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Efficient model-based reinforcement learning for
approximate online optimal control

Rushikesh Kamalapurkar, Joel A. Rosenfeld, and Warren E. Dixon

Abstract—In this paper the infinite horizon optimal regulation
problem is solved online for a deterministic control-affine non-
linear dynamical system using the state following (StaF) kernel
method to approximate the value function. Unlike traditional
methods that aim to approximate a function over a large
compact set, the StaF kernel method aims to approximate a
function in a small neighborhood of a state that travels within
a compact set. Simulation results demonstrate that stability and
approximate optimality of the control system can be achieved
with significantly fewer basis functions than may be required for
global approximation methods.

I. INTRODUCTION

Reinforcement learning (RL) has become a popular tool for
determining online solutions of optimal control problems for
systems with finite state and action spaces [1]–[3]. Due to
technical challenges, implementation of RL in systems with
continuous state and action spaces has remained an open prob-
lem. In recent years, adaptive dynamic programming (ADP)
has been successfully used to implement RL in deterministic
autonomous control-affine systems to solve optimal control
problems via value function approximation [3]–[13]. ADP
techniques employ parametric function approximation (typi-
cally by employing neural networks (NNs)) to approximate
the value function. Implementation of function approximation
in ADP is challenging because the controller is void of pre-
designed stabilizing feedback and is completely defined by the
estimated parameters. Hence, the error between the optimal
and the estimated value function is required to decay to a
sufficiently small bound sufficiently fast to establish closed-
loop stability. The size of the error bound is determined
by the selected basis functions, and the convergence rate is
determined by richness of the data used for learning.

Sufficiently accurate approximation of the value function
over a sufficiently large neighborhood often requires a large
number of basis functions, and hence, introduces a large
number of unknown parameters. One way to achieve accurate
function approximation with fewer unknown parameters is
to use some knowledge about the system to determine the
basis functions. However, for general nonlinear systems, prior
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knowledge of the features of the optimal value function is
generally not available; hence, a large number of generic basis
functions is often the only feasible option.

Sufficiently fast approximation of the value function over a
sufficiently large neighborhood requires sufficiently rich data
to be available for learning. In traditional ADP methods such
as [9], [11], [14], richness of data manifests itself as the
amount of excitation in the system. In experience replay-based
techniques such as [15]–[18], richness of data is quantified
by eigenvalues of the recorded history stack. In model-based
RL techniques such as [19]–[21], richness of data corresponds
to the eigenvalues of a learning matrix. As the dimension
of the system and the number of basis functions increases,
the required richness of data increases. In traditional ADP
methods, the demand for richer data causes the designer to de-
sign increasingly aggressive excitation signals, thereby causing
undesirable oscillations. Hence, implementation of traditional
ADP techniques such as [3]–[14] in high dimensional systems
are seldom found in the literature. In experience replay-based
ADP methods and in model-based RL, the demand for richer
data causes the required amount of data stored in the history
stack, and the number of points selected to construct the
learning matrix, respectively, to grow exponentially with the
dimension of the system. Hence, implementation of data-
driven ADP techniques such as [18]–[23] are scarcely found
in the literature.

The contribution of this paper is the development of a
novel model-based RL technique to achieve sufficient excita-
tion without causing undesirable oscillations and expenditure
of control effort like traditional ADP techniques and at a
lower computational cost than state-of-the-art data-driven ADP
techniques. Motivated by the fact that the computational effort
required to implement ADP and the data-richness required to
achieve convergence decrease with decreasing number of basis
functions, this paper focuses on reduction of the number of
basis functions used for value function approximation. A key
contribution of this paper is the observation that online im-
plementation of an ADP-based approximate optimal controller
does not require an estimate of the optimal value function over
the entire domain of operation of the system. Instead, only an
estimate of the slope of the value function evaluated at the
current state is required for feedback. Hence, estimation of the
value function over a small neighborhood of the current state
should be sufficient to implement an ADP-based approximate
optimal controller. Furthermore, it is reasonable to postulate
that approximation of the value function over a smaller local
domain would require fewer basis functions as opposed to
approximation over the entire domain of operation.
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In this paper, reduction in the number of basis functions
required for value function approximation is achieved via
selection of basis functions that travel with the system state
(referred to as state-following (StaF) kernels) to achieve
accurate approximation of the value function over a small
neighborhood of the state. The use of StaF kernel introduces
a technical challenge owing to the fact that the ideal values of
the unknown parameters corresponding to the StaF kernels are
functions of the system state. The Lyapunov-based stability
analysis presented in Section IV explicitly incorporates this
functional relationship using the result that the ideal weights
are continuously differentiable functions of the system state.

Sufficient exploration without the addition of an aggressive
excitation signal is achieved via model-based RL based on
BE extrapolation [19], [20]. The computational load associated
with BE extrapolation is reduced via the selection of a single
time-varying extrapolation function instead of a large number
of autonomous extrapolation functions used in [19], [20]. Sta-
bility and convergence to optimality are obtained under a PE
condition on the extrapolated regressor. Intuitively, selection
of a single time-varying BE extrapolation function results in
virtual excitation. That is, instead of using input-output data
from a persistently excited system, the dynamic model is
used to simulate persistent excitation to facilitate parameter
convergence. Simulation results are included to demonstrate
the effectiveness of the developed technique.

II. STAF KERNEL FUNCTIONS

The objective in StaF-based function approximation is to
maintain good approximation of the target function in a small
region of interest in the neighborhood of a point of interest
x ∈ Rn. In state-of-the-art online approximate control, the
optimal value function is approximated using a linear-in-
the-parameters approximation scheme, and the approximate
control law drives the system along the steepest negative
gradient of the approximated value function. To compute the
controller at the current state, only the gradient of the value
function evaluated at the current state is required. Hence,
in this application, the target function is the optimal value
function, and the point of interest is the system state.

Since the system state evolves through the state-space with
time, the region of interest for function approximation also
evolves through the state-space. The StaF technique aims to
maintain a uniform approximation of the value function over
a small region around the current system state so that the
gradient of the value function at the current state, and hence,
the optimal controller at the current state, can be approximated.

To facilitate the theoretical development, this section sum-
marizes key results from [24], where the theory of reproducing
kernel Hilbert spaces (RKHSs) is used to establish continuous
differentiability of the ideal weights with respect to the sys-
tem state, and the postulate that approximation of the value
function over a small neighborhood of the current state would
require fewer basis functions is stated and proved.

To facilitate the discussion, let H be a universal RKHS
over a compact set χ ⊂ Rn with a continuously differentiable
positive definite kernel k : χ× χ→ R. Let V

∗
: χ→ R be a

function such that V
∗ ∈ H . Let c , [c1, c2, · · · cL]

T ∈ χL be
a set of distinct centers, and let σ : χ× χL → RL be defined
as σ (x, c) = [k (x, c1) , · · · , k (x, cL)]

T . Then, there exists a
unique set of weights WH such that

WH (c) = arg min
a∈RL

∥∥∥aTσ(·, c)− V ∗
∥∥∥
H
,

where ‖·‖H denotes the Hilbert space norm.
In the StaF approach, the centers are selected to follow

the current state x, i.e., c (x) , [c1 (x) , c2 (x) , · · · cL (x)]
T

:
χ → χL. Since the system state evolves in time, the ideal
weights are not constant. To approximate the ideal weights
using gradient-based algorithms, it is essential that the weights
change smoothly with respect to the system state.

Let Br (x) ⊂ χ denote a closed ball of radius r centered
at the current state x. Let Hx,r denote the restriction of the
Hilbert space H to Br (x). Then, Hx,r is a Hilbert space with
the restricted kernel kx,r : Br (x) × Br (x) → R defined
as kx,r (y, z) = k (y, z) , ∀ (y, z) ∈ Br (x) × Br (x). The
following result, first stated and proved in [24] is stated here
to motivate the use of StaF kernels.

Theorem 1. [24] Let K(x, y) = ex
T y be the exponential

kernel function, which corresponds to an universal RKHS,
and let ε, r > 0. Then, for each y ∈ χ, there exists a
finite number of centers, c1, c2, ..., cMy,ε

∈ Br(y) and weights
w1, w2, ..., wMy,ε such that∥∥∥∥∥∥V ∗(x)−

My,ε∑
i=1

wie
xT ci

∥∥∥∥∥∥
Br(y),∞

< ε.

If p is an approximating polynomial that achieves the same
approximation over Br(y) with degree Ny,ε, then an asymp-
totically similar bound can be found with My,ε kernel func-
tions, where My,ε <

(
n+Ny,ε+Sy,ε
Ny,ε+Sy,ε

)
for some constant Sy,ε.

Moreover, Ny,ε and Sy,ε can be bounded uniformly over χ.

The Weierstrass theorem indicates that as r decreases, the
degree Ny,ε of the polynomial needed to achieve the same
error ε over Br(y) decreases [25]. Hence, by Theorem 1,
approximation of a function over a smaller domain requires a
smaller number of exponential kernels. Furthermore, provided
the region of interest is small enough, the number of kernels
required to approximate continuous functions with arbitrary
accuracy can be reduced to n + 2 where n is the state
dimension.

The following result, first stated and proved in [24] is
stated here to facilitate Lyapunov-based stability analysis of
the closed-loop system.

Theorem 2. [24] Let the kernel function k be such that the
functions k(·, c) are l−times continuously differentiable for all
c ∈ χ. Let C be an ordered collection of M distinct centers,
C = (c1, c2, ..., cM ) ∈ χM , with associated ideal weights

WH(C) = arg min
a∈RM

∥∥∥∥∥
M∑
i=1

aik(·, ci)− V (·)

∥∥∥∥∥
H

.

The function W (C) is l−times continuously differentiable with
respect to each component of C.
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Thus, if the kernels are selected as functions ci : χ → χ
of the state that are l−times continuously differentiable, then
the ideal weight functions W : χ → RL defined as W (x) ,
WHx,r (c (x)) are also l−times continuously differentiable.

Theorem 1 motivates the use of StaF kernels for model-
based RL, and Theorem 2 facilitates implementation of
gradient-based update laws to learn the time-varying ideal
weights in real-time. In the following, the StaF-based function
approximation approach is used to approximately solve an
optimal regulation problem online using exact model knowl-
edge via value function approximation. Selection of an opti-
mal regulation problem and the assumption that the system
dynamics are known are motivated by ease of exposition.
Using a concurrent learning-based adaptive system identifier
and the state augmentation technique developed in [20], the
technique developed in this paper can be extended to a class of
trajectory tracking problems in the presence of uncertainties in
the system drift dynamics. Simulation results in Section V-B
demonstrate the performance of such an extension.

III. STAF KERNEL FUNCTIONS FOR ONLINE
APPROXIMATE OPTIMAL CONTROL

A. Problem Formulation

Consider a control affine nonlinear dynamical system of the
form

ẋ (t) = f (x (t)) + g (x (t))u (t) , (1)

t ∈ R≥t0 , where t0 denotes the initial time, x : R≥t0 →
Rn denotes the system state f : Rn → Rn and g : Rn →
Rn×m denote the drift dynamics and the control effectiveness,
respectively, and u : R≥0 → Rm denotes the control input.
The functions f and g are assumed to be locally Lipschitz
continuous. Furthermore, f (0) = 0 and ∇f : Rn → Rn×n is
continuous. In the following, the notation φu (t; t0, x0) denotes
the trajectory of the system in (1) under the control signal u
with the initial condition x0 ∈ Rn and initial time t0 ∈ R≥0.

The control objective is to solve the infinite-horizon optimal
regulation problem online, i.e., to design a control signal u
online to minimize the cost functional

J (x, u) ,

∞̂

t0

r (x (τ) , u (τ)) dτ, (2)

under the dynamic constraint in (1) while regulating the system
state to the origin. In (2), r : Rn × Rm → R≥0 denotes the
instantaneous cost defined as

r (xo, uo) , Q (xo) + uoTRuo, (3)

for all xo ∈ Rn and uo ∈ Rm, where Q : Rn → R≥0 is a
positive definite function and R ∈ Rm×m is a constant positive
definite symmetric matrix. In (3) and in the reminder of this
paper, the notation (·)o is used to denote a dummy variable.

B. Exact Solution

It is well known that since the functions f, g, and Q
are stationary (time-invariant) and the time-horizon is infi-
nite, the optimal control input is a stationary state-feedback

policy u (t) = ξ (x (t)) for some function ξ : Rn → Rm.
Furthermore, the function that maps each state to the total
accumulated cost starting from that state and following a
stationary state-feedback policy, i.e., the value function, is
also a stationary function. Hence, the optimal value function
V ∗ : Rn → R≥0 can be expressed as

V ∗ (xo) , inf
u(τ)|τ∈R≥t

∞̂

t

r (φu (τ ; t, xo) , u (τ)) dτ, (4)

for all xo ∈ Rn, where U ⊂ Rm is a compact set. Assuming
an optimal controller exists, the optimal value function can be
expressed as

V ∗ (xo) , min
u(τ)|τ∈R≥t

∞̂

t

r (φu (τ ; t, xo) , u (τ)) dτ. (5)

The optimal value function is characterized by the correspond-
ing HJB equation [26]

0 = min
uo∈U

(∇V (xo) (f (xo) + g (xo)uo) + r (xo, uo)) , (6)

for all xo ∈ Rn, with the boundary condition V (0) = 0.
Provided the HJB in (6) admits a continuously differentiable
solution, it constitutes a necessary and sufficient condition
for optimality, i.e., if the optimal value function in (5) is
continuously differentiable, then it is the unique solution to
the HJB in (6) [27]. In (6) and in the following development,
the notation ∇f (x, y, · · · ) denotes the partial derivative of f
with respect to the first argument. The optimal control policy
u∗ : Rn → Rm can be determined from (6) as [26]

u∗ (xo) , −1

2
R−1gT (xo) (∇V ∗ (xo))

T
. (7)

The HJB in (6) can be expressed in the open-loop form

∇V ∗ (xo) (f (xo) + g (xo)u∗ (xo)) + r (xo, u∗ (xo)) = 0,
(8)

and using (7), the HJB in (8) can be expressed in the closed-
loop form

− 1

4
∇V ∗ (xo) g (xo)R−1gT (xo) (∇V ∗ (xo))

T

+∇V ∗ (xo) f (xo) +Q (xo) = 0. (9)

The optimal policy can now be obtained using (7) if the HJB
in (9) can be solved for the optimal value function V ∗.

C. Value Function Approximation

An analytical solution of the HJB equation is generally
infeasible; hence, an approximate solution is sought. In an ap-
proximate actor-critic-based solution, the optimal value func-
tion V ∗ (xo) is replaced by a parametric estimate V̂ (xo,W ),
where W ∈ RL denotes the vector of ideal parameters.
Replacing V ∗ (xo) by V̂ (xo,W ) in (7), an approximation
to the optimal policy u∗ (xo) is obtained as ûo (xo,W ). The
objective of the critic is to learn the parameters W , and the
objective of the actor is to implement a stabilizing controller
based on the parameters learned by the critic. Motivated by
the stability analysis, the actor and the critic maintain separate
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estimates Ŵa and Ŵc, respectively, of the ideal parameters
W . Substituting the estimates V̂ and û for V ∗ and u∗ in (8),
respectively, a residual error δ : Rn × RL × RL → R, called
the Bellman error (BE), is computed as

δ
(
xo, Ŵc, Ŵa

)
, r

(
xo, û

(
xo, Ŵa

))
+∇V̂

(
xo, Ŵc

)(
f (xo) + g (xo) û

(
xo, Ŵa

))
.

To solve the optimal control problem, the critic aims to find
a set of parameters Ŵc and the actor aims to find a set of
parameters Ŵa such that δ

(
xo, Ŵc, Ŵa

)
= 0, ∀xo ∈ Rn.

Since an exact basis for value function approximation is
generally not available, an approximate set of parameters that
minimizes the BE is sought.

The expression for the optimal policy in (7) indicates that
to compute the optimal action when the system is at any given
state xo ∈ Rn, one only needs to evaluate the gradient ∇V ∗
at xo. Hence, to compute the optimal policy at any given state
xo, one only needs to approximate the value function over
a small neighborhood around xo. As established in Theorem
1, the number of basis functions required to approximate the
value function is smaller if the approximation space is smaller
in the sense of set containment. Hence, in this result, instead
of aiming to obtain a uniform approximation of the value
function over the entire operating domain, which might require
a computationally intractable number of basis functions, the
aim is to obtain a uniform approximation of the value function
over a small neighborhood around the current system state.

StaF kernels are employed to achieve the aforemen-
tioned objective. To facilitate the development, let χ ⊂
Rn be compact. Then, for all ε > 0, there exists a
function V

∗
= WT (xo)σ (xo, c (xo)) ∈ H such that

supxo∈χ

∥∥∥V ∗ (xo)− V ∗ (xo)
∥∥∥ < ε, where H is a universal

RKHS, introduced in Section II and W : Rn → RL denotes
the ideal weight function. In the developed StaF-based method,
a small compact set Br (xo) around the current state xo

is selected for value function approximation by selecting
the centers co such that co = c (xo) ∈ Br (xo) for some
function c : χ → RnL. The approximate value function
V̂ : χ×RL → R and the approximate policy û : χ×RL → R
can then be expressed as

V̂
(
xo, Ŵc

)
, ŴT

c σ (xo, c (xo)) ,

û
(
xo, Ŵa

)
, −1

2
R−1gT (xo)∇σ (xo, c (xo))

T
Ŵa, (10)

where σ : χ×χL → RL denotes the vector of basis functions
introduced in Section II.

It should be noted that since the centers of the kernel
functions change as the system state changes, the ideal weights
also change as the system state changes. The state-dependent
nature of the ideal weights differentiates this approach from
state-of-the-art ADP methods in the sense that the stability
analysis needs to account for changing ideal weights. Based on
Theorem 2, it can be established that the ideal weight function
W defined as

W (x) , arg min
a∈RL

∥∥∥aTσ (·, c (x))− V ∗ (·)
∥∥∥
Hx,r

,

is continuously differentiable with respect to the system state
provided the functions σ and c are continuously differentiable.

D. Online Learning Based on Simulation of Experience

To learn the ideal parameters online, the critic evaluates a
form δt : R≥t0 → R of the BE at each time instance t as

δt (t) , δ
(
x (t) , Ŵc (t) , Ŵa (t)

)
, (11)

where Ŵa (t) and Ŵc (t) denote the estimates of the actor
and the critic weights, respectively, at time t, and the notation
x (t) is used to denote the state the system in (1) at time t
when starting from initial time t0, initial state x0, and under
the feedback controller

u (t) = û
(
x (t) , Ŵa (t)

)
. (12)

Since (8) constitutes a necessary and sufficient condition for
optimality, the BE serves as an indirect measure of how close
the critic parameter estimates Ŵc are to their ideal values;
hence, in RL literature, each evaluation of the BE is interpreted
as gained experience. Since the BE in (11) is evaluated along
the system trajectory, the experience gained is along the system
trajectory.

Learning based on simulation of experience is achieved by
extrapolating the BE to unexplored areas of the state space.
The critic selects a set of functions {xi : Rn × R≥0 → Rn}Ni=1
such that each xi maps the current state x (t) to a point
xi (x (t) , t) ∈ Br (x (t)).

The critic then evaluates a form δti : R≥t0 → R of the BE
for each xi as

δti (t) = ŴT
c (t)ωi (t) + r (xi (x (t) , t) , ûi (t)) , (13)

where

ûi (t) , −1

2
R−1gT (xi (x (t) , t))

· ∇σ (xi (x (t) , t) , c (x (t)))
T
Ŵa (t) ,

and

ωi (t) , ∇σ (xi (x (t) , t) , c (x (t))) f (xi (x (t) , t))

− 1

2
∇σ (xi (x (t) , t) , c (x (t))) g (xi (x (t) , t))R−1·

gT (xi (x (t) , t))∇σT (xi (x (t) , t) , c (x (t))) Ŵa (t) .

The critic then uses the BEs from (11) and (13) to improve the
estimate Ŵc (t) using the recursive least-squares-based update
law

˙̂
Wc = −ηc1Γ (t)

ω (t)

ρ (t)
δt (t)−ηc2

N
Γ (t)

N∑
i=1

ωi (t)

ρi (t)
δti (t) , (14)

where

ω (t) , ∇σ (x (t) , c (x (t))) f (x (t))

− 1

2
∇σ (x (t) , c (x (t))) g (x (t))R−1gT (x (t))

· ∇σT (x (t) , c (x (t))) Ŵa (t) ,
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ρi (t) ,
√

1 + νωTi (t)ωi (t), ρ (t) ,
√

1 + νωT (t)ω (t),
ηc1, ηc2, ν ∈ R>0 are constant learning gains, and Γ (t) de-
notes the least-square learning gain matrix updated according
to

Γ̇ (t) = βΓ (t)− ηc1Γ (t)
ω (t)ωT (t)

ρ2 (t)
Γ (t)

− ηc2
N

Γ (t)

N∑
i=1

ωi (t)ωTi (t)

ρ2
i (t)

Γ (t) , Γ (0) = Γ0. (15)

In (15), β ∈ R>0 is a constant forgetting factor.
Motivated by a Lyapunov-based stability analysis, the actor

improves the estimate Ŵa (t) using the update law

˙̂
Wa (t) = −ηa1

(
Ŵa (t)− Ŵc (t)

)
− ηa2Ŵa (t) +

ηc1G
T
σ (t) Ŵa (t)ω (t)

T

4ρ (t)
Ŵc (t)

+

N∑
i=1

ηc2G
T
σi (t) Ŵa (t)ωTi (t)

4Nρi (t)
Ŵc (t) , (16)

where ηa1, ηa2 ∈ R>0 are learning gains,

Gσ (t) , ∇σ (x (t) , c (x (t))) g (x (t))R−1gT (x (t))

· ∇σT (x (t) , c (x (t))) ,

and

Gσi (t) , ∇σ (xi (x (t) , t) , c (x (t))) g (xi (x (t) , t))R−1

· gT (xi (x (t) , t))∇σT (xi (x (t) , t) , c (x (t))) .

IV. STABILITY ANALYSIS

For notational brevity, time-dependence of all the signals is
suppressed hereafter. Let Bζ ⊂ Rn+2L denote a closed ball
with radius ζ centered at the origin. Let Bχ , Bζ∩Rn. Let the
notation ‖(·)‖ be defined as ‖h‖ , supξ∈Bχ ‖h (ξ)‖, for some
continuous function h : Rn → Rk. To facilitate the subsequent
stability analysis, the BEs in (11) and (13) are expressed in
terms of the weight estimation errors W̃c , W − Ŵc and
W̃a = W − Ŵa as

δt = −ωT W̃c +
1

4
W̃aGσW̃a + ∆ (x) ,

δti = −ωTi W̃c +
1

4
W̃T
a GσiW̃a + ∆i (x) . (17)

where the functions ∆,∆i : Rn → R are uniformly bounded
over Bχ such that the bounds ‖∆‖ and ‖∆i‖ decreases with
decreasing ‖∇ε‖. Let a candidate Lyapunov function VL :
Rn+2L × R≥0 → R be defined as

VL (Z, t) , V ∗ (x) +
1

2
W̃T
c Γ−1 (t) W̃c +

1

2
W̃T
a W̃a,

where V ∗ is the optimal value function, and

Z =
[
xT , W̃T

c , W̃
T
a

]T
.

To facilitate learning, the system states x or the selected
functions xi are assumed to satisfy the following.

Assumption 1. There exists a positive constant T ∈ R>0 and
nonnegative constants c1, c2, and c3 ∈ R≥0 such that

c1IL ≤
t+Tˆ

t

(
ω (τ)ωT (τ)

ρ2 (τ)

)
dτ, ∀t ∈ R≥0,

c2IL ≤ inf
t∈R≥0

(
1

N

N∑
i=1

ωi (t)ωTi (t)

ρ2
i (t)

)
,

c3IL ≤
1

N

t+Tˆ

t

(
N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

)
dτ, ∀t ∈ R≥0.

Furthermore, at least one of c1, c2, and c3 is strictly positive.

Remark 1. Assumption 1 requires either the regressor ω or
the regressor ωi to be persistently exciting. The regressor ω is
completely determined by the system state x, and the weights
Ŵa. Hence, excitation in ω vanishes as the system states and
the weights converge. Hence, in general, it is unlikely that
c1 > 0. However, the regressor ωi depends on the functions
xi, which can be designed independent of the system state x.
Hence, heuristically, c3 can be made strictly positive if the
signal xi contains enough frequencies, and c2 can be made
strictly positive by selecting a large number of extrapolation
functions.

In previous model-based RL results such as [19], stability
and convergence of the developed method relied on c2 being
strictly positive. In the simulation example in Section V-A the
extrapolation algorithm from [19] is used in the sense that
large number of extrapolation functions is selected to make c2
strictly positive. In this example, the extrapolation algorithm
from [19] is rendered computationally feasible by the fact that
the value function is a function of only two variables. However,
the number of extrapolation functions required to make c2
strictly positive increases exponentially with increasing state
dimension. Hence, implementation of techniques such as [19]
is rendered computationally infeasible in higher dimensions.
In this paper, the computational efficiency of model-based RL
is improved by allowing time-varying extrapolation functions
that ensure that c3 is strictly positive, which can be achieved
using a single extrapolation trajectory that contains enough
frequencies. The performance of the developed extrapolation
method is demonstrated in the simulation example in Section
(V-B), where the value function is a function of four variables,
and a single time-varying extrapolation point is used to im-
prove computational efficiency instead of a large number of
fixed extrapolation functions.

The following Lemma facilitates the stability analysis by
establishing upper and lower bound on the eigenvalues of the
least-squares learning gain matrix Γ.

Lemma 1. Provided Assumption 1 holds and λmin

{
Γ−1

0

}
>

0, the update law in (15) ensures that the least squares gain
matrix satisfies

ΓIL ≤ Γ (t) ≤ ΓIL, (18)

where Γ = 1

min{ηc1c1+ηc2 max{c2T,c3},λmin{Γ−1
0 }}e−βT

and

Γ = 1

λmax{Γ−1
0 }+ (ηc1+ηc2)

βν

. Furthermore, Γ > 0.
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Proof: The proof closely follows the proof of [28, Corol-
lary 4.3.2]. The update law in (15) implies that d

dtΓ
−1 (t) =

−βΓ−1 (t) + ηc1
ω(t)ωT (t)
ρ2(t) + ηc2

N

∑N
i=1

ωi(t)ω
T
i (t)

ρ2i (t)
. Hence,

Γ−1 (t) = e−βtΓ−1
0 + ηc1

tˆ

0

e−β(t−τ)ω (τ)ωT (τ)

ρ2 (τ)
dτ

+
ηc2
N

tˆ

0

e−β(t−τ)
N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

dτ

To facilitate the proof, let t < T . Then,

Γ−1 (t) ≥ e−βtΓ−1
0 ≥ e−βTΓ−1

0 ≥ λmin

{
Γ−1

0

}
e−βT IL.

If t ≥ T, then since the integrands are positive, Γ−1 can be
bounded as

Γ−1 (t) ≥ ηc1

tˆ

t−T

e−β(t−τ)ω (τ)ωT (τ)

ρ2 (τ)
dτ

+
ηc2
N

tˆ

t−T

e−β(t−τ)
N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

dτ.

Hence,

Γ−1 (t) ≥ ηc1e−βT
tˆ

t−T

ω (τ)ωT (τ)

ρ2 (τ)
dτ

+
ηc2
N
e−βT

tˆ

t−T

N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

dτ.

Using Assumption 1,

1

N

tˆ

t−T

N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

dτ ≥ max {c2T, c3} IL,

tˆ

t−T

ω (τ)ωT (τ)

ρ2 (τ)
dτ ≥ c1IL.

Hence a lower bound for Γ−1 is obtained as,

Γ−1 (t) ≥ min
{
ηc1c1 + ηc2 max {c2T, c3} ,

λmin

{
Γ−1

0

}}
e−βT IL. (19)

Provided Assumption 1 holds, the lower bound in (19) is
strictly positive. Furthermore, using the facts that ω(t)ωT (t)

ρ2(t) ≤
1
ν and ωi(t)ω

T
i (t)

ρ2i (t)
≤ 1

ν for all t ∈ R≥0,

Γ−1(t) ≤e−βtΓ−1
0 +

tˆ

0

e−β(t−τ)

(
ηc1

1

ν
+
ηc2
N

N∑
i=1

1

ν

)
ILdτ,

≤
(
λmax

{
Γ−1

0

}
+

(ηc1 + ηc2)

βν

)
IL.

Since inverse of the lower and upper bounds on Γ−1 are
the upper and lower bounds on Γ, respectively, the proof is
complete.

Since the optimal value function is positive definite, (18)
and [29, Lemma 4.3] can be used to show that the candidate
Lyapunov function satisfies the following bounds

vl (‖Zo‖) ≤ VL (Zo, t) ≤ vl (‖Zo‖) , (20)

for all t ∈ R≥t0 and for all Zo ∈ R2+2L. In (20), vl, vl :
R≥0 → R≥0 are class K functions. To facilitate the analysis,
let c ∈ R>0 be a constant defined as

c ,
β

2Γηc2
+
c2
2
, (21)

and let ι ∈ R>0 be a constant defined as

ι ,
3
(

(ηc1+ηc2)‖∆‖√
v

+ ‖∇Wf‖
Γ + ‖Γ−1GWσW‖

2

)2

4ηc2c

+
1

(ηa1 + ηa2)

(
‖GWσW‖+ ‖GV σ‖

2
+ ηa2‖W‖

+ ‖∇Wf‖+
(ηc1 + ηc2) ‖Gσ‖‖W‖

2

4
√
v

)2

+
1

2
‖GV ε‖.

Let vl : R≥0 → R≥0 be a class K function such that

vl (‖Z‖) ≤
Q (x)

2
+
ηc2c

6

∥∥∥W̃c

∥∥∥2

+
(ηa1 + ηa2)

8

∥∥∥W̃a

∥∥∥2

.

The sufficient conditions for the subsequent Lyapunov-based
stability analysis are given by

ηc2c

3
≥

(
‖GWσ‖

2Γ + (ηc1+ηc2)‖WTGσ‖
4
√
v

+ ηa1

)2

(ηa1 + ηa2)
,

(ηa1 + ηa2)

4
≥

(
‖GWσ‖

2
+

(ηc1 + ηc2) ‖W‖‖Gσ‖
4
√
v

)
,

v−1
l (ι) < vl

−1
(
vl (ζ)

)
. (22)

Note that the sufficient conditions can be satisfied provided
the points for BE extrapolation are selected such that the
minimum eigenvalue c, introduced in (21) is large enough
and that the StaF kernels for value function approximation
are selected such that ‖ε‖ and ‖∇ε‖ are small enough. To
improve computational efficiency, the size of the domain
around the current state where the StaF kernels provide good
approximation of the value function is desired to be small.
Smaller approximation domain results in almost identical
extrapolated points, which in turn, results in smaller c. Hence,
the approximation domain cannot be selected to be arbitrarily
small and needs to be large enough to meet the sufficient
conditions in (22).

Theorem 3. Provided Assumption 1 holds and the sufficient
gain conditions in (22) are satisfied, the controller in (12) and
the update laws in (14) - (16) ensure that the state x and the
weight estimation errors W̃c and W̃a are ultimately bounded.
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Proof: The time-derivative of the Lyapunov function is
given by

V̇L = V̇ ∗ + W̃T
c Γ−1

(
Ẇ − ˙̂

Wc

)
+

1

2
W̃T
c Γ̇−1W̃c

+ W̃T
a

(
Ẇ − ˙̂

Wa

)
.

Using Theorem 2, the time derivative of the ideal weights can
be expressed as

Ẇ = ∇W (x) (f (x) + g (x)u) . (23)

Using (14) - (17) and (23), the time derivative of the Lyapunov
function is expressed as

V̇L = ∇V ∗ (x) (f (x) + g (x)u)

+ W̃T
c Γ−1∇W (x) (f (x) + g (x)u)

−W̃T
c Γ−1

(
−ηc1Γ

ω

ρ

(
−ωT W̃c+

1

4
W̃aGσW̃a+∆(x)

))
− W̃T

c Γ−1

(
−ηc2
N

Γ

N∑
i=1

ωi
ρi

1

4
W̃T
a GσiW̃a

)

− W̃T
c Γ−1

(
−ηc2
N

Γ

N∑
i=1

ωi
ρi

(
−ωTi W̃c + ∆i (x)

))

− 1

2
W̃T
c Γ−1

(
βΓ− ηc1Γ

ωωT

ρ
Γ

)
Γ−1W̃c

− 1

2
W̃T
c Γ−1

(
−ηc2
N

Γ

N∑
i=1

ωiω
T
i

ρi
Γ

)
Γ−1W̃c

+ W̃T
a

(
∇W (x) (f (x) + g (x)u)− ˙̂

Wa

)
.

Provided the sufficient conditions in (22) hold, the time
derivative of the candidate Lyapunov function can be bounded
as

V̇L ≤ −vl (‖Z‖) , ∀ζ > ‖Z‖ > v−1
l (ι) . (24)

Using (20), (22), and (24), [29, Theorem 4.18] can be invoked
to conclude that Z is ultimately bounded, in the sense that
lim supt→∞ ‖Z (t)‖ ≤ vl−1 (vl (ι)) .

V. SIMULATION

A. Optimal regulation problem with exact model knowledge

1) Simulation parameters: To demonstrate the effectiveness
of the StaF kernels, simulations are performed on a two-
dimensional nonlinear dynamical system. The system dynam-
ics are given by (1), where xo = [xo1, x

o
2]T ,

f (xo) =

[
−xo1 + xo2

− 1
2x

o
1 − 1

2x
o
2 (cos (2xo1) + 2)

2

]
,

g (xo) =

[
0

cos (2xo1) + 2

]
. (25)

The control objective is to minimize the cost
∞̂

0

(
xT (τ)x (τ) + u2 (τ)

)
dτ. (26)

Time (s)
0 5 10

x
(t

)

-1

-0.5

0

0.5

1
State Trajectory

x1

x2

Figure 1. State trajectories generated using StaF kernel-based ADP.

The system in (25) and the cost in (26) are selected because the
corresponding optimal control problem has a known analytical
solution. The optimal value function is V ∗ (xo) = 1

2x
o2
1 +xo22 ,

and the optimal control policy is u∗(xo) = −(cos(2xo1)+2)xo2
(cf. [9]).

To apply the developed technique to this problem, the value
function is approximated using three exponential StaF ker-
nels, i.e, σ (xo, co) = [σ1 (xo, co1) , σ2 (xo, co2) , σ3 (xo, co3)]T .
The kernels are selected to be σi (xo, coi ) = ex

oT coi − 1,
i = 1, · · · , 3. The centers coi are selected to be on the vertices
of a shrinking equilateral triangle around the current state,
i.e., coi = xo + di (xo) , i = 1, · · · , 3, where d1 (xo) =
0.7νo (xo) · [0, 1]T , d2 (xo) = 0.7νo (xo) · [0.87, −0.5]T ,
and d3 (xo) = 0.7νo (xo) · [−0.87, −0.5]T , and νo (xo) ,(
xoT xo+0.01
1+ν2xoT xo

)
denotes the shrinking function. The point for

BE extrapolation is selected at random from a uniform distri-
bution over a 2.1νo (x (t)) × 2.1νo (x (t)) square centered at
the current state x (t) so that the function xi is of the form
xi (xo, t) = xo + ai (t) for some ai (t) ∈ R2.

The system is initialized at the initial conditions

x (0) = [−1, 1]T , Ŵc (0) = 0.4× 13×1,

Γ (0) = 500I3, Ŵa (0) = 0.7Ŵc (0) ,

where I3 denotes a 3× 3 identity matrix and 13×1 denotes a
3× 1 matrix of ones. and the learning gains are selected as

ηc1 = 0.001, ηc2 = 0.25, ηa1 = 1.2, ηa2 = 0.01,

β = 0.003, v = 0.05, ν2 = 1.

2) Results: Figure 1 shows that the developed StaF-based
controller drives the system states to the origin while maintain-
ing system stability. Figure 2 shows the implemented control
signal compared with the optimal control signal. It is clear that
the implemented control converges to the optimal controller.
Figure 3 shows that the weight estimates for the StaF-based
value function and policy approximation remain bounded and
converge as the state converges to the origin. Since the ideal
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Time (s)
0 1 2 3 4 5

-2

-1.5

-1

-0.5

0

Optimal Control Estimation

u$(x(t))

û(x(t); Ŵa(t))

Figure 2. Control trajectory generated using StaF kernel-based ADP
compared with the optimal control trajectory.

Time (s)
0 5 10

Ŵ
c(

t)

-0.5

0

0.5

1

1.5
Value Function Weights

Ŵc;1

Ŵc;2

Ŵc;3

Figure 3. Trajectories of the estimates of the unknown parameters in the
value function generated using StaF kernel-based ADP. The ideal weights are
unknown and time-varying; hence, the obtained weights can not be compared
with their ideal weights.

values of the weights are unknown, the weights can not
directly be compared with their ideal values. However, since
the optimal solution is known, the value function estimate
corresponding to the weights in Figure 3 can be compared
to the optimal value function at each time t. Figure 5 shows
that the error between the optimal and the estimated value
functions rapidly decays to zero.

B. Optimal tracking problem with parametric uncertainties in
the drift dynamics

1) Simulation parameters: Similar to [20], the developed
StaF-based RL technique is extended to solve optimal tracking
problems with parametric uncertainties in the drift dynamics.

Time (s)
0 5 10

Ŵ
a
(t

)

-0.5

0

0.5

1

1.5
Policy Weights

Ŵa;1

Ŵa;2

Ŵa;3

Figure 4. Trajectories of the estimates of the unknown parameters in the
policy generated using StaF kernel-based ADP. The ideal weights are unknown
and time-varying; hence, the obtained weights can not be compared with their
ideal weights.

Time (s)
0 5 10

-8

-6

-4

-2

0

2
Value Function Estimation Error

V
$
(x

(t
))
!

V̂
1 x

(t
);

Ŵ
c(

t)
2

Figure 5. The error between the optimal and the estimated value function.

The drift dynamics in the two-dimensional nonlinear dynam-
ical system in (25) are assumed to be linearly parameterized
as

f (xo) =

[
θ1 θ2 θ3

θ4 θ5 θ6

]
︸ ︷︷ ︸

θT

 xo1
xo2

xo2 (cos (2xo1) + 2)


︸ ︷︷ ︸

σθ(xo)

,

where θ ∈ R3×2 is the matrix of unknown parameters and
σθ is the known vector of basis functions. The ideal values
of the unknown parameters are θ1 = −1, θ2 = 1, θ3 = 0,
θ4 = −0.5, θ5 = 0, and θ6 = −0.5. Let θ̂ denote an estimate
of the unknown matrix θ. The control objective is to drive
the estimate θ̂ to the ideal matrix θ, and to drive the state
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x to follow a desired trajectory xd. The desired trajectory is
selected to be solution of the initial value problem

ẋd (t) =

[
−1 1
−2 1

]
xd (t) , xd (0) =

[
0
1

]
, (27)

and the cost functional is selected to be´∞
0

(
eT (t) diag (10, 10) e (t) + (µ (t))

2
)
dt, where

e (t) = x (t) − xd (t) , µ (t) = u (t) −
g+ (xd (t))

([
−1 1
−2 1

]
xd (t)− f (xd (t))

)
, and g+ (xo)

denotes the pseudoinverse of g (xo).
The value function is a function of the concatenated state

ζ ,
[
eT xTd

]T ∈ R4. The value function is approximated
using five exponential StaF kernels given by σi (ζo, coi ), where
the five centers are selected according to coi (ζo) = ζo+di (ζo)
to form a regular five dimensional simplex around the current
state with νo (ζo) ≡ 1. Learning gains for system identification
and value function approximation are selected as

ηc1 = 0.001, ηc2 = 2, ηa1 = 2, ηa2 = 0.001,

β = 0.01, ν = 0.1, ν2 = 1, k = 500,

Γθ = I3, Γ (0) = 50I5, kθ = 20,

To implement BE extrapolation, a single state trajectory ζi is
selected as ζi (ζo, t) = ζo + ai (t), where ai (t) is sampled
at each t from a uniform distribution over the a 2.1 × 2.1 ×
2.1× 2.1 hypercube centered at the origin. The history stack
required for CL contains ten points, and is recorded online
using a singular value maximizing algorithm (cf. [17]), and
the required state derivatives are computed using a fifth order
Savitzky-Golay smoothing filter (cf. [30]).

The initial values for the state and the state estimate are
selected to be x (0) = [0, 0]T and x̂ (0) = [0, 0]T , respectively.
The initial values for the NN weights for the value function,
the policy, and the drift dynamics are selected to be 0.025×15,
0.025 × 15, and 03×2, respectively, where 03×2 denotes a
3× 2 matrix of zeros. Since the system in (25) has no stable
equilibria, the initial policy µ̂ (ζ,03×2) is not stabilizing. The
stabilization demonstrated in Figure 6 is achieved via fast
simultaneous learning of the system dynamics and the value
function.

2) Results: Figures 6 and 7 demonstrate that the controller
remains bounded and the tracking error is regulated to the
origin. The NN weights are functions of the system state
ζ. Since ζ converges to a periodic orbit, the NN weights
also converge to a periodic orbit (within the bounds of the
excitation introduced by the BE extrapolation signal), as
demonstrated in Figures 8 and 9. Figure 10 demonstrates that
the unknown parameters in the drift dynamics, represented
by solid lines, converge to their ideal values, represented by
dashed lines.

C. Comparison

The developed technique is compared with the model-based
RL method developed in [19] for regulation and [20] for
tracking, respectively. Both the simulations are performed in
MATLABr SIMULINKr at 1000 Hz on the same machine.
The regulation simulations run for 10 seconds of simulated

Time (s)
0 10 20 30 40

e(
t)

-1

-0.5

0

0.5

1
Tracking Error

Figure 6. Tracking error trajectories generated using the proposed method
for the nonlinear system.

Time (s)
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u
(t

)

-2

-1

0

1

2

3

4
Control Trajectory

Figure 7. Control signal generated using the proposed method for the
nonlinear system.

time, and the tracking simulations run for 40 seconds of
simulated time. Tables I and II show that the developed
controller requires significantly fewer computational resources
than the controllers from [19] and [20].

Since the optimal solution for the regulation problem is
known to be quadratic, the model-based RL method from [19]
is implemented using three quadratic basis functions. Since
the basis used is exact, the method from [19] yields a smaller
steady-state error than the developed method, which uses three
inexact, but generic StaF kernels. For the tracking problem, the
method from [20] is implemented using ten polynomial basis
functions selected based on a trial-and-error approach. The
developed technique is implemented using five generic StaF
kernels. In this case, since the optimal solution is unknown,
both the methods use inexact basis functions, resulting in
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Time (s)
0 10 20 30 40

Ŵ
a
(t

)

-0.5

0

0.5

1
Policy Weights

Figure 8. Policy weight trajectories generated using the proposed method
for the nonlinear system. The weights do not converge to a steady-state value
because the ideal weights are functions of the time-varying system state. Since
an analytical solution of the optimal tracking problem is not available, weights
cannot be compared against their ideal values

Time (s)
0 10 20 30 40

Ŵ
c(

t)

-0.5

0

0.5

1
Value Function Weights

Figure 9. Value function weight trajectories generated using the proposed
method for the nonlinear system. The weights do not converge to a steady-state
value because the ideal weights are functions of the time-varying system state.
Since an analytical solution of the optimal tracking problem is not available,
weights cannot be compared against their ideal values

similar steady-state errors.
The two main advantages of StaF kernels are that they are

universal, in the sense that they can be used to approximate
a large class of value functions, and that they target local
approximation, resulting in a smaller number of required
basis functions. However, the StaF kernels trade optimality
for universality and computational efficiency. The kernels are
inexact, and the weight estimates need to be continually
adjusted based on the system trajectory. Hence, as shown in
Tables I and II, the developed technique results in a higher
total cost than state-of-the-art model-based RL techniques.

Time (s)
0 10 20 30 40

3̂
(t

)

-1

-0.5

0

0.5

1

1.5
Drift Dynamics NN Weights

3̂1

3̂2

3̂3

3̂4

3̂5

3̂6

Figure 10. Trajectories of the unknown parameters in the system drift
dynamics for the nonlinear system. The dotted lines represent the true values
of the parameters.

Method Running time
(s)

Total cost Steady-state
RMS error

StaF kernels
with single

moving
extrapolation

points

0.95 2.82 2.5× 10−3

Technique
developed in

[19]

2 1.83 6.15× 10−6

Table I
REGULATION SIMULATION RUNNING TIMES FOR THE DEVELOPED

TECHNIQUE AND THE TECHNIQUE IN [19]

VI. CONCLUSION

In this paper an infinite horizon optimal control problem
is solved using a new approximation methodology called the
StaF kernel method. Motivated by the fact that a smaller
number of basis functions is required to approximate functions
on smaller domains, the StaF kernel method aims to main-

Method Running time
(s)

Total cost Steady-state
RMS error

StaF kernels
with single

moving
extrapolation

points

15 6.38 2.13× 10−4

Technique
developed in

[20]

103 3.1 2.7× 10−4

Table II
TRACKING SIMULATION RUNNING TIMES FOR THE DEVELOPED

TECHNIQUE AND THE TECHNIQUE IN [20]
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tain good approximation of the value function over a small
neighborhood of the current state. Computational efficiency
of model-based RL is improved by allowing selection of
fewer time-varying extrapolation trajectories instead of a large
number of autonomous extrapolation functions. Simulation
results are presented that solve the infinite horizon optimal
regulation and tracking problems online for a two state system
using only three and five basis functions, respectively, via the
StaF kernel method.

State-of-the-art solutions to solve infinite horizon optimal
control problems online aim to approximate the value func-
tion over the entire operating domain. Since the approximate
optimal policy is completely determined by the value function
estimate, state-of-the-art solutions generate policies that are
valid over the entire state space. Since the StaF kernel method
aims at maintaining local approximation of the value function
around the current system state, the StaF kernel method lacks
memory, in the sense that the information about the ideal
weights over a region of interest is lost when the state leaves
the region of interest. Thus, unlike existing techniques, the
StaF method generates a policy that is near-optimal only
over a small neighborhood of the origin. A memory-based
modification to the StaF technique that retains and reuses past
information is a subject for future research.
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