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Abstract

In this paper, the distributed resource allocation optimization problem is investigated. The allocation decisions are made to minimize

the sum of all the agents’ local objective functions while satisfying both the global network resource constraint and the local

allocation feasibility constraints. Here the data corresponding to each agent in this separable optimization problem, such as the

network resources, the local allocation feasibility constraint, and the local objective function, is only accessible to individual agent

and cannot be shared with others, which renders new challenges in this distributed optimization problem. Based on either projection

or differentiated projection, two classes of continuous-time algorithms are proposed to solve this distributed optimization problem

in an initialization-free and scalable manner. Thus, no re-initialization is required even if the operation environment or network

configuration is changed, making it possible to achieve a “plug-and-play” optimal operation of networked heterogeneous agents.

The algorithm convergence is guaranteed for strictly convex objective functions, and the exponential convergence is proved for

strongly convex functions without local constraints. Then the proposed algorithm is applied to the distributed economic dispatch

problem in power grids, to demonstrate how it can achieve the global optimum in a scalable way, even when the generation cost, or

system load, or network configuration, is changing.

Keywords: Resource allocation, Distributed optimization, Multi-agent system, Plug-and-play algorithm, Gradient flow, Projected

dynamical system, Economic dispatch

1. Introduction

Resource allocation is one of the most important problems

in network optimization, which has been widely investigated

in various areas such as economics systems, communication

networks, sensor networks, and power grids. The allocation

decisions may be made centrally by gathering all the network

data together to a decision-making center, and then sent back

to corresponding agents (referring to Ibaraki & Katoh (1988)).

On the other hand, differing from this centralized policy, the

master-slave-type decentralized algorithms, either price-based

(Arrow & Hurwicz (1960)) or resource-based (Heal (1969)),

are constructed to achieve the optimal allocations by the local

computations in the slave agents under the coordinations of the

master/center through a one-to-all communication architecture.

However, these methods may not be suitable or effective for

the resource allocation in large-scale networks with numerous
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heterogeneous agents due to complicated network structures,

heavy communication burden, privacy concerns, unbearable

time delays, and unexpected single-point failures. Therefore,

fully distributed resource allocation optimization algorithms are

highly desirable.

Distributed optimization, which cooperatively achieves

optimal decisions by the local manipulation with private data

and the diffusion of local information through a multi-agent

network, has drawn more and more research attention in

recent years. To circumvent the requirement of control

center or master, various distributed optimization models or

algorithms have been developed (Nedic, Ozdaglar, & Parrilo

(2010), Sayed (2014), Lou, Shi, Johansson, & Hong (2014),

and Yi & Hong (2014)). In light of the increasing atten-

tion to distributed optimization and the seminal work on

distributed resource allocation in Ho, Servi, & Suri (1980),

some distributed algorithms for resource allocation op-

timization have been proposed in Xiao & Boyd (2006),

Lakshmanan & Farias (2008), Necoara, Nesterov, & Glineur

(2011), Ghadimi, Shames, & Johansson (2013), and

Beck, Nedic, Ozdaglar, & Teboulle (2014).

Continuous-time gradient flow algorithms have been

widely investigated for convex optimization after the pio-

neer work Arrow, Huwicz, & Uzawa (1958), and detailed

references can be found in Liao, Qi, & Qi (2004) and

Bhaya & Kaszkurewicz (2006). Gradient flow algorithms

Preprint submitted to Automatica October 15, 2018

http://arxiv.org/abs/1510.08579v2


have been applied to network control and optimization (

Low, Paganini, & Doyle (2002), Feijer & Paganini (2010) and

Ferragut & Paganini (2014)), neural networks (Liao, Qi, & Qi

(2004)), and stochastic approximation (Dupuis & Kushner

(1987)). Recently, continuous-time gradient flow algo-

rithms have been adopted for solving unconstrained dis-

tributed optimization problems (see Wang & Elia (2011),

Gharesifard & Cortés (2014), Droge, Kawashima & Egerstedt

(2014), and Kia, Cortés, & Martinez (2015)). Furthermore, the

projection-based gradient flow dynamics have been employed

for solving the complicated constrained optimization problems

in Venets (1985), Nagurney & Zhang (1995), Xia & Wang

(2000), Gao (2003) and Cherukuri, Mallada, & Cortés (2016),

and the projected gradient flow ideas began to be applied to

distributed constrained optimization (see Liu & Wang (2015),

Qiu, Liu, & Xie (2014) and Yi, Hong & Liu (2015)).

The economic dispatch, one of the key concerns in power

grids, is to find the optimal secure generation allocation to bal-

ance the system loads, and hence, can be regarded as a spe-

cial resource allocation problem. In recent years, there has

been increasing research attention in solving economic dis-

patch problems through a multi-agent system in a distributed

manner to meet the ever growing challenges raised by in-

creasing penetration of renewable energies and deregulation of

power infrastructure (Cavraro, Carli, & Zampieri (2014) and

Zhang, Liu, Wang, Liu, & Ferrese (2015)). Mathematically,

this boils down to a particular distributed resource alloca-

tion optimization problem. Furthermore, there were various

continuous-time algorithms for the Distributed Economic Dis-

patch Problem (DEDP). For example, Zhao, Topcu, Li, & Low

(2014) showed that the physical power grid dynamics could

serve as a part of a primal-dual gradient flow algorithm to

solve the DEDP, and in fact, it considered physical network in-

terconnections and generator dynamics explicitly, providing a

quite comprehensive method and inspiring insights. Moreover,

Cherukuri, & Cortés (2015) solved the DEDP by combining

the penalty method and the distributed continuous-time algo-

rithm in Ho, Servi, & Suri (1980), and proposed a procedure to

fulfill the initialization requirement, while Cherukuri & Cortés

(2014) constructed a novel initialization-free distributed algo-

rithm to achieve DEDP given one agent knowing the total sys-

tem loads.

Motivated by various practical problems, including the

DEDP in power grids, we study a Distributed Resource Alloca-

tion Optimization (DRAO) problem, where each agent can only

manipulate its private data, such as the local objective function,

Local Feasibility Constraint (LFC), and local resource data.

Such data in practice cannot be shared or known by other

agents. As the total network resource is the sum of individual

agent’s local resources, the agents need to cooperatively achieve

the optimal resource allocation in a distributed way, so that

the global objective function (as the sum of all local objective

functions) is minimized with all the constraints (including the

network resource constraint and LFCs) satisfied. Note that the

LFC is critical for the (secure) operation of practical networks

(referring to the communication system in Johari & Tsitsiklis

(2004) and D’Amico, Sanguinetti & Palomar (2014) as an

example), even though it was not considered in most existing

DRAO works. Particularly, for the DEDP in power grids,

the generation of each generator must be limited within its

box-like capacity bounds. The consideration of LFCs brings

remarkable difficulties to existing distributed algorithms

designed for the DRAO without LFCs, because the KKT

(optimality) conditions for the DRAO with and without

LFCs are totally different (referring to Remark 3.3). So

far, many DEDP works (such as Zhao, Topcu, Li, & Low

(2014), Zhang, Liu, Wang, Liu, & Ferrese (2015) and

Cherukuri, & Cortés (2015) and Cherukuri & Cortés (2014))

have only considered the box-like LFCs. However, the require-

ment from power industries, such as the secure operation of

inverter-based devices in smart grids, promotes the demand to

deal with non-box LFCs. This extension is nontrivial, and we

will show how to handle it systematically by using projected

dynamics in this paper.

Another crucial albeit difficult problem is the initialization

coordination among all agents. Many existing results are based

on initialization coordination procedures to guarantee that the

initial allocations satisfy the network resource constraint, which

may only work well for static networks. However, for a dy-

namical network, the resource has to be re-allocated once the

network configuration changes. Therefore, the initialization co-

ordination has to be re-performed whenever these optimization

algorithms re-start, which considerably degrades their applica-

bility. Taking the DEDP as an example, the initialization needs

to be coordinated among all agents whenever local load demand

or generation capacity/cost changes, or any distributed genera-

tor plugs in or leaves off (see Cherukuri, & Cortés (2015) for

an initialization procedure). This issue has to be well addressed

for achieving highly-flexible power grids with the integration of

ever-increasing renewables.

The objective of this paper is to propose an initialization-free

methodology to solve the DARO with local LFCs. The main

technical contributions of this paper are highlighted as follows:

• By employing the (differentiated) projection opera-

tion, two fully distributed continuous-time algorithms

are proposed as a kind of projected dynamics, with

the local allocation of each agent kept within its

own LFC set. Moreover, the algorithms ensure the

network resource constraint asymptotically with-

out requiring it being satisfied at the initial points.

Therefore, it is initialization-free, different from those

given in Xiao & Boyd (2006), Lakshmanan & Farias

(2008), Necoara, Nesterov, & Glineur (2011) and

Ghadimi, Shames, & Johansson (2013), and moreover,

provides novel initialization-free algorithms different

from the one given in Cherukuri & Cortés (2014).

• The convergence of the two projected algorithms is shown

by the properties of Laplacian matrix and projection op-

eration as well as the LaSalle invariance principle. The

result can be regarded as an extension of some existing dis-

tributed optimization algorithms ( Wang & Elia (2011),

Kia, Cortés, & Martinez (2015), Qiu, Liu, & Xie (2014),

and Liu & Wang (2015)) and an application of projected
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dynamics for variational inequalities (Gao (2003) and

Xia & Wang (2000)) to the DRAO problem.

• The proposed algorithms can be directly applied to

the DEDP in power systems considering generation ca-

pacity limitations. It enables the plug-and-play op-

eration for power grids with high-penetration of flex-

ible renewables. Our algorithms are essentially dif-

ferent from the ones provided in Cherukuri, & Cortés

(2015) and Cherukuri & Cortés (2014), and address

multi-dimensional decision variables and general non-box

LFCs. Simulation results demonstrate that the algorithm

effectively deals with various data and network configura-

tion changes, and also illustrate the algorithm scalability.

The reminder of this paper is organized as follows. The pre-

liminaries are given and then the DRAO with LFCs is formu-

lated with the basic assumptions in Section 2. Then a dis-

tributed algorithm in the form of projected dynamics is pro-

posed with its convergence analysis in Section 3. In Section 4,

a differentiated projected algorithm is proposed with its conver-

gence analysis for DRAO with strongly convex objective func-

tions, and an exponential convergence rate is obtained in the

case without LFCs. Moreover, the application to the DEDP

in power systems is shown in section 5 with numerical exper-

iments. Finally, the concluding remarks are given in Section

6.

Notations: Denote R≥0 as the set of nonnegative real num-

bers. Denote 1m = (1, ..., 1)T ∈ Rm and 0m = (0, ..., 0)T ∈ Rm.

Denote col(x1, ...., xn) = (xT
1
, · · · , xT

n )T as the column vector

stacked with vectors x1, ..., xn. In denotes the identity matrix

in Rn×n. For a matrix A = [ai j], ai j or Ai j stands for the matrix

entry in the ith row and jth column of A. A ⊗ B denotes the

Kronecker product of matrixes A and B. Denote ×i=1,...,nΩi as

the Cartesian product of the sets Ωi, i = 1, ..., n. Denote the set

of interiors of set K as int(K), and the boundary set of set K as

∂K.

2. Preliminaries and problem formulation

In this section, we first give the preliminary knowledge re-

lated to convex analysis and graph theory, and then formulate

the DRAO problem of interest.

2.1. Convex analysis and projection

The following concepts and properties about convex func-

tions, convex sets, and projection operations come from

Ruszczynski (2006) and Bertsekas (2009). A differentiable

convex function f : Rm → R has the locally Lipschitz con-

tinuous gradient, if, given any compact set Q, there is a con-

stant kQ such that ||∇ f (x) − ∇ f (y)|| ≤ kQ ||x − y||,∀x, y ∈ Q. A

differentiable function f (x) is called µ-strongly convex on Rm

if there exists a constant µ > 0 such that, for any x, y ∈ Rm,

f (y) ≥ f (x) + ∇T f (x)(y − x) + 1
2
µ||y − x||2, or equivalently,

(x − y)T (∇ f (x) − ∇ f (y)) ≥ µ||x − y||2. (1)

The following notations describe the geometry properties of

the convex set. Denote CΩ(x) as the normal cone of Ω at x,

that is, CΩ(x) = {v : 〈v, y − x〉 ≤ 0, ∀y ∈ Ω}. Define cΩ(x)

as cΩ(x) = {v : ||v|| = 1, 〈v, y − x〉 ≤ 0, ∀y ∈ Ω} if x ∈ ∂Ω,

and cΩ = {0} if x ∈ int(Ω). The feasible direction cone of Ω

at x is given as KΩ(x) = {d : d = β(y − x), y ∈ Ω, β ≥ 0}.
The tangent cone of set Ω at x is defined as TΩ(x) = {v : v =

limk→∞
xk−x
τk
, τk ≥ 0, τk → 0, xk ∈ Ω, xk → x}. Then TΩ(x) is the

closure of KΩ(x) whenΩ is a closed convex set, and is the polar

cone to CΩ(x), that is, TΩ(x) = {y : 〈y, d〉 ≤ 0,∀d ∈ CΩ(x)}
(referring to Lemma 3.13 of Ruszczynski (2006)).

Define the projection of x onto a closed convex set Ω by

PΩ(x) = arg miny∈Ω ||x − y||. The basic property of projection

operation is

〈x − PΩ(x), PΩ(x) − y〉 ≥ 0,∀x ∈ Rm,∀y ∈ Ω. (2)

The following relationships can be derived from (2),

||x − PΩ(x)||22 + ||PΩ(x) − y||22 ≤ ||x − y||22,∀x ∈ Rm,∀y ∈ Ω, (3)

and

||PΩ(x) − PΩ(y)|| ≤ ||x − y||,∀x, y ∈ Rm. (4)

The normal cone CΩ(x) can also be defined as (Lemma 2.38 of

Ruszczynski (2006))

CΩ(x) = {v : PΩ(x + v) = x}. (5)

For a closed convex set Ω, point x ∈ Ω and direc-

tion v, we define the differentiated projection operator as

(Dupuis & Kushner (1987) and Nagurney & Zhang (1995)),

ΠΩ(x, v) = lim
δ→0

PΩ(x + δv) − x

δ
. (6)

The basic properties of the differentiated projection operator are

given as follows (Brogliato, Daniilidis, Lemarchal, & Acary

(2006)).

Lemma 2.1. (i):If x ∈ int(Ω), then ΠΩ(x, v) = v; (ii): x ∈ ∂Ω,

and maxn∈cΩ(x)〈v, n〉 ≤ 0, then ΠΩ(x, v) = v; (iii): x ∈ ∂Ω,

and maxn∈cΩ(x)〈v, n〉 ≥ 0, then ΠΩ(x, v) = v − 〈v, n∗〉n∗, where

n∗ = arg maxn∈cΩ(x)〈v, n〉. Therefore, the operator ΠΩ(x, v) in

(6) is equivalent with the projection of v onto TΩ(x), i.e.,

ΠΩ(x, v) = PTΩ(x)(v).

2.2. Graph theory

The following concepts of graph theory can be found in

Mesbahi & Egerstedt (2010). The information sharing or ex-

changing among the agents is described by graph G = (N ,E).

The edge set E ⊂ N × N contains all the information interac-

tions. If agent i can get information from agent j, then ( j, i) ∈ E
and agent j belongs to agent i’s neighbor set Ni = { j|( j, i) ∈ E}.
G is said to be undirected when (i, j) ∈ E if and only if ( j, i) ∈ E.

A path of graph G is a sequence of distinct agents in N such

that any consecutive agents in the sequence corresponding to

an edge of graphG. Agent j is said to be connected to agent i if

3



there is a path from j to i. G is said to be connected if any two

agents are connected.

Define adjacency matrix A = [ai j] of G with ai j = 1 if j ∈
Ni and ai j = 0 otherwise. Define the degree matrix Deg =

diag{
∑n

j=1 a1 j, ...,
∑n

j=1 an j}. Then the Laplacian of graph G is

L = Deg − A. When G is a connected undirected graph, 0 is a

simple eigenvalue of Laplacian L with the eigenspace {α1n|α ∈
R}, and L1n = 0n, 1T

n L = 0T
n , while all other eigenvalues are

positive. Denote the eigenvalues of L in an ascending order as

0 < s2 ≤ · · · ≤ sn. Then, by the Courant-Fischer Theorem,

min
x,0,

1T x=0

xT Lx = s2||x||22, max
x,0

xT Lx = sn||x||22. (7)

2.3. Problem formulation

Consider a group of agents with the index setN = {1, ..., n} to
make an optimal allocation of network resource under both the

network resource constraint and LFCs. Agent i can decide its

local allocation xi ∈ Rm, and can access the local resource data

di ∈ Rm. The total network resource is
∑

i∈N di, and therefore,

the allocation should satisfy the network resource constraint:
∑

i∈N xi =
∑

i∈N di. Furthermore, the allocation of agent i should

satisfy the local feasibility constraint (LFC): xi ∈ Ωi, where

Ωi ⊂ Rm is a closed convex set only known by agent i. Agent i

also has a local objective function fi(xi) : Rm → R associated

with its local allocation xi. Denote X = col(x1, ..., xn) ∈ Rmn as

the allocation vector of the whole network. Then the task for

the agents is to collectively find the optimal allocation corre-

sponding to the DRAO problem as follows:

Distributed Resource Allocation Optimization :

min
xi∈Rm , i∈N

f (X) =
∑

i∈N
fi(xi)

sub ject to
∑

i∈N
xi =
∑

i∈N
di,

xi ∈ Ωi, i ∈ N .

(8)

Clearly, problem (8) is an extension of the previous optimiza-

tion models in Xiao & Boyd (2006), Lakshmanan & Farias

(2008) and Necoara, Nesterov, & Glineur (2011) by intro-

ducing the additional LFCs, that is, xi ∈ Ωi. Clearly,

xi ∈ Ωi also generalizes previous box constraints in

Johari & Tsitsiklis (2004), D’Amico, Sanguinetti & Palomar

(2014) and Cherukuri & Cortés (2014).

The following assumptions are given for (8), which were also

adopted for the distributed optimization or resource allocation

in Feijer & Paganini (2010), Kia, Cortés, & Martinez (2015),

and Liu & Wang (2015).

Assumption 1. The functions fi(xi), i ∈ N are continuously

differentiable convex functions with locally Lipschitz continu-

ous gradients and positive definite Hessians over Rm.

Assumption 1 implies that fi(xi)’s are strictly convex, and

hence guarantees the uniqueness of the optimal solution to (8).

Assumption 2. There exists a finite optimal solution X∗ to

problem (8). The Slater’s constraint condition is satisfied for

DRAO (8), namely, there exists x̃i ∈ int(Ωi),∀i ∈ N , such that
∑

i∈N x̃i =
∑

i∈N di.

Remark 2.2. Define the recession cone of a convex set Ω as

RΩ = {d : x + αd ∈ Ω, ∀ α ≥ 0, ∀x ∈ Ω}. Then the suffi-

cient and necessary condition for the existence of finite optimal

solution to (8) is (referring to Proposition 3.2.2 of Bertsekas

(2009))

×i∈N RΩi
∩ {Null(1T

n ⊗ Im)} ∩ ×i∈NR fi = 0,

where RΩi
is the recession cone of Ωi and R fi is the recession

cone of any nonempty level set of fi(xi): {xi ∈ Rm| fi(xi) ≤ γ}.
In many practical cases, we have R fi = 0 (taking the

quadratic function as an example). Furthermore, RΩi
= 0 when

Ωi is compact. Therefore, the existence of a finite solution can

be easily guaranteed and verified in many practical problems.

The local objective function fi(xi), resource data di and LFC

set Ωi are the private data for agent i, which are not shared

with other agents. This makes (8) a distributed optimization

problem. To fulfill the cooperations between agents for solv-

ing (8), the agents have to share their local information through

a network G = (N ,E). Next follows an assumption about the

connectivity of G to guarantee that any agent’s information can

reach any other agents, which is also quite standard for dis-

tributed optimization (Liu & Wang (2015)).

Assumption 3. The information sharing graph G = (N ,E) is

undirected and connected.

In a sum, the task of this paper is to design fully distributed

algorithms for the agents to cooperatively find the optimal re-

source allocation to (8) without any center. In other words,

agent i needs to find its optimal allocation x∗
i

by manipulating

its local private data di, Ωi, and fi(xi) and by cooperations with

its neighbor agents through G.

3. Projected algorithm for DRAO

In this section, a distributed algorithm for (8) based on pro-

jected dynamics is proposed and analyzed. The distributed al-

gorithm for agent i is given as follows:

Projected algorithm for agent i :

ẋi = PΩi
(xi − ∇ fi(xi) + λi) − xi

λ̇i = −
∑

j∈Ni

(λi − λ j) −
∑

j∈Ni

(zi − z j) + (di − xi)

żi =
∑

j∈Ni

(λi − λ j)

(9)

In algorithm (9), xi ∈ Rm is the local allocation of agent i,

and λi, zi ∈ Rm are two auxiliary variables of agent i. Note

that the algorithm (9) is fully distributed because agent i only

needs the local data (including di, fi(xi), andΩi) and the shared

information {λ j, z j, j ∈ Ni} from its neighbor agents. Thereby,

(9) does not need any center to handle all the data or coordinate

all the agents. With the distributed algorithm (9), each agent

has the autonomy and authority to formulate its own objective

function and feasibility set, and hence, the privacy is kept within

each agent. Because each agent can instantaneously react to
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its local data changes, it can quickly adapt its local decision.

Therefore, the algorithm can be easily applied to large-scale

networks.

The algorithm (9) can be understood based on the following

observations. The duality of (8) with multiplier λ ∈ Rm is

max
λ∈Rm

q(λ) =
∑

i∈N
qi(λ) =

∑

i∈N
inf

xi∈Ωi

{ fi(xi) − λT xi + λ
T di}. (10)

Although some existing distributed algorithms in

Nedic, Ozdaglar, & Parrilo (2010) and Sayed (2014) ad-

dressed the dual problem (10), they need to solve a subproblem

at each time (iteration) to calculate the gradients. In other

words, two “time scales” are needed if applying existing

distributed algorithms to (8). Here we aim to develop a simple

algorithm without solving any subproblems. To this end, we

formulate a constrained optimization problem with Laplacian

matrix L and Λ = col(λ1, ..., λn) ∈ Rmn as

maxΛ=(λ1,...,λn) Q(Λ) =
∑

i∈N qi(λi)

sub ject to (L ⊗ Im)Λ = 0mn.
(11)

The augmented Lagrangian duality of (11) with multipliers Z =

col(z1, ..., zn) ∈ Rmn is

min
Z

max
Λ

Q(Λ, Z) =
∑

i∈N
qi(λi) − ZT (L ⊗ Im)Λ −

1

2
ΛT (L ⊗ Im)Λ.

(12)

Then the projected dynamics (9) is derived by applying the gra-

dient flow to (10) and (12) along with the projection operation

to guarantee the feasibility of LFCs.

From the KKT condition, we can show that the equilibrium

point of (9) yields the optimal solution to problem (8). De-

note X = col(x1, ..., xn), ∇ f (X) = col(∇ f1(x1), · · · ,∇ fn(xn)),

D = col(d1, · · · , dn), and Ω = ×i∈NΩi. Write algorithm (9) in a

compact form as

Ẋ = PΩ(X − ∇ f (X) + Λ) − X,

Λ̇ = −(L ⊗ Im)Λ − (L ⊗ Im)Z + (D − X),

Ż = (L ⊗ Im)Λ.
(13)

Theorem 3.1. Under Assumptions 1-3, if the initial point

xi(0) ∈ Ωi, ∀i ∈ N , then xi(t) ∈ Ωi, ∀t ≥ 0,∀i ∈ N , and

col(X∗,Λ∗, Z∗) is the equilibrium point of the distributed algo-

rithm (9) with X∗ as the optimal solution to (8).

Proof: Note that ẋi ∈ TΩi
(xi), ∀xi ∈ Ωi because PΩi

(xi −
∇ fi(xi) + λi) ∈ Ωi. Given the initial point xi(0) ∈ Ωi, by

Nagumo’s theorem (referring to page 174 and page 214 of

Aubin & Cellina (1984)), xi(t) ∈ Ωi,∀t ≥ 0 (Related proofs

can also be found in Liao, Qi, & Qi (2004)).

To obtain the equilibrium point, we set Ż = 0mn and getΛ∗ =

1n ⊗ λ∗, λ∗ ∈ Rm, because the graph G is connected. Λ̇ = 0mn

implies that (L ⊗ Im)Z∗ = D − X∗. Because the graph G is

undirected, 1T
n L = 0T

n and (1T
n ⊗ Im)(L ⊗ Im)Z = (1T

n L) ⊗ ImZ =

(1T
n ⊗ Im)(D − X) = 0m. Hence,

∑

i∈N di =
∑

i∈N x∗
i
. Then, at the

equilibrium point,

Λ∗ = 1n ⊗ λ∗, λ∗ ∈ Rm, (L ⊗ Im)Z∗ = D − X∗,
∑

i∈N
di =
∑

i∈N
x∗i .

Also, at the equilibrium point, ẋi = 0 implies that PΩi
(x∗

i
−

∇ fi(x∗
i
)+λ∗) = x∗

i
. It follows from Lemma 2.38 of Ruszczynski

(2006) that

−∇ fi(x∗i ) + λ∗ ∈ CΩi
(x∗i ), i = 1, ..., n.

Therefore, the equilibrium point col(X∗,Λ∗, Z∗) of (9) satis-

fies
0mn ∈ ∇ f (X∗) − 1n ⊗ λ∗ +CΩ(X∗),
(1T

n ⊗ Im)X∗ = (1T
n ⊗ Im)D, X∗ ∈ Ω, (14)

which is exactly the optimality condition (KKT) for DRAO (8)

by Theorem 3.34 in Ruszczynski (2006). Thus, the conclusion

follows. ✷

Remark 3.2. It can be shown that the equilibrium point of (9)

has λ∗ as the dual optimal solution to problem (10), and Z∗

as the dual optimal solution to problem (11), following a sim-

ilar analysis routine of Theorem 3.1 and Proposition 5.3.2 in

Bertsekas (2009). It can also be shown that any col(X∗, 1m ⊗
λ∗, Z∗), with X∗ as the optimal solution to (8), λ∗ as the dual

optimal solution to (10) and Z∗ as the dual optimal solution to

(11), corresponds to an equilibrium point of (9). We do not

discuss their details here for space limitations.

Remark 3.3. The differences between our work and some ex-

isting ones are listed as follows:

• The KKT condition for DRAO without LFC is

∇ f (X∗) = 1n ⊗ λ∗, (1T
n ⊗ Im)X∗ = (1T

n ⊗ Im)D. (15)

The KKT condition (14) for DRAO with LFC and the

condition (15) for DRAO without LFC are totally differ-

ent. (15) requires the optimal allocations to be the points

satisfying the network resource constraint with the same

marginal costs (gradients), while (14) requires the optimal

allocations to be feasible in both network resource con-

straint and LFCs. The optimal allocations in (14) should

also satisfy a variational inequality related to both the ob-

jective functions’ gradients and the normal cones of the

LFC sets. In fact, the marginal costs (gradients) at the

optimal allocations of (14) do not necessarily reach the

same levels, and the differences can be seen as the “price

of allocation feasibility”.

• The previous algorithms (except the one in

Cherukuri & Cortés (2014)) kept the network resource

constraint satisfied (ensured its eventual feasibility) by

setting feasible initial points through the initialization

coordination procedure. In other words, the network

resource constraint can be guaranteed only if it is

satisfied at the initial moment. However, the initialization

for the network resource constraint is quite restrictive

for large-scale dynamical networks because it involves

global coordination and has to be performed every time

the network data/configuration changes. Moreover, it

is not trivial to achieve the initialization coordination

with both the LFCs and the network resource constraint

(refer to Cherukuri, & Cortés (2015) for an initialization

procedure with one dimensional interval constraint).
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• In fact, proportional-integral (PI)-type consensus dy-

namics (Wang & Elia (2011) and Gharesifard & Cortés

(2014)) and projected gradient flows (Liu & Wang

(2015)), which both have been utilized for distributed op-

timization, are combined together to obtain the algorithm

(9) for the KKT condition (14). Local λi acts as the local

shadow price, and all the local shadow prices must reach

consensus to be the global market clearing price. There-

fore, a second-order PI-based consensus dynamics is in-

corporated into (9) with the integral variable zi summing

up the disagreements between λi and {λ j, j ∈ Ni}. Mean-

while, the dynamics of xi adjusts the local allocation by

comparing the local shadow price and the local gradient,

and also utilizes the projection operation in order to make

the local allocation flowing within its LFC set all the time.

Therefore, the algorithms given in Ho, Servi, & Suri (1980),

Lakshmanan & Farias (2008), Necoara, Nesterov, & Glineur

(2011) and Ghadimi, Shames, & Johansson (2013) failed to

solve (8) because they cannot ensure the LFCs given in (14).

Note that the algorithm (9) can ensure LFCs even during the

algorithm flow with projection operations. It only requires that

each agent has its initial allocation belonging to its LFC set,

which can be trivially accomplished by each agent with one-

step local projection operation. Furthermore, algorithm (9) en-

sures the network resource constraint asymptotically without

caring about whether it is satisfied at the initial points, and

therefore, is free of initialization coordination procedure. Due

to free of any center and initialization, algorithm (9) can adap-

tively handle online data without re-initialization whenever the

network data/configuration changes. Moreover, it can work in a

“plug-and-play” manner for dynamical networks with leaving-

off or plugging-in of agents.

Next, let us analyze the convergence of (9), The analy-

sis techniques are inspired by the projected dynamical sys-

tems for variational inequalities (referring to Xia & Wang

(2000) and Gao (2003)) and distributed optimization (referring

to Shi, Johanssan, & Hong (2013 ), Kia, Cortés, & Martinez

(2015), Qiu, Liu, & Xie (2014) and Liu & Wang (2015)).

Theorem 3.4. Under Assumptions 1-3, and given bounded ini-

tial points xi(0) ∈ Ωi, ∀i ∈ N , the trajectories of the algorithm

(9) are bounded and converge to an equilibrium point of (9),

namely, agent i asymptotically achieves its optimal allocation

x∗
i

of (8) with (9).

Proof: Take m = 1 without loss of generality. Denote Ω̄ =

Ω × Rn × Rn. Define a new vector S = col(X,Λ, Z) and the

vector function F(S ) : R3n → R3n as

F(S ) =





















∇ f (X) − Λ
LΛ + LZ − (D − X)

−LΛ





















.

Recalling the form in (13) and the fact that PRn (x) = x, ∀x ∈
Rn, the dynamics of all the agents can be written as

Ṡ = PΩ̄(S − F(S )) − S .

Define H(S ) = PΩ̄(S − F(S )), and then give a Lyapunov func-

tion as

Vg = −〈F(S ),H(S )− S 〉 − 1

2
||H(S ) − S ||22 +

1

2
||S − S ∗||22,

where S ∗ = col(X∗,Λ∗, Z∗), X∗ is the optimal solution to (8),

Λ∗ is the optimal solution to (11), and Z∗ is the dual optimal

solution to (12).

Notice that X∗ is a finite point from Assumption 2. Because

the Slater’s condition is satisfied with Assumption 2, the dual

optimal solution λ∗ for (10) exists and is finite by Proposition

5.3.1 of Bertsekas (2009). Since the function fi(xi) is strictly

convex, ∇qi(λ
∗) = di − x∗

i
by Theorem 2.87 of Ruszczynski

(2006) and the saddle point property of (10). Then the KKT

condition of (11) is LΛ∗ = 0 and D − X∗ − LΛ∗ − LZ∗ = 0.

Hence, LZ∗ = D − X∗ implies the finiteness of the dual optimal

solution Z∗ for (11). Therefore, S ∗ is a finite point.

In fact, with the KKT conditions to (10) and (11), F(S ∗) =

col((∇ f (X∗) − Λ∗), 0n, 0n), and −∇ f (X∗) + Λ∗ ∈ CΩ(X∗), we

have

H(S ∗) = PΩ̄(S ∗ − F(S ∗)) = S ∗, −F(S ∗) ∈ CΩ̄(S ∗). (16)

Due to (2) and (3),

−〈F(S ),H(S )− S 〉 − 1
2
〈H(S ) − S ,H(S ) − S 〉

= 1
2
[||F(S )||2

2
− ||F(s) + H(S ) − S ||2

2
]

= 1
2
[||S − F(S ) − S ||22 − ||H(S ) − (S − F(S ))||22]

≥ 1
2
||S − H(S )||2

2
.

Hence, Vg ≥ 1
2
||S − H(S )||22 +

1
2
||S − S ∗|| ≥ 0, and Vg = 0 if

and only if S = S ∗.

By Theorem 3.2 of Fukushima (1992), any asymmetric

variational inequality can be converted to a differentiable op-

timization problem. As a result,

V̇g = (F(S ) − [JF(S ) − I](H(S ) − S ) + S − S ∗)T (H(S ) − S ),

where JF(S ) is the Jacabian matrix of F(S ) defined as

JF (S ) =





















∇2 f (X) −I 0

I L L

0 −L 0





















.

With Assumptions 1 and 3,

S T JF (S̄ )S = XT∇2 f (X̄)X+ΛT LΛ > 0, ∀S̄ ∈ Ω̄, ∀S , 0 ∈ R3n.

With (2), taking x = S − F(S ) and y = S ∗ gives 〈S − F(S ) −
H(S ),H(S )−S ∗〉 ≥ 0, which implies 〈S −H(S )−F(S ),H(S )−
S + S − S ∗〉 ≥ 0. Hence, −||H(S )− S ||2

2
+ 〈S − H(S ), S − S ∗〉 +

〈−F(S ),H(S )− S 〉 + 〈−F(S ), S − S ∗〉 ≥ 0, or equivalently,

〈S − H(S ), S − S ∗ + F(S )〉 ≥ ||H(S ) − S ||22 + 〈F(S ), S − S ∗〉.

Consequently,

V̇g ≤ −(H(S ) − S )T JF(S )(H(S ) − S ) + ||H(S ) − S ||22
+〈S − S ∗ + F(S ),H(S ) − S 〉

≤ −〈F(S ), S − S ∗〉
≤ −〈F(S ), S − S ∗〉 + 〈F(S ∗), S − S ∗〉 − 〈F(S ∗), S − S ∗〉
≤ −〈F(S ) − F(S ∗), S − S ∗〉 − 〈F(S ∗), S − S ∗〉.
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In fact, 〈F(S ) − F(S
′
), S − S

′〉 = 〈∇ f (X) − ∇ f (X
′
), X − X

′〉 +
〈Λ − Λ′ , L(Λ − Λ′ )〉 ≥ 0, ∀S , S

′ ∈ Ω̄, because the local ob-

jective functions are convex, and the Laplacian matrix is posi-

tive semi-definite by Assumptions 1 and 3. With (16), we have

〈F(S ∗), S − S ∗〉 ≥ 0. Then V̇g ≤ 0, and any finite equilibrium

point S ∗ of (9) is Lyapunov stable. Furthermore, there exists a

forward compact invariance set given any finite initial points,

IS = {col(X,Λ, Z)
∣

∣

∣

1

2
||S − S ∗|| ≤ Vg(S (0))}. (17)

Therefore, with the local Lipstchitz continuity of the ob-

jective functions’ gradients in Assumption 1 and the non-

expansive property of projection operation (4), P(S −F(S ))−S

is Lipstchitz over the compact set IS in (17). There ex-

ists a unique solution to (9) with time domain [0,∞). Also,

the compactness and convexity of IS implies the existence of

equilibrium point to dynamics (9) (referring to page 228 of

Aubin & Cellina (1984)). By Theorem 3.1 and without loss

of generality, the equilibrium point is assumed to be S ∗.
Furthermore, there exists c∗ ∈ CΩ(X∗) such that −∇ f (X∗) +

Λ∗ = c∗, LZ∗ = D − X∗, and Λ∗ = 1nλ
∗.

V̇g ≤ −〈F(S ), S − S ∗〉 = −〈X − X∗,∇ f (X) − Λ〉
−〈Λ − Λ∗, LΛ + LZ − (D − X∗)〉 − 〈Z − Z∗,−LΛ〉

≤ −〈X − X∗,∇ f (X) − Λ − ∇ f (X∗) + Λ∗ − c∗〉
−〈Λ − Λ∗, L(Λ − Λ∗)〉 − 〈Λ − Λ∗, L(Z − Z∗)〉
−〈Λ − Λ∗, LZ∗ − (D − X)〉 − 〈Z − Z∗,−L(Λ − Λ∗)〉

≤ −〈X − X∗,∇ f (X) − ∇ f (X∗)〉 + 〈X − X∗, c∗〉
−〈Λ − Λ∗, L(Λ − Λ∗)〉

≤ −〈X − X∗,∇ f (X) − ∇ f (X∗)〉 − 〈Λ − Λ∗, L(Λ − Λ∗)〉,

where the last step follows from 〈X − X∗, c∗〉 ≤ 0. Denote the

set of points satisfying V̇g = 0 as Eg = {(X,Λ, Z)
∣

∣

∣V̇g = 0}.
Because the Hessian matrix of ∇2 f (X) is positive definite,

∇ f (X) = ∇ f (X∗) +
∫ 1

0
∇2 f (τX + (1 − τ)X∗)T (X − X∗)dτ and

the null space for L imply that

Eg = {(X,Λ, Z)
∣

∣

∣X = X∗,Λ ∈ span{α1n}}.

Then we claim that the maximal invariance set within the

set Eg is exactly the equilibrium point of (9). In fact, Λ ∈
span{α1n} implies Z = Z∗. Hence, Λ̇ = LZ∗ − (D − X∗). How-

ever, LZ∗ − (D−X∗) must be zero; otherwise Λ will go to infin-

ity, which contradicts that Eg is a compact set within IS . Thus,

Λ̇ = 0 and Λ = Λ∗.

By the LaSalle invariance principle and Lyapunov stability

of the equilibrium point, the system (9) converges to its equi-

librium point, which implies the conclusion. ✷

Remark 3.5. Although an initialization-free algorithm has

also been proposed and investigated for the DEDP, a spe-

cial case of DRAO, in Cherukuri & Cortés (2014), algorithm

(9) provides a different algorithm to address the DRAO prob-

lem without initialization. Additionally, algorithm (9) can

handle general multi-dimensional LFCs explicitly with the

projection operation, while Cherukuri & Cortés (2014) only

addressed one-dimensional box constraints with a penalty

method. Moreover, one agent was required to know the total

Table 1: Parameters setting of Example 3.6

0 ∼ 600s 600s ∼ 1200s 1200s ∼
a1, d1 (8,2), (8,2) (0.1,0.3), (8,2) (0.1,0.3), (12,-3)

a2, d2 (4,7), (3,4) (-17,15), (3,4) (-17,15), (0,7)

a3, d3 (0.13,8), (3,8) (0.13,8), (-5,12) (3,0.7), (-5,12)

a4, d4 (4,20), (10,2) (4,20), (1,15) (5,17), (1,15)

Figure 1: The trajectories of the allocations of agent 1 and agent 2.

network resource all the time in a time-varying resource case

in Cherukuri & Cortés (2014), while each agent only knows

its local resource in (9). Moreover, our techniques introduce a

variational inequality viewpoint in addition to Lyapunov meth-

ods with the invariance principle.

The following example illustrates how (9) “adaptively”

achieves the optimal resource allocation without re-

initialization for a dynamical network. Notice that the

following example cannot be directly addressed by the

algorithm in Cherukuri & Cortés (2014).

Example 3.6. Four agents cooperatively optimize problem (8).

The allocation variable and resource data for agent i are xi =

(xi,1, xi,2)T ∈ R2, di = (di,1, di,2)T ∈ R2, respectively. The objec-

tive functions fi(xi) are parameterized with ai = (ai,1, ai,2)T ∈
R2 as follows:

fi(xi) = (xi,1 + ai,1xi,2)2 + xi,1 + ai,2xi,2 + 0.001(x2
i,1 + x2

i,2).

The LFCs of the four agents are given as follows: Ω1 = {x1 ∈
R2|(x1,1 − 2)2 + (x1,2 − 3)2 ≤ 25}, Ω2 = {x2 ∈ R2|x2,1 ≥ 0, x2,1 ≥
0, x2,1 + 2x2,2 ≤ 4}, Ω3 = {x3 ∈ R2|4 ≤ x3,1 ≤ 6, 2 ≤ x3,2 ≤ 5}
and Ω4 = {x4 ∈ R2|0 ≤ x4,1 ≤ 15, 0 ≤ x4,2 ≤ 20}, respectively,

and their boundaries are shown in Figures 1 and 2.

Figure 2: The trajectories of the allocations of agent 3 and agent 4.
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Figure 3: The trajectories of the Lagrangian multiplies λi’s

Figure 4: Network resource constraint and optimality condition

The agents share information with a ring graph G:

1↔ 2↔ 3↔ 4↔ 1.

The initial allocation xi(0) of agent i in algorithm (9) is ran-

domly chosen within its LFC set, and Λ, Z are set with zero

initial values. The data ai and di switches as Table 3, while the

allocation variables remain unchanged when the data switches.

The simulation results are shown in Figures 1, 2, 3, and 4.

Figures 1 and 2 show that the agents’ allocation variables al-

ways remain within the corresponding LFC sets, while Figure

3 shows that the Lagrangian multipliers reach consensus after

the transient processes. Figure 4 demonstrates that the network

resource constraint can be satisfied asymptotically even though

it is violated each time the data/configuration changes, and Fig-

ure 4 also reveals that ||Ẋ||2
2
+ ||Λ̇||2

2
+ ||Ż||2

2
always converges to

zero, guaranteeing the optimality of the resource allocations.

4. Differentiated projected algorithm for DRAO

In this section, the differentiated projection operator

(6) is applied to derive an algorithm for (8). In

fact, the projected dynamics based on the operator in

(6) was firstly introduced in the study of constrained

stochastic approximation in Dupuis & Kushner (1987), and

later was utilized to solve variational inequalities and

constrained optimization problems in Nagurney & Zhang

(1995), Brogliato, Daniilidis, Lemarchal, & Acary (2006), and

Cherukuri, Mallada, & Cortés (2016). Here the operator (6) is

applied to the construction of the distributed resource allocation

algorithm for agent i given as follows:

Differentiated projected algorithm for agent i :

ẋi = ΠΩi
(xi,−∇ fi(xi) + λi)

λ̇i = −
∑

j∈Ni

(λi − λ j) −
∑

j∈Ni

(zi − z j) + (di − xi)

żi =
∑

j∈Ni

(λi − λ j)

(18)

Remark 4.1. The algorithm (18) is a direct extension of (9)

by differentiating the projection operator, where each agent is

required to project −∇ fi(xi) + λi onto the tangent cone TΩi
(xi).

Thereby, (18) has the additional burden for the tangent cone

computation compared with (9). However, for some specific

convex sets such as polyhedron, Euclidean ball, and boxes, it is

not hard to get the close form of the tangent cone at any given

point.

Similar to the algorithm (9), the algorithm (18) is also a dis-

tributed algorithm, and it does not need any initialization coor-

dination procedure. Therefore, it can efficiently process online

data for dynamical networks.

Although algorithm (18) is a discontinuous dynamical sys-

tem, the solution to (18) is well-defined in the Caratheodory

sense (an absolutely continuous function col(X(t),Λ(t), Z(t)) :

[0, T ] → R3mn is a solution of (18) if (18) is satisfied

for almost all t ∈ [0, T ], referring to Definition 2.5 in

Nagurney & Zhang (1995)). The existence of an absolutely

continuous solution to (18) can be found in Theorem 3.1 of

Cojocaru & Jonker (2004), and the condition when the solu-

tion can be extended to interval [0,∞] is given in Theorem 1

of Brogliato, Daniilidis, Lemarchal, & Acary (2006).

The following result shows the correctness of algorithm (18).

Theorem 4.2. Suppose that Assumptions 1-3 hold. If the initial

point xi(0) ∈ Ωi, ∀i ∈ N , then xi(t) ∈ Ωi, ∀t ≥ 0,∀i ∈ N ,

and there is the equilibrium point of the algorithm (18) with

X∗ = col(x∗1, ..., x
∗
n) as the optimal solution to (8).

Proof: Obviously, ẋi ∈ TΩi
(xi), ∀xi ∈ Ωi accord-

ing to Lemma 2.1. It follows that (18) has an absolutely

continuous solution on interval [0,∞] by Theorem 1 of

Brogliato, Daniilidis, Lemarchal, & Acary (2006). Moreover,

Theorem 3.2 of Cojocaru & Jonker (2004) shows that the so-

lution of (18) coincides with a slow solution of a differential

inclusion. Given the initial point xi(0) ∈ Ωi, xi(t) ∈ Ωi,∀t ≥
0 holds in light of the viability theorem in Aubin & Cellina

(1984).

By Lemma 2.1, we have that ΠΩi
(xi,−∇ fi(xi) + λi) = 0 if at

least one of the following cases is satisfied: (i):xi ∈ int(Ωi), and

−∇ fi(xi) + λi = 0; (ii): xi ∈ ∂Ωi, and −∇ fi(xi) + λi = 0; (iii):

xi ∈ ∂Ωi, and −∇ fi(xi)+λi ∈ CΩi
(xi). Hence, ΠΩi

(xi,−∇ fi(xi)+

λi) = 0 implies −∇ fi(xi) + λi ∈ CΩi
(xi). Following similar

analysis of Theorem 3.1, at the equilibrium point we have

Λ∗ = 1n ⊗ λ∗, λ∗ ∈ Rm, x∗
i
∈ Ωi

(L ⊗ Im)Z∗ = D − X∗,
∑

i∈N x∗
i
=
∑

i∈N di,

−∇ fi(x∗
i
) + λ∗ ∈ CΩi

(x∗
i
).

(19)
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Thus, the optimality condition (14) of (8) is satisfied by the

equilibrium point of (18). ✷

Next result shows the convergence of (18) when the local

objective functions are strongly convex.

Theorem 4.3. Suppose that Assumptions 1-3 hold, and the lo-

cal objective functions fi(xi) are µi-strongly convex functions

with ki-Lipschitz continuous gradients. Given bounded initial

points xi(0) ∈ Ωi, ∀i ∈ N , the trajectories of algorithm (18)

converge to its equilibrium point. Furthermore, if there are no

LFCs (that is, Ωi = Rm, i = 1, · · · , n), then algorithm (18) ex-

ponentially converges to its equilibrium point.

Proof: We still take m = 1 without loss of generality.

At first, we show the convergence of (18). By Lemma 2.1,

ΠΩi
(xi,−∇ fi(xi) + λi) = −∇ fi(xi) + λi − β(xi)ni(xi), (20)

where ni(xi) ∈ cΩi
(xi), β(xi) ≥ 0. Notice that there exist

β(x∗
i
) ≥ 0 and ni(x∗

i
) ∈ cΩi

(x∗
i
) at the equilibrium point such

that ∇ fi(x∗
i
) − λ∗ = −β(x∗

i
)ni(x∗

i
).

Define the following variables

Y = X − X∗, θ = [r R]T Y, Y = [r R]θ,

V = Λ − Λ∗, η = [r R]T V, V = [r R]η,

W = Z − Z∗, δ = [r R]T W, W = [r R]δ,
(21)

with r = 1√
n
1n and rT R = 0T

n such that RT R = In−1 and RRT =

In − 1
n
1n1T

n . We partition the variables θ, η, δ as col(θ1, θ2),

col(η1, η2), col(δ1, δ2) with θ1, η1, δ1 ∈ R and θ2, η2, δ2 ∈ Rn−1.

Then the dynamics of the variables θ, η, δ can be derived with

(18), (19), (20) and (21) as follows,

θ̇1 = −rT h + η1; θ̇2 = −RT h + η2;

η̇1 = −θ1; η̇2 = −θ2 − RT LRη2 − RT LRδ2;

δ̇1 = 0; δ̇2 = RT LRη2,

(22)

where h = ∇ f (Y + X∗) − ∇ f (X∗) + NΩ(X) − NΩ(X∗),

NΩ(X) = col(β(x1)n1(x1), ..., β(xn)nn(xn)), and NΩ(X∗) =
col(β(x∗

1
)n1(x∗

1
), ...., β(x∗n)nn(x∗n)).

Construct the following function

V s
1
= 1

2
α(θT θ + ηTη) + 1

2
(α + γ)δT

2 δ2

+ 1
2
γ(η2 + δ2)T (η2 + δ2),

(23)

where α, γ are positive constants to be determined later. Obvi-

ously, 1
2
α||p||22 ≤ V s

1
≤ ( 1

2
(α+γ)+γ)||p||22 where p = col(θ, η, δ2).

The derivative of V s
1

along (18) is

V̇ s
1
= α(−YT h − η2RT LRη2 − η2RT LRδ2)

+ γ(−ηT
2
θ2 − η2RT LRδ2 − δ2θ2 − δT

2
RT LRδ2)

+ (α + γ)δT
2 RT LRη2.

Because ni(x∗
i
) ∈ cΩi

(x∗
i
) and β(x∗

i
) ≥ 0, β(x∗

i
)〈xi −

x∗
i
, ni(x∗

i
)〉 ≤ 0. Moreover, ni(xi) ∈ cΩi

(xi) and β(xi) ≥ 0 im-

ply that β(xi)〈xi − x∗
i
, ni(xi)〉 ≥ 0. Because the local objec-

tive functions are strongly convex, YT h = (X − X∗)T (∇ f (X) −
∇ f (X∗) + NΩ(X) − NΩ(X∗)) = (X − X∗)T (∇ f (X) − ∇ f (X∗)) +
∑n

i=1〈xi − x∗
i
,+β(xi)ni(xi)〉 +

∑n
i=1〈xi − x∗

i
,−β(x∗

i
)ni(x∗

i
)〉 ≥ µ̄θT θ

where µ̄ = min{µ1, · · · , µn}.

Denote s1 ≤ s2 ≤ ... ≤ sn as the ordered eigenvalues of

Laplacian matrix L. Obviously, s1 = 0 and s2 > 0 when the

graph G is connected. By (7),

V̇ s
1 ≤ −αµ̄θ

T θ − αs2η
T
2 η2 − γs2δ

T
2 δ2 − γηT

2 θ2 − γδ2θ2.

According to −γηT
2 θ2 ≤

1
2
γ2θT2 θ2 +

1
2
ηT

2 η2, and −γδT
2 θ2 ≤

1
2
γ2θT

2
θ2 +

1
2
δT

2
δ2, we have

V̇ s
1 ≤ −(αµ̄ − γ2)θT θ − (αs2 −

1

2
)ηT

2 η2 − (γs2 −
1

2
)δT

2 δ2. (24)

Take γ and α such that γ > 1
2s2

, and α > max{ γ
2

µ̄
, 1

2s2
}. Then we

have V̇ s
1
< 0, which leads to the convergence of algorithm (18).

Next, we estimate the convergence rate of (18) when Ωi =

Rm, i = 1, · · · , n. In this case ΠΩi
(xi,−∇ fi(xi)+λi) = −∇ fi(xi)+

λi, and β(xi)ni(xi) = 0. Still take V s
1

in (23), and then (24) still

holds in this case.

Take V s
2
= ε(θ − η)T (θ − η), and we have

V̇ s
2
= −εYT h + εθT θ + εθ2RT LRη2 + εθ2RT LRδ2

+εηT [r,R]T h − εηTη − εη2RT LRη2 − εη2RT LRδ2

≤ −(εµ − ε)θT θ + 1
2
εs2

nθ
T θ + 1

2
εηT

2 η
T
2 +

1
2
εs2

nθ
T θ

+ 1
2
εδ2δ

T
2
+ 1

2
εηTη + 1

2
εM2θT θ − εηTη − εs2η

T
2
η2

+ 1
2
εs2

nη
T
2 η2 +

1
2
εδT

2 δ2

≤ −ε(µ − 1 − s2
n − 1

2
M2)θTθ − 1

2
εηTη

+εδT
2 δ2 − ε(s2 − 1

2
− 1

2
s2

n)ηT
2 η2,

with M = max{k1, · · · , kn}, by using the inequality xT y ≤
1
2
||x||22 + ||y||

2
2 and (7) in the first step of (25).

With V s = V s
1
+ V s

2
, it is easy to see that

V̇ s = −(αµ̄ − γ2 + ε(µ − 1 − s2
n − 1

2
M2))θTθ

− 1
2
εηTη − (γs2 − 1

2
− ε)δT

2 δ2

− (αs2 − 1
2
+ ε(s2 − 1

2
− 1

2
s2

n))ηT
2 η2.

(25)

Choose γ ≥ 3ε+1
2s2

such that γs2 − 1
2
− ε ≥ 1

2
ε. Select α such

that

αµ̄ − γ2 + ε(µ − 1 − s2
n −

1

2
M2) ≥

1

2
ε, (26)

and

αs2 −
1

2
+ ε(s2 −

1

2
− 1

2
s2

n) ≥ 0. (27)

As a result,

V̇ s ≤
1

2
ε||p||22.

Then, with 1
2
α||p||2

2
≤ V s ≤ ( 1

2
(α + γ) + γ + 2ε)||p||2

2
, we have

||p|| ≤
√

α + 3γ + 4ε

α
||p(0)||e−

2ε
α+3γ+4ε

t
, (28)

which leads to the exponential convergence of algorithm (18)

to its equilibrium point. ✷

Remark 4.4. In fact, the exponential convergence speed
2ε

(α+3γ+4ε)
in (28) can be estimated by solving the following opti-

mization problem

max
α,γ,ε≥0

2ε

(α + 3γ + 4ε)
s. t. γ ≥ 3ε + 1

2s2

, (26), (27).
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To get a simple estimation, we take γ = 3ε+1
2s2

. Denote

̺1 = (s2
n + 1 − 2s2) and ̺2 = s2

2(6 + 4s2
n + 2M2 − 4µ̄).

With taking α = max{ 1+ε̺1

2s2
,

9ε2+ε(6+̺2)+1

4s2
2
µ̄

}, we have 2ε
(α+3γ+4ε)

≥

min{ 2s2

8+6s2+s2
n
,

4s2
2µ̄

(3+2s2
n+M2+6µ̄)s2

2
+9µ̄s2+3

√
6µ̄s2+1+3

}.

5. Distributed economic dispatch in power grids

In this section, the algorithm proposed in Section 4 is applied

to the DEDP in power grids to find the optimal secure genera-

tion allocations for power balancing in a distributed manner.

Example 5.2 is given to show that the distributed algorithm can

efficiently adapt to online network data/configuration changes,

including load demands, generation costs/capacities, and

plugging-in/leaving-off of buses, while Example 5.3 with a

large-scale network illustrates the scalability of the proposed

algorithm.

Suppose that there exist control areas N = {1, ..., n} with

area i having local generators to supply power P
g

i
∈ R≥0 and

local load demands Pd
i
∈ R≥0 to be met. The local gen-

eration must be kept within the capacity or security bounds

P
i
≤ P

g

i
≤ P̄i, Pi

, P̄i ∈ R≥0. fi(P
g

i
) : R≥0 → R represents the

local generation cost in control area i with respect to its local

generation P
g

i
, and it satisfies Assumption 1. Then the DEDP

formulation can be derived in the form of (8)

Distributed Economic Dispatch Problem :

min
P

g

i
,i∈N

f (Pg) =
∑

i∈N
fi(P

g

i
)

sub ject to
∑

i∈N
P

g

i
=
∑

i∈N
Pd

i

P
i
≤ P

g

i
≤ Pi, N = {1, ..., n}

(29)

Here a multi-agent network is introduced to solve

the DEDP (29) motivated by recent DEDP works like

Cherukuri, & Cortés (2015), Cherukuri & Cortés (2014),

Zhao, Topcu, Li, & Low (2014), Cavraro, Carli, & Zampieri

(2014) and Zhang, Liu, Wang, Liu, & Ferrese (2015). Agent

i is responsible to decide the generation P
g

i
in control area

i to minimize the global cost as the sum of all individuals’

generation costs, while meeting the total load demands within

its capacity bounds. In addition, each agent can react to the

changing local environment in real time, and adapt its own

behavior or preference by adjusting its local data, including

Pd
i
, P

i
, P̄i, fi(P

g

i
). The agents can also share information with

their neighbors to facilitate the cooperations.

Then applying (18) to (29), the distributed algorithm for

agent i is

Distributed algorithm for agent i :

Ṗ
g

i
= [−∇ fi(P

g

i
) + λi]

P̄i−P
g

i

P
g

i
−Pi

λ̇i = −
∑

j∈Ni

(λi − λ j) −
∑

j∈Ni

(zi − z j) + (Pd
i − P

g

i
)

żi =
∑

j∈Ni

(λi − λ j)

(30)

where [v]c2−x
x−c1
= 0 if x − c1 = 0 and v ≤ 0 or c2 − x = 0 and

v ≥ 0, otherwise [v]c2−x
x−c1
= v.

The algorithm (30) ensures generation capacity bounds ex-

plicitly, and converges without the initialization procedure,

which is crucially important for the “plug-and-play” operation

in the future smart grid.

Remark 5.1. The optimization problem (8) can also be applied

to model the multi-period demand response in power systems.

The objective functions describe the dis-utility of cutting loads

in each area. The resource constraint specifies the amount

of loads to be shed in the multi-periods. Particularly, the lo-

cal load shedding constraints concern with the total power de-

mands in the multi-periods and other specifications of that area.

Then, the previous algorithms (9) and (18) can be applied to

solve this multi-dimensional DRAO with general LFCs in a dis-

tributed manner. This issue is interesting but beyond the scope

of this paper, and will be discussed elsewhere.

The following two examples are presented to further show

the online adaptation property and scalability of our algorithm.

Firstly, the standard IEEE 118-bus system is adopted to illus-

trate the performance of algorithm (30).

Example 5.2 (Optimality and adaptability). Consider the

DEDP (29) in the IEEE 118-bus system with 54 genera-

tors. Each generator has a local quadratic generation cost

function as fi(P
g

i
) = aiP

g

i

2
+ biP

g

i
+ ci, whose coefficients

belong to the intervals ai ∈ [0.0024, 0.0679](M$/MW2),

bi ∈ [8.3391, 37.6968](M$/MW), and ci ∈ [6.78, 74.33](M$).

The generation capacity bounds of the generators are drawn

from P
i
∈ [5, 150](MW) and P̄i ∈ [150, 400](MW), while the

load of each bus varies as Pd
i
∈ [0, 300](MW).

The corresponding agents share information on an undi-

rected ring graph with additional undirected edges (1, 4),

(15, 25), (25, 35), (35, 45) and (45, 50). The simulations are

performed with the differentiated projected algorithm (30). The

initial generation P
g

i
in algorithm (30) is set within its local ca-

pacity bounds, while variables λi’s and zi’s are set with zero

initial values.

Next explains how the network data/configuration changes at

different times.

• Load variations: At time 100s, 18 buses are randomly

chosen with randomly varying their loads by −20 ∼
+20%.

• Generation capacity variations: At time 200s, 18 gen-

erators randomly vary their capacity lower bounds by

−50 ∼ +50%, and another 18 generators randomly vary

their capacity upper bounds by −20 ∼ +20%.

• Generation cost variations: At time 300s, 18 generators

randomly vary their ai by 0 ∼ 50%, and another 18 gen-

erators randomly vary their bi by −50 ∼ 0%.

• Leaving-off of buses: At time 400s, generator 2 and 3

disconnect from the system, and the communication edges

associated to them are also removed.
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Figure 5: Algorithm performance indexes: (i), ||LΛ||’s always decrease to zero
even with different L’s, implying that λ′s always reach consensus. (ii), The

power balance constraint (i.e., resource constraint) is violated if any network

configuration changes. But the power balance gap 1T
n (Pd − Pg) asymptotically

decreases to zero, even without any re-initialization coordination. (iii), The

optimality condition ||Ṗg ||2 + ||Λ̇||2 + ||Ż ||2 = 0 can always be satisfied asymp-

totically, implying the economic efficiency of the generation dispatch.

• Plugging-in of bus: At time 500s, generator 3 plugs in the

system with re-generated configurations ai, bi, ci, P
d
i
, P

i
,

and P̄i. The undirected edge (3, 4) is also added to the

communication graph.

When the data/configuration changes, each agent only

projects its local generation onto to its local capacity bounds if

necessary. The trajectrories of dynamics (30) are derived with

a first-order Euler discretization using Matlab. The trajectories

of some algorithm performance indexes are shown in Figure 5.

It indicates that algorithm (30) can adaptively find the optimal

solutions to (29) in a fully distributed way, even without any

initialization coordination procedure, when the network data

or configuration changes.

Example 5.3 (Scalability). This example considers a net-

work of 1000 control areas to achieve economic dispatch

during a normal day. Control area i has cost function

fi(P
g

i
) = aiP

g

i

2
+ biP

g

i
as well as generation capacity up-

per bound P̄i and lower bound P
i
. The control areas are

divided equally into two groups. The first group, named

as fuel group, is mainly supported with traditional thermal

generators, and has relatively higher generation costs and

larger capacity ranges with the nominal values of ai, bi, Pi
, P̄i

randomly drawn from the intervals, [3, 7](M$/MW2),

[5, 9](M$/MW), [2, 6](MW), [15, 23](MW), respectively. The

second group, named as renewable group, is mainly supported

with renewable energies, and has lower generation costs and

smaller capacity ranges with the nominal values of ai, bi, Pi
, P̄i

randomly drawn from the intervals, [ 1
2
, 2](M$/MW2),

[ 1
2
, 4](M$/MW), [0, 1](MW), [ 3

2
, 7](MW), respectively.

The daily 96-point load data (15 minutes for each period) of

each control area is generated from a typical load curve for a

distribution system added with certain random perturbations.

The total load curve of the network is given in Fig 6. In each

period, 10% of the control areas in the renewable group are

randomly chosen to change their generation costs and capaci-

ties like Example 5.2 with the variations less that ±20% of its

Figure 6: The total load curve

Figure 7: The performance indexes at time t = 80s in histograms: (i), The
consensus error ||LΛ||2 at t = 80s always decreases to a rather lower level due

to the second-order proportional-integral consensus dynamics. (ii), The power

balance is almost achieved at t = 80s without the initialization coordination.

(iii), The optimality condition can always be satisfied at t = 80s.

nominal values.

In each period, a connected graph is re-generated with

random graph model G(1000,P) as the information sharing

graph of that period. In G(1000,P), every possible edge oc-

curs independently with the probability of P. Here, the prob-

ability P in each period is randomly drawn from the interval

[0.0015, 0.005].

For each period, the computation time is set as 80s. Figure 7

shows the histogram of consensus error ||LΛ||2, power balance

gap
∑

P
g

i
−
∑

Pd
i

and optimality condition ||Ṗg||2 + ||Λ̇||2 + ||Ż||2
at time 80s. It indicates that the agents can always find the

economic power dispatch with varying loads and generation

costs/capacities, and evidently demonstrates the scalability of

the proposed method.

6. Conclusions

In this paper, a class of projected continuous-time distributed

algorithms have been proposed to solve resource allocation op-

timization problems with the consideration of LFCs. The pro-

posed algorithms are scalable and free of initialization coordi-

nation procedure, and therefore, are adaptable to working con-

dition variations. These salient features have important impli-

cations in the DEDP in power systems. Firstly it allows quite
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general non-box LFCs, which is crucial when inverter-based

devices are involved because their LFCs are usually depicted in

a quadratic form. Secondly, our method is initialization free,

which may facilitate the implementation of the so-called “plug-

and-play” operation for future smart grids in a dynamic envi-

ronment. Our application examples illustrate such implications,

showing an appealing potential in the smart operation of future

power grids.

We would like to note that many challenging DRAO prob-

lems still remain to be investigated, including the design of

algorithms for the non-smooth objective functions based on

differential inclusions, the estimation of convergence rates

for the proposed algorithms with general LFCs, and the de-

velopment of stochastic algorithms to achieve the DRAO

with noisy data observations. Furthermore, inspired by

Zhao, Topcu, Li, & Low (2014), we also hope to combine our

algorithms with physical dynamics of power grids to derive a

more comprehensive solution for the DEDP in power systems.
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