
Angular velocity nonlinear observer fromvector

measurements

Lionel Magnis a, Nicolas Petit a,

aMINES ParisTech, PSL Research University, CAS, 60 bd Saint-Michel, 75272 Paris Cedex FRANCE

Abstract

The paper proposes a technique to estimate the angular velocity of a rigid body from vector measurements. Compared to
the approaches presented in the literature, it does not use attitude information nor rate gyros as inputs. Instead, vector
measurements are directly filtered through a nonlinear observer estimating the angular velocity. Convergence is established
using a detailed analysis of the linear-time varying dynamics appearing in the estimation error equation. This equation stems
from the classic Euler equations and measurement equations. A high gain design allows to establish local uniform exponential
convergence. Simulation results are provided to illustrate the method.
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1 Introduction

This article considers the question of estimating the an-
gular velocity of a rigid body from embedded sensors.
This general question is of particular importance in var-
ious fields, and in particular for the problem of orienta-
tion control. As is well described in [1], most existing con-
trol methods for such second order dynamics require an-
gular velocity information [2–4]. The list of typical con-
trol methods employing this information is vast, ranging
from Lyapunov control design, feedback linearization,
to the computed torque method. Numerous implemen-
tations can be found in spacecraft, low-cost unmanned
aerial vehicles, guided ammunitions, to name a few.

In the literature, several types of methods have been
proposed to address this question. On the one hand,
the straightforward solution is to use a strap-down rate
gyro [5], which directly provides measurements of the
angular velocities. However, rate gyros being relatively
fragile and expensive components, prone to drift, an-
other type of solutions is often preferred. Instead, a two-
step approach is commonly employed. The first step is
to determine attitude from vector measurements, i.e.
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onboard vector measurements of reference vectors be-
ing known in a fixed frame. Vector measurements play
a central role in the problem of attitude determination
as discussed in a recent survey [6]. In a nutshell, when
two independent vectors are measured with vector sen-
sors attached to a rigid body, its attitude can be simply
defined as the solution of the classic Wahba problem [7]
which formulates a minimization problem having the ro-
tation matrix from a fixed frame to the body frame as
unknown. The second step is to reconstruct angular ve-
locities from the attitude. At any instant, full attitude
information can be obtained [8–11]. In principles, once
the attitude is known, angular velocity can be estimated
from a time-differentiation. However, noises disturb this
process. To address this issue, introducing a priori infor-
mation in the estimation process is a valuable technique
to filter-out noise from the estimates. For this reason,
numerous observers using the Euler equations for a rigid
body have been proposed to estimate angular velocity
(or angular momentum, which is equivalent) from full
attitude information [1,12–14]. Besides this two-step ap-
proach, a more direct solution can be proposed. In this
paper, we expose an algorithm that directly uses the vec-
tor measurements and reconstructs the angular velocity
in a simple manner.

The contribution of this paper is a nonlinear observer re-
constructing the angular velocity of a rotating rigid body
from vector measurements directly, namely by bypassing
the relatively heavy first step of attitude estimation.
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The paper is organized as follows. In Section 2, we in-
troduce the notations and the problem statement. We
analyze the attitude dynamics (rotation and Euler equa-
tions) and relate it to the measurements. In Section 3, we
define a nonlinear observer with extended state and out-
put injection. To prove its convergence, the error equa-
tion is identified as a linear time-varying (LTV) system
perturbed by a linear-quadratic term. The dominant
part of the LTV dynamics can be shown, by a scaling
resulting from a high gain design, to generate an arbi-
trarily fast exponentially convergent dynamics. In turn,
this property reveals instrumental to conclude on the ex-
ponential uniform convergence of the error dynamics. Il-
lustrative simulation results are given in Section 4. Con-
clusions and perspectives are given in Section 5.

2 Notations and problem statement

2.1 Notations

Vectors in R3 are written with small letters x.
|x| is the Euclidean norm of x. [x×] is the skew-
symmetric cross-product matrix associated with x, i.e.
∀y ∈ R3, [x×]y = x× y. Namely,

[x×] ,


0 −x3 x2

x3 0 −x1
−x2 x1 0


where x1, x2, x3 are the coordinates of x in the standard
basis of R3.

Vectors in R9 are written with capital letters X. |X| is
the Euclidean norm of X. The induced norm on 9 × 9
matrices is noted || · ||. Namely,

||M || = max
|X|=1

|MX|

For convenience, we may write X under the form

X =
(
XT

1 , X
T
2 , X

T
3

)T
with X1, X2, X3 ∈ R3. Note that

|X|2 = |X1|2 + |X2|2 + |X3|2

Frames considered in the following are orthonormal
bases of R3.

2.2 Problem statement

Consider a rigid body rotating with respect to an iner-
tial frame Ri. Note R the rotation matrix from Ri to

a body frame Rb attached to the rigid body and ω the
corresponding angular velocity vector, expressed in Rb.
Assuming that the body rotates under the influence of
an external torque τ (which, is null in the case of free-
rotation), the variables R and ω are governed by the
following differential equations

Ṙ = R[ω×] (1)

ω̇ = J−1 (Jω × ω + τ) , E(ω) + J−1τ (2)

where J = diag(J1, J2, J3) is the inertia matrix 1 . Equa-
tion (2) is known as the set of Euler equations for a
rotating rigid body [15]. The torque τ may result from
control inputs or disturbances 2 .

We assume that two reference unit vectors å, b̊ expressed
in Ri are known, and that sensors arranged on the rigid
body allow to measure the corresponding unit vectors
expressed in Rb. Namely, the measurements are

a(t) , R(t)T å, b(t) , R(t)T b̊ (3)

For implementation, the sensors could be e.g. accelerom-
eters, magnetometers, or Sun sensors to name a few [16].
We now formulate some assumptions.

Assumption 1 å, b̊ are constant and linearly indepen-
dent

Assumption 2 J and τ are known

Assumption 3 ω is bounded : |ω(t)| ≤ ωmax at all times

Assumption 1 implies that

p , aT b = åT b̊

is constant for all times. Without loss of generality, we

assume åT b̊ ≥ 0 (if not, one can simply consider −å
instead of å). The problem we address in this paper is
the following.

Problem 1 Under Assumptions 1-2-3, find an estimate
ω̂ of ω from the measurements a, b defined in (3).

1 Without restriction, we consider that the axes of Rb are
aligned with the principal axes of inertia of the rigid body.
2 In the case of a satellite e.g., the torque could be generated
by inertia wheels, magnetorquers, gravity gradient, among
other possibilities.
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3 Observer definition and analysis of conver-
gence

3.1 Observer definition

The time derivative of the measurement a is

ȧ = ṘT å = −[ω×]RT å = a× ω (4)

and the same holds for ḃ = b× ω. To solve Problem 1, the
main idea of the paper is to consider the reconstruction
of the extended 9-dimensional state X by its estimate X̂

X =


a

b

ω

 , X̂ =


â

b̂

ω̂


The state is governed by

Ẋ =


a× ω
b× ω

E(ω) + J−1τ

 (5)

and the following observer is proposed

˙̂
X =


a× ω̂ − αk(â− a)

b× ω̂ − αk(b̂− b)
E(ω̂) + J−1τ + k2a× (â− a) + k2b× (b̂− b)


(6)

where α ∈ (0, 2
√

1− p) and k > 0 are constant (tuning)
parameters. Note

X̃ , X − X̂ ,


ã

b̃

ω̃

 (7)

the error state. We have

˙̃X =


−αkI 0 [a×]

0 −αkI [b×]

k2[a×] k2[b×] 0

 X̃ +


0

0

E(ω)− E(ω̂)


(8)

In Section 3.4 we will exhibit, for each valueα ∈ (0, 2
√

1− p),
a threshold value k∗ such that for k > k∗, X̃ converges
locally uniformly exponentially to zero.

3.2 Preliminary change of variables and properties

The study of the dynamics (8) employs a preliminary
change of coordinates. Note

Z ,


ã

b̃

ω̃
k

 (9)

yielding

Ż = kA(t)Z +


0

0
E(ω)−E(ω̂)

k

 (10)

with

A(t) ,


−αI 0 [a(t)×]

0 −αI [b(t)×]

[a(t)×] [b(t)×] 0

 (11)

which we will analyze as an ideal linear time-varying
(LTV) system

Ż = kA(t)Z (12)

perturbed by the input term

ξ ,


0

0
E(ω)−E(ω̂)

k

 (13)

The idea is that for sufficiently large values of k, the
rate of convergence of (12) will ensure stability of system
(10). We start by upper-bounding A(t) and the distur-
bance (13).

Proposition 1 (Bound on the unforced LTV system)
A(t) defined in (11) is upper-bounded by

Am , max
(√

2 + 2α2,
√

3 + α2
)

PROOF. Let Y ∈ R9 such that |Y | = 1. One has

|A(t)Y |2 =| − αY1 + a× Y3|2 + | − αY2 + b× Y3|2

+ |a× Y1 + b× Y2|2

≤(1 + α2)
(
|Y1|2 + |a× Y3|2 + |Y2|2 + |b× Y3|2

)
+ 2

(
|a× Y1|2 + |b× Y2|2

)
≤max

(
2 + 2α2, 3 + α2

)
|Y |2 = A2

m|Y |2

Hence, ||A|| ≤ Am.

3



Proposition 2 (Bound on the disturbance) For
any Z, ξ is bounded by

|ξ| ≤
√

2ωmax|Z|+ k|Z|2 (14)

PROOF. We have

|ξ| = 1

k
|E(ω)− E(ω̂)|

with, due to the quadratic nature of E(·),

E(ω)− E(ω̂) = J−1 (Jω̃ × ω + Jω × ω̃ − Jω̃ × ω̃)

=


J2−J3
J1

(ω2ω̃3 + ω̃2ω3)
J3−J1
J2

(ω3ω̃1 + ω̃3ω1)
J1−J2
J3

(ω1ω̃2 + ω̃1ω2)

−


J2−J3
J1

ω̃2ω̃3

J3−J1
J2

ω̃3ω̃1

J1−J2
J3

ω̃1ω̃2


, δ1 − δ2

As J1, J2, J3 are the main moments of inertia of the rigid
body, we have [15] (§32,9)

Ji ≤ Jj + Jk

for all permutations i, j, k and hence∣∣∣∣J2 − J3J1

∣∣∣∣ , ∣∣∣∣J3 − J1J2

∣∣∣∣ , ∣∣∣∣J1 − J2J3

∣∣∣∣ ≤ 1

As a straightforward consequence

|δ2| ≤ |ω̃|2

Moreover, by Cauchy-Schwarz inequality

(ω2ω̃3 + ω̃2ω3)2 ≤ (ω2
2 + ω2

3)(ω̃3
2 + ω̃2

3) ≤ (ω2
2 + ω2

3)|ω̃|2

Using similar inequalities for all the coordinates of δ1
yields

|δ1|2 ≤ 2|ω|2|ω̃|2 ≤ 2ω2
max|ω̃|2

Hence,

|ξ| ≤ |δ1|+ |δ2|
k

≤
√

2ωmax

∣∣∣∣ ω̃k
∣∣∣∣+ k

∣∣∣∣ ω̃k
∣∣∣∣2

≤
√

2ωmax|Z|+ k|Z|2

3.3 Analysis of the LTV dynamics Ż = kA(t)Z

We will now use a result on the exponential stability of
LTV systems. The claim of [17] Theorem 2.1, which is
instrumental in the proof of the next result, is as follows:
consider a LTV system Ż = M(t)Z such that

• M(·) is l−Lipschitz
• there exists K ≥ 1, c ≥ 0 such that for any t and any
s ≥ 0, ||eM(t)s|| ≤ Ke−cs

Then, for any t0, Z0, the solution of Ż = M(t)Z with
initial condition Z(t0) = Z0 satisfies, for any t ≥ t0,

|Z(t)| ≤ Ke(
√
Kl lnK−c)(t−t0)|Z0|

Using this result, we will show that the convergence
of (12) can be tailored by choosing k to arbitrarily in-
crease the rate of convergence, while keeping the over-
shoot constant.

Theorem 1 Let α ∈ (0, 2
√

1− p) be fixed. There exists
a continuous function γ(k) satisfying

lim
k→+∞

γ(k) = +∞

such that the solution of (12) satisfies

|Z(t)| ≤ Ke−γ(k)(t−t0)|Z(t0)|

with

K ,

√√√√1 + α
2
√
1−p

1− α
2
√
1−p

(15)

for any initial condition t0, Z(t0) and any t ≥ t0.

PROOF. Consider any fixed value of t. We start by
studying the frozen-time matrix A(t). Note

µ ,
√

8(1− p2)

Introduce the following (time-varying) matrices

P1 =


a 0 b−pa√

2(1−p2)

0 b a−pb√
2(1−p2)

0 0 0



P2 =
1

µ


2(pa− b) 0

2(a− pb) 0

α a× b −
√

8− α2 a× b



P3 =
1

µ


2a× b 0

2a× b 0

α(b− a)
√

4(1 + p)− α2(a− b)



P4 =
1

µ


2a× b 0

−2a× b 0

α(a+ b) −
√

4(1− p)− α2(a+ b)
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and
P = (P1|P2|P3|P4) ∈ R9×9

We have

P−1A(t)P =


M1 0 0 0

0 M2 0 0

0 0 M3 0

0 0 0 M4


with

M1 = −αI, Mi =
1

2

(
−α −

√
αi − α2

√
αi − α2 −α

)

for i = 2, 3, 4 with

α2 , 2
√

2 > α3 , 2
√

1 + p ≥ α4 , 2
√

1− p > α

For all s ≥ 0

||eA(t)s|| ≤ ||P || ||P−1|| e−α2 s

Moreover

||P || ||P−1|| =

√
λmax(PTP )

λmin(PTP )

where λmax, λmin respectively designate the maximum
and minimum eigenvalues. Besides,

PTP =


I 0 0 0

0 Q2 0 0

0 0 Q3 0

0 0 0 Q4


with, for i = 2, 3, 4

Qi =

 1 + α2

α2
i

α
αi

√
1− α

αi

α
αi

√
1− α

αi
1− α2

α2
i


yielding the eigenvalues

eig(PTP ) =

{
1, 1± α

2
√

2
, 1± α

2
√

1 + p
, 1± α

2
√

1− p
,

}
Thus, for all s ≥ 0

||eA(t)s|| ≤ Ke−α2 s

with

K =

√
λmax(PTP )

λmin(PTP )
=

√√√√1 + α
2
√
1−p

1− α
2
√
1−p

Let k > 0 be fixed. The scaled matrix kA(·) satisfies

||ekA(t)s|| ≤ Ke− kα2 s, ∀t, ∀s ≥ 0

Moreover, for any Y ∈ R9 and any t, s ∈ R, one has

(kA(s)− kA(t))Y = k

∫ s

t

Ȧ(u)du Y

= k


∫ s
t
a(u)× ω(u)du Y3∫ s

t
b(u)× ω(u)du Y3∫ s

t
a(u)× ω(u)du Y1 +

∫ s
t
b(u)× ω(u)du Y2


Hence

|(kA(s)− kA(t))Y |2 ≤ 2ω2
maxk

2|s− t|2|Y |2

Thus, kA(·) is kL−Lipschitz with

L ,
√

2ωmax (16)

We now apply [17], Theorem 2.1. For any t0 and any Z0,
the solution of (12) with initial condition Z(t0) = Z0

satisfies for all t ≥ t0

|Z(t)| ≤ Ke(
√
KkL lnK− kα2 )(t−t0)|Z0|

which concludes the proof with

γ(k) ,
kα

2
−
√
KkL lnK (17)

Remark 1 Additionally, one can note that

• γ(k) > 0 ⇔ k > 4K lnKL
α2 in which case Theo-

rem 1 ensures exponential stability of system (12).
• γ(·) is strictly increasing for k > 4K lnKL

α2 .

3.4 Convergence of the observer

Define r as

r(k) ,
1√

AmK3

(
1− K2

√
2ωmax

γ(k)

)(
γ(k)

k

) 3
2

(18)

and k∗ as

k∗ =

(√
lnK +

√
lnK + 2αK

)2
α2

√
2Kωmax > 0 (19)

The following holds

5



Proposition 3 r(k) > 0 if and only if k > k∗

PROOF. A simple rewriting of r(k) > 0 yields, succes-
sively,

r(k) > 0⇔ γ(k) > K2
√

2ωmax = K2L

⇔ α

2
k −
√
LK lnK

√
k −K2L > 0

⇔
√
k >

√
LK lnK +

√
LK lnK + 2αLK2

α
=
√
k∗

which concludes the proof.

We can now state the main result of the paper.

Theorem 2 (main result) For any α ∈ (0, 2
√

1− p),
there exists k∗ defined by (19)-(15) such that for k > k∗,
the observer (6) defines an error dynamics (8) for which
the equilibrium 0 is locally uniformly exponentially stable.
The basin of attraction of this equilibrium contains the
ellipsoid{

X̃(0), |ã(0)|2 + |b̃(0)|2 +
|ω̃(0)|2

k2
< r(k)2

}
(20)

where r(k) is defined by (18).

PROOF. Let k > k∗. Consider the candidate Lya-
punov function

V (t, Z) , ZT
(∫ +∞

t

φ(τ, t)Tφ(τ, t)dτ

)
Z

where φ is the transition matrix of system (12). Let (t, Z)
be fixed. From Proposition 1, kA(·) is bounded by kAm.
Thus (see for example [18] Theorem 4.12)

V (t, Z) ≥ 1

2kAm
|Z|2 , c1|Z|2 ,W1(Z)

Moreover, Theorem 1 implies that for all τ ≥ t

|φ(τ, t)Z| ≤ Ke−γ(k)(τ−t)|Z|

which gives

V (t, Z) ≤ K2

∫ +∞

t

e−2γ(k)(τ−t)dτ |Z|2 =
K2

2γ(k)
|Z|2

, c2|Z|2 ,W2(Z)

By construction, V satisfies

∂V

∂t
(t, Z) +

∂

∂Z
V (t, Z)kA(t)Z = −|Z|2

Hence, the derivative of V along the trajectories of (10)
is

d

dt
V (t, Z) = −|Z|2 +

∂V

∂Z
(t, Z) ξ

Using∣∣∣∣ ∂∂Z V (t, Z)

∣∣∣∣ = 2

∣∣∣∣∫ +∞

t

φ(τ, t)Tφ(τ, t)dτZ

∣∣∣∣ ≤ K2

γ(k)
|Z|

together with inequality (14) yields∣∣∣∣∂V∂Z (t, Z) ξ

∣∣∣∣ ≤ K2

γ(k)

(√
2ωmax|Z|2 + k|Z|3

)
Hence

d

dt
V (t, Z) ≤ −|Z|2

(
1− K2

√
2ωmax

γ(k)
− kK2

γ(k)
|Z|

)
, −W3(Z)

As k > k∗, we have

1− K2
√

2ωmax

γ(k)
> 0

We proceed as in [18] Theorem 4.9. If the initial condition
of (10) satisfies

|Z(0)| < r(k)

⇔|Z(0)| < γ(k)

kK2

(
1− K2

√
2ωmax

γ(k)

)
×
√
c1
c2

then W3(Z(0)) > 0 and, while W3(Z(t)) > 0, Z(·) re-
mains bounded by

|Z(t)|2 ≤ V (t)

c1
≤ V (0)

c1
≤ c2
c1
|Z(0)|2

which shows that

W3(Z) ≥

(
1− K2

√
2ωmax

γ(k)
− kK2

γ(k)

√
c2
c1
|Z(0)|

)
|Z|2

From [18], Theorem 4.10, (10) is locally uniformly expo-
nentially stable. From (9), one directly deduces that the
basin of attraction contains the ellipsoid (20).

Remark 2 The limitations imposed on ã(0) and b̃(0)
in (20) are not truly restrictive, as the actual values
a(0), b(0) are assumed known, so the observer may be

initialized with ã(0) = 0, b̃(0) = 0. What matters is that
the error on the unknown quantity ω(0) can be large in

6



practice. Interestingly, when k goes to infinity r(k) tends
to the limit

1√
AmK3

(α
2

) 3
2

> 0

and arbitrarily large ω̃(0) is thus allowed from (20).

Remark 3 The threshold k∗ depends linearly on ωmax,
which gives helpful hint in the tuning of observer (6).

4 Simulation results

In this section we illustrate the dependence of the ob-
server with respect to three parameters

• p which quantifies the linear independence of (̊a, b̊)
• ωmax the maximal rotation rate of the rigid body
• the tuning gain k

Simulations were run for a model of a CubeSat [19]. The
rotating rigid body under consideration is a rectangu-
lar parallelepiped of dimensions 20 cm× 10 cm× 10 cm
and mass 2kg assumed to be homogeneously distributed.
No torque is applied on this system, which is thus in
free-rotation.

In this simulation the two reference unit vectors are the
Sun direction å and normalized magnetic field b̊. The
satellite is equipped with

• 6 Sun sensors providing at all times a measure of the
Sun direction ya in a Sun sensor frame Rs
• 3 magnetometers able to measure the normalized mag-

netic field yb in a magnetometer frame Rm

Typical sensor outputs are given in Figure 1. Because the
initial angular velocity vector is not aligned with any of
the principal axes of inertia, the rotation motion is not
periodic. As can be observed, significant levels of noise
have been added on each channel.

It shall be noted that, in practical applications, the sen-
sor frames Rs need not coincide Rm and can also dif-
fer from the body frame Rb (defined along the princi-
pal axes of inertia) through a constant rotation Rm,b,
respectively Rs,b. With these notations, we have

a = RTm,bya, b = RTs,byb

which is a simple change of coordinates of the measure-
ments.

For sake of accuracy in the implementation, reference
dynamics (5) and state observer (6) were simulated us-
ing Runge-Kutta 4 method with sample period 0.1s for
various values of p and ω(0) and with α =

√
1− p.
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Fig. 1. Normalized sensor outputs during rotation motion:
Sun (top, three coordinates) and magnetic field (bottom,
three coordinates)

Figure 2 shows the convergence of the observer with
parameter values corresponding to the measurements
shown in Figure 1. Note that the vector measurement
noise is smoothly filtered by the observer, thanks to the
relatively low value of the gain k. Figure 3 shows the
influence of p. When p gets close to 1, the rate of con-
vergence is decreased. This was to be expected. To the
limit, when p = 1, all the matrices A(t) become sin-
gular and the proof of convergence can not be applied
anymore. In Figure 4 we report the behavior of the ob-
server for increasing values of ωmax. The faster the ro-
tation, the slower the convergence. A faster convergence
can be achieved by increasing the gain k. This increases
the sensitivity to noise, as represented in Figure 5.

5 Conclusions and perspectives

A new method to estimate the angular velocity of a rigid
body has been proposed in this article. The method uses
onboard measurements of constant and independent vec-
tors. The estimation algorithm is a nonlinear observer

7
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Fig. 2. Convergence of the observer
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Fig. 3. The rate of convergence degrades when p increases.

which is very simple to implement and induces a very
limited computational burden. At this stage, an inter-
esting (but still preliminary) conclusion is that, in the
cases considered here, rate gyros could be replaced with
an estimation software employing cheap, rugged and re-
silient sensors. In fact, any set of sensors producing vec-
tor measurements such as e.g., Sun sensors, magnetome-
ters, could constitute one such alternative. Assessing the
feasibility of this approach requires further investiga-
tions including experiments.

More generally, this observer should be considered as a
first element of a class of estimation methods which can
be developed to address several cases of practical inter-
est. In particular, the introduction of noise in the mea-
surement and uncertainty on the input torque (assumed
here to be known) will require extensions such as opti-
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Fig. 4. Impact of ωmax on the convergence rate
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Fig. 5. When k increases, the convergence is faster but the
measurement noise filtering degrades.

mal filtering to treat more general cases. White or col-
ored noises will be good candidates to model these ele-

ments. Also, slow variations of the reference vectors å, b̊
should deserve particular care, because such drifts natu-
rally appear in some cases. For example, the Earth mag-
netic field measured onboard satellites varies according
to the position along the orbit.

On the other hand, one can also consider that this
method can be useful for other estimation tasks. Among
the possibilities are the estimation of the inertia J ma-
trix which we believe is possible from the measurements
considered here. This could be of interest for the recently
considered task of space debris removal [20]. Finally,
recent attitude estimation techniques have favored the
use of vector measurements together with rate gyros
measurements as inputs. Among these approaches, one

8



can find i) Extended Kalman Filters (EKF)-like algo-
rithms e.g. [21,22], ii) nonlinear observers [23–28]. This
contribution suggests that, here also, the rate gyros
could be replaced with more in-depth analysis of the
vector measurements.
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