

is the Cartesian product of two complete graphs, each with N1 and N2 vertices which is a special

case of the CPETG topology.

5.3 Optimization of the SLEM using Semidefinite Programming

In this subsection, we provide the optimal results for a number of topologies where the FDTQC

problem can be solved using Semidefinite Programming [3]. The topologies included in this

subsection are Complete Core Symmetric (CCS) star, CCS star with two types of branches,

Symmetric star, Palm, two Coupled Complete Graphs and Lollipop topologies. The results
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Figure 3: (a) Weighted Complete-Cored Symmetric star topology with p = 5 branches of length
q = 2. (b) The weighted graph of CCS star graph with two types of branches with p = 5
branches of length q1 = 1 and q2 = 2. (c) A symmetric star graph with p = 5 branches of
length q = 2. (d) A palm graph with parameters p = 4 and q = 2. (e) The weighted Lollipop
graph with parameters p = 4 and q = 2. (f) The two coupled complete graphs topology with
parameters N1 = 3, N2 = 2 and N3 = 4.

provided here are presented in Tables 5.3 and 5.3 for N ≤ d2 and N = d2 + 1, respectively.

Complete-Cored Symmetric (CCS) star topology with parameters (p, q) consists of p path

branches of length q (each with q vertices), where branches are connected to each other at one

end to form a complete graph in the core. A CCS star graph with parameters p = 5, q = 2 is

depicted in figure 3(a). Automorphism of the CCS star graph and the structure of its Laplacian

matrix are discussed in detail in [19]. In the results presented in Tables 5.3 and 5.3 for CCS star

topology, variable α is 3(p− 1)(q + 1) + 3
√

2p(p− 1)q(q + 1) + pq(q + 1)(2q + 1). In the special

case of the CCS star topology with p = 2, this topology reduces to the path topology with

even number of vertices. CCS Star topology with two types of branches has three parameters

(p, q1, q2), where p is the number of branches from each type and q1 and q2 are the length

(number of edges) of branches of first type and second type, respectively. A CCS star graph

with two types of branches with parameters p = 5, q1 = 1 and q2 = 2 is depicted in figure

3(b). In the results presented in Tables 5.3 and 5.3 for CCS star topology with two types of

25



S. Jafarizadeh Optimizing the Discrete Time Quantum Consensus

Table 3: The optimal SLEM and weights of topologies that FDTQC problem is solved using
Semidefinite programming for N ≤ d2.

Topology Optimal results for N ≤ d2

CCS Star
SLEM = α−3

α+3

w0 =
3(2p−2+q

√
2p(p−1))

p(p−1)(3p−3+3q
√

2p(p−1)+2pq2+pq)
× α

α+3

wj =
3
(√

2p(p−1)(q−j+1)+p(q−j+1)(q+j)
)

(q+1)
(

3p
(
p−1+q

√
2p(p−1)

)
+p2q(2q+1)

) × α
α+3 for j ∈ [1, q]

CCS Star with p = 2

SLEM = (q+1)(2q+1)(2q+3)−3
(q+1)(2q+1)(2q+3)+3

w0 = 3(q+1)2

3+(2q+3)(2q+1)(q+1)

wj =
3((q+1)2−j2)

(q+1)(2q+1)(2q+3)+3 for j ∈ [1, q]

CCS Star with two types
of branches

SLEM = A−3
A+3

w0 = 6
A+3 ×

2(p−1)(q1+q2+1)+
√

2p(p−1)(q1(q1+1)+q2(q2+1))

2p(p−1)

wj = 6
A+3 ×

√
2p(p−1)(q1+j+1)+p(q1+j+1)(q1−j)

2p for j = [−q1,−1]

wj = 6
A+3 ×

√
2p(p−1)(q2−j+1)+p(q2−j+1)(q2+j)

2p for j = [1, q2]

Symmetric Star
SLEM = pq(q+1)(2q+1)−3

pq(q+1)(2q+1)+3

wj = 3(q+j)(q−j+1)
pq(q+1)(2q+1)+3 , for j ∈ [1, q]

Palm with 2p > q(q + 1)
SLEM = 6p+q(q+1)(2q+1)−3

6p+q(q+1)(2q+1)+3

w0 = 6
6p+q(q+1)(2q+1)+3

wj = (q−j+1)((q+1)(2q+1)+p(q+j))
2(p+q+1) for j ∈ [1, q]

Palm with 2p ≤ q(q + 1)
SLEM = (q+1)(q+2)(6+q(q+4p+1))−6(p+q+1)

(q+1)(q+2)(6+q(q+4p+1))+6(p+q+1)

w0 = 6(q+1)(q+2)
(q+1)(q+2)(6+q(q+4p+1))+6(p+q+1)

wj = 6(q−j+1)(p(q+j+2)+(q+1)j)
(q+1)(q+2)(6+q(q+4p+1))+6(p+q+1) for j ∈ [1, q]

Lollipop with√
2p(p+ 1) ≥ q(q + 1)

SLEM = A−6(p+q+1)
A+6(p+q+1)

w0 =
6(q+1)

(
2(p+1)+q

√
2p(p+1)

)
A+6(p+q+1)

w−1 =
12(p+q+1)−6(q+1)

(
2(p+1)+q

√
2p(p+1)

)
p(A+6(p+q+1))

wj =
6(q−j+1)

(√
2p(p+1)+p(q+j)+q+1

)
p(A+6(p+q+1)) for j = [1, q]
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Table 4: The optimal SLEM and weights of topologies that FDTQC problem is solved using
Semidefinite programming for N = d2 + 1.

Topology Optimal results for N = d2 + 1

CCS Star
SLEM = α−6

α

w0 =
3
(

2p−2+q
√

2p(p−1)
)

p(p−1)
(

3p−3+3q
√

2p(p−1)+2pq2+pq
)

wj =
3
(√

2p(p−1)(q−j+1)+p(q−j+1)(q+j)
)

3p(q+1)
(
p−1+q

√
2p(p−1)

)
+p2q(q+1)(2q+1)

for j ∈ [1, q]

CCS Star
with p = 2

SLEM = 1− 6
(q+1)(2q+1)(2q+3)

w0 = 3(q+1)
(2q+3)(2q+1)

wj =
3((q+1)2−j2)

(q+1)(2q+1)(2q+3) for j ∈ [1, q]

CCS Star with two types
of branches

SLEM = 1− 6
A

w0 = 6
A ×

2(p−1)(q1+q2+1)+
√

2p(p−1)(q1(q1+1)+q2(q2+1))

2p(p−1)

wj = 6
A ×

√
2p(p−1)(q1+j+1)+p(q1+j+1)(q1−j)

2p for j ∈ [−q1,−1]

wj = 6
A ×

√
2p(p−1)(q2−j+1)+p(q2−j+1)(q2+j)

2p for j ∈ [1, q2]

Symmetric Star
SLEM = 1− 6

pq(q+1)(2q+1)

wj = 3(q+j)(q−j+1)
pq(q+1)(2q+1) for j ∈ [1, q]

Palm with 2p > q(q + 1)
SLEM = 6p+q(q+1)(2q+1)−6

6p+q(q+1)(2q+1)

w0 = 6
6p+q(q+1)(2q+1)

wj = (q−j+1)((q+1)(2q+1)+p(q+j))
2(p+q+1) for j ∈ [1, q]

Palm with 2p ≤ q(q + 1)
SLEM = 1− 12(p+q+1)

(q+1)(q+2)(6+q(q+4p+1))

w0 = 6(q+1)(q+2)
(q+1)(q+2)(6+q(q+4p+1))

wj = 6(q−j+1)(p(q+j+2)+(q+1)j)
(q+1)(q+2)(6+q(q+4p+1)) for j ∈ [1, q]

Lollipop with√
2p(p+ 1) ≥ q(q + 1)

SLEM = 1− 12(p+q+1)
A

w0 =
6(q+1)

(
2(p+1)+q

√
2p(p+1)

)
A(p+1)

w−1 =
(p+1)A−12(p+1)(p+q+1)−6(q+1)

(
2(p+1)+q

√
2p(p+1)

)
p(p+1)A

wj =
6(q−j+1)

(√
2p(p+1)+p(q+j)+q+1

)
A for j ∈ [1, q]
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branches, variable A is equal to 3(p− 1)(q1 + q2 + 1) + q1(q1 + 1)
(
p(2q1 + 1 + 3

√
2p(p− 1))

)
+

q2(q2 + 1)
(
p(2q2 + 1) + 3

√
2p(p− 1)

)
. The symmetric star topology (as depicted in figure 3(c)

with parameters p = 5 and q = 2) is formed from connecting p path branches (each with q

vertices) to a central vertex. The palm topology is a path graph with q vertices connected

to the central vertex of a star graph with p branches as shown in figure 3(d) for parameters

p = 4 and q = 2. Lollipop topology is a path graph (with q vertices) connected to one of

the vertices in a complete graph with p + 1 vertices. A Lollipop topology with parameters

p = 4 and q = 2 is depicted in figure 3(e) along with the weights assigned to the edges.

In the results presented in Tables 5.3 and 5.3 for Lollipop topology, variable A is equal to

6(p − 1)(p + q + 1) + (q + 1)
(

6q
√

2p(p+ 1) + 6(p+ 1) + pq(2q + 1) + q(q2 − 1)
)

. In the case

of the Lollipop topology with
√

2p(p+ 1) < q(q + 1) the optimal value of w−1 is zero and the

topology reduces to the Palm topology.

In two coupled complete graphs topology, two complete graphs each with N1 + N2 and

N2 + N3 vertices respectively, share N2 vertices. In figure 3(f) two coupled complete graphs

with parameters N1 = 3, N2 = 2 and N3 = 4 is depicted. Due to the symmetry of the complete

graphs weights can be divided into five groups. w−2 is the weight on edges connecting the N1

vertices on the left complete graph to each other and w−1 is the weight on the edges connecting

the N1 vertices on the left complete graph to the N2 vertices in the middle. w0 is the weight

on edges connecting the N2 vertices in the middle to each other. Similarly the weights w1 and

w2 are defined for the weights on the edges of the complete graph on the right-hand side of the

topology.

• For N ≤ d2 and symmetric case N1 = N3, if N1 < N2/2 the optimal SLEM is (4N1N2 +

(N2−1)(N2−2N1)−N2)/(4N1N2 +(N2−1)(N2−2N1)+N2) and the optimal weights are

w1 = w−1 = 2/(4N1N2+(N2−1)(N2−2N1)+N2), w2 = w−2 = 0 and w0 = (N2−2N1)/N2
2 .

• For N ≤ d2 and symmetric case N1 = N3, if N1 ≥ N2/2 the optimal SLEM is equal to

(4N1−1)/(4N1 +1) and the optimal weights are w2 = w−2 = 0, w1 = w−1 = 2/(N2(4N1 +

1)) and w0 = 0.

• For N = d2 + 1 and symmetric case N1 = N3, if N1 < N2/2 the optimal SLEM is equal

to 1− (2N2)/(4N1N2 + (N2 − 1)(N2 − 2N1)) and the optimal weights are w2 = w−2 = 0,

w1 = w−1 = 2/(4N1N2 + (N2 − 1)(N2 − 2N1)) and w0 = (N2 − 2N1)/N2
2

• For N = d2 + 1 and symmetric case N1 = N3, if N1 ≥ N2/2 the optimal weights are
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w2 = w−2 = 0, w1 = w−1 = (2N1 − 1)/(8N2
1N2), w0 = 0 and the optimal SLEM is

1− 1/(2N1).

From the optimal weights, it is apparent that for the last symmetric case where N1 ≥ N2/2

the whole topology reduces to a 3-partite graph. For the nonsymmetric case where N1 6= N3,

the optimal results are too long to report here. But interestingly in the nonsymmetric case if

N1 > N3 then the optimal value of the weight w2 is zero.

5.4 FDTQC problem over Complete Graph Topology

In this subsection we present the complete solution of the FDTQC problem over a quantum

network with complete graph topology for all values of N . Since the underlying complete graph

is edge transitive and consequently all of the resultant induced Schreier graphs are edge-transitive

[34] then the value of optimal weights over all edges (denoted by w) are equal.

In the following, we provide some preliminaries on association schemes and group association

schemes [33, 35, 36] which have been used for obtaining the spectrum of the induced graphs

corresponding to a network with complete underlying graph.

5.4.1 Association Schemes

Definition 5.1. Association Scheme

Let V be a set of N vertices and assume {Ri : i = 0, 1, . . . , d} be a set of nonempty relations on

V (subsets of V ×V ) satisfying the following conditions, (1) to (4). Then the pair Y = {V,Ri :

0 ≤ i ≤ d} is called an association scheme. The constraints on relations are as below,

(1) {Ri}0≤i≤d is a partition of V × V

(2) R0 = {(α, α) : α ∈ V }

(3) Ri = Rti for 0 ≤ i ≤ d, where Rti = {(β, α) : (α, β) ∈ Ri}

(4) For (α, β) ∈ Rk, the number pki,j =| {γ ∈ V : (α, γ) ∈ Ri and (γ, β) ∈ Rj} | does not

depend on (α, β) but only on i, j and k.

Then, Y = (V, {Ri}0≤i≤d) defines a symmetric association scheme of class d on V . Further, if

pkij = pkji for all i, j, k = 0, 1, . . . , d, then Y is called commutative.

Let Y = (V, {Ri}0≤i≤d) be a commutative symmetric association scheme of class d, then the
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matrices A0, A1, ..., Ad defined by

(
Ai)α,β =

 1 , if (α, β) ∈ Ri,

0 , otherwise

 , α, β ∈ V (30)

are adjacency matrices of Y and are such that

AiAj =
d∑

k=0

pkijAk. (31)

From (31), it is seen that the adjacency matrices A0, A1, . . . , Ad form a basis for a commutative

algebra A known as the Bose-Mesner algebra of Y . This algebra has a second basis E0, . . . , Ed

primitive idempotents, defined as E0 = J/N , EiEj = δijEi,
∑d

i=0Ei = I, where, N := |V | and

J is the N × N all-1 matrix in A. Let P and Q be the matrices relating the two basis for A:

Aj =
∑d

i=0 PijEi and Ej = 1
N

∑d
i=0QijAi, for 0 ≤ j ≤ d. Then clearly we have PQ = QP = NI.

It also follows that AjEi = PijEi. The scalars Pij are called the eigenvalues of the scheme. Since

they are eigenvalues of the matrices Aj , they are algebraic integers (respectively the scalars

Qij are called the dual eigenvalues of the scheme); the columns of Ei are the corresponding

eigenvectors. Thus mi = rank(Ei) is the multiplicity of the eigenvalue Pij of Aj (provided that

Pij 6= Pkj for k 6= i). We see that m0 = 1,
∑

imi = N , and mi =traceEi = N(Ei)jj (indeed, Ei

has only eigenvalues 0 and 1, so rank(Ek) equals the sum of the eigenvalues).

One of the important schemes is the group scheme as explained below,

Definition 5.2. Group Association Scheme

Let G be a group; then it can be proved that the set of relations defined by Ri = {(α, β) :

αβ−1 ∈ Ci}, where {Ci : 0 ≤ i ≤ d} are the set of conjugacy classes of G, satisfy the four

constraints (1)-(4) in the definition of Association Scheme conditions (Definition 5.1), so Y =

{G;Ri : 0 ≤ i ≤ d} is a symmetric association scheme.

Defining class sums Ci for i = 0, 1, . . . , d as Ci =
∑

g∈Ci g ∈ CG, by the action of Ci

on group elements in the regular representation we observe that ∀α, β, (Ci)αβ = (Ai)αβ, so

Ai = Ci =
∑

g∈Ci g Thus due to (31), the relation CiCj =
∑d

k=0 p
k
i,jCk hold true. One can

show that CiCj = Cj Ci therefore the group scheme is a commutative scheme. Furthermore

they also commute with every element of the group i.e.

Ci g = g Ci, ∀i = 0, 1, . . . , d, and ∀g ∈ G (32)
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However from group theory we know that the coefficients pki,j have to be nonnegative integers,

and their value is given by the following relation [26]:

pki,j =
|Ci||Cj |
|G|

∑
χ

χ(Ci)χ(Cj)χ(Ck)

χ(1)
(33)

where the sum is over all the irreducible characters χ of G [37]. Therefore, the idempotents

E0, E1, . . . , Ed of the group association scheme X(G) are the projection operators of CG-module,

i.e., Ek = χk(1)
|G|

∑
Ci∈G χk(C

−1
i )Ci. Thus, eigenvalues of adjacency matrices of Ak and idempo-

tents Ek, respectively, are Pik = dikk
mi

χi(Ck) and Qik = dkχk(Ci), where dj = χj(1)s are the

dimensions of the irreducible characters χj which are positive integers, and κi = |Ci| is the

number of elements in the conjugate class Ci, which is the degree of its corresponding adjacency

matrix. Since χi(g) for all g ∈ G are identical therefore in the formulations above χi(Ck) is

employed instead of χi(g).

From relation (32) it is obvious that in any matrix representation the adjacency matrices

Ai commute with all elements of group, therefore according to Schur’s Lemma Ai should be

proportional to identity matrix i.e.

Ai = PjiIχj(1), (34)

where Pji is the j-th eigenvalue of the adjacency matrices of Ai.

5.4.2 Association Scheme of Group SN

For each partition n ` N , SN has a corresponding conjugacy class which consists of those

permutations having cycle structure described by n. The cycle structure are the listing of

number of cycles of each length (i.e, ni is the number of i cycles). We denote by Cn the

conjugacy class of SN consisting of all permutations having cycle structure n. Therefore the

number of conjugacy classes of SN , namely the diameter of its scheme is equal to the number

of partitions of N .

Here we are concerned with the adjacency matrix corresponding to C(2,1,1,1,1...,1) and its

spectrum, since this adjacency matrix is same as the adjacency matrix of the induced graph

corresponding to partition n = (1, 1, . . . , 1) (Cayley graph) if the underlying graph of the

quantum network is a complete graph. The adjacency matrix corresponding to C(2,1,1,1,1...,1)

is AC(2,1,1,...,1)
= AC1 =

∑
i<j Πij , where Πij is the matrix representation of the transposition

(i↔ j) in SN -regular representation.
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To obtain the spectrum of the adjacency matrix AC(2,1,1,...,1)
, introduced above, the character

of C1 is required which is as below [32],

χn(C1) =
dn
κ1

∑
j


 nj

2

−
 n

′
j

2


 . (35)

Here, n′ is the conjugate of partition n, while n
′
j and nj are the j-th components of the partitions

n
′

and n, and Sn is the irreducible Specht module corresponding to partition n.

Since the representation is regular then mn is equal to (dn)2. κ1 = N !/((N − 1)!2!) is the

cardinality of the first conjugate class (C1) which is the number of possible transpositions. Then

the eigenvalues of the adjacency matrix AC(2,1,1,...,1)
can be written as

Pn1 =
dnκ1

mn
χn(C1) =

∑
j


 nj

2

−
 n

′
j

2


 . (36)

Now using (34), in the irreducible representation corresponding to a given partition n, the

adjacency matrix AC(2,1,1,...,1)
can be written as below

AC(2,1,1,...,1)
= Pn1 · Iχn(1) =

∑
j


 nj

2

−
 n

′
j

2


 · Iχn(1). (37)

5.4.3 Optimal Weights & SLEM for complete graph topology

Now we are ready to provide the optimal weights and the SLEM of the discrete time quantum

consensus problem over a quantum network with complete graph topology. To do so, we first

obtain the spectrum of the Laplacian matrix Ln of the induced graphs given in (24), which is

possible by obtaining the spectrum of AG(n). This is achievable for partition n = (1, 1, . . . , 1),

since for this partition we have

AG(1,1,...,1) = w ·AC(2,1,1,...,1)
, (38)

where w is the weight on each edge of the complete graph and the spectrum of AC(2,1,1,...,1)
is

provided above in subsection 5.4.2. Restricting relation (38) to an irreducible representation

corresponding to partition n, using (25) the left hand side of (38) becomes ÃG(n) while using

(37) the right hand side can be written as w · Pn1 · Iχn(1). Therefore, for each block of Ln in
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(25) we have

Bn = (W − Pn1) · Iχn(1), (39)

Considering (39) for the given partition n, the eigenvalues of Ln are

λn′ (Ln) = W − Pn′1, (40)

where n
′

includes all partitions dominant to partition n, with Pn′1 given in (36). This is the

main result of this section towards calculating the optimal SLEM of the discrete time quantum

consensus problem for a quantum network with complete graph topology.

In the following, we provide the optimal results for a quantum network with N qubits.

For complete graph as the underlying graph, the second smallest eigenvalue of the Laplacian

matrix Ln for all partitions (other than n = (N)) is the eigenvalue of B(N−1,1) in (25) which is

λ2 = N · w. Regarding λmax depending on the value of N there are four different categories,

namely N = 4l + i for i = 0, 1, 2, 3 and l ≥ 1.

• N = 4l: In this case, since partition n = (l, l, l, l) is the least dominant partition, λmax

is obtained from B(l,l,l,l). From (36), Pn1 for n = (l, l, l, l) and its conjugate partition

n
′

= (4,4,...,4︸ ︷︷ ︸
l

) can be calculated as Pn1 = N(N−16)
8 , and by substituting W = wN(N − 1)/2

and Pn1 in (40) for n = n
′

= (l, l, l, l) we obtain λmax = 3N(N+4)
8 w. For optimal the

weights we have 1−λ2 = λmax−1 which results in the optimal w as w = 16/(N(3N +20))

and thus the corresponding optimal SLEM is 1− 16/(3N + 20).

• N = 4l+ 1: In this case, the optimal weight is w = 16/(3N2 + 20N − 15) and the optimal

SLEM is 1− (16N)/(3N2 + 20N − 15).

• N = 4l+ 2: In this case, the optimal weight is w = 16/(3N2 + 20N − 20) and the optimal

SLEM is 1− (16N)/(3N2 + 20N − 20).

• N = 4l+ 3: In this case, the optimal weight is w = 16/(3N2 + 20N − 15) and the optimal

SLEM is 1− (16N)/(3N2 + 20N − 15) Interestingly, the optimal results for this category

are identical to the second category.

For cases other than qubits, i.e. qudits for d > 2, the solution procedure is similar as above

but for higher number of number of categories that is (d2).
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6 Conclusion

In this paper, we have optimized the convergence rate of the quantum consensus algorithm over

a quantum network with N qudits. For the study presented in this paper we have considered

the discrete time model of the quantum consensus algorithm. It is shown that unlike the results

obtained for the continuous time model of the algorithm, the convergence rate of the algorithm

depends on the value of d is qudits. By exploiting the Specht module representation of partitions

of N , we have shown that the spectrum of the Laplacian corresponding to the less dominant

partition in the Hasse Diagram includes that of the one level dominant partition. Using this

result, the Aldous’ conjecture is generalized to all partitions of integer N and it is shown that

the original optimization problem reduces to optimizing the Second Largest Eigenvalue Modulus

(SLEM) of the weight matrix. SLEM depends on two eigenvalues, namely, the second smallest

(λ2(L)) and the greatest (λmax(L)) eigenvalues of the Laplacian matrix. We have proved that

λ2(L) is same for the induced graphs of all partitions of N , while λmax(L) is obtained from the

induced graph of the least dominant and feasible partition of N , where the feasiblity depends

on the values of d and N . For N ≤ d2, the λmax(L) is obtained from partition (1, 1, · · · , 1)

while for larger values of N , partition (1, 1, · · · , 1) is not feasible and λmax(L) is included in

partitions dominant to (1, 1, · · · , 1). The semidefinite programming formulation of the FDTQC

problem is addressed analytically for N ≤ d2 + 1 and a wide range of topologies where closed-

form expressions for the optimal convergence rate and the optimal weights are provided. For the

special case of complete graph topology, we have included the complete solution of the FDTQC

problem for all values of N , where group association schemes are employed for obtaining the

spectrum of the induced graphs.
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