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Abstract

In this paper, we develop a unified framework for studying constrained robust optimal control problems with

adjustable uncertainty sets. In contrast to standard constrained robust optimal control problems with known

uncertainty sets, we treat the uncertainty sets in our problems as additional decision variables. In particular,

given a finite prediction horizon and a metric for adjusting the uncertainty sets, we address the question of

determining the optimal size and shape of the uncertainty sets, while simultaneously ensuring the existence

of a control policy that will keep the system within its constraints for all possible disturbance realizations

inside the adjusted uncertainty set. Since our problem subsumes the classical constrained robust optimal

control design problem, it is computationally intractable in general. We demonstrate that by restricting the

families of admissible uncertainty sets and control policies, the problem can be formulated as a tractable

convex optimization problem. We show that our framework captures several families of (convex) uncertainty

sets of practical interest, and illustrate our approach on a demand response problem of providing control

reserves for a power system.
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1. Introduction

Robust finite-horizon optimal control of constrained linear systems subject to additive uncertainty has

been studied extensively in the literature, both in the control [1, 2, 3] and operations research community [4,

5, 6]. Apart from issues such as stability and recursive feasibility that arise in the context of Model Predictive

Control, significant amount of research is concerned with the approximation and efficient computation of

the optimal control policies associated with such problems [7, 8, 9].
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Commonly, robust control problems of constrained systems over a finite horizon deal with uncertainty sets

that are known a priori. In this paper, we add another layer of complexity to these problems by allowing

the uncertainty sets to be decision variables of our problems, and refer to such problems as constrained

robust optimal control problems with adjustable uncertainty sets. For example, if the uncertainty sets are

interpreted as a system’s resilience against disturbance, then our framework can be used in a robustness

analysis setup for determining the limits of robustness of a given system. The goal then is to determine

the optimal size and shape of the uncertainty sets which maximize a given metric, while ensuring the

existence of a control policy that will keep the system within its constraints. Unfortunately, such problems

are computationally intractable in general, since they subsume the standard robust optimal control problem

with fixed uncertainty set. The aim of this paper is to propose a systematic method for finding approximate

solutions in a computationally efficient way.

Our work is motivated by reserve provision problems, where the adjustable uncertainty set is interpreted

as a reserve capacity, which a system can offer to third parties, and for which it receives (financial) reward.

In this case, the maximum reserve capacity can be computed by maximizing the size of the uncertainty

set. Moreover, the reserve capacity is to be chosen such that for every admissible reserve demand, i.e. for

every realization within the reserve capacity set, our system is indeed able to provide this reserve without

violating its constraints. Reserve provision problems of this kind were first formulated and studied in [10]

where it was shown that for uncertainty sets described by norm balls, the problems can be reformulated as

tractable convex optimization problems. Another problem that admits the interpretation as a robust control

problem with adjustable uncertainty set is robust input tracking [11, 12], where the aim is to determine the

largest set of inputs that can be tracked by a system without violating its constraints. Reserve provision

and input tracking problems have recently received increased attention in demand response applications of

control reserves for electrical power grids [13, 14, 15].

The purpose of this paper is two-fold: First, we generalize the work of [10, 12] by considering a larger

class of adjustable uncertainty sets based on techniques of conic convex optimization. Second, we provide a

unified framework for studying reserve provision, input tracking and robustness analysis problems under the

umbrella of constrained robust optimal control with adjustable uncertainty sets. The main contributions of

this paper with respect to the existing literature can be summarized as follows:

• We show that if (i) the uncertainty sets are restricted to those that can be expressed as affine trans-

formations of properly selected primitive convex sets, and (ii) the control policies are restricted to be

affine with respect to the elements in these primitive sets, then the problems admit convex reformu-

lations that can be solved efficiently, and whose size grows polynomially in the decision parameters.

In particular, we extend the results of [10, 12] in two ways: First, we show that any convex set can

be used as a primitive set, allowing us to target a much larger class of uncertainty sets. Second, by
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allowing the primitive sets to be defined on higher dimensional spaces than those of the uncertainty

sets, we are able to design more flexible uncertainty sets.

• We identify families of uncertainty sets of practical interest, including norm-balls, ellipsoids and hyper-

rectangles, and show that they can be adjusted efficiently. Extending the work of [10, 12], we also show

that by choosing the primitive set as the simplex, our framework enables us to efficiently optimize over

compact polytopes with a predefined number of vertices. Furthermore, we prove that if the primitive

sets are polytopes (e.g. the simplex), then our policy approximation gives rise to continuous piece-wise

affine controllers.

• We study a reserve provision problem that arises in power systems, and show how it can be formulated

as a robust optimal control problem with an adjustable uncertainty set. The problem is addressed

using the developed tools, and we show that it can be formulated as a linear optimization problem

of modest size that can be solved efficiently within 0.3 seconds, making it also practically applicable.

In additional to results available in the literature [12, 13], we verify that our method produces the

optimal solution for this problem for prediction horizons of up to eight time steps. For larger horizons,

we show that the (relative) suboptimality gap is bounded by 0.71%.

This paper is organized as follows: Section 2 introduces the general problem setup. Section 3 focuses

on the problem of adjusting the uncertainty sets, while in Section 4, we return to the original problem and

restrict the family of control policies to obtain tractable instances thereof. Section 5 illustrates our approach

on a demand response problem, while Section 6 demonstrates the usefulness of allowing the uncertainty sets

to be projections of primitive convex sets. Finally, Section 7 concludes the paper. The Appendix contains

auxiliary results needed to prove the main results of the paper.

Notation

For given matrices (A1, . . . , An), we define A := diag(A1, . . . , An) as the block-diagonal matrix with

elements (A1, . . . , An) on its diagonal. Aij denotes the (i, j)-th element of the matrix A, while A·j denotes

the j-th column of A. Given a cone K ⊆ Rl and two vectors a, b ∈ Rl, a �K b implies (b − a) ∈ K. For

a matrix B ∈ Rm×l, B �K 0 denotes row-wise inclusion in K. For a symmetric matrix C ∈ Rn×n, C � 0

denotes positive semi-definiteness of C. Given vectors (v1, . . . , vm), vi ∈ Rl, we denote their convex hull as

conv(v1, . . . , vm). Moreover, [v1, . . . , vm] := [v>1 . . . v>m]> ∈ Rlm denotes their vector concatenation.

2. Problem Formulation

In this section, we formulate the robust optimal control problem with adjustable uncertainty set. We

consider uncertain linear systems of the form

xk+1 = Axk +Buk + Ewk, (1)

3



where xk ∈ Rnx is the state at time step k given an initial state x0 ∈ Rnx , uk ∈ Rnu is the control input and

wk ∈Wk ⊆ Rnw is an uncertain disturbance. We consider compact polytopic state and input constraints

xk ∈ X := {x ∈ Rnx : Fxx ≤ fx}, k = 1, . . . , N,

uk ∈ U := {u ∈ Rnu : Fuu ≤ fu}, k = 0, . . . , N − 1,
(2)

where Fx ∈ Rnf×nx , fx ∈ Rnf , Fu ∈ Rng×nu , fu ∈ Rng , and nf (ng) is the number of state (input) con-

straints. Given a planning horizon N , we denote by φk(u,w) the predicted state after k time steps resulting

from the input sequence u := [u0, . . . , uN−1] ∈ RNnu and disturbance sequence w := [w0, . . . , wN−1] ∈

RNnw .

In contrast to classical robust control problem formulations, we assume that the uncertainty set Wk is not

fixed and needs to be adjusted according to some objective function % : P(Rnw)→ R, where P(Rnw) denotes

the power set of Rnw . For example, we may think of %(Wk) as the volume of Wk, although depending on

the application, it can represent other qualities such as the diameter or circumference of Wk. Our objective

is to maximize %(Wk), while simultaneously minimizing some operating cost and ensuring satisfaction of

input and state constraints. Hence, the cost to be minimized is given by

max
w∈W

{J(u,w)} − λ
N−1∑
k=0

%(Wk), (3)

where J(u,w) := `f (φN (u,w)) +
∑N−1

k=0 ` (φk+1(u,w), uk) is some “nominal” cost function with ` : Rnx ×

Rnu → R and `f : Rnx → R linear, and λ ≥ 0 is a user-defined weighting factor. Note that convex quadratic

cost can also be incorporated in our framework by taking the certainty-equivalent cost J(u, w̄) instead of the

min-max cost in (3), where w̄ is some fixed (or expected) uncertainty. Due to the presence of the uncertainties

w, we consider the design of a causal disturbance feedback policy π(·) := [π0(·), . . . , πN−1(·)], with each

πk : W0 × . . .×Wk → Rnu , such that the control input at each time step is given by uk = πk(w0, . . . , wk)2.

Combining (1)–(3), we express the optimal control problem compactly as

min max
w∈W

{
c>π(w)

}
− λ%(W)

s.t. π(·) ∈ C, W ∈ P(RNnw),

Cπ(w) + Dw ≤ d, ∀w ∈ W,

(4)

with decision variables (π(·),W), andW := W0×. . .×WN−1, %(W) :=
∑N−1

k=0 %(Wk), and C := {[π0(·), . . . , πN−1(·)] :

πk : W0 × · · · × Wk → Rnu , k = 0, . . . , N − 1} is the space of all causal control policies. c ∈ RNnu ,

C ∈ RN(nf+ng)×Nnu , D ∈ RN(nf+ng)×Nnw , and d ∈ RN(nf+ng) are matrices constructed from the problem

data, see e.g. [16] for an example of such a construction. We call (4) a robust optimal control problem with

2Strictly causal policies can be incorporated by restricting πk(·) to depend on (w0, . . . , wk−1) only. For simplicity, this

paper considers causal policies. However, all subsequent results apply to strictly causal policies with minor modifications.
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adjustable uncertainty set, since the uncertainty set W is a decision variable. Note that if W is given and

fixed, then the above problem is a standard robust optimal control problem with additive uncertainty, see

e.g. [16, 17] and the references therein.

Problem (4) is intractable because (i) the optimization of the uncertainty set W is performed over

arbitrary subsets of RNnw ; (ii) the constraints must be satisfied robustly for every uncertainty realization;

and (iii) the optimization of the policies is performed over the space of causal functions C. The main goal

of this paper is to present approximations of instances of (4) that can be solved efficiently using tools from

convex optimization. In Section 3, we focus on the optimization of the uncertainty sets without the presence

of the control inputs, and discuss several families of uncertainty sets that can be handled efficiently. We

then return to the original problem in Section 4 and show that by applying affine policy approximation, the

resulting optimization problem is convex, and has a number of decision variables and constraints that grows

polynomially in the problem parameters.

3. Uncertainty Set Approximation via Primitive Sets

We consider initially the following simplified problem

max %(W)

s.t. W ∈ P(RNnw),

Dw ≤ d, ∀w ∈ W,

(5)

where W = W0 × . . . ×WN−1 is the decision variable. Problem (5) can be used, for example, to perform

robustness analysis on a closed-loop or autonomous systems, where the control policy π(·) in (4) is fixed.

The objective would be to compute the largest setW, according to metric %(·), which the system can tolerate

without violating its constraints. Note that Problem (5) becomes intractable when W is a polytope with a

fixed number of vertices and %(·) is the volume [18]. To gain computational tractability, we restrictW to be

the affine transformation of a primitive set, and choose %(·) from a pre-specified family of concave functions.

Definition 1 (Primitive Set). Given a convex cone K ⊆ Rl, we call a compact set S ⊂ Rns , ns ≥ nw, a

primitive set if it has a non-empty relative interior and can be represented as

S := {s ∈ Rns : Gs �K g}, (6)

for some G ∈ Rl×ns and g ∈ Rl.

Note that any compact convex set is a primitive set, since every convex set admits a conic representation

of the form (6) [19, p.15]. From now on, we restrict the uncertainty sets Wk to be of the form

Wk = YkSk + yk := {Yks+ yk : s ∈ Sk} ∈ P(Rnw),

(Yk, yk) ∈ Yk ⊆ (Rnw×ns × Rnw),
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where Sk is a primitive set. For simplicity, we assume that for all stages k = 0, . . . , N − 1, Sk is described

by the same cone K ⊆ Rl and the same matrices G and g. However, all subsequent results can be easily

extended to cases when the primitive sets are described by time-varying cones Kk ⊂ Rlk and matrices Gk

and gk. We refer to (Yk, yk) as shaping parameters and assume they take values in a convex set Yk. Note

that if nw < ns, then Wk can be seen as the projection of Sk onto Rnw . Therefore, intuitively speaking, the

matrix Yk can be used to scale, rotate and project the set Sk, while the vector yk can be used to translate

it. By defining S := S0 × . . .× SN−1 and

Y :=
{

(Y,y) ∈ RNnw×Nns × RNnw : ∃{(Yk, yk) ∈ Yk}N−1
k=0 ,

Y = diag(Y0, . . . , YN−1), y = [y0, . . . , yN−1]} ,

we can compactly express the restriction on W as

W = YS + y ∈ P(RNnw), (Y,y) ∈ Y. (7)

Applying restriction (7) to problem (5) yields the following problem with decision variables (W,Y,y):

max %(W)

s.t. W = YS + y, (Y,y) ∈ Y,

Dw ≤ d, ∀w ∈ W.

(8a)

Using standard duality arguments, e.g. [20, Theorem 3.1], to reformulate the semi-infinite constraint leads

to a bilinear and hence non-convex optimization problem. To circumvent this difficulty, we eliminate the

variables w and W in (8a) using (7). This leads to the following optimization problem with decision-

independent uncertainty set S:

max %(YS + y)

s.t. (Y,y) ∈ Y,

D(Ys + y) ≤ d, ∀s ∈ S,

(8b)

with decision variables (Y,y). The following proposition shows that problems (8a) and (8b) are in fact

equivalent.

Proposition 1. Problems (8a) and (8b) are equivalent in the following sense: both problems have the same

optimal value, and there exists a mapping between feasible solutions in both problems.

Proof. The equivalence follows immediately from statement (i) in Lemma 1 in the Appendix, and by sub-

stituting W with YS + y.

Since S is convex, the semi-infinite constraint in (8b) can be reformulated using techniques based

on strong duality of convex optimization, see e.g. [20, Theorem 3.1]. This leads to the following finite-
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dimensional optimization problem:

max %(YS + y)

s.t. (Y,y) ∈ Y, Λ ∈ RN(nf+ng)×Nl, Λ �K̄? 0,

Dy + Λg ≤ d, ΛG = DY,

(9)

with decision variables (Y,y,Λ), where G := diag(G, . . . , G) ∈ RNl×Nns g := [g, . . . , g] ∈ RNl, K̄ :=

K × . . . × K ⊂ RNl and K̄? is its dual cone. Problem (9) has convex constraints, and constitutes an inner

approximation of the infinite-dimensional problem (5) due to restriction (7). Note that both the number

of decision variables and the number of constraints in problem (9) grow polynomially with respect to the

problem parameters (N,nx, ns, nw, nf , ng, l). If in addition the objective function %(·) is concave in the

shaping variables (Y,y), then problem (9) is a tractable convex optimization problem.

In the following, we discuss choices of the function %(·) that will render problem (9) convex, and show

that a large family of uncertainty sets of practical interest is captured by the affine transformation (7).

3.1. Volume Maximization

A natural objective in problem (5) is to maximize the volume of the sets Wk. Indeed, for the special

case of ns = nw, it is well-known that vol(Wk) =
√

det(Y >k Yk) vol(Sk) [21, Section 8.3.1], where vol(Wk)

and vol(Sk) are the Lebesgue measures of the sets Wk and Sk, respectively. If Yk is chosen such that Yk

is constrained to be positive-definite, i.e. Yk := {(Yk, yk) ∈ (Rnw×nw × Rnw) : Yk � 0}, then maximizing

%(YkSk + yk) = log det(Yk) maximizes vol(Wk), see [21, Section 3.1.5] for more details3. Since log det(·) is a

concave function, problem (9) is a convex optimization problem that can be solved efficiently [22]. For the

case ns > nw, maximizing the volume of Wk is generally a non-convex optimization problem, and a convex,

albeit heuristic, objective function should be chosen to keep the optimization problem tractable. Examples

of such cost functions are given in Section 3.2 below.

3.2. Specific Families of Uncertainty Sets

In practical applications, uncertainty sets Wk are typically constrained to have a specific geometric form,

such as ellipsoidal or rectangular. This requirement can be easily incorporated in problem (5) by including

an additional constraint of the form Wk ∈ Ωk ⊂ P(Rnw), where Ωk is the family of admissible uncertainty

sets. In the following, we study families of uncertainty sets that often arise in robust control problems,

focusing on norm balls, ellipsoids, hyper-rectangles and polytopes. We show that these representations can

be obtained by appropriately selecting the primitive set Sk and constraint set Yk. To simplify notation, we

omit the time indices k in the subsequent discussion.

3Similarly, the volume of W is maximized by choosing %(YS + y) = log det(Y), subject to nw = ns and Yk � 0.
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Ball Uncertainty Set

p-norm ball uncertainty sets, with p ∈ [1,∞], take the form W = {w ∈ Rnw : ‖w − y‖p ≤ r}, with

parameters r ≥ 0 and y ∈ Rnw . In the spirit of [10], we choose the primitive set S = {s ∈ Rnw : ‖s‖p ≤ 1},

where K in (6) is the p-order cone, and restrict Y = {(Y, y) ∈ (Rnw×nw × Rnw) : ∃r ∈ R+, Y = rI}, where

I ∈ Rnw×nw is the identity matrix. This allows us to express p-norm ball uncertainty sets as W = Y S + y,

subject to (Y, y) ∈ Y. A natural choice for the objective function is %(W) = r, which is proportional to

log det(Y ) = nwr and thus maximizes the volume of W. Since K? is the q-order cone, where 1/p+ 1/q = 1,

and the set Y is described by linear constraints, problem (9) is a conic convex optimization problem that

can be solved efficiently [23].

Ellipsoidal Uncertainty Set

Ellipsoidal uncertainty sets take the form W = {w ∈ Rnw : (w − y)>Σ−1(w − y) ≤ 1}, with parameters

Σ = Σ> � 0 and y ∈ Rnw . By choosing the primitive set S = {s ∈ Rnw : ‖s‖2 ≤ 1}, where K in (6) is the

second-order cone, and setting Y = {(Y, y) ∈ (Rnw×nw × Rnw) : Y = Y > � 0}, we can express the ellipsoid

as W = Y S + y by identifying Y with Σ1/2, see e.g. [21, Section 2.2.2]. The volume of W is maximized by

choosing %(Y S+y) = log det(Y ). Since K? = K and Y is described by linear matrix inequalities, problem (9)

can be solved efficiently [22].

Axis-aligned Hyper-Rectangular Uncertainty Sets

Axis-aligned rectangular uncertainty sets take the general form W = {w ∈ Rnw : −γ ≤ w − y ≤ γ},

with parameters γ ∈ Rnw
+ and y ∈ Rnw . By choosing S = {s ∈ Rnw : ‖s‖∞ ≤ 1}, where K in (6) is the

∞-order cone, and Y = {(Y, y) ∈ (Rnw×nw × Rnw) : ∃γ ∈ Rnw
+ , Y = diag(γ)}, we can write W = Y S + y

subject to (Y, y) ∈ Y. The volume of W is maximized with %(Y S + y) = log det(Y ) =
∑nw

i=1 log Yii. For

given ci ∈ R, i ∈ {1, . . . , nw}, another choice of the objective could be %(Y S + y) =
∑nw

i=1 ciYii, which

maximizes the (weighted) circumference of the rectangle W. Since the dual cone K? is the first-order cone

and Y is described by linear constraints, problem (9) is a convex optimization problem for either choice of

the objective function.

Polyhedral Uncertainty Set

Compact polytopes with m ≥ nw vertices take the general form W = conv(v(1), . . . , v(m)), with param-

eters (v(1), . . . , v(m)). By choosing the primitive set as the simplex S = conv(e1, . . . , em), where ei ∈ Rm

is the i-th unit vector and K = Rm
+ in (6), and Y = {(Y, y) ∈ (Rnw×m × Rnw) : y = 0}, the polytope can

be expressed as W = Y S, where Y·j corresponds to v(j) for all j = 1, . . . ,m. Unfortunately, maximizing

the volume of a generic polytope with m vertices is computationally intractable [18]. Instead, one can, for

example, use the linear objective function %(Y S) =
∑m

j=1 c
>
j Y·j , which places the individual vertices of W

in user-specified directions cj ∈ Rnw , j = 1, . . . ,m (“pushing”). With all constraints linear, the resulting
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problem is a linear optimization problem. An alternative cost function is %(Y S) = −
∑m

j=1 ‖dj−Yj‖22, which

places the vertices of W close to chosen points dj ∈ Rnw , j = 1, . . . ,m (“pulling”), resulting in a convex

quadratic optimization problem.

4. Policy Approximation via Affine Decision Rules

To provide a tractable approximation for optimizing over policies, we first restrict the uncertainty set W

to admit the affine representation (7), giving rise to the following infinite-dimensional problem:

min max
w∈W

{
c>π(w)

}
− λ%(W)

s.t. π(·) ∈ C, W = YS + y, (Y,y) ∈ Y,

Cπ(w) + Dw ≤ d, ∀w ∈ W,

(10a)

with decision variables (π(·),W,Y,y). Similar to problem (8a), problem (10a) has a uncertainty set

parametrized by the decision variables (Y,y). Therefore, we consider the following reformulation of prob-

lem (10a), parametrized in terms of s, and with decision-independent uncertainty set:

min max
s∈S

{
c>π̃(s)

}
− λ%(YS + y)

s.t. π̃(·) ∈ C̃, (Y,y) ∈ Y,

Cπ̃(s) + D(Ys + y) ≤ d, ∀s ∈ S,

(10b)

with decision variables (π̃(·),Y,y), and where C̃ := {[π̃0(·), . . . , π̃N−1(·)] : π̃k : S0 × · · · × Sk → Rnu , k =

0, . . . , N − 1}. The set C̃ ensures that π̃(·) are causal policies, depending only on the first k elements of s.

The following proposition shows that problems (10a) and (10b) are equivalent.

Proposition 2. Problems (10a) and (10b) are equivalent in the following sense: both problems have the

same optimal value, and there exists a (not necessarily unique) mapping between feasible solutions in both

problems.

Proof. The proof is provided in the Appendix.

Proposition 2 allows us to focus on problem (10b), which belongs to the class of multistage adaptive

optimization problems, involving a continuum of decision variables and inequality constraints [24]. Following

[4], we restrict the space of admissible policies to exhibit the following affine structure

π̃k(s0, . . . , sk) := pk +

k∑
j=0

Pk,jsj , k = 0, . . . , N − 1, (11)

for some Pk,j ∈ Rnu×ns and pk ∈ Rnu . The concatenated policy is expressed by π̃(s) = Ps + p, where P ∈

RNnu×Nns is a lower-block-triangular matrix defined by the elements Pk,j and p := [p0, . . . , pN−1] ∈ RNnu .
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This restriction yields the following semi-infinite problem,

min max
s∈S

{
c>(Ps + p)

}
− λ%(YS + y)

s.t. P ∈ RNnu×Nns , p ∈ RNnu , (Y,y) ∈ Y,

C(Ps + p) + D(Ys + y) ≤ d, ∀s ∈ S,

(12)

with a finite number of decision variables (P,p,Y,y) and an infinite number of constraints. Since S is

convex, one can employ the duality argument of [20, Theorem 3.1] to reformulate problem (12) into the

following finite-dimensional convex optimization problem:

min τ − λ%(YS + y)

s.t. τ ∈ R, P ∈ RNnu×Nns , p ∈ RNnu , (Y,y) ∈ Y,

µ ∈ RNl, µ �K̄? 0, Λ ∈ RN(nf+ng)×Nl, Λ �K̄? 0,

c>p+ µ>g ≤ τ, G>µ = P>c,

Cp + Dy + Λg ≤ d, ΛG = CP + DY,

(13)

with decision variables (τ,P,p,Y,y,µ,Λ). Note that the size of problem (13) grows polynomially in the

parameters (N,nx, nu, ns, nw, nf , ng, l). Furthermore, if %(·) is chosen as discussed in Sections 3.1 and 3.2,

then problem (13) is a convex optimization problem that can be solved efficiently; in particular, the affine

policy does not alter the problem class.

The following theorem summarizes the relationship between the original problem (4), and its approxi-

mation (13), obtained through the restrictions (7) and (11):

Theorem 1. Problem (13) constitutes an inner approximation of the original problem (4) in the following

sense: every feasible solution of (13) is feasible in (4), and an upper bound to problem (4) can be found by

solving problem (13).

4.1. Relationship between the policies π(·) and π̃(·)

By restricting our attention to affine policies π̃(·) in (11), we were able to obtain a tractable optimization

problem in (13). By Proposition 2, these affine policies are equivalent to some, possibly non-linear, policy

π(·) ∈ C. In the following, we show that if S is a polytope, then affine policies π̃(·) correspond to continuous

piece-wise affine policies π(·). To see this, let C̃aff ⊂ C̃ be the class of causal affine policies in problem (10b)

defined as in (11); Caff ⊂ C be the class of causal affine policies in problem (10a); and Cpwa ⊂ C be the class

of causal, piece-wise affine, continuous policies in problem (10a).

Proposition 3. Let S := S0 × . . .× SN−1. Then, the following hold:

(i) For every (π(·),W, (Y,y)) ∈ Caff×P(RNnw)×Y feasible in problem (10a), there exists a (π̃(·), (Y,y)) ∈

C̃aff × Y feasible in problem (10b) that achieves the same objective value.
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(ii) If Y is invertible, then for every (π̃(·), (Y,y)) ∈ C̃aff × Y feasible in problem (10b), there exists a

(π(·),W, (Y,y)) ∈ Caff × P(RNnw)× Y feasible in problem (10a) that achieves the same objective.

(iii) If S is a polytope, then for every (π̃(·), (Y,y)) ∈ C̃aff × Y feasible in problem (10b), there exists a

(π(·),W, (Y,y)) ∈ Cpwa × P(RNnw) × Y feasible in problem (10a) that achieves the same objective

value.

Proof. The proof is provided in the Appendix.

From Proposition 3 (i) it follows that applying affine policies to problem (10b) produces at least as good

results as applying affine policies to (10a). From part (ii) it follows that if Y is invertible (e.g. Y � 0),

then imposing π̃(·) ∈ C̃aff in problem (10b) is equivalent to imposing π ∈ Caff in problem (10a), but has the

advantage that a convex optimization problem is solved instead of a bilinear optimization problem. Finally,

it follows from the proof of Proposition 3 that if (P?,p?,Y?,y?) are the optimizers of problem (13), then a

causal policy π(·) ∈ C can be obtained as

π(w) := P?
[
(Y?)−1(w − y?)

]
+ p? (14)

if Y? is invertible, and otherwise as

π(w) := P?L(w) + p?, (15)

where L : W → S is a so-called lifting operator (see Appendix). From a practical point of view, (14) and

(15) also provide a way for computing the control input if a disturbance realization w ∈ W is given or

measured.

We close this section by pointing out that instead of approximating π̃(·) with an affine-policy, it can

be approximated using more complex, e.g. piece-wise affine, policies. Similar to the case of π̃(·) ∈ C̃aff, it

can be shown that if π̃(·) ∈ C̃pwa and S is a polytope, then π(·) will be piece-wise affine. The interested

reader is referred to [25, 26] for tractable methods of designing piece-wise affine policies π̃(·) using convex

optimization techniques.

5. Example 1: Frequency Reserve Provision

In a power grid, the supply and demand of electricity must be balanced at all times to maintain frequency

stability. This balance is achieved by the grid operator by procuring so-called frequency reserves that are

dispatched whenever supply does not meet demand [27]. Recently, there has been increasing interest in

so-called demand response schemes, where flexible loads such as office buildings are used to provide such

reserves [28]. Buildings participating in the demand response program are asked in real-time by the grid

operator to adjust their electricity consumption within a given range (the so-called reserve capacity). They

are rewarded financially for this service through a payment that typically depends both on the size of the
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offered reserve capacity and on the actual reserves provided. In the following, we investigate the amount of

frequency reserves commercial buildings can offer to the power grid.

5.1. Problem Formulation

Following [29, 30], we assume that the building dynamics are of the form xk+1 = Axk+B(uk+∆uk)+Evk,

where the states represent the temperatures in the room, walls, floor, and ceiling. The affine term vk ∈ Rnv

represents uncontrolled inputs acting on the building, such as ambient temperature, solar radiation, and

internal gains (number of building occupants, etc.). For simplicity, we assume that vk can be predicted

perfectly, and refer to [29, 31] for methods of estimating these. The control inputs consist of the building’s

heating, ventilation and air condition (HVAC) system, which we model through two input vectors uk and

∆uk. We interpret the (strictly causal) input uk as the nominal control input which we apply if no reserve

is demanded at time k. The (causal) input ∆uk models the necessary input change at time k to follow

the actual reserve demand wk ∈ Wk, where Wk ⊆ R is the reserve capacity. Note that ∆uk is required to

depend on wk since it is used in real-time to follow the reserve demand wk, which is a regulation signal sent

by the grid operator. Following the literature [30, 31], we model the electricity consumption of the HVAC

system through a linear function of the form uk 7→ η>uk, so that ek := η>uk is the nominal electricity

consumption, and ∆ek := η>∆uk is the change in electricity consumption if the input is changed from uk

to uk + ∆uk. In practice, ∆uk is chosen such that it matches the reserve demand, satisfying wk = η>∆uk

for all k = 0, . . . , N − 1.

The objective function is composed of two competing quatities: the maximization of reserve capacity,

and the minimization of electricity cost. The electricity cost takes the form
∑N−1

k=0 ck η
>uk, where ck ∈ R+

is the electricity price at time k. Following the current norm in Switzerland [32], we consider symmetric

reserve capacity Wk = [−Yk, Yk], where Yk ∈ R+. We assume that offering reserve capacity Wk of size Yk is

compensated with a reward of the form λYk. For simplicity, the reward associated with the actual reserves

provided w := [w0, . . . , wN−1] is not considered. Since the reserve demand w is uncertain at the time of

planning, we introduce the policies π(·) := [π0(·), . . . , πN−1(·)] ∈ Cs and κ(·) := [κ0(·), . . . , κN−1(·)] ∈ C for

[u0, . . . , uN−1] and [∆u0, . . . ,∆uN−1], respectively, where Cs is the class of all strictly causal policies. Note

that the inputs uk = πk(w0, . . . , wk−1) are strictly causal because in practice they are decided and applied

independent of the current realization wk. In contrast, the inputs ∆uk = κk(w0, . . . , wk) are only causal

since they must satisfy the (instantaneous) reserve request wk = η>∆uk for all wk ∈Wk.

The frequency reserve provision problem can now be formulated as the following robust optimal control
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problem with adjustable uncertainty set:

min max
w∈W

{
c>e(w)

}
− λ%(W)

s.t. π(·) ∈ Cs, κ(·) ∈ C, W = ×N−1
k=0 [−Yk, Yk], Y ≥ 0

x(w) = Ax0 + B(π(w) + κ(w)) + Ev,

F x(w) ≤ f , G(π(w) + κ(w)) ≤ g,

e(w) = η>π(w), w = η>κ(w),

∀w ∈ W,

(16)

with decision variables (π(·),κ(·),W,Y), and c := [c0, . . . , cN−1], Y is the collection of all {Yk}N−1
k=0 , %(W) :=∑N−1

k=0 Yk, v := [v0, . . . , vN−1], x0 ∈ Rnx is the initial state, and η> := diag(η>, . . . , η>). The matrices

(A,B,E,F, f ,G,g) can easily be constructed from the problem data. The inequality constraint F x(w) ≤ f ,

ensures that comfort constraints are satisfied at all times. Similarly, the inequality constraint G(π(w) +

κ(w)) ≤ g, ensures that the constraints on the HVAC systems are always satisfied. The first equality

constraint describes the state dynamics, while constraint e(w) = η>π(w) models the (nominal) power

consumption. Finally, the constraint w = η>κ(w) ensures that for every reserve demand sequence w, there

exists a feasible input change κ(w) that matches the reserve demand.

5.2. Simulation Results

We consider a one-room building model with one-hour discretization and horizon length N = 24, based

on the reduced building model presented in [29, Section 4.5]. The states are xk = [xk,1, xk,2, xk,3] ∈ R3,

where xk,1 is the room temperature, xk,2 the inside wall temperature, and xk,3 the outside wall temperature.

We consider a deterministic sequence for the uncontrolled inputs vk = [vk,1, vk,2, vk,3] ∈ R3, taken from [31].

In particular, vk,1 represents the outside air temperature, vk,2 the solar radiation, and vk,3 the number of

occupants in the building. We consider four inputs uk = [uk,1, uk,2, uk,3, uk,4] ∈ R4, representing actuators

commonly found in Swiss office buildings: a radiator heater, a cooled ceiling, a floor heating system, and

mechanical ventilation [29, 30, 31]. Comfort constraints are given as 21◦C ≤ xk,1 ≤ 25◦C for all k =

0, . . . , N − 1, while the inputs are upper- and lower-bounded4. Moreover, we consider two electricity prices

cwd and cwe, where the former exhibits a typical weekday price pattern and the latter a typical weekend

price pattern. The prices are depicted in Figure 1 (top).

Problem (16) is an instance of (4), and can be (inner) approximated based on the ideas discussed in

Sections 3 and 4. First, following Section 3.2, we express W = YS with Y := diag(Y0, . . . , YN−1) and

S := {s ∈ RN : −1 ≤ s ≤ 1}, where 1 ∈ RN is the all-one vector. Second, we restrict the input policies to

admit an affine structure with respect to the primitive set S as in (11).

4Often, no temperature constraints are imposed in office buildings during nights. Although not considered here, this feature

can easily be incorporated in our problem setup.
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Figure 1: (Top) Hourly day-ahead spot market prices for weekday (solid red line) and weekend (dashed

blue line). The weekday prices are averaged over the workdays 14th–18th September 2015, and the weekend

prices averaged over 19th–20th September 2015. Data were obtained from www.epexspot.com. (Center)

Optimal reserve capacities Y ?
k for weekday prices and reward factors λ ∈ {20, 40, 50}. (Bottom) Optimal

reserve capacities Y ?
k for weekend prices and reward factors λ ∈ {20.5, 25.5, 50}.

In our first numerical study, we examine the effect of electricity price and reward factor on the reserve

capacity provided by the building. In particular, we solve problem (16) using the weekday prices with

λ ∈ {20, 40, 50}, and using the weekend prices with λ ∈ {20.5, 25.5, 50}. The results are reported in Figure 1

(center and bottom), which show the optimal reserve capacities [Y ?
0 , . . . , Y

?
N−1] as a function of time. As we

can see from the figures, for a given reward factor λ, the building provides reserve capacities only at times

during which the reward factor is higher than the electricity price, i.e. whenever λ > ck. This behavior can

be explained as follows: For a building to provide a certain reserve capacity Yk, it must increase its nominal
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Figure 2: (Top) Total reserve capacity Y ? =
∑N−1

k=0 Y ?
k for weekday (solid red line) and weekend (dashed

blue line). The orange dash-dotted line is the maximum possible offered reserve capacity, obtained by setting

c = 0. (Center) Nominal electricity consumption (solid red line), minimal electricity consumption (dashed

green line), and maximum electricity consumption (dotted green line) for weekday price. (Bottom) Same as

center, but with weekend price.

electricity consumption by at least Yk, or else it would not be able to reduce its electricity consumption by Yk.

However, since an increase of electricity consumption will incur an additional cost of ckYk, the building will

only provide reserve capacity of size Yk if the reward for doing so outweighs the additional electricity cost, i.e.

whenever λYk > ckYk. Otherwise, if λYk < ckYk, the building will choose not to provide reserves, resulting in

the jumps in the reserve capacity profile shown in Figure 1 (center and bottom). If non-symmetric reserve

capacities were allowed, then the building would provide (positive) reserves Wk = [0, Ȳk] when λ < ck.

During these times, the building is able to increase its electricity consumption by wk = η>∆uk, without the
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need to increase its nominal electricity consumption ek = η>uk, since wk ≥ 0. Finally, we point out that,

due to the dynamics of the buildings and the comfort constraints, the level of reserves provided can change

as λ takes on different values. For example, we see from Figure 1 that the reserve profile with λ = 50 is not

always higher than that with λ = 40 (center figure) or λ = 25.5 (bottom figure), even if the total reserve

capacity turns out to be higher, as we see later on.

In our second numerical study, we study the effect of the reward factor λ on the total reserve capacity

Y ?
tot :=

∑N−1
k=1 Y ?

k offered by the system. To this end, we solve problem (16) with weekday and weekend

prices for reward factors λ ∈ [15, 50]. The results are depicted in Figure 2 (top), which compares the total

reserves for c = cwd (solid red line), c = cwe (dashed blue line), and the maximum possible capacity obtained

when c = 0 (dash-dotted line). Figure 2 (top) allows us to make the following two observations: First, for

most values of λ, the building provides more reserves during the weekend than during weekdays. This is

intuitive because the electricity price during the weekend is typically lower than during weekday, compare

with Figure 1 (top). Second, when λ is small, more reserves are provided during weekdays, which can be

explained by the fact that the minimum electricity price is lower on weekdays than during the weekend,

incentivizing the building to provide reserves even for small values of λ. From a practical point of view,

Figure 2 (top) can be used to determine the optimal level of reserves that should be offered for a given

reward λ. Alternatively, in case of conditional bidding (i.e. the amount of reserve bid in the auction is a

function of the reward), Figure 2 (top) can be used to determine the optimal tradeoff between the amount

of reserves and the reward factor.

In our final numerical study, we investigate the effect of the reward factor λ on the building’s elec-

tricity consumption. To this end, we define the nominal, maximal and minimal electricity consumption

as η>(π?(0) + κ?(0)), maxw∈W?{η>(π?(w) + κ?(w))}, and minw∈W?{η>(π?(w) + κ?(w))}, respectively,

where π?(·) and κ?(·) are the optimal affine policies computed from problem (16), and W? is the associated

optimal reserve capacity. The results are depicted in Figure 2 (center and bottom). It can be seen that as the

building provides more reserves for increasing λ, it must also increase its nominal electricity consumption.

Indeed, as can be verified, the nominal electricity consumption increases in the exact same fashion as the

total reserve capacity depicted in Figure 2 (top). Similar to what we have seen before, such behavior is to

be expected since to provide a certain level of reserves, the building must increase its nominal electricity

consumption by the same amount. Moreover, the interval between the maximal and minimal electricity

consumption can be interpreted as the “slack” of the building, within which the building can adjust its

electricity consumption without violating its constraints.

We finish this section with three concluding remarks: (i) Our framework also allows for non-symmetric

reserve capacities. For example, non-symmetric reserve capacities of the form [−Y k, Y k] can be obtained by

replacing W = YS in (16) with W = YS + y and −Y ≤ diag(y) ≤ Y. Similarly, positive reserve capacities

are obtained by choosing the primitive set S in (16) as S = [0, 1]N , or as S = [−1, 0]N if negative reserves
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are desired. (ii) It is well-known that restricting the input policies to be affine can be conservative, and that

measuring this loss of optimality exactly is as challenging as determining the optimal policy. Nevertheless,

for small horizons, the solution to problem (16) can be computed exactly by enumerating all corner points

of W, and then solving the corresponding optimization problem [33]. Unfortunately, this approach is only

applicable if N is small, since the problem size grows exponentially in N [33]. Nevertheless, if N ≤ 8 in (16),

by using this enumeration approach, we verified that affine policies are indeed optimal for all λ ∈ [15, 50].

For longer horizons 9 ≤ N ≤ 24, a bound on the loss of optimality can be obtained based on the method

introduced in [34]. Using this approach, we have verified that the relative gap between the exact solution

and the affine policies is consistently below 0.71%, for all λ ∈ [15, 50]. This demonstrates that the affine

policy approximation achieves a high degree of precision for this example, giving us hope that affine policies

are indeed optimal in this case. (iii) We highlight that under the affine policy restriction, problem (16) with

N = 24 can be written as a linear optimization problem with roughly 13 000 decision variables and 18 000

constraints. For fixed λ, each problem was solved within 0.3 seconds using the optimization solver Mosek on

a standard laptop equipped with 16 GB RAM and a 2.6 GHz quad-core Intel i7 processor, demonstrating

that our proposed solution method is indeed computationally tractable.

6. Example 2: Robustness Analysis

We next apply our framework to a robustness analysis problem, where the goal is to determine the

largest uncertainty set a system can tolerate without violating its constraints. We consider a system of the

form (1) with parameters nx = 2, nu = 1, nw = 2, and system matrices A = I, B = [1, 0.7] and E = −I,

where I ∈ R2×2 is the identity matrix. To simplify the subsequent analysis, we set N = 1, x0 = x̄ = 0,

and u0 = π0(w0) ∈ C. Hence, the robustness analysis problem can be written as a robust optimal control

problem with adjustable uncertainty set:

max vol(W)

s.t. π(·) ∈ C, W ∈ P(R2), x̄ = 0,

x(w) = Ax̄+Bπ(w)− w,

x(w) ∈ X , π(w) ∈ U ,

∀w ∈W,

(17)

with optimization variables (W, π(·)), where, for simplicity, we have omitted the time indices in our one-step

problem. The state and input constraints are defined as X := {[x1, x2] ∈ R2 : [−10, −10] ≤ [x1, x2] ≤

[10, 10], −15 ≤ −x1 + x2 ≤ 15, −15 ≤ x1 + x2 ≤ 15} and U := {u ∈ R : −5 ≤ u ≤ 5}. Problem (17) is an

instance of (4), and can thus be dealt with by first expressing the uncertainty set as W = Y S + y, where S

is a primitive set, and then restricting the input policy as π̃(·) ∈ C̃aff. Finally, a suitable concave objective

function %(·) is chosen that approximates the objective function vol(·).
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Figure 3: (Left) The optimal uncertainty sets W?
rect (green rectangle), W?

ell (yellow ellipse) and W?
poly (blue

polytope). (Center left) Affine policy πrect(·) for rectangular uncertainty set recovered from π̃?(·) ∈ C̃aff.

(Center right) Affine policy πell(·) for ellipsoidal uncertainty set recovered from π̃?(·) ∈ C̃aff. (Right) Piece-

wise affine policy πpoly(·) for polytopic uncertainty set recovered from π̃?(·) ∈ C̃aff.

In our first study, we examine how the choice of the uncertainty set family affects the solution quality.

The following three families of uncertainty sets, all discussed in Section 3.2, are considered: (i) rectangular

uncertainty sets Wrect ∈ Ωrect; (ii) ellipsoidal uncertainty sets Well ∈ Ωell; and (iii) polytopic uncertainty

sets Wpoly ∈ Ωpoly with 30 vertices. Following Section 3.1, we use %rect(Y S+ y) = %ell(Y S+ y) = log det(Y )

to maximize vol(Wrect) and vol(Well), respectively. Since we cannot directly maximize the volume of the

polytope Wpoly, we use the quadratic cost function %poly(Y S) = −
∑ns

j=1 ‖d>j −Y·j‖22 described in Section 3.2

to approximate vol(Wpoly), where ns = 30, and dj are uniformly distributed on a centered circle of radius

forty, i.e. dj := [40 cos(2π(j − 1)/ns), 40 sin(2π(j − 1)/ns)]. Figure 3 (left) depicts the optimal uncertainty

sets W?
rect, W?

ell, and W?
poly, while Table 1 lists their volumes. For this example, we see that vol(W?

rect) is

much smaller than vol(W?
ell) and vol(W?

poly), because Ωrect restricts the sets to be axis-aligned, whereas both

Ωell and Ωpoly allow for rotated and skewed sets. Moreover, it is interesting to observe that even though

%poly(·) does not maximize the volume of Wpoly explicitely, it yet yields the largest uncertainty. For this

example, it can be verified by taking all combinations of the vertices of the sets X and U that the polytopic

approximation method returns the optimal solution to problem (17), i.e. W? = W?
poly. Observe now from

Figure 3 (left) that while W?
rect corresponds to the largest volume rectangle contained in W?, W?

ell is not

Table 1: Optimal value of different approximation schemes.

Set Family vol(W) Approx. Quality

(i) W?
rect ∈ Ωrect 260.4 42.0%

(ii) W?
ell ∈ Ωell 514.4 83.0%

(iii) W?
poly ∈ Ωpoly 620.2 100%
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the maximum volume ellipse contained in Wpoly. As we will see in the following paragraph, this is due to

the requirement that π̃ell(·) is affine.

In the second part of this study, we examine the structure of the policy π(·) for the different uncertainty

sets. Figure 3 (center left – right) depicts the policies π(·) for all three cases, where we recovered πrect(·) and

πell(·) using (14), and πpoly(·) using (15) with L(·) in (A.1). We see from Figure 3 (center right) that the

reason W?
ell is not the maximum volume ellipse is due to the restriction πell(·) ∈ Caff. Indeed, we observe that

even for Well = W?
ell, the associated policy πell(·) hits the input constraints, and that if Well were expanded

in the 45◦-direction, then the input constraints would be violated. This drawback, in principle, can be

alleviated by allowing πell(·) to be non-linear, using e.g. the techniques in [25, 26]. Note that this issue is

not present in the polytopic approximation, since the policy πpoly(·) is piece-wise affine by construction, c.f.

Proposition 3 (iii). Indeed, a careful inspection of πpoly(·) reveals that it is the piece-wise affine nature that

allows W?
poly to obtain its complex shape with vertices that are not captured by either W?

rect or W?
poly, and

which gives rise to the uncertainty set with biggest volume.

7. Conclusion

This paper presents a unified framework for studying robust optimal control problems with adjustable

uncertainty sets. We have shown that these problems can be approximated as a convex optimization problem

if (i) the uncertainty sets are representable as affine transformations of primitive sets, and (ii) the control

policies are restricted to be affine with respect to the primitive sets. Under these restrictions, the resulting

convex optimization problem grows polynomially in the size of the problem data and the description of the

primitive set, resulting in a tractable optimization problem. The applicability and importance of such prob-

lems was demonstrated through a reserve capacity problem arising in power systems. A numerical example

confirms that these problems can be solved efficiently, and that optimal bidding and reserve strategies can

be derived.

Future work will focus on reserve provision problems, addressing stability and recursive feasibility when

the reserve capacities are bid in a receding horizon fashion. Moreover, we plan on investigating the optimality

of affine policies in the reserve provision context, as well as the impact external uncertainties have on the

provided reserves. Finally, the presented framework could be extended to cases when only partial state

observations are available.
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Appendix A. Definition, Lemma and Proofs

In this section, we provide the proofs for Propositions 2 and 3. To do this, we first need to introduce

the lifting operator, and an auxiliary result given in Lemma 1. We will use similar theoretical tools as those

developed in [25, 26].

Definition 2 (Lifting operator). Given (Y,y) ∈ Y and S = S0 × . . .× SN−1, where each Sk is a primitive

set, letW := YS+y. We call a mapping L :W → S a lifting operator if it satisfies the following properties:

(P1) L(·) = [L0(·), . . . , LN−1(·)], where, for all k = 0, . . . , N − 1, Lk : Wk → Sk;

(P2) Lk(w) ∈ Sk, for all w ∈Wk;

(P3) YL(w) + y = w, for all w ∈ W.

We refer to L(·) as the lifting operator since typically dim(S) ≥ dim(W), i.e. ns ≥ nw. Properties (P1)

and (P2) ensure that L(·) preserves causality since at time k, since [L0(·), . . . , Lk(·)] contains information

up to and including stage k only. Notice that, although L(·) is defined through (Y,y) and S, there can be

multiple choices of L(·) that satisfy (P1)–(P3). The following example demonstrates the existence of such a

lifting for given (Y,y) ∈ Y, S, and W := YS + y, while highlighting some of its properties.

Example 1. Given (Y,y) ∈ Y, S = S0×. . .×SN−1 andW := YS+y, let us define L(·) := [L0(·), . . . , LN−1(·)]

through its components

Lk(w) := arg min
z∈Sk
{‖z‖22 : Ykz + yk = w}, (A.1)

for all w ∈ Wk. It is easy to verify that this lifting operator satisfies conditions (P1)–(P3). Moreover, if

ns = nw and Y is a full rank matrix, then L(·) is the bijective operator L(w) = Y−1(w − y). However,

if Y is rank deficient, then the mapping from W to S is not unique, and therefore, operator (A.1) chooses

the mapping that minimizes the 2-norm in the S space. Finally, note that the above optimization problem

defining L(·) is always feasible by construction, and that alternative liftings can be defined using different

(also non-linear) objective functions.

The following lemma establishes the relation between constraint functions in the W-space and in the

S-space.

Lemma 1. Given (Y,y) ∈ Y, S = S0× . . .× SN−1, where each Sk is a primitive set, let W := YS + y and

L(·) be a lifting operator. For any two functions g : RNnw → R and f : RNns → R, it holds:

(i) g(w) ≤ 0, ∀w ∈ W ⇐⇒ g(Ys + y) ≤ 0, ∀s ∈ S;

(ii) f(s) ≤ 0, ∀s ∈ S =⇒ f(L(w)) ≤ 0, ∀w ∈ W.
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Proof. We prove “ =⇒ ” of (i) by contradiction. Assume that g(w) ≤ 0 for all w ∈ W, but there exists s ∈ S

such that g(Ys + y) > 0. Since Ys + y ∈ W for all s ∈ S by definition of W, this leads to a contradiction.

The “⇐= ” part of (i) is clear, since W = YS + y by definition. Statement (ii) follows immediately from

property (P2) in the definition of the lifting operator.

We now have the necessary tools to prove Propositions 2 and 3.

Proof of Proposition 2. To simplify notation, we first rewrite problem (10a) using the epigraph formulation

min τ − λ%(W)

s.t. τ ∈ R, π(·) ∈ C, W = YS + y, (Y,y) ∈ Y,

c>π(w) ≤ τ,

Cπ(w) + Dw ≤ d,

∀w ∈ W,

(A.2)

with decision variables (τ,W,π(·),Y,y), and problem (10b) as

min τ − λ%(YS + y)

s.t. τ ∈ R, π̃(·) ∈ C̃, (Y,y) ∈ Y,

c>π̃(s) ≤ τ,

Cπ̃(s) + D(Ys + y) ≤ d,

 ∀s ∈ S,

(A.3)

with decision variables (τ, π̃(·),Y,y).

We now show that any feasible solution in (A.2) corresponds to a feasible solution in (A.3) with the

same objective value, and vice versa. Suppose that (τ,W,π(·),Y,y) is a feasible solution to (A.2). We

define π̃(·) such that π̃(s) := π(Ys + y), for all s ∈ S. Note that due to the block-diagonal form of Y, the

constructed policy π̃(·) is causal, satisfying the constraint π̃(·) ∈ C̃. Since (τ,W,π(·),Y,y) is feasible in

(A.2), it implies that

Cπ(w) + Dw ≤ d,

c>π(w) ≤ τ,

∀w ∈ W,

⇐⇒
Cπ(Ys + y) + D(Ys + y) ≤ d,

c>π(Ys + y) ≤ τ,

∀s ∈ S,
⇐⇒

Cπ̃(s) + D(Ys + y) ≤ d,

c>π̃(s) ≤ τ,

∀s ∈ S,
where the first equivalence is due to statement (i) in Lemma 1, and the second equivalence by definition of

π̃(·). Hence, the quadruple (τ, π̃(·),Y,y) is feasible in (A.3). Moreover, since W = YS+ y, problems (A.2)

and (A.3) share the same objective function. Hence, both problems achieve the same objective value.

Conversely, suppose that (τ, π̃(·),Y,y) is feasible in (A.3), and let W := YS + y. We now define π(·)

through π(w) := π̃(L(w)), for all w ∈ W, where L(·) is a lifting operator satisfying Definition 2, for example
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the one given in (A.1). By construction of L(·), π(·) remains causal, satisfying π(·) ∈ C. Since π̃(·) is feasible

in (A.3), we have that

Cπ̃(s) + D(Ys + y) ≤ d,

c>π̃(s) ≤ τ,

∀s ∈ S,
=⇒

Cπ̃(L(w)) + D(YL(w) + y) ≤ d,

c>π̃(L(w)) ≤ τ,

 ∀w ∈ W,

⇐⇒
Cπ(w) + Dw ≤ d,

c>π(w) ≤ τ,

∀w ∈ W,

where the second line follows from statement (ii) of Lemma 1, and the third line follows from property (P2)

in the definition of the lifting operator and the definition of π(·). Hence, (τ,W,π(·),Y,y) is feasible in

(A.2). Since both problems share the same objective function due to W = YS + y, both problems achieve

the same objective value.

Proof of Proposition 3. To prove (i), let (τ,W,π(·),Y,y) be a feasible solution to (A.2) with π(·) ∈ Caff.

Since π(·) ∈ Caff, it can be written as π(w) = Qw + q for some Q ∈ RNnu×Nnw lower block-triangular,

and q ∈ RNnu . Now, let us consider the candidate solution (τ, π̃(·),Y,y) for (A.3), with π̃(s) := (QY)s +

(Qy + q). Since Y is block-diagonal, the matrix (QY) is also lower block-triangular, thus ensuring the

causality of π̃(·). Therefore, π̃(s) := (QY)s + (Qy + q) ∈ Caff. Moreover, since π(·) is feasible in (A.2), we

have that

C[Qw + q] + Dw ≤ d,

c>[Qw + q] ≤ τ,

∀w ∈ W,

⇐⇒
C[Q(Ys + y) + q] + D(Ys + y) ≤ d,

c>[Q(Ys + y) + q] ≤ τ,

∀s ∈ S,
⇐⇒

Cπ̃(s) + D(Ys + y) ≤ d,

c>π̃(s) ≤ τ,

∀s ∈ S,
where the first equivalence is due to statement (i) in Lemma 1, and the second equivalence follows from the

definition of π̃(·). Hence, (τ, π̃(·),Y,y) is a feasible solution for (A.3), achieving the same objective value.

To prove (ii), let (τ, π̃(·),Y,y) be a feasible solution to (A.3) with π̃(·) ∈ Caff and Y invertible, and

define W := YS + y. Since π̃(·) ∈ Caff, it can be written as π̃(s) = Ps + p for some P ∈ RNnu×Nns lower

block-triangular, and p ∈ RNnu . Consider now the candidate solution (τ,W,π(·),Y,y) for (A.2), with

π(w) := P
[
Y−1(w − y)

]
+ p, for all w ∈ W. It is easy to see that π(·) is an affine policy. Moreover, since

Y is block-diagonal by construction, see (7), π(·) is also causal, hence satisfying π(·) ∈ Caff. Finally, since
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π̃(·) is feasible in (A.3), we have that

C[Ps + p] + D(Ys + y) ≤ d,

c>[Ps + p] ≤ τ,

∀s ∈ S,
⇐⇒

C[PY−1(w − y) + p] + Dw ≤ d,

c>[PY−1(w − y) + p] ≤ τ,

∀w ∈ W,

⇐⇒
Cπ(w) + Dw ≤ d,

c>π(w) ≤ τ,

∀w ∈ W,

where the first equivalence follows from statement (i) of Lemma 1 and the fact that w = Ys + y is equal to

s = Y−1(w−y), and the second equivalence follows from the definition of π(·). Hence, (τ,W,π(·),Y,y) is

a feasible solution for (A.2), and achieves the same objective value.

To prove (iii), let (τ, π̃(·),Y,y) be a feasible solution to (A.3) with π̃(·) ∈ Caff, and defineW := YS+y.

Since π̃(·) ∈ Caff, it can be written as π̃(s) = Ps + p for some P ∈ RNnu×Nns lower block-triangular, and

p ∈ RNnu . Let L(·) = [L0(·), . . . , LN−1(·)] be the lifting operator with its elements Lk(·) defined as in (A.1),

and consider the candidate solution (τ,W,π(·),Y,y) for (A.2), with π(w) := PL(w) + p, for all w ∈ W.

Under the assumption of S being a polytope, L(·) is a continuous piece-wise affine function defined through

the solution of a parametric quadratic optimization problem [35, Theorem 7.7]. Moreover, since L(·) satisfies

properties (P1) and (P2) in Definition 2, it preserves causality, and π(w) := PL(w) + p ∈ Cpwa is a causal

policy. Finally, since π̃(·) is feasible in (A.3), we have that

C(Ps + p) + D(Ys + y) ≤ d,

c>(Ps + p) ≤ τ,

∀s ∈ S,
=⇒

C(PL(w) + p) + D(YL(w) + y) ≤ d,

c>(PL(w) + p) ≤ τ,

∀w ∈ W,

⇐⇒
C(PL(w) + p) + Dw ≤ d,

c>(PL(w) + p) ≤ τ,

∀w ∈ W,

where the second line follows from statement (ii) of Lemma 1, and the third line follows from property (P3).

Hence, (τ,W,π(·),Y,y) is a feasible solution for (A.2), and achieves the same objective value.
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[18] M. E. Dyer and A. M. Frieze. On the complexity of computing the volume of a polyhedron. SIAM Journal on Computing,

17(5):967–974, 1988.

[19] R.T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[20] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Operations Research Letters, 25(1):1–13,

1999.

[21] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[22] L. Vandenberghe, S. Boyd, and S-P. Wu. Determinant maximization with linear matrix inequality constraints. SIAM

Journal on Matrix Analysis and Applications, 19(2):499–533, 1998.

[23] G. Xue and Y. Ye. An efficient algorithm for minimizing a sum of p-norms. SIAM Journal on Optimization, 10(2):551–579,

2000.

[24] D. Bertsimas and V. Goyal. On the power and limitations of affine policies in two-stage adaptive optimization. Mathe-

matical Programming, 134(2):491–531, 2012.

[25] A. Georghiou, W. Wiesemann, and D. Kuhn. Generalized decision rule approximations for stochastic programming via

liftings. Mathematical Programming, 152(1-2):301–338, 2015.

[26] D. Bertsimas and A. Georghiou. Binary decision rules in multistage adaptive mixed-integer optimization. Mathematical

Programming (conditionally accepted), 2016.

24

http://www.optimization-online.org/DB_FILE/2014/10/4575.pdf


[27] Y. Rebours, D. Kirschen, M. Trotignon, and S. Rossignol. A survey of frequency and voltage control ancillary services –

Part I: Technical features. IEEE Transactions on Power Systems, 22(1), 2007.

[28] D. Callaway and I. Hiskens. Achieving controllability of electric loads. Proceedings of the IEEE, 99(1):184–199, 2011.

[29] F. Oldewurtel. Stochastic Model Predictive Control for Energy Efficient Building Climate Control. PhD thesis, ETH

Zurich, August 2011.

[30] F. Oldewurtel, A. Parisio, C. Jones, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann, and M. Morari. Use of model

predictive control and weather forecasts for energy efficient building climate control. Energy and Buildings, 45:15–27,

2012.

[31] X. Zhang, G. Schildbach, D. Sturzenegger, and M. Morari. Scenario-based MPC for Energy-Efficient Building Climate

Control under Weather and Occupancy Uncertainty. In European Control Conference, Zurich, Switzerland, 2013.

[32] Swissgrid Ltd. Basic principles of ancillary service products. Available online at: https://www.swissgrid.ch/dam/

swissgrid/experts/ancillary_services/Dokumente/D151019_AS-Products_V9R1_en.pdf, 2015.

[33] P. O. M. Scokaert and D. Q. Mayne. Min-max feedback model predictive control for constrained linear systems. IEEE

Transactions on Automatic Control, 43(8):1136–1142, 1998.

[34] D. Bertsimas and A. Georghiou. Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimiza-

tion. Operations Research, 63(3):610–627, 2015.

[35] F. Borrelli, A. Bemprad, and M. Morari. Predictive Control for linear and hybrid systems. Available online at: http:

//www.mpc.berkeley.edu/mpc-course-material.

25

https://www.swissgrid.ch/dam/swissgrid/experts/ancillary_services/Dokumente/D151019_AS-Products_V9R1_en.pdf
https://www.swissgrid.ch/dam/swissgrid/experts/ancillary_services/Dokumente/D151019_AS-Products_V9R1_en.pdf
http://www.mpc.berkeley.edu/mpc-course-material
http://www.mpc.berkeley.edu/mpc-course-material

	1 Introduction
	2 Problem Formulation
	3 Uncertainty Set Approximation via Primitive Sets
	3.1 Volume Maximization
	3.2 Specific Families of Uncertainty Sets

	4 Policy Approximation via Affine Decision Rules
	4.1 Relationship between the policies () and "0365() 

	5 Example 1: Frequency Reserve Provision
	5.1 Problem Formulation
	5.2 Simulation Results

	6 Example 2: Robustness Analysis
	7 Conclusion
	Appendix  A Definition, Lemma and Proofs

