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Abstract

This work addresses the problem of estimating the region of attraction (RA) of equilibrium points of nonlinear dynamical
systems. The estimates we provide are given by positively invariant sets which are not necessarily defined by level sets of a
Lyapunov function. Moreover, we present conditions for the existence of Lyapunov functions linked to the positively invariant
set formulation we propose. Connections to fundamental results on estimates of the RA are presented and support the search
of Lyapunov functions of a rational nature. We then restrict our attention to systems governed by polynomial vector fields
and provide an algorithm that is guaranteed to enlarge the estimate of the RA at each iteration.
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1 Introduction

The problem of computing the region of attraction (RA)
of asymptotically stable equilibria, or inner estimates
to this set (ERA) [6], is central in several applications
and its relevance is immediately clear for many practical
nonlinear systems for which we can only guarantee local
properties of operating points.

With a converse Lyapunov theorem [22;, Theorem 19],
Zubov answered the question “/[...] Is it possible, with
the help of the Lyapunov function to find a region of
variation of the initial values xo such that ||¢(t, zo)| —
0 as t— oo ?7[22,p.3]. The theorem states that if S
is the RA of an equilibrium then the existence of a Lya-
punov function (LF) satisfying some conditions on such
a set S is necessary and sufficient. However, comput-
ing the LF and the exact RA following Zubov’s theorem
requires the solution of a partial differential equation,
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which is difficult to obtain in all but simple cases. How-
ever, local solutions (in a compact set around the equi-
librium point) to the conditions can be obtained more
easily and yield ERAs for the equilibrium point of inter-
est. In this context, a method to approximate solutions
to the conditions of [22, Theorem 19] is obtained with a
series expansion of the LF [22, p.91] and is now referred
to as Zubov’s Method.

In [20], Zubov’s theorem was modified to consider Lya-
punov functions mapping R to R>o (the original re-
sult is stated in terms of a map from R™ to the interval
[—1,0]). One of the conditions in [20] imposes that the
LF V(z) satisfies V(z) — oo whenever z — 9S (the
boundary of the RA) or whenever ||| — oo. Such a
property is described by the observation that “the can-
didate must in effect ‘blow up’ near the boundary of the
domain of attraction”. These functions were called maz-
imal Lyapunov functions (MLFs). One of the key ob-
servations was that rational functions could be used to
approximate MLFs and therefore be used to obtain esti-
mates of the RA. As a matter of fact, the class of ratio-

nal functions of the form V(z) = “ZZ gz; where Vy and

Vp are polynomials, were considered as LF candidates
in the algorithm proposed in [20] with the boundary of
the ERA characterised by the set {x € R" | Vp(z) = 0}.

At this point, for the sake of clarity, it is important to
distinguish between two similar sounding yet very differ-
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ent objects: a maximal Lyapunov function (MLF) and a
maximal Lyapunov set (MLS). An MLF is a Lyapunov
function which satisfies a strict set of conditions (cf. Def-
inition 1 in Section 3). In contrast, a MLS is defined as
the largest level set of a given LF contained in a speci-
fied set. Computing the MLS is of course of interest since
one might wish to compute the best ERA achievable for
a given Lyapunov function [3,5]. Further to the choice
of the class of the LF, conservativeness is introduced by
imposing the level sets of the Lyapunov function to be
the ERA, as observed in [9, p.320] “Estimating the region
of attraction by Q. = {z|V(x) < ¢} is simple but usually
conservative. According to LaSalles’s theorem [...] we can
work with any compact set 2 C D provided we can show
that Q) is positively invariant.” The statement highlights
the fact that contractiveness of the function defining the
ERA is restrictive.

In recent years, sufficient conditions for local stability
analysis, requiring invariance and contractiveness of a
set led to numerical methods for the estimation of the
RA with polynomial Lyapunov functions [15-17].These
methods rely on the solution of non-convex sum-of-
squares (SOS) constraints constructed with the Posi-
tivstellensatz [10, Theorem 2.14]. The solutions to these
problems require a coordinate-wise search since the
non-convex nature results from the fact that some poly-
nomial variables appear multiplying the Lyapunov func-
tion which is itself a variable. For a detailed description
of sum-of-squares methods for RA estimation the reader
is referred to [4]. For the case of a given LF, the compu-
tation of the MLS was pursued in [5]. In [8] the theory of
moments is used to estimate the RA of uncertain poly-
nomial systems. We also find in the literature numerical
methods exploiting topological properties of the bound-
ary of the RA requiring the computation of trajectories
and equilibrium points. However the complexity of such
methods has restricted them to 2-dimensional exam-
ples [6]. Recently, in [21], set advection methods are
described for polynomial systems.

In this paper we derive conditions based on Lyapunov
stability results that guarantee that trajectories initiated
from an positively invariant set converge to a level set of
the LF which is contractive and invariant therefore guar-
anteeing such a postively invariant set to be an ERA. In
addition to the positively invariant estimates, we present
conditions to obtain LF certificates of a specific form
which specializes to rational functions in case of polyno-
mial data. We then propose a numerical method based
on the solution of SOS constraints for the case of polyno-
mial systems and estimates in the form of semi-algebraic
sets (sets defined by polynomial constraints). The work
in this paper extends the work of [18] and connects the
concept of mazimal Lyapunov functions [20] to polyno-
mial optimization techniques based on sum-of-squares
programming. To the best of the authors knowledge this
is the first work to offer a theoretical link between maxi-
mal Lyapunov functions, which completely characterise

the ERA (and can be approximated to arbitrary accu-
racy by rational functions) and sum-of-squares methods
for rational LF construction. Note that rational Lya-
punov functions were considered in [5] to obtain MLSs.

The paper is organised as follows: We present some def-
initions and the problem statement in Section 2 and de-
scribe the main theoretical results in Section 3. Narrow-
ing our attention to systems described by polynomial
vector fields we describe a computational method for
constructing ERAs based on sum-of-squares program-
ming in Section 4 which is illustrated by numerical ex-
amples in Section 5.

2 Preliminaries

Let R,R>0,R>¢ and R"™ denote the field of reals, non-
negative reals, positive reals and the n-dimensional Eu-
clidean space respectively. The function f : R™ — R is
positive definite if f(z) > 0 for all non-zero x € R",
similarly if f(z) > 0 for all 2 € R™ then f is positive
semidefinite. The set of functions g : R” — R which is
n-times continuously differentiable is denoted C™. co(X)
denotes the convex hull of the set X', X'° its interior, 0X
its boundary, and X its closure. The minimum (max-
imum) of a scalar function S(z) in a compact set )
is denoted melg}l(S(x)) (mealz;c(S(:C))). We also use max
xr T

to denote the function taking the maximum of its ar-
guments. For z € R™ the ring of polynomials in m
variables is denoted by R[z]. For p € R[z], deg(p) de-
notes the degree of p. A polynomial p(z) is said to be a
sum-of-squares if there exists a finite set of polynomials
91(x), ..., gr(x) such that p(z) = ¢, ¢2(x). The set of
SOS polynomials in x is denoted by X[x1, . .., ;] which
can be abbreviated to X[x]. Equivalently p(z) is SOS if
there exists a positive semidefinite matrix @) such that

p(z) = ZT(2)QZ(z) where Z(x) is a vector of monomi-

als [13]. Note that the search for Q can be formulated as
a semidefinite programme and thus solved using convex
optimization techniques [19].

Consider the dynamical system

&= f(x) (1)

where f: D — R" is a locally Lipschitz map from a do-
main D C R™ to R, with 0 € D. Let us assume x = 0
is an equilibrium point, i.e. 0 € {z € R"|f(z) = 0}.
Denote by ¢(t,2(0)) the solution to (1) that is initi-
ated from the point x(0) at time ¢ = 0, the set L is
said to be invariant with respect to (1) provided z(0) =
$(0,2(0)) € L = z(t) = ¢(t,2(0)) € L, ¥Vt € R. Fur-
thermore, L is said to be positively invariant with re-
spect to (1) if the previous implication holds for all
t > 0. Given a function R : R — R we define the set
E(R,y) = {x € R" | R(z) <~} for some v > 0 and
E°(R,) :={x € R" | R(z) < ~} for some v > 0. Addi-
tionally, provided that a function V' : R™ \ {0} — R



satisfies V(z) = %—‘;f(:v) < 0 on &(V,7v) then the set
E(V, ) is said to be contractive and invariant, further-
more the function V is said to be a Lyapunov function [9,
Chapter 4]. We assume throughout this work that any
function used to define a contractive set is in C'. The
region of attraction of an asymptotically stable equilib-
rium point 2* of (1) is defined as the set

S:_{IER"

(t, x) is defined V¢ > 0, } 2

limy o0 &(t, ) = 2*

without loss of generality, we will assume throughout
this paper that the equilibrium point of interest is at the
origin, i.e. x* = 0.

The focus of this paper is to construct inner estimates
of § by computing positively invariant sets.

3 Main results

In this section we present conditions to certify that a
compact set is a postively invariant set and provides an
estimate of the RA for the origin of (1). It is also shown
how, under a different condition, to obtain an alternative
Lyapunov certificate. We then extend these results to
the case where the system under study is affected by
parametric uncertainty.

3.1 Region of Attraction Estimates

The following theorem is used to verify that a compact
set is positively invariant and defines an estimate of the
RA of the equilibrium point at the origin and to obtain
functions of which the denominator provides the RA es-
timate.

Theorem 1 Given R : R” - R, R € C! and v > 0,
satisfying

E(R,~) C D is compact and 0 € E(R,7), (3a)
—(VR(z), f(x)) >0 Vz e IE(R,7), (3b)

if there exists Vy : R" — R, Vy(0) =0, Vv € C!, such
that
Vn(z) >0Vz € E(R,v) \ {0}, (4a)

)
—(VVn(2), f(z)) > 0Va € E(R,7)\ {0},  (4b)
then

(I) the solutions z(t) = ¢(t,x0) to (1), with o €
E(R,) satisfy z(t') € S V' € [0, 0).

Moreover, if (3a), (4a) and

—([VVn(2)(y = R(z)) + VN (2)VR(z)], f(z)) > 0
Vo € E(R,7) (

hold and there exists a positive scalar € such that 0 ¢
E(R,7)\ E°(R,y — €) then

(I1) the function

Vi) = 2 (©)

is a Lyapunov function for (1) and gives E°(R,~) as an
estimate of S.

Proof. Proofof (I). Part 1 (Contractiveness of a level set
of Viy): by assumptlon E(R,~) is compact thus we can
compute « = min Vy(z), then from (4a), o > 0.

2€0E(R,)
Defined = E(Viy, ) NE(R, ), from (4a), (4b) we have

Vn(z) >0Ve el \ {0},

—(VVn(2), f(x)) >0Vz el \ {0}.

Following [9, Theorem 4.1] we have that the origin is
asymptotically stable and an inner approximation of
its region of attraction is given by U, that is trajecto-
ries ¢(t, xg) with xo € U exist, are unique, and satisfy
o(t,xg) = 0 as t — oo.

Part 2 (Positively Invariance of E(R,)): since E(R, )
is compact and f(x) is locally Lipschitz in any compact
set, we have existence and uniqueness of solutions to
& = f(x), for all zy € E(R,~), provided every solution
lies in £(R, ). Let us prove that for all T' € [0, 00) we
have z(T) € E(R, 7). Assume there exists xg € E(R, )
for which the solution leaves the set, then, there must
exist a T* such that x(T*) = ¢(T™,z) that satisfies
R(xz(T*)) > . From the continuity of solutions and con-
tinuity of R(x) there must exist T, 0 < T < T* such that
R(z(T)) = v and R(x(T)) = (VR(z(T)), f(x(T))) > 0,
which contradicts (3b). Hence £(R, ) is a positively in-
variant set.

Part 3 (Convergence of trajectories starting in £(R, ) \
E°(Vn,a) to U): Finally let us now prove that every
trajectory satisfying x(0) € E(R,v)\ £°(Vn,«) enters
the positively invariant and contractive set U/, that is,
that there exists a T such that x(T) € U. Let 8 =

max Vi (z). Since (4b) holds in E(R,v) \ £°(Vn, @)

z€IE(R,7)
let A\ = — max (VVn, f(x)), which exists be-

z€E(RY\E° (VN ,a)
cause the continuous function has a maximum over any
compact set, from (4b) we also get

Vn(z(t)) = VN(x(O))—I—/O Vi (x(7))dr < Vi (2(0))—\t.

Since Viy (2(0)) < 8 we have Viy(z(t)) < f— At in the set
E(R ,7) \ E°(Vy, a). This implies that 3T > 0 satisfying
T < 822 such that Vy(2(T)) = a and hence z(T') € U.



Proof of (IT): From (4a) we have that V(z) > 0 Vx €
E°(R,v) \ {0}. The time-derivative of (6) along the tra-
jectories of (1) is given by

(VVn(2)(y = R(z)) + VN (2)VR, f(x))
(v = R(x))?

which satisfies =V (z) > 0Va € E°(R,~v)\{0} if (5) holds
true. Thus V' is a Lyapunov function for the equilibrium
point at the origin of (1). What is left to show is that the
level curves of V' define the stated estimate of the ERA.

V(x) =

(7)

We have that V (z) and V(z) are not defined in d€(R, ),
thus it is not possible to compute scalars a and S Parts 1
and 3 in the above Proof of (I). Consider the arbitrarily
small scalar, e that defines the set £(R, y—e¢) and assume
it satisfies € < €. Then, as £(R,~) is compact it follows
that so is £(R,y —€). We can then follow the same steps
of Proof of (I), Part 1 and compute a positive scalar
ae= min  V(z).Defineld, = E(V,ac)NE(R, y—e),
z€IE(R,y—e¢)

since V(z) > 0Vz € £°(R,~)\ {0} and =V (z) > 0 Vz €
E°(R,~) \ {0} we have

Viz) >0 Vel \{0},
—(VV(2), f(z)) >0 VzelU,\{0}.

Then following [9, Theorem 4.1] the origin is asymptot-
ically stable and an inner approximation of its region
of attraction is given by U, that is trajectories ¢(t,xo)
with zp € U, exist, are unique, and satisfy ¢(t,x¢) — 0
as t — oo.

Using (6), we obtain

e

SV, o) = {x €R" | R(z) < v — LX) } .

Since
o = min ~ V(x)

2€DE(R,y—e)

_ : Vi (2)

= min < ——
2€IE(R,y—€)Y — R(x)

B . Vy (x)

= min ———
2€E(R,y—e)Y — (’7 — 6)

! VN(x))

= - min
€ \z€IE(R,y—e¢)

we then have

Vi (2)
& ) = R" < —
(Vi) = o € " | A(r) <9~ e X0
r€IE(R,y—e€)
(8)
Define a positive scalar ¢ as follows:
max Vy(x)
5= z€E(R,y)
o min Vn(z
z€E(R,Y)\E°(R,y—¢) N( )

then it is immediate that 6 > 1. As ¢ < € we

have 0S(R,y —¢€¢) C &E(R,v) \ E°(R,y — €), thus
min  Vy(z) > min Vn (x) and hence

zEIE(R,y—¢€) T 2€E(RY)\E°(R,y—¢)
V
d > N(I) , Vo € E(R,7).
min V()
z€OE(R,y—¢)

Since € is positive, the set containment

Vn (2)

E(R,v—ed) Cz eR" | R(z) <vy—c¢

i V
zeag(lll%r,l’yfe) N (JJ)

holds true. Using (8) we have E(R,vy — ) C E(V, ),
thus E(R,y—ed) = E(R,v—ed)NE(R,v—¢) C E(V, ae)N
E(R,~y—¢€) = U, which, using the fact that U, C E(R,7),

we obtain
E(R,y —€d) CU. C E(R,7).

Thus E(R, vy —e€d) is an estimate of the RA of (1). Since ¢
is bounded and e can be chosen to be arbitrarily small,
we have that the set £°(R,~) is an estimate of the RA
of (1). [ |

A consequence of the the assumption imposed in Theo-
rem 1 that the set £(R, ) is compact, is that £(R, ) will
be connected. This follows from the fact that (3b) makes
E(R,~) a positively invariant set, and by (4a), Vy(x) is
strictly positive on E(R,~) \ {0}, and finally (4b) en-
sures its derivative is strictly negative on E(R, ) \ {0}.

Remark 1 Note that R(x) is not required to be posi-
tive definite, however it is required that £(R, ) is com-
pact and contains the origin. This requirement guaran-
tees that, in the proof of Part 1, minye (g ,)(V(z)) is
well-defined, such that £(V,a) C E(R, 7). N

Remark 2 The boundedness of the set £(R,7v) also
guarantees the uniqueness of solutions in the set if the
vector field is not globally Lipschitz (as for instance, the
polynomial vector fields). J

Remark 3 In the case R(z) = Vi (z), (4b) implies (3b)
and the set £(Vy,v) has to be compact as required
by (3a). a

The proposition below presents sufficient conditions to

satisfy the constraints of Theorem 1 formulated in terms
of inequalities and the definition of (R, 7).

Proposition1 Given R € C', R : R* = R, v > 0,
satisfying

E(R,~) is compact, 0 € E(R,7), 9)



if there exist Vy : R* — R, Vy € C!, Vy(0) = 0 and
mg : R™ = R>g,my : R” = Ryo, p: R” — R, such that

— (VR(z), ((ﬂ)ﬂ)
— (VW (2), f(2))

where D’ := D\{0}, then E(R, ) is an ERA of the origin.
If (9), (10b), (10a) hold and there exist mg : R™ — Rxg
such that

) >p(x)(y — R(z)) Ve € D (10a)
> mo(z)(y — R(z)) Yz € D' (10D)
>mq(x)(y— R(xz)) Vx € D' (10c)

—(VVn (@), f(2))+ VN (2)p(2) > ma(x)(y=R(z)) (11)

holds, then (6) is a Lyapunov function for (1) and
E°(R,~) is an ERA of the origin.

Proof. From the non-negativity of mg(x), and m4 (x) we
have that (10b), (10c) imply that (4a), (4b) hold. Since
at OE(R,~y) we have v — R(z) = 0, (10a) implies (3b),
and, according to Theorem 1 Claim (I), £(R,7) is an
ERA of the origin. The time derivative of V(z), as in (6),
is given by (7). Since we have Vy(x) > 0 in E(R,~) if
(10b) holds, inequality (10a) provides a lower bound for
—V as follows

—V(,T) _ <VVN(‘T)7 f($)> _
(v —R) (v — R)?
- (VW (), f(z)) n Vi (z)p(z
(v - R) (v-R)’

therefore, if there exists mo : R™ — Ry satisfying

(= (VW (2), f(2)) + VN (2)p(x))
(v—-R)

> mg(x),

that is (11), then —V(z) > 0 (and (5) holds true). Fol-
lowing Theorem 1, Claim (II), V'(x) is a Lyapunov func-
tion for (1) in £°(R,~), thus providing an ERA for the
origin of (1). |

Before developing the theory further in order to take
into account non-smooth set descriptions and ERAs for
uncertain systems we first compare the above condi-
tions to the classical results of Zubov via Vannelli and
Vidyasagar’s mazimal Lyapunov function [20] frame-
work which characterises the region of attraction S.

Definition 1 A function V,, : R" — Ry U {0} that
for the system (1) satisfies

(1) Vin(0) = 0, Vin(z) > 0 ifz € S\ {0},

(2) Vip(z) < oo iffx €S,

(3) Vin(z) = o0 as x — IS and/or ||z|| — oo,

(4) Vin(z) < 0 and well defined for all z € S\ {0},

is called a mazimal Lyapunov function.

The main result from [20] is summarised by the following
theorem:

Theorem 2 Suppose we can find a set A C R™ which
contains x = 0 in its interior, a continuously differen-
tiable function V,, : A — Rso and a positive definite
function ¥(x) such that

(1) Va(0) = 0.V(@) > 0 ifz € A\ {0},
(2) Vin(z) = =¢(x) for allz € A,
(3) Vin(x) = 00 as x — A and/or ||x|| — oo,

then A =S.

Clearly an MLF satisfies the properties of Theorem 2,
however in [20] the authors constructively provide a
method for extending any LF for (1) into an MLF (the
assumption is that ¢ (z) has been constructed). They

then show that rational LFs of the form V(z) = x‘?; Eig

with polynomial numerator and denominator can ar-
bitrarily approximate an MLF. Furthermore the set
{z | Vb(z) = 0} defines the boundary of S.

In comparison to Theorem 2, Theorem 1 shows that the
zero level set of a rational Lyapunov function can be used
to compute an estimate of the RA. The main difference
between the two results is that our theorem provides an
estimate of the RA whilst the MLF provides the exact
RA (albeit at the cost of having to solve a partial differ-
ential equation, namely item 2 of Theorem 2). Thus the
LF (6) is not necessarily an MLF. In the remainder of
this section we develop further the results of Theorem 1.

3.2 Piece-wise Lyapunov Functions

The following result parallels Theorem 1 and considers
positively invariant regions defined by the maximum of
a set of differentiable functions.

Let d be a finite positive integer and functions
Ri(z),..., Rq(z) be given. The point-wise mazimum of
these functions at x is defined as

Ry (z) := max(Ry(x),. .., Rq(x)). (12)

Theorem 3 Given R; : R* - R, R; €C'i=1,...,d

and a positive scalar v, satisfying
E(Rur,7y) is compact and 0 € E(R,7), (13a)

— (& f(x)) >0Vx € OE(Rur,7),VE € aﬁ%‘r@)

where Mw(z) denotes the subdifferential of Ry () at x,
if there exists a function Viy : R™ — Rxg, Va(0) =0,

(13b)



Vn € C! such that
Vn(z) > 0Vz € E(Rar,y) \ {0} (14a)

—(VVn(2), f(z)) > 0Vx € E(Rpr,v) \ {0}
then

(14b)

(I) all trajectories of (1) initiated from the set
E(Rur,y) converge to the origin.

Moreover, if (14a), and

—([VVn(2)(y = Ru(2)) + Vi (2) VR (2)], f(2)) >0
Vo € E(Ra,y) (15)

hold, and there exists a positive scalar € such that 0 ¢

E(Rar,v) \ E°(Ryr,y — €) then
(I1) the function

Vi (z)

Y= T R @

(16)

is a Lyapunov function for (1) and gives
E°(Rur,7y) as an estimate of S.

Remark 4 To characterise the set E(Rys,7y), notice

that Ry(z) = Ri(z) Vo € {z € R"|R;(z) — Rj(x) >
0,j=1,...,d}. By defining
M;(Rar,v) = {z € R"|R;i(z) <
Ri(z) — R() ,jzl,...,d}.
we can write &(Rar, ) = ey Mi(Ras,7)- N

The subdifferential for the function Ry, (z) is defined as
B%Lm(z) = co{VR(x),¢ € I(x)}, where Z(z) = {i €
{1,...,d}|Ri(x) = Rp(x)} denotes the set of “active”
functions at point x. Notice that Ry (x) is not differen-
tiable at points « where 3i,5 € Z(z),i # j, that is,
at points satisfying Rys(z) = Ri(z) = R;j(z),1 # j. At
such points O%Lx(w) defines a set, hence (13b) describe a
set of inequalities. Whenever Z(z) contains only one el-
ement, say Z(x) = {k}, 8R+;(x) is a singleton given by
V Ry, which exists since R;(z) € C1,Vi=1,...,d.

The proof of Theorem 3 follows closely the proof of The-
orem 1 and is therefore omitted. The only difference is
related to the lack of differentiability of Rys(z) which

gives Ra(e(t)) € (P2, f(a())
vided (13b) holds we can use it to arrive at a contradic-
tion as in the proof of Claim (I) of Theorem 1.

. Therefore pro-

The proposition below parallels Proposition 1 and is pre-
sented without proof. It introduces sufficient conditions

to satisfy the conditions of Theorem 3. These conditions
are formulated in terms of inequalities and the descrip-
tion of the set OE(Rar, 7).

Proposition 2 Given R; : R* — R, R, € C' i =
1,...,d and a positive scalar vy, if there exist Vy : R™ —
R, Vy € CY, VN(0) = 0, and mo : R® — Rsg, my :
R™ = R>p, p: R” = R such that

E(Ryr,7y) is compact, 0 € E(Rpr,7)

(6 1) > pla)(r — B(@) e € 2Rl)

(17a)
(17b)
Vn(z) >mo(z)(y — Rm(x))  (17c)
—(VVn(z), f(2)) > mi(z)(y — Rum(z)) (17d)

then E(Rar,7y) is an ERA of the origin. If (17a), (17¢),
(17b) hold and there exist ma : R™ — R such that

—(VVn(2), f(2)) + VN (z)p(2) > ma(z)(y — RM(EEl)é)B)
hold, then (16) is a LF for (1) in the set E° (R, 7).

3.3  Uncertain systems

Consider uncertain dynamical systems of the form

&= f(z,0), €O CR™ (19)
where f : D x © — R" and © denotes the uncertainty
set. We assume that f satisfies conditions so as to provide
uniqueness and local existence of solutiond. We shall

also assume that z* = 0 is the equilibrium of interest,
and require that f(0,0) =0 V0 € O.

We are interested in determining a robust estimate for
region of attraction i.e. an estimate of the RAs for all
dynamical systems of the form (19) with a fixed 6 € ©

Sp = {xo eR"

o(t,x,0) is defined Vt > 0
limy o0 @(t, g, 0) = 2*,V0 € ©

where ¢(t, zg,6) is a solution to (19) starting from
at time ¢ with fixed 6 € ©. We establish conditions for
positively invariant sets to be estimates of the region of
attraction for parametrically uncertain systems. Whilst
we will consider parameter dependent Lyapunov func-
tions (PDLFs), our ERAs will be defined by positively
invariant sets which are not dependent on the system
parameters.

! This requires f to be continuous in (z,0,t) and locally
Lipschitz in = (uniformly in 6 and ¢) on a bounded domain.
Exact conditions can be found in [9, Theorem 3.5]



PDLFs have been shown to be an effective tool for certi-
fying the stability of linear system with parametric un-
certainties [2,7, 11]. They have also been successfully
applied to obtain certificates for the local stability of
polynomial systems leading to parameter-dependent es-
timates of the RA. In those results, a robust estimate is
then obtained as the intersection of the estimates given
for each fixed parameter value [3,17], which is in contrast
to the result in this section where the estimate does not
depend on the parameters but the Lyapunov function
does, thus avoiding the computation of the intersection
of the parametrised estimates.

The following result extends Theorem 1 to the case of
uncertain systems of the form (19).

Theorem 4 Consider the uncertain dynamical system
described by (19) where © is a compact set and x* = 0.
Given a function R : R® — R, R € C' and a positive
scalar~, which defines a compact set E(R, ), and satisfy

— (VR(x), f(x,0)) >0V(z,0) € 0(R,v) x O, (20)

if there exists a function Vy : R"x0 — R, Vy(0,:) =0,
Vi € C! such that

Vn(x,0) >0V (z,0) € E(R,v)\ {0} x © (21)
—(VVn(z,0), f(z,0)) >0V(x,0) € E(R,v) \ {0} x ©
then the solutions to (19), ¢(t, o, 0) for anyxo € E(R,7)
and 0 € © lie in the set Sy with respect to x* = 0.

Moreover, if (21), and

—([VVn(z,0)(y = R(z)) + VN (2, 0)VR(z)], f(z)) > 0
V(z,0) € 0E(R,y) x © (22)

hold, and there exists a positive scalar € such that 0 ¢
E(R,v)\ E°(R,~ — €) then the function

V(z,0) = 207 (23)

is a Lyapunov function for (19) for all 0 € © in the set
£°(R,7).

The proof is similar to that of Theorem 1 and so is omit-
ted.

4 Computational Methods for

the RA

Estimating

We now present a computational method for construct-
ing positively invariant estimates of the RA. First a
method for estimating the RA via maximal Lyapunov
sets is reported and then algorithms that implement the
main results of the paper are described.

4.1  Maximal Lyapunov Sets

Recall that for a locally asymptotically stable equilib-
rium point of (1), converse Lyapunov theorems tells us
there exist a Lyapunov function V' and a set D C R”,
0 € D, satisfying V : D — R such that V(z) > 0
Ve € D\ {0}, V(0) = 0 and (VV(z), f(x)) < 0
Va € D\ {0}, see for example [9, Section 4.7]. Based on
this fact, a common (but conservative) approach to find-
ing an ERA for systems of the form (1) is to compute a
Lyapunov function certifying the local asymptotic sta-
bility of the origin and obtain the largest (maximal) level
set of a Lyapunov function that is contained within the
set D which the LF is constructed on. We can describe a
general algorithm based on the Lyapunov function com-
putations to obtain ERAs in the form £(V, ) as follows:

Algorithm 1

Input k& = 0, a compact set Dy, {0} € Dy.

Step 1 (Lyapunov function computation): Given Dy,
compute a Lyapunov function Vj, for (1).

Step 2 (Mazimization of Lyapunov level set): Given Vi,
and Dy, solve

maximize v subject to E(Vi,v) C Dk, v >0 (24)

Step 3 (Update of search domain): If stopping criteria
is satisfied then return &(Vj,~*), with * the solution
to (24), as the ERA else specify Djy1, set k + (k+1)
go to Step 1. |

Whilst the algorithm above may look simple enough,
observe that: i) in general, constructing Lyapunov func-
tions for nonlinear dynamical systems is a non-trivial
task. ii) Existing formulations for the optimization prob-
lem in Step 2 are typically non-convex. iii) Determin-
ing the update for Dy typically relies on some heuris-
tic. As a general rule, by necessity {0} € Dg41, the set
should be connected, and should contain points that are
not already in Dy. In Section 4.3 we will specialise the
above algorithm and explicitly describe how to update
the search domain, and in the case of polynomial sys-
tems construct all the required functions.

Step 1 asks for (VVj(z), f(z)) < 0 Vax € Dy. In gen-
eral there is no guarantee that every x(0) € Dy, satisfies
o(t,x(0)) € Dy Vt > 0. Extra conditions must hold for
Dy, to be a positively invariant set. We will expand upon
this point in the next section.

Denote the ERA and the search domain from iteration k
of the above algorithm by £(Vj, v ) and Dy, respectively.
Note that Dy C Dgy1 does not necessarily guarantee
EWVi,vk) C E(Vies1, Yr+1)- Satisfying such constraints is
of desirable as it guarantees improvement of the ERA.
For polynomial systems, we describe next how such cri-
teria can be enforced.



4.2 Estimating the RA With Invariant Sets

We now illustrate how Theorem 1, Claim (I) can be im-
plemented in an algorithmic manner to obtain estimates
for the RA. We start by presenting a generic algorithm,
analogous to Algorithm 1 with the exception that the
obtained ERA is not given by Lyapunov level sets:

Algorithm 2

Input: & = 0, a function Ry satisfying the (3a) in The-
orem 1.

Step 1 (Invariant set enlargement): Maximize v sub-
ject to (3b), (4) with R = Ry.

Step 2 (Update function R): If stopping criteria is sat-
isfied then return ERA given by the set E(Rg,7y); else
compute R* satisfying E(R*,d) 2 E(Ry,v*) , where v* is
the optimal solution to Step 1 and § > 0. Set k < k+1;
v+ §; Ry + R*; go to Step 1. |

Note that any function Ry that satisfies (3) can be used
to initiate Algorithm 2 provided the set E(Ry,~) is in-
variant. A straightforward choice for Ry is any Lyapunov
function V', which provides a (possibly arbitrarily small)
level set £(V, ) which is invariant and also contractive
(although such a property is not required for £(Ry,)).
We take such an approach in the examples in Section 5.

Observe that the update of function R parallels the up-
date of the domain in Algorithm 1, with the difference
that it defines an ERA itself. In the next subsection we
describe a specific strategy for the update R* of function
R from step 2.

4.3 Polynomial systems

For the remainder of the paper it is assumed that the
vector field f in (1) and the functions Viy, R and Ry in
Theorems 1 and 3 are multivariate polynomials. For this
class of systems, [4] presents a comprehensive set of re-
sults on estimates of the domain of attraction with poly-
nomial Lyapunov functions with Sum-of-Squares based
approaches [1].

The following corollary to Proposition 1 provides suffi-
cient conditions for Theorem 1 to hold which are verifi-
able using convex optimization.

Corollary 1 Let Viy and R be given multivariable poly-
nomials and v a given positive constant. Then, if there
exist sum-of-squares polynomials mg, m1 and a polyno-
mial p such that

— (VR(x), f(x)) — p(z)(y — R(x)) € Zz] (25a)
Vi (2) = mo()(y — R(z)) € X[x] (25b)
—(VVn(2), f(2)) —ma(z)(y — R(x)) € Z[z] (25¢)

then the inequalities (10) are satisfied and E(R, ) is an
ERA of the origin. If (25a), (25b) hold and there exist a

sum-of-squares polynomial mso such that

—(VVn (), f(2))+ Vi (2)p(x) —ma(z)(y— R(z)) € (Ez[g%
hold, then (6) is a LF for (1) in the set E°(R,~).

As proven in Proposition 1, the fact that (25a) and (26)
hold is a sufficient condition for (5) and, if satisfied, it

certifies that the rational function V = WVTN is a Lya-

R
punov function on the set £°(R, ).

Sum-of-squares constraints such as those above can be
formulated using freely available software such as SOS-
TOOLS [12] and solved using a semidefinite programme
solver. Note that in (25), Viy and R appear affinely in the
SOS constraints, and the only product between Vy and
the set of multipliers is in (26) where it multiplies poly-
nomial p. This fact is central in developing coordinate-
wise search algorithms allowing Vv to be a variable at
all steps of the algorithm iterations. Notice that is only
possible because in (25) there is no product between Vi
and the multipliers mg, m1 and ms. When searching for
a rational LF certificate (by imposing (26)), the product
Vnp is handled by fixing p from a solution to (25a).
Remark 5 Notice that, for a given rational V' = %,
(assuming polynomial dependence of Vy and R on z)
straightforward formulations to compute the MLS of the
function V, as the set £(V, C'), lead to inequalities as

(VVn(2)(y — R(z)) + VN (2)VR(2), f(z))
(v - R)?

SCICE

with m(x) > 0. In order to avoid the rational inequalities
of the form above, one can restrict the attention to the
set where (v — R(x)) > 0, thus formulating polynomial
inequalities as

—(VWn(2)(y — R(z)) + VN (2)VE(2), f(z))
> m(x)(Cly = R(2))* = Vn(z)(y — R(2))). (27)

Notice also that, in contrast to (27), (26) does not present
products Vi (z)R(z) and R(x)?. Such a property also
allows the degree of the SOS constraints in (26) to be
lower than a SOS constraint obtained with (27). 3

Remark 6 The analysis of polynomial systems with
polynomial LFs and level sets of the LF as ERAs are
a particular case of the conditions imposed and are ob-
tained by imposing R(z) = Vy(x), mo(xz) = 0, and
p(z) = my(z) = ma(x). N

The proof of the following claims are straightforward
and, therefore, omitted.



Corollary 2 If (25a) holds with p € R[z], that also sat-
isfies p € Xx] (i.e. a sum-of-squares polynomial), then
(26) is holds true with ma = my + pmyg.

Proposition 1 Given polynomials }Af, R and a scalar
~v > 0, if there exists a sum-of-squares polynomial ms(x)
such that

(v = R(@)) = m3()(7 — R(x)) € Sla],ms € T[a]. (28)
then E(R,~) C E(R, 7).

The constraints (25) and (28) can be used to formulate
the following bilinear sum-of-squares programme

maximize -y
VN, R,mi,p

subject to  (25), (28), m; € X[z],7 € {0,1}.

From (28), any solution v* to the above problem guaran-

tees that the set £(R,~*) is contained in the set £(R,7*)
which is an ERA since conditions in Theorem 1 are sat-
isfied when (25) is satisfied.

The algorithm below exploits this fact to specialize Al-
gorithm 2 and obtain ERAs for polynomial systems by
solving a sequence of sum-of-squares programmes.

Algorithm 3

Input: £ = 0, a function Ry satisfying the condi-
tion (3a) of (I) in Theorem 1.

Step 1: With R = Ry, solve through a line search on ~:

maximize v subject to (25b)-(25a).

VN ,mo,m1,p

Step 2: If stopping criterion is satisfied, return (R, )
else, using mg, m1, p and the optimal v* from Step 1, set

R(z) = R(z) and solve with a line search on ~:

maximize v subject to (25), (28),v > v*, (29)

Vn,R,m3

Set k < k + 1; Ry + R* with R* the optimizer of (29);
go to Step 1. |

Notice that the Lyapunov function Vi is a decision vari-
able in every step of the above algorithms. This is not the
case if one imposes R = Vi as mentioned in Remark 6.

Algorithm 3 guarantees a sequence of non-decreasing
ERAs and a function R(x) satisfying (25) is required
for its initialisation. This function can be taken as any
Lyapunov function satisfying the local stability of the
origin, for example a quadratic function of the form
V(z) = 2T Px for some positive definite P if the lin-
earized system matrix A is Hurwitz. The estimate ob-
tained from running Algorithm 3 depends on the ini-
tial function Ry, hence running Algorithm 3 with differ-
ent initialisations Ry may lead to better estimates, one

choice for Ry is the Lyapunov function Vy produced by
the algorithm (see Example 2 in Section 5).

After using Algorithm 3 to construct an ERA, it is de-
sirable to compute the corresponding rational LF of the
form (6). In order to do so, using the multiplier p, func-
tions R and v from the final iteration of Algorithm 3
solve the feasibility problem

find VN subject to (25), (26), m; € X[x],

VN ,mo,m1,m2

1 € {0,1,2}. One important assumption in Theorem 1
is the compactness of set £(R,~). In order to enforce
this property when computing R(x) € R[z] we impose
a constraint of the form R(z) > c(z) + x| z||** where
c(z) € Rz, deg(c) <2k — 1,k € R>g, k € N.

5 Numerical Examples

We now illustrate our results with three numerical ex-
amples, we use SOSTOOLS and the semidefinite pro-
gramme solver SeDuMi [14].

Example 1: Consider system (1) with

—0.42x17 — 1.0529 — 2.3:0% — 0.5z129 — x?

fz) =
1.9821 + 1722
which satisfies f(0) = 0. This system was studied
in [20, Example 4] in the context of maximal LFs and
in [15] with composite Lyapunov functions. It describes
a Lotka-Volterra system with its stable equilibrium
point translated to the origin.

With the initial function R obtained from the ERA
from [20], we apply Algorithm 3 (thus allowing the Lya-
punov function Vy to be a variable at each step). With
the obtained positively invariant set £(R, ) defining the
ERA and a multiplier p solving (25a), we compute Vi
satisfying (25b), (25¢), (26) and m; € X[z], i € {0, 1,2}
thus yielding a rational LF as (6). The boundary of the
ERA and a sequence of nested level sets of the rational
LF V(x) are depicted in Figure 1. Figure 2 depicts the
sets {z|Vy = 0} and the set {z|R = 0}, illustrating that
constraints (25¢) and (25a) hold, that is, the intersection

of OE(R,~) with {z|R > 0} is empty. For comparison
purposes, Figure 3 depicts the ERA, the maximal level
set obtained with the numerator Vi, which is strictly
contained in the ERA and the set {z|Vy = 0}. This fea-
ture illustrates the conservativeness of the estimate ob-
tained by computing the MLS of a given polynomial LF.

Example 2: The following three-dimensional system
from [20, Example 5] presents a limit cycle and an stable



Fig. 1. Dark blue line dark depicts the boundary of the ERA,
i.e. the set OE(R,~). Level sets of the function V(x) are
also depicted. Trajectories depicted in green converge to the
origin.

Fig. 2. The dashed light blue lines depict the set of points
satisfying R(z) = (VR(z), f(z)) = 0, the dashed black lines
depict the set V(z) = (VV(z), f(z)) = 0. The boundary of

the RA lies in the set where R(x) is negative.

Fig. 3. The boundary of the ERA, 0£(R,~), is depicted in
dark blue. The dashed black lines depict the set Vi (z) = 0.
The solid black line depicts the MLS obtained with Vi as
the LF.

equilibrium at the origin:

fz) =

— 3
—0.915z1 + (1 — 0.91522) 2y — a3
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We apply Algorithm 3 starting with R given by
a quadratic LF for the linearised system and set
deg(Viy) = 4. We then use the obtained LF, Vi, as the
initial invariant set function R and apply Algorithm 3
again. The obtained ERA of degree two and degree
four are depicted in Figure 4. We were unable to find
multipliers p and mo that satisfy (26) for the computed
Vn and R, hence we could not construct a rational LF
certificate of the form (6).

Fig. 4. The boundary of the ERA, JE(R,7), of degree
deg(R) = 4 corresponds to the white surface while the
black surface corresponds to the largest ERA obtained with
deg(R) = 2. Trajectories are depicted in green (converging)
and red (diverging).

Example 3: In the following example we compute a
piece-wise positively invariant set. Consider now sys-
tem (1) with

(30)

Despite the fact that only the origin is an equilibrium
point, its RA is not the whole of R™ nor is its bound-
ary defined by a limit-cycle. The boundary of the RA is
given by {x € R"|x122 = 2} (obtained from analytical
solution to Zubov’s equation [22, p.73]).

We fix the shape of the positively invariant sets by fix-
ing Ry as in (12), d = 2 with Ry = 50 (23 — 22129 +
23), Ry = 2x12, and compute Vy, deg(Vy) = 6 to
define a rational LF V' = ,YY%M . We formulate SOS con-
straints analogous to (25) for conditions in Theorem 3.
When solving the constraints we keep Rj; constant, i.e.
only the multipliers m;, p and the LF function Vi are
updated while increasing ~y. As a final step, we solve con-
straints with fixed v, p, Ry to obtain a rational LF of

which the level sets are depicted in Figure 5.




D
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Fig. 5. The boundary of the ERA, 9£(R,~), is depicted in
dark blue. Trajectories obtained with (30) are depicted in
green (converging) and red (diverging).

6 Conclusion

In this paper we presented conditions for a positively
invariant set to be an ERA of the origin and for Lyapunov
certificates given by quotient of two functions where the
denominator characterizes the ERA. The main feature
of our results is that the positively invariant set defining
the ERA is not necessarily a level set of a Lyapunov
function. Provided a stronger condition is satisfied we
obtain a Lyapunov function interpretation of the ERA,
which for polynomial systems is a rational function. We
subsequently proposed an algorithm for the estimation
of the RA that guarantees the increment of the estimate
at each iteration.

We then applied the algorithm to the class of polyno-
mial vector fields and semi-algebraic sets for which the
steps are performed via the solution to Sum-of-Squares
programmes. The extension of the results to the class
of systems with parametric uncertainties was also pre-
sented. For this case, the positively invariant ERA does
not depend on the uncertain parameters while the asso-
ciated Lyapunov function can.
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