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Abstract

We study the stability properties of a susceptible-inféetasceptible (SIS) diffusion model, so-called théntertwined Markov model,
over arbitrary directed network topologies. As in the miajoof the work on infection spread dynamics, this model bitkia threshold
phenomenon. When the curing rates in the network are highdigease-free state is the unique equilibrium over thear&tvDtherwise,
an endemic equilibrium state emerges, where some infecimains within the network. Using notions from positiveteyss theory, we
provide novel proofs for the global asymptotic stabilitytbe equilibrium points in both cases over strongly conrictetworks based
on the value of the basic reproduction number, a fundamepiahtity in the study of epidemics. When the network topglegweakly
connected, we provide conditions for the existence, umgsg, and global asymptotic stability of an endemic staid,vee study the
stability of the disease-free state. Finally, we demonstiizat then-intertwined Markov model can be viewed as a best-respoyisanical
system of a concave game among the nodes. This charadtarizdiows us to cast new infection spread dynamics; aduitly, we
provide a sufficient condition for the global convergenceéh® disease-free state, which can be checked in a distdifaghion. Several
simulations demonstrate our results.
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1 Introduction in the network [5, 6,16, 23]. This has also been observed
in time-varying or switching models that allow for abrupt

i . ; Schanges in their parameters [20]. A threshold called the ba-
constitute important classes of spread dyf‘am"?S' as theysic reproduction number, whose value depends on the curing
can potentially provide models for many engineering rélate 54 infection rates across the network as well as the network

phel?o'gefg i;CQGaSTth spread O'; l\(tlrus?s In computer Nety, 504y determines to which equilibrium point the statte o
works [9,10,12,26]. There is a vast literature on various as the network will converge [5].

pects of epidemiological models and the study of infection . ] . )
propagation over networks; we refer the reader partigularl For then-intertwined Markov model, the basic reproduction
to [12,18,27] and the references therein. Characterizafio ~ number, introduced as a critical threshold in [25, 26], ehar
the stability properties of such diffusion dynamics is a-cru acterizes this threshold phenomenon. In particular, when t
cial first step towards designing efficient algorithms fonco ~ basic reproduction number is less than or equal,tthe
trolling their evolutions. Most dynamical epidemiologica unique equilibrium is the disease-free state; otherwise, t
models, including the:-intertwined Markov model [25,26] ~ e€ndemic state emerges. Our aim in this paper is to fully char-
studied here, can possess two equilibrium points, under cer acterize the stability properties of this model over netusor
tain conditions: amlisease-frestate at which the network is ~ With directed topologies. Moreover, we intend to use fun-
cured, and amndemicstate at which the infection persists damental results from positive systems theory to construct
proofs that could potentially become a starting point for
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in [19]. For compartmental susceptible-infected-susbépt  Organization
(SIS) models, a necessary and sufficient condition for the
global asymptotic stability of this equilibrium was pretesh

in [6] using a linear Lyapunov function. For the same model,
the global asymptotic stability of the endemic state over
strongly connected directed graphs has been studied in [1,6
23]—see [23] for a summary of other approachesto establish
this result. The results in [1,6] rely on the assumption that
state of the model will evolve in the strictly positive quad-
rant when the state of the network is initialized away from
the origin. The result in [23] was established using a non-
guadratic Lyapunov function, and by relying on advanced
combinatorial results such as Kirchhoff's matrix tree theo ) S
rem. In contrast, in this paper, using the theory of positive 2 Mathematical Preliminaries
systems, we offer a novel and rigorous proof for the global

Section 2 establishes some mathematical preliminaries re-
quired in this paper. In Section 3, we recall théntertwined
Markov model, and discuss a connection with a game-
theoretic formulation. Sections 4 and 5 contain our results
on the stability of then-intertwined Markov model over,
respectively, strongly and weakly connected digraphs. Nu-
merical studies are provided in Section 6. Finally, Secton
collects our conclusions and ideas for future work. An Ap-
pendix contains technical results that are used in proving
some of our main results.

. o . We start with some terminology and notational conventions.
asymptotic stability of the endemic state over strongly-con  aj'the matrices and vectors in this paper are real valued.

nected d_igraphs. This allows_us to provide _novel results for £q 5 set ofn € Z>; elements, we use the combinatorial
the stability properpegof epidemic dynam_|cs over weakly notation[n] to denote{1,...,n}. The (4, j)-th entry of a
connect_ed topologies; in all the aforementioned resuits, t atrix X € R"™™ n.m € Zs, is denoted byz;;. For
underlying graphs were assum_ed to I_Je strongly connected,, " raq) vectorse,y € R", n € Z-,, we write z > y if
(or connected When. the graph is undirected). anetheless,xi >y forallie n], z =y if ; >y, for all i € [n] but
weakly conneqt(_ed directed _g_raphs are common in practice, 4y, andz > y if @; > y; for all i € [n]. We say a vector
ggal(jt)iﬁtr]ar?gteer;ﬁg]sgo:/heer t?gglellbrrlg%golggsegtsn\gve\}/”cﬁ;éhnew x € R™ is strictly positive ifx > 0. For any vector: € R",
in stud))//ielg ICéltlidemiological negtvvgrksp we definexmin := miniepn) i AN Umax = MaXie[n) Ti-

' The absolute value of a scalar variable is denoted.py
We also denote the cardinality of a finite set|dy and the
purpose this operator is being used for will be clear from
the context. The set of eigenvalues of a mafixs denoted
The main contributions of this paper are as follows. First, by o(X). The spectral radius of a matriX € R"*" is
using tools from the theory of positive systems, we charac- given by p(X) = maxyc,(x) |A|, and its abscissa is given
terize the stability properties of the endemic state elquili by u(X) = maxye,(x) RE(A). When the eigenvalues of a
rium of then-intertwined Markov model over strongly con-  matrix X are real, we denote the largest eigenvalug{{yX )
nected digraphs. In particular, we show that when the basicand the smallest eigenvalue hy(X). The Euclidean norm
reproduction number is greater thanthe endemic state is  of a vector is denoted by.||». The induced2-norm of a
locally exponentially stable, and when the network is netin -~ matrix X € R™**" is given by
tialized at the disease-free state, we show that the endemic

Statement of Contributions

state is globally asymptotically stable (GAS). Unlike [1,,6
the proofs we present here do not make any assumption on X2 = max [Xyllz = /A1 (XTX).
the evolution of the state, and unlike [23], the stabilitgypr HZHFI

erties are established using a quadratic Lyapunov function

that allows us to avoid relying on advanced combinatorial i _
and graph-theoretic notions. Using this key constructom, e use the operator diag for two purposes. When applied
next contribution is to study the existence, uniqueness, an t0 @ square matrixX’ € R"*", diag X ) returns a column
stability properties of the disease-free and endemic state Vector that contains the diagonal entriesXf For a vector
over weakly connected digraphs. By studying the input-to- € R", X = diagz), or X = diagzy,...,z,), is a
state stability of the network, we provide conditions for a diagonal matrix withX;; = a;, i € [n]. When a diagonal
GAS endemic state to emerge over weakly connected di- Matrix has positive diagonal entries, we call it a positive
graphs. Unlike endemic states over strongly connected di- diagonal matrix. The identity matrix is denoted by and
graphs, we show that at the endemic states emerging ovethe all-ones vector is denoted By We assume botli and
weakly connected graphs a subset of the nodes could bel have the appropriate dimensions whenever used.

healthy while the rest become infected. Let f : R® — R™ be a continuously differentiable function

Finally, we provide a game-theoretic framework that can that defines a dynamical systein= f(x), and letz be an
prescribe more general classes of infection dynamics.gJsin €quilibrium point of this system, i.ef(z) = 0. The Jaco-
this model, we show that the-intertwined Markov model  bian matrix off, J(z) € R™*", is given byJ (z) = Z f(x).
prescribes the best-response dynamics of a concave gamé.et D C R"*™ be a compact domain where the trajecto-
This allows us to provide a new condition for the stability of ries of the dynamical systeth= f(z) lie. A continuously
the disease-free state, which can be checked in a disttibute differentiable function” : D — R is a Lyapunov function
way by the nodes. if, V(z) = 0andV(x) > 0 for all z € D\ {z}. The Lie



derivative ofV alongf is given by

d

LV (z) = T

V()" f(z).

Matrix Theory

We call two matricesX, Y € R™*"™ similar if there exists a
nonsingular matrixl” € R"*" such thaty’ = 7! XT. An
important property of similar matrices is that they shaee th
same set of eigenvalues [11]. Some of our results rely on
properties of Metzler and irreducible matrices. A real squa
matrix X is called Metzler if its off-diagonal entries are
nonnegative. We say that a matek € R™*" is reducible

if there exists a permutation matriX such that

Y Z
0w

T7'XT =

)

whereY andW are square matrices, onif=1andX =0

[3]. A real square matrix is called irreducible if it is not
reducible. A survey on Metzler matrices and their stability
properties can be foundin [3,4,7]. Hurwitz Metzler matsice
have the following equivalent characterizations.

Proposition 1 ([21]) For a Metzler matrixX € R"*", the
following statements are equivalent:

(i) The matrixX is Hurwitz.

(i) There exists a vectof > 0 such thatX¢ < 0.
(i) There exists a vector > 0 such that” X < 0.
(iv) There exists a positive diagonal matrixsuch that

XTQ+QX =K, (1)

whereK is a positive definite matrix.

The last characterization is often referred todiagonal
stability [3,17].

The Perron-Frobenius (PF) theorem is a fundamental result

in spectral graph theory that characterizes some of the prop
erties of the spectra of Metzler and nonnegative matrices,
i.e., matrices whose entries are all nonnegative. We fai st
the PF theorem for irreducible Metzler matrices [7, Theo-
rem 17].

Theorem 1 (PF — Irreducible Metzler Case)Let X €
R™*™ be an irreducible Metzler matrix. Then

(i) w(X) is an algebraically simple eigenvalue &f.
(i) Let vp be such thatXvp = pu(X)ve. Thenvp is
unigue (up to scalar multiple) andr > 0.
(iii) If v > 0 is an eigenvector of, then Xv = p(X)v,
and, hencey is a scalar multiple ob .

For irreducible nonnegative matrices, the following vensi
of the PF theorem applies [11, Theorem 8.2.11].

Theorem 2 (PF — Irreducible Nonnegative Case) et
X € R™*™ be an irreducible nonnegative matrix. Then

(i) p(X) >0,

(i) p(X) is an algebraically simple eigenvalue &f.
(iii) If Xv = p(X)v, thenv > 0.

Graph Theory

A directed graphor digraph is a pairG = (V, £), whereV

is the set of nodes artlC V x V is the set of edges. Given
G, we denote an edge from nodec V to nodej € V by
(i,7). We say node € V is a neighbor of nodg € V if and
only if (¢,7) € £. When(i, j) € £ if and only if (j,4) € &,

we call the graptundirected For a graph withn € Z>,
nodes, we associate an adjacency matrix R™*" with
entriesa;; € R>o, wherea;; = 0 if and only if (z,j) ¢ £.

For undiregted graphs, the adjacency matrix is symmetric,
e, A= A".

In a digraph, a directed path is a collection of nodes
{i1,...,%e} CV, L € Z~1, such that(iy,ir4+1) € & for all

k € [¢—1]. Adigraph isstrongly connected there exists a
directed path between any two nodes/inA strongly con-
nected component (SCC) of a graph is a subgraph which
itself is strongly connected. A path in an undirected graph
is defined in a similar manner. We call an undirected graph
connectedf it contains a path between any two nodes3/in

A digraph is calledweakly connectedf when every edge

in £ is viewed as an undirected edge, the resulting graph is
a connected undirected graph. We call a graph, whether it
is directed or undirectedlisconnected it contains at least
two isolated subgraphs. Throughout this paper, when the
graphg is directed, we assume that it is either strongly or
weakly connected. Wheg is undirected, we assume that it
is connected.

A directed acyclic graph (DAG) is a digraph with no
directed cycles. A nodé € V is called a source node
if Z#iﬂ{aﬂ#o} = 0, and it is called a sink node if
Z#i L{a,,#0y = 0, wherely,, .oy = 1 if and only if
a;; # 0, and is zero otherwise. A DAG can have multiple
sources and multiple sinks. For a given grahHet Ssource
denote the set of source nodes, andSgtource be the set
of all nodesi in G such thatu;; # 0 for somej € Ssource

3 The n-Intertwined Markov Model

In this section, we recall the heterogeneaumtertwined
Markov model that has recently been proposed [25,26]. This
model is related to the so-called multi-group SIS model that
was proposed earlier in [16]; see also [6, 23]. We prescribe
the infection model over a directed gra@gh= (V, £) with n
nodes, wher®’ is the set of nodes, arftlis the set of edges.
Each node in the network has two states: infected or cured.
The curing and infection of a given node V are described

by two independent Poisson processes with rétesd 3;,
respectively. Throughout the paper, we assume ¢hat 0

and 5; > 0. The transition rates between the healthy and
infected states of a given node’s Markov chain depend on
its curing rate as well as the infection probabilities among
its neighbors. A mean-field approximation is introduced to
“average" the effect of infection probabilities of the nieig
bors on the infection probability of a given node. This ap-
proximation yields a dynamical system that describes the



evolution of the probability of infection of nodiee V and

is central to our upcoming developments. We briefly review
this dynamical system next.

Let p;(¢t) € [0,1] be the infection probability of node e

V at timet € Rxg, and letp(t) = [pi(t),...,pa(t)]".
Also, let D = diag(d,...,0,), P(t) = diagp(t)), and

B =diag 81, ..., ). Then-intertwined Markov model is
prescribed by the mapping : R™ — R", where

p(t) = 2(p(1))
= (ATB — D)p(t) — P(t)AT Bp(t). 2)

It can be shown that whew(0) € [0, 1]™, p(t) € [0, 1], for
all t € Ry [26]. Hereinafter, for most parts, we will drop
the time index for notational simplicity.

3.1 Equilibrium States of the-Intertwined Markov Model

3.2 Then-Intertwined Markov Model as a Concave Game

In this subsection, we demonstrate that thntertwined
Markov model can be cast as the best response dynamical
system associated with a noncooperative game. An impor-
tant by-product of this study is the development of a larger
class of infection dynamics with reasonable convergence
properties. Further, our exposition provides a decisiasekl
interpretation to virus spread models, which are oftendhase
on the theory of Markov chains. Although our focus here
is the study of virus spread, our model can be applied to
other diffusion phenomena such as the spread of spam in
computer networks.

To this end, consider a digragh = (V, £) with n nodes,

and let0 < z; < 1 be the rate with which nodé sends
messages. We associate an objective function, denoted by
fi : R® — R, to nodei that is comprised of a local utility
functionU; : [0,1] — R, and a component that encapsulates
the influence of the neighboring nodes. The influence of node

We next focus on characterizing the set of equilibria of the j on node is described via the functiajy; : [0,1]x[0,1] —
dynamical system (2). We give this characterization using R, whereg;; = 0if and only if (j,7) ¢ £ We can then write
the so-calledbasic reproduction numbedenoted byR,, the objective function of nodeas

which is defined as the expected number of infected nodes

produced in a completely susceptible population due to the

infection of a neighboring node [5]. For theintertwined
Markov model, the basic reproduction humber was found
in [25], where it was called the “critical threshold", to be
equal to

Ro = p(D AT B).

For connected undirected graphs, it is shown in [25] that
the disease-free state is the unique equilibrium forsthe
intertwined Markov model whefRg < 1. When Ry >

1, in addition to the disease-free equilibrium, an endemic
equilibrium, denoted by*, emerges. In fact, it is shown
thatp* > 0. We call a strictly positive endemic statgong
Whenp* » 0, we call it aweakendemic state. A recursive
expression for the endemic stateis provided in [25], which

is shown to depend on the problem parameters of)\i;,

Bi, i € V. To arrive at this expression, consider the steady-
state equation

0= (ATB - D)p— PAT Bp. (3)

Defineﬁi = Zg;él ajlﬂjpj andg; = Zj;él ajiﬂjp}i eV.
We can then write? as

o + &7

é-*
*x 7

p1_61+§:: 1€ V.

(4)

Since we assumed thé&t > 0, we conclude that} < 1, for
all i € V. We can then re-write (3), evaluatedzdt in the
following form:

AT Bp* = (I — P*)"'Dp*, (5)

where P* = diag(p*).

filwi,wi) = Ui(ws) + Y Gjila, ).
[P

(6)

Each node is interested in maximizing its own objective
function f;. Formally, we can write the problem of theh
agent as

max fi(x;,xz_;), foreach fixedr_;.
0<z;<1

()

When; is concave inc;, and because the objective function
of each player depends also on the actions of other players,
problem (7) describes a concave game [2,22].

The solution concept we are interested in studying here is
the pure-strategy Nash equilibrium (PSNE).

Definition 1 ([2]) The vectorz* € [0,1]™ constitutes a
PSNE if, for alli € V, the inequality

filel, 2%,) > fi(xi,x%;)

is satisfied for allz; € [0, 1].

Note that under the PSNE, no agent has any incentive to
unilaterally deviate from the solutiar*. The next proposi-

tion establishes the existence and uniqueness of the PSNE
for the game in (7), when the game is concave.

Proposition 2 ([22]) For each: € V, let f;(x;,z_;) in (6)
be strictly concave ix; € [0, 1], for everyz; € [0,1],j €
V.j # i. Then the resulting concave game (i) admits
a unigue PSNE under the following diagonal dominance



condition:

2

0 0 0 .

8—5578_:619”(
+i_~ (
8xj 8:01-9'”

>

i

T, T5)

(8)

:vj,:vi) .

The following lemma establishes a relationship between

be shown thaR,, < 1 if and only if u(A” B — D) < 0, and
Ro = 1if and only if u(A” B — D) = 0 [3, Theorem 2.3].

As aresult, wherR, < 1, the matrixA” B — D is Hurwitz.
Since it is also Metzler, by Proposition 1(iv), there exsts
positive diagonal matrixz; satisfying(A”B — D)TR; +
R (AT B—D) = —K,wherekK is a positive definite matrix.
Consider the Lyapunov functidr (p) = p” R1p. Using (2),
we have

virus spread in networks and concave games. In the virus£eV1(p) =p" ((A"B —D)"Ri + Ri(A"B — D))p

spread case, the probability of infectippplays the role of
the transmission rate;.

Lemma 1 The dynamics of the-intertwined Markov model

—2p"R\PATBp
<pT(ATB—-D)TR, + R{(ATB - D))p

=—p"Kp < M(—K)|pll3 <0, p#0, (10)

are best-response dynamics of a concave game among the

nodes, where the decision variable of nade V is p; €
[0, 1], and its objective function is given by

(1 - %) Zajiﬂjpj- 9)

J#

5
=——p;+pi

Ji(pi,p—i) 5

PROOF. Recall the objective functions defined in (6). Let
Ui(p:) —%P_ZZ andg;i(pi, p;) = pi(1=5")az:Bipj,1 € V.
We then obtain

0? .
8—1)2fi(piap—i) =—6i— Y a;Bp; <0, i€V,
‘ JF

which shows that th¢;’s are strictly concave in self vari-

where the first inequality follows becausé€R, PAT Bp >

0, forallp € [0,1]", and (10) follows becausk¥ is positive
definite. This implies that the disease-free state is GAS.
WhenRy = 1, we haveu(ATB — D) = 0. Sinceg is
strongly connected, it follows that” B — D is irreducible
[3]. Recalling thatA” B — D is also Metzler, we conclude
from Lemma A.1 that there exists a positive diagonal matrix
Rs such that AT B — D)T Ry + Ry (AT B — D) is negative
semidefinite. Using the Lyapunov functi®s(p) = p” Rap,

we can write

LaVa(p) =p" ((A"B — D)" Rz + Ry(A"B = D))p
—2p"Ry,PAT Bp
< —2p"RyPAT Bp.

ables. It is now not hard to see that the dynamics of the We next prove thap” R, PA" Bp = 0 if and only if p =
n-intertwined Markov model (2) correspond to the gradient O-T SInCEﬁg is a positive diagonal matrix, we have that
flow dynamics when the agents aim at maximizing their own P~ 2PA” Bp = 0 if and only if

objective functions (9). O

4 Stability of Epidemic Dynamics over Strongly Con-
nected Graphs

We start by studying the stability properties of the
intertwined model over directed graphs with strongly con-
nected topologies.

4.1 Stability of the Disease-Free State

As a stepping stone, we first provide an alternative proof for
the necessary and sufficient condition for the global asymp- have

totic stability of the disease-free state, see [6, 19], giHire
theory of positive systems. As we will see shortly, the proo

strategy provided here is essential in some of our upcoming

results.

Proposition 3 Suppos& = (V, ) is a strongly connected
digraph. The disease-free equilibrium is GAS if and only if
Ro < 1.

PROOF. Note that the matrixA” B — D is Metzler, be-
cause the entries oA’ B are nonnegative. Using the con-
vergent regular splitting property of Metzler matricesan

Py Zajiﬂjpj =0, (11)

J#

for all i € V. Assume that there is a solutiprthat satisfies
pT RyPAT Bp = 0 at some time, € R, and letp; (ty) #

0 for somei € V. Then, by continuity of the state there
exists an intervat = [to, to+4], 6 > 0, such thap;(t) # 0,
for all ¢ € 7. Using (11), we hence conclude that for all
j €V that are neighbors aof i.e., a;; # 0, we must have
thatp,(t) = 0 andp;(t) = 0forall¢t € 7,forall j € V
with a;; # 0. Then, for somg € V such thatz;; # 0, we
pi(t) = > aniBrpe(t) = 0, for all t € 7. This

¢ implies thatp,(t) = 0 for all t € 7 and for allk € V such

thatar; # 0. By repeating this argument, we conclude that
pi(t) = 0 for all t € 7 for any node € V from which there

is a directed path to nodg Sinceg is strongly connected,
there is a directed path from nodéo nodej, and we must
then havep;(¢t) = 0 for all ¢ € 7, which contradicts our
initial hypothesis. It then follows that” Ry PATBp = 0

if and only if p = 0. Hence, the disease-free state is GAS.
This proves the sufficiency part.

We will show necessity by proving the contrapositive. The
Jacobian matrix of the vector field in (2) evaluated at the



origin is given byJ(0) = ATB — D. If Ry > 1, we have
u(AT B— D) > 0, and we conclude by Lyapunov’s indirect
method that the original nonlinear system is not stables Thi
proves thatRy < 1 is also necessary for the disease-free
equilibrium to be asymptotically stable D

nonnegative. Then, using Proposition 1(ii), we conclud¢ th
J(p*) is Hurwitz. O

We are now in a position to state the following result.

Theorem 4 Let G = (V,€) be a strongly connected di-
graph, and assume thaf0) # 0. If Ry > 1, then the strong

Itis worth noting that, whefR, < 1, the proof of the global 5, 4emic statg* is GAS.

asymptotic stability of the disease-free state does ngt rel
on the strong connectivity assumption. This is also true for

the instability proof, wherR, > 1. We only used the strong PROOF. Recall thatp(t) € [0,1]" for all t € R>q. When

connectivity of the graph to prove global asymptotic stabil
ity when Ry = 1. Further, note thaRR, provides a sharp
threshold for the stability of the disease-free equilibrido

Ro > 1, Proposition 3 implies that the disease-free equi-
librium is unstable. Therefore, under this condition, teé s
W =10,1]"\{0} is invariant under the evolutions of (2).

characterize the speed of convergence, one should provideay: define the staté — * D — dian
; "~ ; g = p — p*. Let P = diag(p). The
an upper bound fon(A” B — D); see [19, Proposition 1]. dynamics ofp can then be written as follows: W)

4.2 Existence and Stability of an Endemic State ) . ~ .
. . . . p=(A"B-D)p+p*)—(P+ P )A" B(p+p*
In this section, we use notions from positive systems theoryp ( )P +7’) E +~ ) (P +p7)
to : ili . =(-D+(I-P")A"B)p— PA" Bp.

prove the local and global asymptotic stability of an en
demic state over strongly connected digraphs. We first note ) r
that the existence of a unique endemic state for (2) over Define the matrix\(p*) := —D + (I — P*)A" B, and note

strongly connected digraphs can be concluded from [6, Sec-thatthe off-diagonal entries df(p*) are nonnegative; hence,

tion 2.2], as stated next.

Proposition 4 ([6]) LetG = (V, &) be a strongly connected
digraph. Then, a unigue strong endemic states> 0 exists
if and only if Ry > 1.

Next, we compute the Jacobian ©f given by (2), atp*.
Note that

> a * * .
Jii(p ):_(“)p-q)i(p )=—(6+&), i€V,
* a * * . .
J

where®;(p*) is i-th entry of f(p*). Using the definition of
p* in (4), we realize that/;;(p*) = —d;/(1 — p}), i € V.
As a result, we conclude that

J(p*)=—(I—-P* D+ (I - P*)ATB. (12)

Our first result establishes the local stabilityyof

Theorem 3 Suppose thag = (V,€&) is a strongly con-
nected digraph and thak, > 1. Then, the strong endemic
statep™* is locally exponentially stable.

PROOF. We invoke Lyapunov’s indirect method. Sine
is strongly connected is irreducible. From (5), we deduce
that Dp* = (I — P*) AT Bp*. We can then write

—ATBp* + (I — P*)AT Bp*
=—-P*A"Bp* <0,

J(p*)p*

A(p*) is a Metzler matrix. Sinc& is strongly connected,
the matrixA (p*) is also irreducible. From (5), it follows that
A(p*)p* = 0, and since* is strictly positive, it follows from
Theorem 1 that(A(p*)) = 0. Thus, it follows from Lemma
A.1 that there exists a positive diagonal matkixsuch that
the matrixA(p*)T R + RA(p*) is negative semidefinite.

Consider the Lyapunov functioW (p) = p* Rp. We have

LoV () =" (Ap")" R+ RA(p"))p — 25" PRAT Bp
< —2p"RPATBp = —2p" PRAT Byp,

where the inequality follows becaugép*)” R+ RA(p*) is
negative semidefinite, and the last equality follows beeaus

P and R commute, since they are both diagonal matrices.

We next prove that” RPATBp = 0 if and only if
p = p*. Since R is a positive diagonal matrix, we have
p*PRATBp = 0 if and only if 573", a;:8;p; = 0, for
all i € V. Assume that there is a vectprthat satisfies
pT PRAT Bp = 0 while p; # p?, for somei € V. We then
must have)_; ; a;;3jp; = 0, which implies thatp; = 0
for all j € V such thata;; # 0. Then, for someg € V for
which aj; # 0, we must also havik# ak;Bepr = 0,
becausg; = 0 < pj. By repeating this argument, we con-
clude thatp, = 0 for any nodel € V from which there is
a directed path to nodg Sinceg is strongly connected,
there is a directed path from nodéo nodej, and we must
havep; = 0. This implies thap = 0, which contradicts our
initial assumption. Therefore, since the $&tis invariant
under (2), we have thaf(p) = 0 ifand only if p = p*. O

Remark 1 The novelty in our proof lies at the utilization

where the last strict inequality follows because > 0,
B is a positive diagonal matrix, and is irreducible. The
matrix J(p*) is Metzler, because its off-diagonal entries are

of notions from positive systems theory, which enables us
to avoid the need to make combinatorial arguments about
the underlying graph structure as in the proof that utilizes



logarithmic Lyapunov function in [23]. Similar to the proof whereA;; are irreducible for alt € [V], and, hence, corre-
in [23], our proof enjoys the advantage of relying on a spond to SCCs i [3]. For notational simplicity, we will

single Lyapunov function as opposed to the proof in [16] useA; instead of4;;. The matricesd;;, j #  are not neces-
that constructs two Lyapunov functions to prove this result sarily irreducible. We denote an SCC@by G; = (V;, &),

; N — N R
A proof for a weaker statement is established in [1,6], where * € [N], whereU;L, V; = V andU;Z, & = £. For each

it is assumed that fop(0) # 0, there exists a tim@' € R+ i € [N], we introduce the positive diagonal matridgs B;
such thap(t) € (0,1)" for all t > T which contain, respectively, the curing and infection sate

- o ] ) of the nodes inV; along their diagonals. We introduce the
In addition to the useful characteristics of using a quadrat  partial order <’ among SCCs, and we writ§; < G, for

Lyapunov function for studying additional properties such somei, j € [IV], if there is a directed path fro; to G; but
as convergence rates, our proof allows for establishing the ot vice versa. '

stability properties of the equilibrium points over weakly

connected digraphs in the next section For a giveni € [N], we denote the state of the nodes in

G; by ¢ € RIVil and the state of thé-th node inV; by
4.3 A Simplified Stability Condition through a Game- .k € R. The statep, of the entire network is given by =

Theoretic Perspective [gf .. an]- Leter = X2, AT Bjq; € RVl i e [N],
be the input infection from the nodes i\ G;. We can now
write the dynamics of the nodesdh, i € [N], given by the
mapping®; : RVil x RIVil — RIVil as

The game-theoretic connection we established in Lemma 1
enables us to provide a simplified condition for the global
asymptotic stability of the disease-free state. In paldicu
by applying the diagonal dominance condition in (8) to (9), -
we obtain the following sufficient condition: Gi = ®i(qi, i)

= (AI'B; — Di)q; — QiAT Bigi + (I — Qi)ci, (14)

%Zaijﬂj <d;, forallieV. (13) whereQ; = diag(g;). When an SCC comprises a single
i node,A;fFBl- — D, is equal to—J;. In what follows, we say
G, is stable to mean that the dynamics (14) are stable. When
. an endemic statg* emerges over the gragh we call the
Recall that the condition®y < 1 andu(A"B — D) < 0 steady-state of;, an endemic state af;, and we denote it

are equivalent. Note the similarities between the conaiitio  py 4+ Hence, the endemic state emerging over the entire
w(AT B — D) < 0 and (13). The two conditions are related netv&ork is given by* = [T, ..., ¢3T 7.

by the Gershgorin Circle Theorem. While (13) is more re- : i

strictive thanu(ATB — D) < 0, it is linear and easier to ~ We first state some results about the special case where the

compute. More importantly, condition (13) can be checked Network topology is given by a DAG.

in a distributed fashion, which makes it more suitable for Proposition 5 LetG = (V, £) be a DAG and supposg >

the design of distributed algorithms. 0 for all i € V. Then the disease-free equilibrium is the
unigue equilibrium. Moreover, this equilibrium is GAS.

5 Stability of Epidemic Dynamics over Weakly Con-

nected Graphs PROOF. Let us denote the steady-state of (2)dfyo). The
steady-state equation for the source nodes of the DAG is
of the form0 = —§;p;(00), @ € Ssource Which implies that
pi(00) = 0 for all source nodes. For a nodes Sn-source
its steady-state equation can be writterdas —d;p;(co) +
(1 = pi(00)) 2_ e Seuee i B3P (00). The sum evaluates to
gero, and again we obtain (co) = 0. By repeating this

In this section, we study the stability properties of the
intertwined Markov model over weakly connected graphs.
This class is of great importance, since it is conceivatde th

in many practical scenarios there exist connected compo-
nents that collectively serve as an infection source, bait ar
not affected by the rest of the nodes. Such scenarios Cannoargument, we conclude thag(co) — 0, for all 7 € Sucouce

be captured by strongly connected topologies. By propagating this argument all the way to the sink nodes,

We start by introducing some notations. Whenthe g&@h  we conclude that zero is the unique solution of the steady-
weakly connected, its adjacency matrix can be transformedstate equation.

into an upper triangular form using an appropriate labeling
of the nodes. Assuming thgt= (V, ) containsN € Zx>
strongly connected components, we can write

Next, we prove the second statement. In a DAG, the dy-
namics of the source nodes become= —d;p;, i € Ssource
Hence, all source nodes are globally exponentially stable.
Letv; := " s, .. %iB3ip;, and define the following linear
Ayl A ... Aln dynamical system for all € Sy-source

0 Aoy Asz ... . _ _

A= 2 pi = —6ipi +vi,  pi(0) = pi(0).
Then, we have from (2) that; < p;, for all i € Sn-source
0 ... 0 Ann By the comparison lemma, it follows that < p;, for all ¢



and alli € Sn-source It is well-known that if the input of an
exponentially stable linear system converges to zeratdte s
converges to zero. Thus, sinceconverges to zerg, must
also converge to zero, for all € Snsource Sincep; > 0,
we conclude thap; converges to zero for all € Sy-source

The proposition follows by repeating this argument for the

remaining nodes in the graphd

(AY By — D2)go — Q2AL Bago + (I — Q2)c3 =0, (15)

A3 By — diag A3 Baga)qz — (D2 + C3)ga + ¢5 = 0,

We begin by studying the existence, uniqueness, and theWhereC; = diag(c;). DefineGy = D + Cs, and note that
stability properties of an endemic state over a weakly con- this is an invertible diagonal matrix becauSeg is a strictly
nected digraph consisting of two SCCs; the generalization POsitive diagonal matrix. We then conclude that

to multiple SCCs is straightforward.

Proposition 6 Let G, = (V;,&;) be an SCCj € [N], and
let ¢; be its endemic state equilibrium.df, > 0 for some
i1 € Vi, thenq; > 0.

PROOF. Leti; € V; be a node withy;; > 0. Sinceg;

is strongly connected, for any nodg, € V;, wherem is
an integer satisfyingn < |V;|, there exists a directed path
from nodei; to nodei,,. Let iy € V; be a node along
this path such thati,,is) € &;. It follows from (4), that
q;;, > 0. By the same argument, it follows that, > 0
for every nodei;, € V; along the directed path from to
im, includingi,,. Since nodes, andi,, were arbitrary, the
proof is complete. O

Let R} := p(D; ' AT B;) be the basic reproduction number
corresponding t@j;. We have the following existence and
unigueness result.

Theorem 5 LetG = (V, £) be a weakly connected digraph
consisting of two SCC§;, G- such thatG; < G,. Assume
that¢;(0) # 0 for all 7 € [2]. Then the following statements
hold:

(i) If Ry > 1, andRZ being arbitrary, thenp = 0 and
p* = [T, 3T]T are the only possible equilibrium
points overg, whereqf and g are unique strong en-
demic equilibrium points ovegy; andG,, respectively.

(i) If R} < 1andR2 > 1, thenp = 0 and p* =
[0T,g3T]T are the only possible equilibrium points
over G, whereg; is a unique strong endemic equilib-
rium point overg,.

(i) If Ry < 1,4 € [2], thenp = 0 is the only possible
equilibrium overg.

PROOF. In all the cases, the fact that= 0 is an equilib-
rium point follows directly from the structure of the dynam-
ics. Sinceg; < Gs, we havec; = 0, i.e., the dynamics of
the nodes irG; are not affected by those ;.

We first prove (i). First, consider the case whgg > 1.
SinceR} > 1 andg; is an SCC, we conclude by Theorems
4 and 4 that there exists a strong endemic sigtes> 0
overGy, which is GAS, assuming that (0) # 0. Hence
convergestes := A%, Bogt, which is a nonnegative vector.
We can now write the steady-state equationdetas

G5 ' A Bags — (I + diag Gy ' A3 Baga))ga + Gy 'c5 = 0,
or
_ H —1 AT —1,~v—1 T *

Since G, is an SCC, A, is irreducible, and therefore
GglAQTBg is irreducible as well. Furthermore, we have
G5'cs < 1 by construction. It then follows by Theorem
A.4 in the Appendix that there exists a unique strong en-
demic statey; overG,. From (5), it follows that the steady-
state of any node > that is connected to a node i

is strictly positive. Then, it follows from Proposition 6ah
[¢7,0] cannot be an equilibrium ovet, and[¢; T, 3717 is

the unique equilibrium oveg in this case.

WhenR3 < 1, it follows from (5) that the steady-state of
any node inG, that is connected to a node iy is strictly
positive. Hence, by Proposition 6, there exists a strong en-
demic state;3 overGs. Finally, and because the steady-state
equation ove, is given by (16), it follows from Proposi-
tion A.3 in the Appendix thas must be unique.

For (i), sincec; = 0 andR} < 1, it follows by Proposition

3 and Theorem 4 that the only valid equilibrium o¥aris

g1 = 0, which is GAS. Hence, in steady-state, can be
viewed as an isolated irreducible graph, and it follows from
Theorems 4 and 4 that there exists a unique strictly positive
equilibriumg} overgs.

Finally, for (iii), and similar to (ii), the only possible e
librium overgG is ¢g; = 0, which is GAS. This in turn leads
to havinges = 0, and sinceR? < 1, the only possible equi-
librium overGs isgs = 0. O

From (ii), we conclude that a weak endemic state could
emerge over weakly connected graphs. A strong endemic
state could emerge in case (i), and the disease-free state is
the only possible equilibrium in case (iii). It is importaot

note that the endemic stagg resulting in cases (i) and (ii)

are not necessarily the same.

Next, we study the stability properties of weak and strong
endemic equilibria.

Theorem 6 LetG = (V, &) be a weakly connected digraph
consisting of two SCC§;, G- such thatG; < G,. Assume
that ¢;(0) # 0 for all ¢ € [2]. Then,G; is input-to-state



stable (ISS). Further, for all possible values®f and R2,
the resulting equilibrium oveg is GAS.

PROOF. First, note that the dynamics ov€i are not af-

9(q2) = 2¢2' Q2S5 AT Bygo. Following similar steps to those
in the proof of Proposition 3, we can show thgtys) = 0

if and only if go = 0. Note thatg(g2) > 0 for all ¢g» € R,
such thaig; # 0. Furthermore, the functiog is continuous

fected byG,. Hence, the global asymptotic stability of the @nd radially unbounded. Hence, it follows by [13, Lemma
equilibrium (disease-free or strong endemic, depending on4-3] that there exists a clags,, functiona : R — R such

the value ofR}) overg; follows immediately. We will start
by proving thaig, is ISS for different values oR} andR2.
Consider the following cases.

(i) RZ < 1: In this case, we havp(AI B, — D,) < 0,
and therefore the matrixl B, — D, is Hurwitz. Since it is

also Metzler, it follows from Proposition 1 that there egist

a positive diagonal matri® which satisfies

(ATBy — D3)"R + R(AY By — Dy) = — K,

where K is a positive definite matrix. Similar to the proof

of Proposition 3, consider the Lyapunov functibp(qz) =
q% Rga. We have

L5,Vr(g2) = a3 (A3 Bs — D2)" R+ R(A3 By — D2))go
— 23 RQ2A3 Baga + 2q3 R(I — Q2)ca
< —qa Kqo + 2¢2 Res,

where the inequality follows becaugé RQ2 A% Bago > 0,
for all g2 € [0,1]", and ¢l RQaco > 0, for all cz,¢2 €
[0,1])™. Let0 < e < 1. We can then write

Ls,Vr(g2) < —(1— €)qd Kqo — €qd Kgqo + 243 Res.

We will prove that there exists a clak3, function, x, such
that—eqy K qa+2q3 Rea < 0for [|gz/l2 > x([|c2]|2). To this
end, note thagd Rea < ||R|l2- ||lg2]|2 - [|c2||2- Also, because
K is positive definite, we can writg} K g2 > A\, (K)||q||2 >

0. Define x(r) := ﬂR‘(‘;; wherer € R. We then have

—eqd Kqa +2¢3 Rea < 0 for ||gal|2 > x(||cz||2), and hence

Ly, Vr(g) < —(1—€)g3 Kqz,  lg2ll2 > x([|e2]l2)-

This implies that the systerdi, is ISS whenRZ < 1 and
R} is arbitrary.

thatg(g2) > a(||g2]|2). We therefore have

Ls,Vs(a2) < —a(llgzll2) + p(llezll2)-

As aresult, it follows from [24, Remark 2.4] that the system
Go is ISS whenRZ = 1 and R}, is arbitrary.

(iii) RZ > 1: Define the stat§s = ¢» — ¢3, and the control
input é2 = co — ¢35, wherecs was defined in the proof of
Theorem 5 as the steady-state cgf Let Qg = diag(¢2),

5 = diag(g3), andC5 = diag(c}). The dynamics ofj,
can then be written as

G2 = (A3 Bo — D2) (G2 + ¢3) — (Q2 + Q3) AL Ba (G + 43)

+I - Q= @)@+a)
= (=D + (I — Q3)A] B2)do — Q243 Bage

+(I — Q2)é — Q203 (17)
=(—D3 — C5 + (I — Q3)AT B2)do — Q243 Bage
+(I - Q)éa, (18)

where (17) follows from the steady-state equation (15)-eval
uated alg2 = ¢3, and (18) follows becaus@sc} = C3Go.
Next, define the matriA (¢3) = —Dy—C3+(I—Q3) AL By,
which is Metzler since its off-diagonal entries are nonneg-
ative. Sinceg, is an SCC, the matrix\(¢3) is also irre-
ducible. We wish to study the sign pf([\(qg)). Using the
steady-state equation (15) evaluatediat= g3, it follows
thatA(q3)qs = —c5, where we recall that; > 0. Consider
the following two cases.

(i.a) Ry < 1 andRZ > 1: In this case, the disease-free
state is GAS ovel,; see Proposition 3. Therj = 0,
and A(g3)g3 = 0. Sincegs is strictly positive, it follows
from Theorem 1 that (ix(qg)) = 0. Thus, it follows from
Lemma A.1 that there exists a positive diagonal mafRix

ik ()T Alar) i - :
(i) R2 = 1: Following the same reasoning in the proof of Suchthatthe matrid(¢5)" R+ RA(g3) is negative semidef-

Proposition 3, we conclude that there exists a positive-diag

onal matrixS such that AY By — Dy)”' S+ S(AL By — D»)

is negative semidefinite. Then, using the Lyapunov function

Vs(g2) = ¢4 Sgo, we can write

—2¢7 Q2S5 AT Bygy + 242 Scy
—q3 Q2SAY Bago + 2¢/n| 9|2 - ||eallz,

Ls,Vs(gq2) <
<

inite. Consider the Lyapunov functiorz () = 5’ Rp. We
have

L5, Vr()=d1 (Mq3)" R+ RA(¢3))d2 — 233 Q2RAS Bago
+243 R(I — Q2)é2
—248 Q2 RAY Boga + 248 R(I — Q2)és

<
< —233 Q2RAY Bogo + 4v/n||R||2 - ||éal2,  (19)

where the second inequality follows by using the bound \here the last inequality follows fromiga|lz < [lgal2 +

lg2ll2 < +/|[V2| < +/n. Define the functiorp : R — R as
pllezll2) = 24/nl|S||2 - ||e2||2, and note thap € Ko, since
it is linear in ||c[|2. Define the functiory : RY, — R as

llgzlle < 24/, and the fact thatll — Q2||» < 1. Define
the scalar function(||é2||2) := 4v/n||R||2 - ||é2||2, and note
thatp € K, since it is linear inj|¢z||2. Following similar



steps to those in the proof of Theorem 4, one can show random.

that G2 QaRAY Bogo, = 0 if and only if g = 0. Then,
using the same reasoning as in the proof of Theorem 6, w:
conclude that there exists a cld§s, functiona : R — R
such thalg? Q2 RAL Baga > a(]|z2]|2)- We therefore have
Ls,Vr(p) < —a(l|gzll2) + p(|lé2][2), and it follows from
[24, Remark 2.4] that the systefh is input-to-state-stable
whenR} <1 andR3 > 1.

(iii.b) Ry > 1andRF > 1: In this case, the endemic state is
GAS overgG;; see Theorem 4. Then; > 0, andA(¢3) g3 <

0. Sinceg; is strictly positive, it follows from [6, Theorem
2.4] thatu (A(qg)) < 0; therefore A(¢) is Hurwitz. Thus,

it follows from Proposition 1(iv) that there exists a positi

diagonal matrixS such that the matrid(¢3)7 S + SA(g3)
is negative definite. Hence, using (p) = p’ Sp, one can
derive the same bound as in (19), withreplaced withS,

and by repeating the same steps as above, one can show tt..

G is input to state stable wheR} > 1 andR32 > 1.

Sinceg; is GAS, andj is ISS, it follows from [13, Lemma
4.7] that the equilibrium of the cascaded system is GAS.
In particular, whenR2 < 1 andR} < 1, it follows from

Theorem 5(iii) that the disease-free state is GAS. When

RZ <1 andR} > 1, it follows from Theorem 5(i) that the
strong endemic equilibriurfy;”, ¢3717 is GAS, assuming
thatq;(0) # 0 for all i € [2]. WhenR3 > 1 andR} < 1,

it follows from Theorem 5(ii) that the weak endemic state
(07, ¢3T)T is GAS, assuming thag (0) # 0. Finally, when
whenRZ > 1 andR} > 1, it follows from Theorem 5(i)
that the strong endemic stdtg”, ¢37]7 is GAS, assuming
thatg;(0) #0forie [2]. O

The following corollary is an immediate consequence of
Theorems 5 and 6.

Corollary 1 LetG = (V, &) be a weakly connected digraph
consisting of N SCCs ordered a§; < ... < Gy. Assume
that ¢; (0) # 0 for all i € [n].

(i) If Ry < 1forall i € [N], then the disease-free state
is GAS.

(i) If RE > 1 for somek € [N], and R} < 1 for
1 € {1,...,k — 1}, then the endemic statg*
0,...,0,¢T7, ..., 37T is GAS.

6 Numerical Studies
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Fig. 1. The Pajek GD99c network. The “red" nodes belongto
for which R¢ > 1. The “black" nodes are the only ones with no
direct path fromg; .

Fig. 2 plots the state trajectories. By examining the his-
togram of the values to which the state converges, we notice
that there aré3 nodes with high infection probabilities, and
those are the nodes comprisigig. Note thatG; is asymp-
totically stable even though it takes input from other SCCs,
as shown in the figure, ari@} > 1. There arel nodes that
become healthy, and those are the “black" nodes which are
not reached by a directed path frgim The remaining nodes

all have positive infection probabilities with varying kg
depending on their distance frofq, with the nodes that are
farthest fromG; enjoying the lowest infection probabilities.
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We demonstrate the emergence of a weak endemic state over

the Pajek GD99c network [8], which is a weakly connected
directed network shown in Fig. 1. The network consists of
105 nodes and it contairg SCCs. The nodes marked “red"
in Fig. 1 constitute an SCC, which we refer to @Gs We
will select the curing rates ove¥; to be low in order to
makeR} > 1. For the remaining nodes, we will s&t =

> j»i @5iB; + 0.5, which is a sufficient condition to ensure
R{ < 1 [14]. The infection rates3; and the weights:;;

are all selected to be equal toThere are onlyt nodes for
which there is no directed path frofh, and they are marked
“black" in Fig. 1. The initial infection profile is selected a
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Fig. 2. Infection probabilities of the nodes.

Next, we will demonstrate the global asymptotic stability o
p* over connected undirected graphs, which follows from
Theorem 4. The infection rates, the edge weights, and the
initial infection profile were generated randomly. The ogri
rates were selected such thag > 1.

Fig. 4 shows the state of a ring graph with nodes. The
figure also plots the Lyapunov functidn(p) = 357 5. As
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Fig. 3. A histogram of the endemic state value across thearktw

claimed, the system convergesto the strictly positivestat
and the Lyapunov function decays monotonically to zero.

1 3.5

3

Fig. 4. Stabilization of a ring graph witk0 nodes.

Fig. 5 shows the same simulation for a connected undirected

random graph witl1 00 nodes. The probability that an edge
occurs in the graph was selected to%eThe specific graph
realization used in this experiment containgt4 edges.
Again, we observe that the state convergeg*tdt is inter-

esting to note that convergence here is faster than the cas

of the ring graph.

7 Conclusion

We have utilized tools from positive systems theory to es- (6]

tablish the stability properties of theintertwined Markov

model over digraphs. For strongly connected digraphs, w
have proved that when the basic reproduction number is les

%l

&

10

Fig. 5. Stabilization of a random graph with0 nodes and 704
edges.

tablish the existence and uniqueness of weak and strong en-
demic states. We have also studied the stability propesties
weakly connected graphs using input-to-state stability. F
nally, we have proposed a dynamical model that describes
the interaction among nodes in an infected network as a con-
cave game and demonstrated thatsthatertwined Markov
model is a special case of our model. This alternative de-
scription provides a new condition, which can be checked
collectively by agents, for the stability of the diseaseefr
equilibrium.

Future work will focus on studying the stability propertafs
the SIS dynamics over time-varying networks and designing
optimal dynamic curing mechanisms.
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A Appendix

Lemma A.1 Let X € R™"*" be an irreducible Metzler ma-
trix such thatu(X) = 0. Then, there exists a positive diag-
onal matrix R € R"*™ such that the matriX TR+ RX is
negative semidefinite.

PROOF. From Theorem 1, it follows that there exists a
vectorv € R™*" such thatv > 0 and Xv = 0. Since
o(X) = o(XT), we haveu(AT) = 0. Using Theorem 1
again, we conclude that there exists a ve€tarR™*" such
that¢é > 0 and X7¢ = 0. Let R € R™*" be a positive
diagonal matrix defined wittR;; = &;/v;, for all i € [n].
Consider now the matriX ” R + RX. The matrixRX is
Metzler, sinceR is a positive diagonal matrix. For the same
reason, and becauggis irreducible, we conclude th& X

is irreducible. By a similar argumenX” R is also an irre-
ducible Metzler matrix. Since the sum of two Metzler ma-
trices is Metzler, the matri’X "R 4+ RX is Metzler. Also,
because bottRX and XTR are Metzler and irreducible,
the matrixX” R + RX is also irreducible. Further, by con-
struction, we havé XTR + RX)v = XTRv = XT¢ = 0.
SinceX” R+ RX is symmetric, it has real eigenvalues, and
sincev is strictly positive, it follows from Theorem 1 that
XTR + RX is negative semidefinite.D

Next, we prove an instrumental result, which can be thought
of as a non-homogeneous extension of a result of [6]. We
start by providing two key properties of the continuous map-
pingT : [0,1]™ — [0, 1] defined as

T(p) := (I +diagXp)) ' (Xp+y). (A1)
Proposition A.2 Let X € R™*™ be a nonnegative matrix,

and lety € R™ be a vector satisfying < y < 1. Then, the
mappingT’ is monotonic.

PROOF. Let the vectorg, ¢ € R™ be such thap < ¢. For
i € [n], we have

(Xp)i +yi 11—y
Ti = —_— = _——
=G~ T &,
11—y
<1-—Y_ 1),
- xa (q)

where the inequality follows becaudgis nonnegative. This
implies that the mappin@' is monotonic. O

Proposition A.3 Let X € R™*™ be a nonnegative matrix,
and lety € R™ be a vector satisfying < y < 1. If the
mappingT’ has strictly positive fixed point, then it must be
unique.

PROOF. We will prove the claim by contradiction. Assume
that there are two fixed poings', ¢* € R, p* # ¢*. We

In this Appendix, we collect and prove some results pertinen Wil first show thatp* < ¢*. To this end, define

to the development in the main body of the paper. We start

with the next result which is key in proving some of the
results in Sections 4 and 5.
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* *

i p;
n:=max —, k:=argmax —.
i€[n] q; ieln] 4;



Note thatp* =< ng*. For p* < ¢* to hold, we must have
n < 1; assume that, to the contrany,> 1. Then, using
Proposition A.2, we have

(X a* )k + yr

pi=Te(p") < Tu(ng") = 3 X
(Xq)k + Y .
<nN-— = T *) = ,
rpwsommiakl k(q*) =nq

where the strict inequality follows from the assumptionttha
n > 1, and the last equality follows becaugt is a fixed
point. By definition, we have; = nq;. Hence, ifn > 1
were true, we would have; < ng; = py, which is a
contradiction. Hence, we must haye< 1 andp* < ¢*. By
switching the roles op* andq and repeating the above

steps withy = max;e(y] 5 4 instead ofp, we conclude that
p* = ¢*. Thus,p* = ¢*, and the fixed point is unique.O

We are now ready to prove the main result.

Theorem A.4 Let X € R™*"™ be a nonnegative irreducible
matrix such thato(X) > 1, and lety € R™ be a vector
satisfying0 < y < 1. Then, the mapping” : [0,1]" —
[0, 1]™ has a unique fixed point, which is strictly positive.

PROOF. We will prove that there exists a closed sub-
interval of (0, 1) which is invariant undef’. By Theorem
2, it follows that X has an eigenvectar >> 0 satisfying
Xv = p(X)v. Without loss of generality, we assume that

v =< 1, which can be achieved by an appropriate scaling of

the eigenvector corresponding#0X).

Definer := ,/%jﬁga& and note that < 1. Let us choose
€ > 0 such thats < evmin. Note that with such a choice
of €, we can guarantee, for alle [n], thatev; < 1, since

v; < 1 andk < 1. This choice ofe implies thatev; > & or

(ev;)? > %’&max for all i € [n]. This in turn implies, for
i€ [n],
_ 1 p(X)+y _ ep(X)vi +yi _

i > - = Tz i), A.2
W2 T X)) Tt enpx) - L), (A2)

where the last inequality follows singe; < 1. We therefore
haveT (ev) < ev.

Definex := %}’;}';1 and note that < 1, aSymin < 1.

Let us choose > 0 such that) < evmax < . Then, for all
i € [n], we have

p(X)+yi—1
p(X)+1

IN
A

€V;

We thus havep(X)v; + 1 < p(X) + v, forall i € [n].
Equivalently, for alli € [n], we can write

p(X) +y;
ep(X)vi +1

ep(X)vi +yi
ep(X)vi +1

€v; < €v; (A.3)

= Tj(ev),
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where the second strict inequality holds sirege < x < 1.
We therefore havé'(ev) > ev.

Sincev > 0 ande > 0, we havecv > 0. We also have that
€ > ¢ because

ex B F _ _pX) t ymax
Umin Umin Umin(l + P(X))
pPX)+ymn—1 K

vmax(1 + p(X)) o

Umax

where the first strict inequality follows because< 1. This
implies thatev < €v. Further, by construction, we have
ev; < 1,forall: € [n], and thereforev <« 1. To summarize,
we have the following bound$: < ev <« ev < 1.

We can now define the closed and bounded set

K :={pe[0,1]":e3v = p < eqv} C (0,1)".

By (A.2) and (A.3), and sinc& is monotonic as proved in
Proposition A.2, we conclude thdt: K — K. SinceT is
continuous, it follows from Brouwer’s fixed-point theorem
that there exists a strictly positive fixed popit € K such
that T'(p*) = p*. Finally, it follows from Proposition A.3
thatp* must be unique. O
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