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Abstract

We study the stability properties of a susceptible-infected-susceptible (SIS) diffusion model, so-called then-intertwined Markov model,
over arbitrary directed network topologies. As in the majority of the work on infection spread dynamics, this model exhibits a threshold
phenomenon. When the curing rates in the network are high, the disease-free state is the unique equilibrium over the network. Otherwise,
an endemic equilibrium state emerges, where some infectionremains within the network. Using notions from positive systems theory, we
provide novel proofs for the global asymptotic stability ofthe equilibrium points in both cases over strongly connected networks based
on the value of the basic reproduction number, a fundamentalquantity in the study of epidemics. When the network topology is weakly
connected, we provide conditions for the existence, uniqueness, and global asymptotic stability of an endemic state, and we study the
stability of the disease-free state. Finally, we demonstrate that then-intertwined Markov model can be viewed as a best-response dynamical
system of a concave game among the nodes. This characterization allows us to cast new infection spread dynamics; additionally, we
provide a sufficient condition for the global convergence tothe disease-free state, which can be checked in a distributed fashion. Several
simulations demonstrate our results.
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1 Introduction

Epidemiological models for disease spread among humans
constitute important classes of spread dynamics, as they
can potentially provide models for many engineering related
phenomena such as the spread of viruses in computer net-
works [9,10,12,26]. There is a vast literature on various as-
pects of epidemiological models and the study of infection
propagation over networks; we refer the reader particularly
to [12,18,27] and the references therein. Characterization of
the stability properties of such diffusion dynamics is a cru-
cial first step towards designing efficient algorithms for con-
trolling their evolutions. Most dynamical epidemiological
models, including then-intertwined Markov model [25,26]
studied here, can possess two equilibrium points, under cer-
tain conditions: andisease-freestate at which the network is
cured, and anendemicstate at which the infection persists
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in the network [5, 6, 16, 23]. This has also been observed
in time-varying or switching models that allow for abrupt
changes in their parameters [20]. A threshold called the ba-
sic reproduction number, whose value depends on the curing
and infection rates across the network as well as the network
topology, determines to which equilibrium point the state of
the network will converge [5].

For then-intertwined Markov model, the basic reproduction
number, introduced as a critical threshold in [25, 26], char-
acterizes this threshold phenomenon. In particular, when the
basic reproduction number is less than or equal to1, the
unique equilibrium is the disease-free state; otherwise, the
endemic state emerges. Our aim in this paper is to fully char-
acterize the stability properties of this model over networks
with directed topologies. Moreover, we intend to use fun-
damental results from positive systems theory to construct
proofs that could potentially become a starting point for
studying the stability of a variety of epidemiological models
that share similar characteristics withn-intertwined Markov
model.

Literature review

A sufficient condition for the stability of the disease-free
state over strongly connected digraphs has been established
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in [19]. For compartmental susceptible-infected-susceptible
(SIS) models, a necessary and sufficient condition for the
global asymptotic stability of this equilibrium was presented
in [6] using a linear Lyapunov function. For the same model,
the global asymptotic stability of the endemic state over
strongly connected directed graphs has been studied in [1,6,
23]—see [23] for a summary of other approaches to establish
this result. The results in [1,6] rely on the assumption thatthe
state of the model will evolve in the strictly positive quad-
rant when the state of the network is initialized away from
the origin. The result in [23] was established using a non-
quadratic Lyapunov function, and by relying on advanced
combinatorial results such as Kirchhoff’s matrix tree theo-
rem. In contrast, in this paper, using the theory of positive
systems, we offer a novel and rigorous proof for the global
asymptotic stability of the endemic state over strongly con-
nected digraphs. This allows us to provide novel results for
the stability properties of epidemic dynamics over weakly
connected topologies; in all the aforementioned results, the
underlying graphs were assumed to be strongly connected
(or connected when the graph is undirected). Nonetheless,
weakly connected directed graphs are common in practice,
and characterizing the equilibrium points as well as their
stability properties over these graphs present new challenges
in studying epidemiological networks.

Statement of Contributions

The main contributions of this paper are as follows. First,
using tools from the theory of positive systems, we charac-
terize the stability properties of the endemic state equilib-
rium of then-intertwined Markov model over strongly con-
nected digraphs. In particular, we show that when the basic
reproduction number is greater than1, the endemic state is
locally exponentially stable, and when the network is not ini-
tialized at the disease-free state, we show that the endemic
state is globally asymptotically stable (GAS). Unlike [1,6],
the proofs we present here do not make any assumption on
the evolution of the state, and unlike [23], the stability prop-
erties are established using a quadratic Lyapunov function
that allows us to avoid relying on advanced combinatorial
and graph-theoretic notions. Using this key construction,our
next contribution is to study the existence, uniqueness, and
stability properties of the disease-free and endemic states
over weakly connected digraphs. By studying the input-to-
state stability of the network, we provide conditions for a
GAS endemic state to emerge over weakly connected di-
graphs. Unlike endemic states over strongly connected di-
graphs, we show that at the endemic states emerging over
weakly connected graphs a subset of the nodes could be
healthy while the rest become infected.

Finally, we provide a game-theoretic framework that can
prescribe more general classes of infection dynamics. Using
this model, we show that then-intertwined Markov model
prescribes the best-response dynamics of a concave game.
This allows us to provide a new condition for the stability of
the disease-free state, which can be checked in a distributed
way by the nodes.

Organization

Section 2 establishes some mathematical preliminaries re-
quired in this paper. In Section 3, we recall then-intertwined
Markov model, and discuss a connection with a game-
theoretic formulation. Sections 4 and 5 contain our results
on the stability of then-intertwined Markov model over,
respectively, strongly and weakly connected digraphs. Nu-
merical studies are provided in Section 6. Finally, Section7
collects our conclusions and ideas for future work. An Ap-
pendix contains technical results that are used in proving
some of our main results.

2 Mathematical Preliminaries

We start with some terminology and notational conventions.
All the matrices and vectors in this paper are real valued.
For a set ofn ∈ Z≥1 elements, we use the combinatorial
notation [n] to denote{1, . . . , n}. The (i, j)-th entry of a
matrix X ∈ R

n×m, n,m ∈ Z≥1 is denoted byxij . For
two real vectorsx, y ∈ R

n, n ∈ Z≥1, we writex ≫ y if
xi > yi for all i ∈ [n], x ≻ y if xi ≥ yi for all i ∈ [n] but
x 6= y, andx � y if xi ≥ yi for all i ∈ [n]. We say a vector
x ∈ R

n is strictly positive ifx ≫ 0. For any vectorx ∈ R
n,

we definexmin := mini∈[n] xi and xmax := maxi∈[n] xi.
The absolute value of a scalar variable is denoted by|.|.
We also denote the cardinality of a finite set by|.|, and the
purpose this operator is being used for will be clear from
the context. The set of eigenvalues of a matrixX is denoted
by σ(X). The spectral radius of a matrixX ∈ R

n×n is
given byρ(X) = maxλ∈σ(X) |λ|, and its abscissa is given
by µ(X) = maxλ∈σ(X) Re(λ). When the eigenvalues of a
matrixX are real, we denote the largest eigenvalue byλ1(X)
and the smallest eigenvalue byλn(X). The Euclidean norm
of a vector is denoted by‖.‖2. The induced2-norm of a
matrixX ∈ R

n×n is given by

‖X‖2 = max
y∈R

n

‖y‖2=1

‖Xy‖2 =
√

λ1 (XTX).

We use the operator diag(.) for two purposes. When applied
to a square matrixX ∈ R

n×n, diag(X) returns a column
vector that contains the diagonal entries ofX . For a vector
x ∈ R

n, X = diag(x), or X = diag(x1, . . . , xn), is a
diagonal matrix withXii = xi, i ∈ [n]. When a diagonal
matrix has positive diagonal entries, we call it a positive
diagonal matrix. The identity matrix is denoted byI, and
the all-ones vector is denoted by1. We assume bothI and
1 have the appropriate dimensions whenever used.

Let f : Rn → R
n be a continuously differentiable function

that defines a dynamical systeṁx = f(x), and letx be an
equilibrium point of this system, i.e.,f(x) = 0. The Jaco-
bian matrix off , J(x) ∈ R

n×n, is given byJ(x) = ∂
∂x

f(x).
Let D ⊂ R

n×n be a compact domain where the trajecto-
ries of the dynamical systeṁx = f(x) lie. A continuously
differentiable functionV : D → R is a Lyapunov function
if, V (x) = 0 andV (x) > 0 for all x ∈ D \ {x}. The Lie
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derivative ofV alongf is given by

LfV (x) :=
d

dx
V (x)T f(x).

Matrix Theory

We call two matricesX,Y ∈ R
n×n similar if there exists a

nonsingular matrixT ∈ R
n×n such thatY = T−1XT . An

important property of similar matrices is that they share the
same set of eigenvalues [11]. Some of our results rely on
properties of Metzler and irreducible matrices. A real square
matrix X is called Metzler if its off-diagonal entries are
nonnegative. We say that a matrixX ∈ R

n×n is reducible
if there exists a permutation matrixT such that

T−1XT =

[

Y Z

0 W

]

,

whereY andW are square matrices, or ifn = 1 andX = 0
[3]. A real square matrix is called irreducible if it is not
reducible. A survey on Metzler matrices and their stability
properties can be found in [3,4,7]. Hurwitz Metzler matrices
have the following equivalent characterizations.

Proposition 1 ([21]) For a Metzler matrixX ∈ R
n×n, the

following statements are equivalent:

(i) The matrixX is Hurwitz.
(ii) There exists a vectorξ ≫ 0 such thatXξ ≪ 0.
(iii) There exists a vectorν ≫ 0 such thatνTX ≪ 0.
(iv) There exists a positive diagonal matrixQ such that

XTQ+QX = −K, (1)

whereK is a positive definite matrix.

The last characterization is often referred to asdiagonal
stability [3,17].

The Perron-Frobenius (PF) theorem is a fundamental result
in spectral graph theory that characterizes some of the prop-
erties of the spectra of Metzler and nonnegative matrices,
i.e., matrices whose entries are all nonnegative. We first state
the PF theorem for irreducible Metzler matrices [7, Theo-
rem 17].

Theorem 1 (PF – Irreducible Metzler Case) Let X ∈
R

n×n be an irreducible Metzler matrix. Then

(i) µ(X) is an algebraically simple eigenvalue ofX .
(ii) Let vF be such thatXvF = µ(X)vF . ThenvF is

unique (up to scalar multiple) andvF ≫ 0.
(iii) If v ≻ 0 is an eigenvector ofX , thenXv = µ(X)v,

and, hence,v is a scalar multiple ofvF .

For irreducible nonnegative matrices, the following version
of the PF theorem applies [11, Theorem 8.2.11].

Theorem 2 (PF – Irreducible Nonnegative Case)Let
X ∈ R

n×n be an irreducible nonnegative matrix. Then

(i) ρ(X) > 0.

(ii) ρ(X) is an algebraically simple eigenvalue ofX .
(iii) If Xv = ρ(X)v, thenv ≫ 0.

Graph Theory

A directed graph, or digraph, is a pairG = (V , E), whereV
is the set of nodes andE ⊆ V ×V is the set of edges. Given
G, we denote an edge from nodei ∈ V to nodej ∈ V by
(i, j). We say nodei ∈ V is a neighbor of nodej ∈ V if and
only if (i, j) ∈ E . When(i, j) ∈ E if and only if (j, i) ∈ E ,
we call the graphundirected. For a graph withn ∈ Z≥1

nodes, we associate an adjacency matrixA ∈ R
n×n with

entriesaij ∈ R≥0, whereaij = 0 if and only if (i, j) /∈ E .
For undirected graphs, the adjacency matrix is symmetric,
i.e.,A = AT .

In a digraph, a directed path is a collection of nodes
{i1, . . . , iℓ} ⊆ V , ℓ ∈ Z>1, such that(ik, ik+1) ∈ E for all
k ∈ [ℓ− 1]. A digraph isstrongly connectedif there exists a
directed path between any two nodes inV . A strongly con-
nected component (SCC) of a graph is a subgraph which
itself is strongly connected. A path in an undirected graph
is defined in a similar manner. We call an undirected graph
connectedif it contains a path between any two nodes inV .
A digraph is calledweakly connectedif when every edge
in E is viewed as an undirected edge, the resulting graph is
a connected undirected graph. We call a graph, whether it
is directed or undirected,disconnectedif it contains at least
two isolated subgraphs. Throughout this paper, when the
graphG is directed, we assume that it is either strongly or
weakly connected. WhenG is undirected, we assume that it
is connected.

A directed acyclic graph (DAG) is a digraph with no
directed cycles. A nodei ∈ V is called a source node
if

∑

j 6=i 1{aji 6=0} = 0, and it is called a sink node if
∑

j 6=i 1{aij 6=0} = 0, where1{aij 6=0} = 1 if and only if
aij 6= 0, and is zero otherwise. A DAG can have multiple
sources and multiple sinks. For a given graphG, let Ssource
denote the set of source nodes, and letSN-source be the set
of all nodesi in G such thataji 6= 0 for somej ∈ Ssource.

3 The n-Intertwined Markov Model

In this section, we recall the heterogeneousn-intertwined
Markov model that has recently been proposed [25,26]. This
model is related to the so-called multi-group SIS model that
was proposed earlier in [16]; see also [6, 23]. We prescribe
the infection model over a directed graphG = (V , E) with n
nodes, whereV is the set of nodes, andE is the set of edges.
Each node in the network has two states: infected or cured.
The curing and infection of a given nodei ∈ V are described
by two independent Poisson processes with ratesδi andβi,
respectively. Throughout the paper, we assume thatδi > 0
andβi > 0. The transition rates between the healthy and
infected states of a given node’s Markov chain depend on
its curing rate as well as the infection probabilities among
its neighbors. A mean-field approximation is introduced to
“average" the effect of infection probabilities of the neigh-
bors on the infection probability of a given node. This ap-
proximation yields a dynamical system that describes the
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evolution of the probability of infection of nodei ∈ V and
is central to our upcoming developments. We briefly review
this dynamical system next.

Let pi(t) ∈ [0, 1] be the infection probability of nodei ∈
V at time t ∈ R≥0, and let p(t) = [p1(t), . . . , pn(t)]

T .
Also, let D = diag(δ1, . . . , δn), P (t) = diag(p(t)), and
B = diag(β1, . . . , βn). Then-intertwined Markov model is
prescribed by the mappingΦ : Rn → R

n, where

ṗ(t) = Φ(p(t))

:= (ATB −D)p(t) − P (t)ATBp(t). (2)

It can be shown that whenp(0) ∈ [0, 1]n, p(t) ∈ [0, 1]n, for
all t ∈ R>0 [26]. Hereinafter, for most parts, we will drop
the time index for notational simplicity.

3.1 Equilibrium States of then-Intertwined Markov Model

We next focus on characterizing the set of equilibria of the
dynamical system (2). We give this characterization using
the so-calledbasic reproduction number, denoted byR0,
which is defined as the expected number of infected nodes
produced in a completely susceptible population due to the
infection of a neighboring node [5]. For then-intertwined
Markov model, the basic reproduction number was found
in [25], where it was called the “critical threshold", to be
equal to

R0 = ρ(D−1ATB).

For connected undirected graphs, it is shown in [25] that
the disease-free state is the unique equilibrium for then-
intertwined Markov model whenR0 ≤ 1. When R0 >
1, in addition to the disease-free equilibrium, an endemic
equilibrium, denoted byp⋆, emerges. In fact, it is shown
thatp⋆ ≫ 0. We call a strictly positive endemic statestrong.
Whenp⋆ ≻ 0, we call it aweakendemic state. A recursive
expression for the endemic statep⋆ is provided in [25], which
is shown to depend on the problem parameters only:A, δi,
βi, i ∈ V . To arrive at this expression, consider the steady-
state equation

0 = (ATB −D)p− PATBp. (3)

Defineξi :=
∑

j 6=i ajiβjpj andξ⋆i :=
∑

j 6=i ajiβjp
⋆
j , i ∈ V .

We can then writep⋆i as

p⋆i =
ξ⋆i

δi + ξ⋆i
= 1− δi

δi + ξ⋆i
, i ∈ V . (4)

Since we assumed thatδi > 0, we conclude thatp⋆i < 1, for
all i ∈ V . We can then re-write (3), evaluated atp⋆, in the
following form:

ATBp⋆ = (I − P ⋆)−1Dp⋆, (5)

whereP ⋆ = diag(p⋆).

3.2 Then-Intertwined Markov Model as a Concave Game

In this subsection, we demonstrate that then-intertwined
Markov model can be cast as the best response dynamical
system associated with a noncooperative game. An impor-
tant by-product of this study is the development of a larger
class of infection dynamics with reasonable convergence
properties. Further, our exposition provides a decision-based
interpretation to virus spread models, which are often based
on the theory of Markov chains. Although our focus here
is the study of virus spread, our model can be applied to
other diffusion phenomena such as the spread of spam in
computer networks.

To this end, consider a digraphG = (V , E) with n nodes,
and let0 ≤ xi ≤ 1 be the rate with which nodei sends
messages. We associate an objective function, denoted by
fi : R

n → R, to nodei that is comprised of a local utility
functionUi : [0, 1] → R, and a component that encapsulates
the influence of the neighboringnodes. The influence of node
j on nodei is described via the functioñgji : [0, 1]×[0, 1] →
R, whereg̃ji ≡ 0 if and only if (j, i) /∈ E . We can then write
the objective function of nodei as

fi(xi, x−i) = Ui(xi) +
∑

j 6=i

g̃ji(xi, xj). (6)

Each node is interested in maximizing its own objective
functionfi. Formally, we can write the problem of thei-th
agent as

max
0≤xi≤1

fi(xi, x−i), for each fixedx−i. (7)

Whenfi is concave inxi, and because the objective function
of each player depends also on the actions of other players,
problem (7) describes a concave game [2,22].

The solution concept we are interested in studying here is
the pure-strategy Nash equilibrium (PSNE).

Definition 1 ([2]) The vectorx⋆ ∈ [0, 1]n constitutes a
PSNE if, for alli ∈ V , the inequality

fi(x
⋆
i , x

⋆
−i) ≥ fi(xi, x

⋆
−i)

is satisfied for allxi ∈ [0, 1].

Note that under the PSNE, no agent has any incentive to
unilaterally deviate from the solutionx⋆. The next proposi-
tion establishes the existence and uniqueness of the PSNE
for the game in (7), when the game is concave.

Proposition 2 ([22]) For eachi ∈ V , let fi(xi, x−i) in (6)
be strictly concave inxi ∈ [0, 1], for everyxj ∈ [0, 1], j ∈
V , j 6= i. Then the resulting concave game in(7) admits
a unique PSNE under the following diagonal dominance
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condition:

2
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∂
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∣

∣

∣

∣

. (8)

The following lemma establishes a relationship between
virus spread in networks and concave games. In the virus
spread case, the probability of infectionpi plays the role of
the transmission ratexi.

Lemma 1 The dynamics of then-intertwined Markov model
are best-response dynamics of a concave game among the
nodes, where the decision variable of nodei ∈ V is pi ∈
[0, 1], and its objective function is given by

fi(pi, p−i) = −δi
2
p2i + pi

(

1− pi
2

)

∑

j 6=i

ajiβjpj . (9)

PROOF. Recall the objective functions defined in (6). Let
Ui(pi) = − δi

2 p
2
i andg̃ji(pi, pj) = pi(1− pi

2 )ajiβjpj, i ∈ V .
We then obtain

∂2

∂p2i
fi(pi, p−i) = −δi −

∑

j 6=i

ajiβjpj < 0, i ∈ V ,

which shows that thefi’s are strictly concave in self vari-
ables. It is now not hard to see that the dynamics of the
n-intertwined Markov model (2) correspond to the gradient
flow dynamics when the agents aim at maximizing their own
objective functions (9). ✷

4 Stability of Epidemic Dynamics over Strongly Con-
nected Graphs

We start by studying the stability properties of then-
intertwined model over directed graphs with strongly con-
nected topologies.

4.1 Stability of the Disease-Free State

As a stepping stone, we first provide an alternative proof for
the necessary and sufficient condition for the global asymp-
totic stability of the disease-free state, see [6,19], using the
theory of positive systems. As we will see shortly, the proof
strategy provided here is essential in some of our upcoming
results.

Proposition 3 SupposeG = (V , E) is a strongly connected
digraph. The disease-free equilibrium is GAS if and only if
R0 ≤ 1.

PROOF. Note that the matrixATB − D is Metzler, be-
cause the entries ofATB are nonnegative. Using the con-
vergent regular splitting property of Metzler matrices, itcan

be shown thatR0 < 1 if and only if µ(ATB−D) < 0, and
R0 = 1 if and only if µ(ATB −D) = 0 [3, Theorem 2.3].

As a result, whenR0 < 1, the matrixATB−D is Hurwitz.
Since it is also Metzler, by Proposition 1(iv), there existsa
positive diagonal matrixR1 satisfying(ATB − D)TR1 +
R1(A

TB−D) = −K, whereK is a positive definite matrix.
Consider the Lyapunov functionV1(p) = pTR1p. Using (2),
we have

LΦV1(p) = pT ((ATB −D)TR1 +R1(A
TB −D))p

− 2pTR1PATBp

≤ pT ((ATB −D)TR1 +R1(A
TB −D))p

=−pTKp ≤ λ1(−K)‖p‖22 < 0, p 6= 0, (10)

where the first inequality follows becausepTR1PATBp ≥
0, for all p ∈ [0, 1]n, and (10) follows becauseK is positive
definite. This implies that the disease-free state is GAS.

WhenR0 = 1, we haveµ(ATB − D) = 0. SinceG is
strongly connected, it follows thatATB −D is irreducible
[3]. Recalling thatATB −D is also Metzler, we conclude
from Lemma A.1 that there exists a positive diagonal matrix
R2 such that(ATB−D)TR2 +R2(A

TB−D) is negative
semidefinite. Using the Lyapunov functionV2(p) = pTR2p,
we can write

LΦV2(p) = pT ((ATB −D)TR2 +R2(A
TB −D))p

− 2pTR2PATBp

≤−2pTR2PATBp.

We next prove thatpTR2PATBp = 0 if and only if p =
0. SinceR2 is a positive diagonal matrix, we have that
pTR2PATBp = 0 if and only if

p2i
∑

j 6=i

ajiβjpj = 0, (11)

for all i ∈ V . Assume that there is a solutionp that satisfies
pTR2PATBp = 0 at some timet0 ∈ R≥0, and letpi(t0) 6=
0 for somei ∈ V . Then, by continuity of the statep, there
exists an intervalτ = [t0, t0+δ], δ > 0, such thatpi(t) 6= 0,
for all t ∈ τ . Using (11), we hence conclude that for all
j ∈ V that are neighbors ofi, i.e., aji 6= 0, we must have
that pj(t) = 0 and ṗj(t) = 0 for all t ∈ τ , for all j ∈ V
with aji 6= 0. Then, for somej ∈ V such thataji 6= 0, we
have ṗj(t) =

∑

k 6=j akjβkpk(t) = 0, for all t ∈ τ . This
implies thatpk(t) = 0 for all t ∈ τ and for allk ∈ V such
thatakj 6= 0. By repeating this argument, we conclude that
pl(t) = 0 for all t ∈ τ for any nodel ∈ V from which there
is a directed path to nodej. SinceG is strongly connected,
there is a directed path from nodei to nodej, and we must
then havepi(t) = 0 for all t ∈ τ , which contradicts our
initial hypothesis. It then follows thatpTR2PATBp = 0
if and only if p ≡ 0. Hence, the disease-free state is GAS.
This proves the sufficiency part.

We will show necessity by proving the contrapositive. The
Jacobian matrix of the vector field in (2) evaluated at the
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origin is given byJ(0) = ATB −D. If R0 > 1, we have
µ(ATB−D) > 0, and we conclude by Lyapunov’s indirect
method that the original nonlinear system is not stable. This
proves thatR0 ≤ 1 is also necessary for the disease-free
equilibrium to be asymptotically stable.✷

It is worth noting that, whenR0 < 1, the proof of the global
asymptotic stability of the disease-free state does not rely
on the strong connectivity assumption. This is also true for
the instability proof, whenR0 > 1. We only used the strong
connectivity of the graph to prove global asymptotic stabil-
ity when R0 = 1. Further, note thatR0 provides a sharp
threshold for the stability of the disease-free equilibrium. To
characterize the speed of convergence, one should provide
an upper bound forµ(ATB −D); see [19, Proposition 1].

4.2 Existence and Stability of an Endemic State

In this section, we use notions from positive systems theory
to prove the local and global asymptotic stability of an en-
demic state over strongly connected digraphs. We first note
that the existence of a unique endemic state for (2) over
strongly connected digraphs can be concluded from [6, Sec-
tion 2.2], as stated next.

Proposition 4 ([6]) LetG = (V , E) be a strongly connected
digraph. Then, a unique strong endemic statep⋆ ≫ 0 exists
if and only ifR0 > 1.

Next, we compute the Jacobian ofΦ, given by (2), atp⋆.
Note that

Jii(p
⋆) =

∂

∂pi
Φi(p

⋆) = −(δi + ξ⋆i ), i ∈ V ,

Jij(p
⋆) =

∂

∂pj
Φi(p

⋆) = (1− p⋆i )ajiβj , j 6= i, j ∈ V ,

whereΦi(p
⋆) is i-th entry off(p⋆). Using the definition of

p⋆ in (4), we realize thatJii(p⋆) = −δi/(1 − p⋆i ), i ∈ V .
As a result, we conclude that

J(p⋆) = −(I − P ⋆)−1D + (I − P ⋆)ATB. (12)

Our first result establishes the local stability ofp⋆.

Theorem 3 Suppose thatG = (V , E) is a strongly con-
nected digraph and thatR0 > 1. Then, the strong endemic
statep⋆ is locally exponentially stable.

PROOF. We invoke Lyapunov’s indirect method. SinceG
is strongly connected,A is irreducible. From (5), we deduce
thatDp⋆ = (I − P ⋆)ATBp⋆. We can then write

J(p⋆)p⋆ =−ATBp⋆ + (I − P ⋆)ATBp⋆

=−P ⋆ATBp⋆ ≪ 0,

where the last strict inequality follows becausep⋆ ≫ 0,
B is a positive diagonal matrix, andA is irreducible. The
matrixJ(p⋆) is Metzler, because its off-diagonal entries are

nonnegative. Then, using Proposition 1(ii), we conclude that
J(p⋆) is Hurwitz. ✷

We are now in a position to state the following result.

Theorem 4 Let G = (V , E) be a strongly connected di-
graph, and assume thatp(0) 6= 0. If R0 > 1, then the strong
endemic statep⋆ is GAS.

PROOF. Recall thatp(t) ∈ [0, 1]n for all t ∈ R≥0. When
R0 > 1, Proposition 3 implies that the disease-free equi-
librium is unstable. Therefore, under this condition, the set
W = [0, 1]n\{0} is invariant under the evolutions of (2).

Next, define the statẽp = p − p⋆. Let P̃ = diag(p̃). The
dynamics ofp̃ can then be written as follows:

˙̃p= (ATB −D)(p̃+ p⋆)− (P̃ + P ⋆)ATB(p̃+ p⋆)

= (−D + (I − P ⋆)ATB)p̃− P̃ATBp.

Define the matrixΛ(p⋆) := −D+ (I −P ⋆)ATB, and note
that the off-diagonal entries ofΛ(p⋆) are nonnegative; hence,
Λ(p⋆) is a Metzler matrix. SinceG is strongly connected,
the matrixΛ(p⋆) is also irreducible. From (5), it follows that
Λ(p⋆)p⋆ = 0, and sincep⋆ is strictly positive, it follows from
Theorem 1 thatµ(Λ(p⋆)) = 0. Thus, it follows from Lemma
A.1 that there exists a positive diagonal matrixR such that
the matrixΛ(p⋆)TR+RΛ(p⋆) is negative semidefinite.

Consider the Lyapunov functionV (p̃) = p̃TRp̃. We have

LΦV (p̃) = p̃T (Λ(p⋆)TR+RΛ(p⋆))p̃− 2p̃T P̃RATBp

≤−2p̃TRP̃ATBp = −2p̃T P̃RATBp,

where the inequality follows becauseΛ(p⋆)TR+RΛ(p⋆) is
negative semidefinite, and the last equality follows because
P̃ andR commute, since they are both diagonal matrices.

We next prove thatpTRPATBp = 0 if and only if
p = p⋆. SinceR is a positive diagonal matrix, we have
p̃T P̃RATBp = 0 if and only if p̃2i

∑

j 6=i ajiβjpj = 0, for
all i ∈ V . Assume that there is a vectorp that satisfies
p̃T P̃RATBp = 0 while pi 6= p⋆i , for somei ∈ V . We then
must have

∑

j 6=i ajiβjpj = 0, which implies thatpj = 0
for all j ∈ V such thataji 6= 0. Then, for somej ∈ V for
which aji 6= 0, we must also have

∑

k 6=j akjβkpk = 0,
becausepj = 0 < p⋆j . By repeating this argument, we con-
clude thatpl = 0 for any nodel ∈ V from which there is
a directed path to nodej. SinceG is strongly connected,
there is a directed path from nodei to nodej, and we must
havepi = 0. This implies thatp = 0, which contradicts our
initial assumption. Therefore, since the setW is invariant
under (2), we have thaṫV (p̃) = 0 if and only if p = p⋆. ✷

Remark 1 The novelty in our proof lies at the utilization
of notions from positive systems theory, which enables us
to avoid the need to make combinatorial arguments about
the underlying graph structure as in the proof that utilizesa
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logarithmic Lyapunov function in [23]. Similar to the proof
in [23], our proof enjoys the advantage of relying on a
single Lyapunov function as opposed to the proof in [16]
that constructs two Lyapunov functions to prove this result.

A proof for a weaker statement is established in [1,6], where
it is assumed that forp(0) 6= 0, there exists a timeT ∈ R>0

such thatp(t) ∈ (0, 1]n for all t ≥ T .

In addition to the useful characteristics of using a quadratic
Lyapunov function for studying additional properties such
as convergence rates, our proof allows for establishing the
stability properties of the equilibrium points over weakly
connected digraphs in the next section. •

4.3 A Simplified Stability Condition through a Game-
Theoretic Perspective

The game-theoretic connection we established in Lemma 1
enables us to provide a simplified condition for the global
asymptotic stability of the disease-free state. In particular,
by applying the diagonal dominance condition in (8) to (9),
we obtain the following sufficient condition:

1

2

∑

j 6=i

aijβj < δi, for all i ∈ V . (13)

Recall that the conditionsR0 < 1 andµ(ATB − D) < 0
are equivalent. Note the similarities between the conditions
µ(ATB −D) < 0 and (13). The two conditions are related
by the Gershgorin Circle Theorem. While (13) is more re-
strictive thanµ(ATB − D) < 0, it is linear and easier to
compute. More importantly, condition (13) can be checked
in a distributed fashion, which makes it more suitable for
the design of distributed algorithms.

5 Stability of Epidemic Dynamics over Weakly Con-
nected Graphs

In this section, we study the stability properties of then-
intertwined Markov model over weakly connected graphs.
This class is of great importance, since it is conceivable that
in many practical scenarios there exist connected compo-
nents that collectively serve as an infection source, but are
not affected by the rest of the nodes. Such scenarios cannot
be captured by strongly connected topologies.

We start by introducing some notations. When the graphG is
weakly connected, its adjacency matrix can be transformed
into an upper triangular form using an appropriate labeling
of the nodes. Assuming thatG = (V , E) containsN ∈ Z≥1

strongly connected components, we can write

A =















A11 A12 . . . A1N

0 A22 A23 . . .
...

. . .
. . .

. . .

0 . . . 0 ANN















,

whereAii are irreducible for alli ∈ [N ], and, hence, corre-
spond to SCCs inG [3]. For notational simplicity, we will
useAi instead ofAii. The matricesAij , j 6= i are not neces-
sarily irreducible. We denote an SCC ofG by Gi = (Vi, Ei),
i ∈ [N ], where∪N

i=1Vi = V and∪N
i=1Ei = E . For each

i ∈ [N ], we introduce the positive diagonal matricesDi, Bi

which contain, respectively, the curing and infection rates
of the nodes inVi along their diagonals. We introduce the
partial order ’≺’ among SCCs, and we writeGi ≺ Gj , for
somei, j ∈ [N ], if there is a directed path fromGi to Gj but
not vice versa.

For a giveni ∈ [N ], we denote the state of the nodes in
Gi by qi ∈ R

|Vi| and the state of thek-th node inVi by
qi,k ∈ R. The state,p, of the entire network is given byp =

[qT1 , . . . , q
T
N ]. Let ci =

∑

j 6=i A
T
jiBjqj ∈ R

|Vi|, i ∈ [N ],
be the input infection from the nodes inG\Gi. We can now
write the dynamics of the nodes inGi, i ∈ [N ], given by the
mappingΦ̃i : R

|Vi| × R
|Vi| → R

|Vi|, as

q̇i = Φ̃i(qi, ci)

:= (AT
i Bi −Di)qi −QiA

T
i Biqi + (I −Qi)ci, (14)

whereQi = diag(qi). When an SCC comprises a single
node,AT

i Bi −Di is equal to−δi. In what follows, we say
Gi is stable to mean that the dynamics (14) are stable. When
an endemic statep⋆ emerges over the graphG, we call the
steady-state ofqi an endemic state ofGi, and we denote it
by q⋆i . Hence, the endemic state emerging over the entire
network is given byp⋆ = [q⋆T1 , . . . , q⋆TN ]T .

We first state some results about the special case where the
network topology is given by a DAG.

Proposition 5 LetG = (V , E) be a DAG and supposeδi >
0 for all i ∈ V . Then the disease-free equilibrium is the
unique equilibrium. Moreover, this equilibrium is GAS.

PROOF. Let us denote the steady-state of (2) byp(∞). The
steady-state equation for the source nodes of the DAG is
of the form0 = −δipi(∞), i ∈ Ssource, which implies that
pi(∞) = 0 for all source nodes. For a nodei ∈ SN-source,
its steady-state equation can be written as0 = −δipi(∞) +
(1 − pi(∞))

∑

j∈Ssource
aijβjpj(∞). The sum evaluates to

zero, and again we obtainpi(∞) = 0. By repeating this
argument, we conclude thatpi(∞) = 0, for all i ∈ SN-source.
By propagating this argument all the way to the sink nodes,
we conclude that zero is the unique solution of the steady-
state equation.

Next, we prove the second statement. In a DAG, the dy-
namics of the source nodes becomeṗi = −δipi, i ∈ Ssource.
Hence, all source nodes are globally exponentially stable.
Let vi :=

∑

j∈Ssource
aijβjpj , and define the following linear

dynamical system for alli ∈ SN-source

˙̄pi = −δip̄i + vi, p̄i(0) = pi(0).

Then, we have from (2) thaṫpi ≤ ˙̄pi, for all i ∈ SN-source.
By the comparison lemma, it follows thatpi ≤ p̄i, for all t
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and alli ∈ SN-source. It is well-known that if the input of an
exponentially stable linear system converges to zero, its state
converges to zero. Thus, sincevi converges to zero,̄pi must
also converge to zero, for alli ∈ SN-source. Sincepi ≥ 0,
we conclude thatpi converges to zero for alli ∈ SN-source.
The proposition follows by repeating this argument for the
remaining nodes in the graph.✷

We begin by studying the existence, uniqueness, and the
stability properties of an endemic state over a weakly con-
nected digraph consisting of two SCCs; the generalization
to multiple SCCs is straightforward.

Proposition 6 Let Gi = (Vi, Ei) be an SCC,i ∈ [N ], and
let q⋆i be its endemic state equilibrium. Ifq⋆i,i1 > 0 for some
i1 ∈ Vi, thenq⋆i ≫ 0.

PROOF. Let i1 ∈ Vi be a node withq⋆i,i1 > 0. SinceGi

is strongly connected, for any nodeim ∈ Vi, wherem is
an integer satisfyingm ≤ |Vi|, there exists a directed path
from nodei1 to nodeim. Let i2 ∈ Vi be a node along
this path such that(i1, i2) ∈ Ei. It follows from (4), that
q⋆i,i2 > 0. By the same argument, it follows thatq⋆i,ik > 0
for every nodeik ∈ Vi along the directed path fromi1 to
im, includingim. Since nodesi1 andim were arbitrary, the
proof is complete. ✷

Let Ri
0 := ρ(D−1

i AT
i Bi) be the basic reproduction number

corresponding toGi. We have the following existence and
uniqueness result.

Theorem 5 LetG = (V , E) be a weakly connected digraph
consisting of two SCCsG1, G2 such thatG1 ≺ G2. Assume
that qi(0) 6= 0 for all i ∈ [2]. Then the following statements
hold:

(i) If R1
0 > 1, andR2

0 being arbitrary, thenp = 0 and
p⋆ = [q⋆T1 , q⋆T2 ]T are the only possible equilibrium
points overG, whereq⋆1 andq⋆2 are unique strong en-
demic equilibrium points overG1 andG2, respectively.

(ii) If R1
0 ≤ 1 and R2

0 > 1, then p = 0 and p⋆ =
[0T , q⋆T2 ]T are the only possible equilibrium points
overG, whereq⋆2 is a unique strong endemic equilib-
rium point overG2.

(iii) If Ri
0 ≤ 1, i ∈ [2], thenp = 0 is the only possible

equilibrium overG.

PROOF. In all the cases, the fact thatp = 0 is an equilib-
rium point follows directly from the structure of the dynam-
ics. SinceG1 ≺ G2, we havec1 = 0, i.e., the dynamics of
the nodes inG1 are not affected by those inG2.

We first prove (i). First, consider the case whenR2
0 > 1.

SinceR1
0 > 1 andG1 is an SCC, we conclude by Theorems

4 and 4 that there exists a strong endemic stateq⋆1 ≫ 0
overG1, which is GAS, assuming thatq1(0) 6= 0. Hence,c2
converges toc⋆2 := AT

12B2q
⋆
1 , which is a nonnegative vector.

We can now write the steady-state equation forG2 as

(AT
2 B2 −D2)q2 −Q2A

T
2 B2q2 + (I −Q2)c

⋆
2 = 0, (15)

or

AT
2 B2q2 − diag(AT

2 B2q2)q2 − (D2 + C⋆
2 )q2 + c⋆2 = 0,

whereC⋆
2 = diag(c⋆2). DefineG2 = D2 +C2, and note that

this is an invertible diagonal matrix becauseD2 is a strictly
positive diagonal matrix. We then conclude that

G−1
2 AT

2 B2q2 − (I + diag(G−1
2 AT

2 B2q2))q2 +G−1
2 c⋆2 = 0,

or

q2 = (I+diag(G−1
2 AT

2 B2q2))
−1G−1

2 (AT
2 B2q2+c⋆2). (16)

Since G2 is an SCC,A2 is irreducible, and therefore
G−1

2 AT
2 B2 is irreducible as well. Furthermore, we have

G−1
2 c⋆2 ≪ 1 by construction. It then follows by Theorem

A.4 in the Appendix that there exists a unique strong en-
demic stateq⋆2 overG2. From (5), it follows that the steady-
state of any node inG2 that is connected to a node inG1

is strictly positive. Then, it follows from Proposition 6 that
[q⋆1 , 0] cannot be an equilibrium overG, and[q⋆T1 , q⋆T2 ]T is
the unique equilibrium overG in this case.

WhenR2
0 ≤ 1, it follows from (5) that the steady-state of

any node inG2 that is connected to a node inG1 is strictly
positive. Hence, by Proposition 6, there exists a strong en-
demic stateq⋆2 overG2. Finally, and because the steady-state
equation overG2 is given by (16), it follows from Proposi-
tion A.3 in the Appendix thatq⋆2 must be unique.

For (ii), sincec1 = 0 andR1
0 ≤ 1, it follows by Proposition

3 and Theorem 4 that the only valid equilibrium overG1 is
q1 = 0, which is GAS. Hence, in steady-state,G2 can be
viewed as an isolated irreducible graph, and it follows from
Theorems 4 and 4 that there exists a unique strictly positive
equilibriumq⋆2 overG2.

Finally, for (iii), and similar to (ii), the only possible equi-
librium overG1 is q1 = 0, which is GAS. This in turn leads
to havingc⋆2 = 0, and sinceR2

0 ≤ 1, the only possible equi-
librium overG2 is q2 = 0. ✷

From (ii), we conclude that a weak endemic state could
emerge over weakly connected graphs. A strong endemic
state could emerge in case (i), and the disease-free state is
the only possible equilibrium in case (iii). It is importantto
note that the endemic stateq⋆2 resulting in cases (i) and (ii)
are not necessarily the same.

Next, we study the stability properties of weak and strong
endemic equilibria.

Theorem 6 LetG = (V , E) be a weakly connected digraph
consisting of two SCCsG1, G2 such thatG1 ≺ G2. Assume
that qi(0) 6= 0 for all i ∈ [2]. Then,G2 is input-to-state
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stable (ISS). Further, for all possible values ofR1
0 andR2

0,
the resulting equilibrium overG is GAS.

PROOF. First, note that the dynamics overG1 are not af-
fected byG2. Hence, the global asymptotic stability of the
equilibrium (disease-free or strong endemic, depending on
the value ofR1

0) overG1 follows immediately. We will start
by proving thatG2 is ISS for different values ofR1

0 andR2
0.

Consider the following cases.

(i) R2
0 < 1: In this case, we haveµ(AT

2 B2 − D2) < 0,
and therefore the matrixAT

2 B2 −D2 is Hurwitz. Since it is
also Metzler, it follows from Proposition 1 that there exists
a positive diagonal matrixR which satisfies

(AT
2 B2 −D2)

TR+R(AT
2 B2 −D2) = −K,

whereK is a positive definite matrix. Similar to the proof
of Proposition 3, consider the Lyapunov functionVR(q2) =
qT2 Rq2. We have

LΦ̃2
VR(q2) = qT2 ((A

T
2 B2 −D2)

TR+R(AT
2 B2 −D2))q2

− 2qT2 RQ2A
T
2 B2q2 + 2qT2 R(I −Q2)c2

≤−qT2 Kq2 + 2qT2 Rc2,

where the inequality follows becauseqT2 RQ2A
T
2 B2q2 ≥ 0,

for all q2 ∈ [0, 1]n, and qT2 RQ2c2 ≥ 0, for all c2, q2 ∈
[0, 1]n. Let 0 < ǫ < 1. We can then write

LΦ̃2
VR(q2)≤−(1− ǫ)qT2 Kq2 − ǫqT2 Kq2 + 2qT2 Rc2.

We will prove that there exists a classK∞ function,χ, such
that−ǫqT2 Kq2+2qT2 Rc2 ≤ 0 for ‖q2‖2 ≥ χ(‖c2‖2). To this
end, note thatqT2 Rc2 ≤ ‖R‖2 · ‖q2‖2 · ‖c2‖2. Also, because
K is positive definite, we can writeqT2 Kq2 ≥ λn(K)‖q‖22 >

0. Defineχ(r) := 2‖R‖2·r
ǫλn(K) , wherer ∈ R. We then have

−ǫqT2 Kq2 +2qT2 Rc2 ≤ 0 for ‖q2‖2 ≥ χ(‖c2‖2), and hence

LΦ̃2
VR(q2)≤ −(1− ǫ)qT2 Kq2, ‖q2‖2 ≥ χ(‖c2‖2).

This implies that the systemG2 is ISS whenR2
0 < 1 and

R1
0 is arbitrary.

(ii) R2
0 = 1: Following the same reasoning in the proof of

Proposition 3, we conclude that there exists a positive diag-
onal matrixS such that(AT

2 B2−D2)
TS+S(AT

2 B2−D2)
is negative semidefinite. Then, using the Lyapunov function
VS(q2) = qT2 Sq2, we can write

LΦ̃2
VS(q2)≤−2qT2 Q2SA

T
2 B2q2 + 2qT2 Sc2

≤−qT2 Q2SA
T
2 B2q2 + 2

√
n‖S‖2 · ‖c2‖2,

where the second inequality follows by using the bound
‖q2‖2 ≤

√

|V2| ≤
√
n. Define the functionρ : R → R as

ρ(‖c2‖2) = 2
√
n‖S‖2 · ‖c2‖2, and note thatρ ∈ K∞ since

it is linear in ‖c‖2. Define the functiong : Rn
≥0 → R as

g(q2) = 2qT2 Q2SA
T
2 B2q2. Following similar steps to those

in the proof of Proposition 3, we can show thatg(q2) = 0
if and only if q2 = 0. Note thatg(q2) > 0 for all q2 ∈ R

n
≥0

such thatq2 6= 0. Furthermore, the functiong is continuous
and radially unbounded. Hence, it follows by [13, Lemma
4.3] that there exists a classK∞ functionα : R → R such
thatg(q2) ≥ α(‖q2‖2). We therefore have

LΦ̃2
VS(q2) ≤ −α(‖q2‖2) + ρ(‖c2‖2).

As a result, it follows from [24, Remark 2.4] that the system
G2 is ISS whenR2

0 = 1 andR1
0 is arbitrary.

(iii) R2
0 > 1: Define the statẽq2 = q2 − q⋆2 , and the control

input c̃2 = c2 − c⋆2, wherec⋆2 was defined in the proof of
Theorem 5 as the steady-state ofc2. Let Q̃2 = diag(q̃2),
Q⋆

2 = diag(q⋆2), andC⋆
2 = diag(c⋆2). The dynamics of̃q2

can then be written as

˙̃q2 = (AT
2 B2 −D2)(q̃2 + q⋆2)− (Q̃2 +Q⋆

2)A
T
2 B2(q̃2 + q⋆2)

+(I − Q̃2 −Q⋆
2)(c̃2 + c⋆2)

= (−D2 + (I −Q⋆
2)A

T
2 B2)q̃2 − Q̃2A

T
2 B2q2

+(I −Q2)c̃2 − Q̃2c
⋆
2 (17)

= (−D2 − C⋆
2 + (I −Q⋆

2)A
T
2 B2)q̃2 − Q̃2A

T
2 B2q2

+(I −Q)c̃2, (18)

where (17) follows from the steady-state equation (15) eval-
uated atq2 = q⋆2 , and (18) follows becausẽQ2c

⋆
2 = C⋆

2 q̃2.

Next, define the matrix̃Λ(q⋆2) = −D2−C⋆
2+(I−Q⋆

2)A
T
2 B2,

which is Metzler since its off-diagonal entries are nonneg-
ative. SinceG2 is an SCC, the matrix̃Λ(q⋆2) is also irre-

ducible. We wish to study the sign ofµ
(

Λ̃(q⋆2)
)

. Using the

steady-state equation (15) evaluated atq2 = q⋆2 , it follows
thatΛ̃(q⋆2)q

⋆
2 = −c⋆2, where we recall thatc⋆2 � 0. Consider

the following two cases.

(iii.a) R1
0 ≤ 1 and R2

0 > 1: In this case, the disease-free
state is GAS overG1; see Proposition 3. Then,c⋆2 = 0,
and Λ̃(q⋆2)q

⋆
2 = 0. Sinceq⋆2 is strictly positive, it follows

from Theorem 1 thatµ
(

Λ̃(q⋆2)
)

= 0. Thus, it follows from

Lemma A.1 that there exists a positive diagonal matrixR
such that the matrix̃Λ(q⋆2)

TR+RΛ̃(q⋆2) is negative semidef-
inite. Consider the Lyapunov functionVR(p̃) = p̃TRp̃. We
have

LΦ̃2
VR(p̃) = q̃T2 (Λ̃(q

⋆
2)

TR+RΛ̃(q⋆2))q̃2 − 2q̃T2 Q̃2RAT
2 B2q2

+2q̃T2 R(I −Q2)c̃2

≤−2q̃T2 Q̃2RAT
2 B2q2 + 2q̃T2 R(I −Q2)c̃2

≤−2q̃T2 Q̃2RAT
2 B2q2 + 4

√
n‖R‖2 · ‖c̃2‖2, (19)

where the last inequality follows from‖q̃2‖2 ≤ ‖q2‖2 +
‖q⋆2‖2 ≤ 2

√
n, and the fact that‖I − Q2‖2 ≤ 1. Define

the scalar functionρ(‖c̃2‖2) := 4
√
n‖R‖2 · ‖c̃2‖2, and note

that ρ ∈ K∞, since it is linear in‖c̃2‖2. Following similar
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steps to those in the proof of Theorem 4, one can show
that q̃T2 Q̃2RAT

2 B2q2 = 0 if and only if q̃2 = 0. Then,
using the same reasoning as in the proof of Theorem 6, we
conclude that there exists a classK∞ functionα : R → R

such that2q̃T2 Q̃2RAT
2 B2q2 ≥ α(‖q̃2‖2). We therefore have

LΦ̃2
VR(p̃) ≤ −α(‖q̃2‖2) + ρ(‖c̃2‖2), and it follows from

[24, Remark 2.4] that the systemG2 is input-to-state-stable
whenR1

0 ≤ 1 andR2
0 > 1.

(iii.b) R1
0 > 1 andR2

0 > 1: In this case, the endemic state is
GAS overG1; see Theorem 4. Then,c⋆2 ≻ 0, andΛ̃(q⋆2)q

⋆
2 ≺

0. Sinceq⋆2 is strictly positive, it follows from [6, Theorem

2.4] thatµ
(

Λ̃(q⋆2)
)

< 0; therefore,̃Λ(q⋆2) is Hurwitz. Thus,

it follows from Proposition 1(iv) that there exists a positive
diagonal matrixS such that the matrix̃Λ(q⋆2)

TS + SΛ̃(q⋆2)
is negative definite. Hence, usingVS(p̃) = p̃TSp̃, one can
derive the same bound as in (19), withR replaced withS,
and by repeating the same steps as above, one can show that
G2 is input to state stable whenR1

0 > 1 andR2
0 > 1.

SinceG1 is GAS, andG2 is ISS, it follows from [13, Lemma
4.7] that the equilibrium of the cascaded system is GAS.
In particular, whenR2

0 ≤ 1 andR1
0 ≤ 1, it follows from

Theorem 5(iii) that the disease-free state is GAS. When
R2

0 ≤ 1 andR1
0 > 1, it follows from Theorem 5(i) that the

strong endemic equilibrium[q⋆T1 , q⋆T2 ]T is GAS, assuming
that qi(0) 6= 0 for all i ∈ [2]. WhenR2

0 > 1 andR1
0 ≤ 1,

it follows from Theorem 5(ii) that the weak endemic state
[0T , q⋆T2 ]T is GAS, assuming thatq2(0) 6= 0. Finally, when
whenR2

0 > 1 andR1
0 > 1, it follows from Theorem 5(i)

that the strong endemic state[q⋆T1 , q⋆T2 ]T is GAS, assuming
thatqi(0) 6= 0 for i ∈ [2]. ✷

The following corollary is an immediate consequence of
Theorems 5 and 6.

Corollary 1 LetG = (V , E) be a weakly connected digraph
consisting ofN SCCs ordered asG1 ≺ . . . ≺ GN . Assume
that qi(0) 6= 0 for all i ∈ [n].

(i) If Ri
0 ≤ 1 for all i ∈ [N ], then the disease-free state

is GAS.
(ii) If Rk

0 > 1 for somek ∈ [N ], and Ri
0 ≤ 1 for

i ∈ {1, . . . , k − 1}, then the endemic statep⋆ =
[0, . . . , 0, q⋆Tk , . . . , q⋆TN ]T is GAS.

6 Numerical Studies

We demonstrate the emergence of a weak endemic state over
the Pajek GD99c network [8], which is a weakly connected
directed network shown in Fig. 1. The network consists of
105 nodes and it contains66 SCCs. The nodes marked “red"
in Fig. 1 constitute an SCC, which we refer to asG1. We
will select the curing rates overG1 to be low in order to
makeR1

0 > 1. For the remaining nodes, we will setδi =
∑

j 6=i ajiβj + 0.5, which is a sufficient condition to ensure
Ri

0 < 1 [14]. The infection ratesβi and the weightsaij
are all selected to be equal to1. There are only4 nodes for
which there is no directed path fromG1, and they are marked
“black" in Fig. 1. The initial infection profile is selected at

random.

Fig. 1. The Pajek GD99c network. The “red" nodes belong toG1

for which R
1

0 > 1. The “black" nodes are the only ones with no
direct path fromG1.

Fig. 2 plots the state trajectories. By examining the his-
togram of the values to which the state converges, we notice
that there are13 nodes with high infection probabilities, and
those are the nodes comprisingG1. Note thatG1 is asymp-
totically stable even though it takes input from other SCCs,
as shown in the figure, andR1

0 > 1. There are4 nodes that
become healthy, and those are the “black" nodes which are
not reached by a directed path fromG1. The remaining nodes
all have positive infection probabilities with varying levels
depending on their distance fromG1, with the nodes that are
farthest fromG1 enjoying the lowest infection probabilities.
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1

t

♣

Fig. 2. Infection probabilities of the nodes.

Next, we will demonstrate the global asymptotic stability of
p⋆ over connected undirected graphs, which follows from
Theorem 4. The infection rates, the edge weights, and the
initial infection profile were generated randomly. The curing
rates were selected such thatR0 > 1.

Fig. 4 shows the state of a ring graph with20 nodes. The
figure also plots the Lyapunov functionV (p̃) = 1

2 p̃
T p̃. As
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Fig. 3. A histogram of the endemic state value across the network.

claimed, the system converges to the strictly positive statep⋆,
and the Lyapunov function decays monotonically to zero.
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Fig. 4. Stabilization of a ring graph with20 nodes.

Fig. 5 shows the same simulation for a connected undirected
random graph with100 nodes. The probability that an edge
occurs in the graph was selected to be3

10 . The specific graph
realization used in this experiment contained1704 edges.
Again, we observe that the state converges top⋆. It is inter-
esting to note that convergence here is faster than the case
of the ring graph.

7 Conclusion

We have utilized tools from positive systems theory to es-
tablish the stability properties of then-intertwined Markov
model over digraphs. For strongly connected digraphs, we
have proved that when the basic reproduction number is less
than or equal to1, the disease-free state is GAS. When the
basic reproduction number is greater than1, however, we
have shown that the endemic state is GAS, and that locally
around this equilibrium, the convergence is exponentially
fast. Furthermore, we have studied the stability properties of
weakly connected graphs. By viewing an arbitrary weakly
connected graph as a cascade of SCCs, we were able to es-
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Fig. 5. Stabilization of a random graph with100 nodes and1704
edges.

tablish the existence and uniqueness of weak and strong en-
demic states. We have also studied the stability propertiesof
weakly connected graphs using input-to-state stability. Fi-
nally, we have proposed a dynamical model that describes
the interaction among nodes in an infected network as a con-
cave game and demonstrated that then-intertwined Markov
model is a special case of our model. This alternative de-
scription provides a new condition, which can be checked
collectively by agents, for the stability of the disease-free
equilibrium.

Future work will focus on studying the stability propertiesof
the SIS dynamics over time-varying networks and designing
optimal dynamic curing mechanisms.
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A Appendix

In this Appendix, we collect and prove some results pertinent
to the development in the main body of the paper. We start
with the next result which is key in proving some of the
results in Sections 4 and 5.

Lemma A.1 LetX ∈ R
n×n be an irreducible Metzler ma-

trix such thatµ(X) = 0. Then, there exists a positive diag-
onal matrixR ∈ R

n×n such that the matrixXTR+RX is
negative semidefinite.

PROOF. From Theorem 1, it follows that there exists a
vector ν ∈ R

n×n such thatν ≫ 0 andXν = 0. Since
σ(X) = σ(XT ), we haveµ(AT ) = 0. Using Theorem 1
again, we conclude that there exists a vectorξ ∈ R

n×n such
that ξ ≫ 0 andXT ξ = 0. Let R ∈ R

n×n be a positive
diagonal matrix defined withRii = ξi/νi, for all i ∈ [n].
Consider now the matrixXTR + RX . The matrixRX is
Metzler, sinceR is a positive diagonal matrix. For the same
reason, and becauseX is irreducible, we conclude thatRX
is irreducible. By a similar argument,XTR is also an irre-
ducible Metzler matrix. Since the sum of two Metzler ma-
trices is Metzler, the matrixXTR + RX is Metzler. Also,
because bothRX andXTR are Metzler and irreducible,
the matrixXTR+RX is also irreducible. Further, by con-
struction, we have(XTR +RX)ν = XTRν = XT ξ = 0.
SinceXTR+RX is symmetric, it has real eigenvalues, and
sinceν is strictly positive, it follows from Theorem 1 that
XTR+RX is negative semidefinite.✷

Next, we prove an instrumental result, which can be thought
of as a non-homogeneous extension of a result of [6]. We
start by providing two key properties of the continuous map-
pingT : [0, 1]n → [0, 1]n defined as

T (p) := (I + diag(Xp))−1(Xp+ y). (A.1)

Proposition A.2 Let X ∈ R
n×n be a nonnegative matrix,

and lety ∈ R
n be a vector satisfying0 � y ≪ 1. Then, the

mappingT is monotonic.

PROOF. Let the vectorsp, q ∈ R
n be such thatp � q. For

i ∈ [n], we have

Ti(p) =
(Xp)i + yi
1 + (Xp)i

= 1− 1− yi
1 + (Xp)i

≤ 1− 1− yi
1 + (Xq)i

= Ti(q),

where the inequality follows becauseX is nonnegative. This
implies that the mappingT is monotonic. ✷

Proposition A.3 Let X ∈ R
n×n be a nonnegative matrix,

and let y ∈ R
n be a vector satisfying0 � y ≪ 1. If the

mappingT has strictly positive fixed point, then it must be
unique.

PROOF. We will prove the claim by contradiction. Assume
that there are two fixed pointsp⋆, q⋆ ∈ R

n, p⋆ 6= q⋆. We
will first show thatp⋆ � q⋆. To this end, define

η := max
i∈[n]

p⋆i
q⋆i

, k := argmax
i∈[n]

p⋆i
q⋆i

.
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Note thatp⋆ � ηq⋆. For p⋆ � q⋆ to hold, we must have
η ≤ 1; assume that, to the contrary,η > 1. Then, using
Proposition A.2, we have

p⋆k = Tk(p
⋆) ≤ Tk(ηq

⋆) =
η(Xq⋆)k + yk
1 + η(Xq⋆)k

< η
(Xq⋆)k + yk
1 + (Xq⋆)k

= ηTk(q
⋆) = ηq⋆,

where the strict inequality follows from the assumption that
η > 1, and the last equality follows becauseq⋆ is a fixed
point. By definition, we havep⋆k = ηq⋆k. Hence, ifη > 1
were true, we would havep⋆k < ηq⋆k = p⋆k, which is a
contradiction. Hence, we must haveη ≤ 1 andp⋆ � q⋆. By
switching the roles ofp⋆ and q⋆, and repeating the above
steps withη̂ = maxi∈[n]

q⋆i
p⋆
i

instead ofη, we conclude that
p⋆ � q⋆. Thus,p⋆ = q⋆, and the fixed point is unique.✷

We are now ready to prove the main result.

Theorem A.4 LetX ∈ R
n×n be a nonnegative irreducible

matrix such thatρ(X) > 1, and lety ∈ R
n be a vector

satisfying0 � y ≪ 1. Then, the mappingT : [0, 1]n →
[0, 1]n has a unique fixed point, which is strictly positive.

PROOF. We will prove that there exists a closed sub-
interval of (0, 1)n which is invariant underT . By Theorem
2, it follows thatX has an eigenvectorv ≫ 0 satisfying
Xv = ρ(X)v. Without loss of generality, we assume that
v � 1, which can be achieved by an appropriate scaling of
the eigenvector corresponding toρ(X).

Defineκ :=
√

ρ(X)+ymax

1+ρ(X) , and note thatκ < 1. Let us choose

ǫ > 0 such thatκ ≤ ǫvmin. Note that with such a choice
of ǫ, we can guarantee, for alli ∈ [n], that ǫvi < 1, since
vi ≤ 1 andκ < 1. This choice ofǫ implies thatǫvi ≥ κ or
(ǫvi)

2 ≥ ρ(X)+ymax

1+ρ(X) , for all i ∈ [n]. This in turn implies, for
i ∈ [n],

ǫvi ≥
1

ǫvi
· ρ(X) + yi
1 + ρ(X)

>
ǫρ(X)vi + yi
1 + ǫviρ(X)

= Ti(ǫvi), (A.2)

where the last inequality follows sinceǫvi < 1. We therefore
haveT (ǫv) < ǫv.

Defineκ := ρ(X)+ymin−1
1+ρ(X) , and note thatκ < 1, asymin < 1.

Let us chooseǫ > 0 such that0 < ǫvmax ≤ κ. Then, for all
i ∈ [n], we have

ǫvi ≤
ρ(X) + yi − 1

ρ(X) + 1
<

ρ(X) + yi − 1

ρ(X)
.

We thus haveǫρ(X)vi + 1 < ρ(X) + yi, for all i ∈ [n].
Equivalently, for alli ∈ [n], we can write

ǫvi < ǫvi
ρ(X) + yi
ǫρ(X)vi + 1

<
ǫρ(X)vi + yi
ǫρ(X)vi + 1

= Ti(ǫv), (A.3)

where the second strict inequality holds sinceǫvi < κ < 1.
We therefore haveT (ǫv) > ǫv.

Sincev ≫ 0 andǫ > 0, we haveǫv ≫ 0. We also have that
ǫ > ǫ because

ǫ≥ κ

vmin
>

κ2

vmin
=

ρ(X) + ymax

vmin(1 + ρ(X))

>
ρ(X) + ymin − 1

vmax(1 + ρ(X))
=

κ

vmax
≥ ǫ,

where the first strict inequality follows becauseκ < 1. This
implies thatǫv ≪ ǫv. Further, by construction, we have
ǫvi < 1, for all i ∈ [n], and thereforeǫv ≪ 1. To summarize,
we have the following bounds:0 ≪ ǫv ≪ ǫv ≪ 1.

We can now define the closed and bounded set

K := {p ∈ [0, 1]n : ǫ1v � p � ǫ2v} ⊂ (0, 1)n.

By (A.2) and (A.3), and sinceT is monotonic as proved in
Proposition A.2, we conclude thatT : K → K. SinceT is
continuous, it follows from Brouwer’s fixed-point theorem
that there exists a strictly positive fixed pointp⋆ ∈ K such
that T (p⋆) = p⋆. Finally, it follows from Proposition A.3
thatp⋆ must be unique. ✷

13


	1 Introduction
	2 Mathematical Preliminaries
	3 The n-Intertwined Markov Model
	3.1 Equilibrium States of the n-Intertwined Markov Model
	3.2 The n-Intertwined Markov Model as a Concave Game

	4 Stability of Epidemic Dynamics over Strongly Connected Graphs
	4.1 Stability of the Disease-Free State
	4.2 Existence and Stability of an Endemic State
	4.3 A Simplified Stability Condition through a Game-Theoretic Perspective

	5 Stability of Epidemic Dynamics over Weakly Connected Graphs
	6 Numerical Studies
	7 Conclusion
	References
	A Appendix

