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Predictor-Based Tensor Regression (PBTR) for LPV
subspace identification *

Bilal Gunes **, Jan-Willem van Wingerden, Michel Verhaegen

Delft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628CD Delft, The Netherlands

Abstract

The major bottleneck in state-of-the-art Linear Parameter Varying (LPV) subspace methods is the curse-of-dimensionality
during the first regression step. In this paper, the origin of the curse-of-dimensionality is pinpointed and subsequently a novel
method is proposed which does not suffer from this bottleneck. The problem is related to the LPV sub-Markov parameters.
These have inherent structure and are dependent on each other. But state-of-the-art LPV subspace methods parametrize the
LPV sub-Markov parameters independently. This means the inherent structure is not preserved in the parametrization. In
turn this leads to a superfluous parametrization with the curse-of-dimensionality. The solution lies in using parametrizations
which preserve the inherent structure sufficiently to avoid the curse-of-dimensionality. In this paper a novel method based
on tensor regression is proposed. This novel method is named the Predictor-Based Tensor Regression method (PBTR). This
method preserves the inherent structure sufficiently to avoid the curse-of-dimensionality. Simulation results show that PBTR
has superior performance with respect to both state-of-the-art LPV subspace techniques and also non-convex techniques.

Key words: Identification; Subspace Methods; Closed-loop identification; LPV systems; Tensor regression.

1 Introduction

Identification problems can be seen as inverse problems.
Given some observations and a model structure, they try
to infer the values of the parameters characterizing the
system. Better results can be obtained both by better
observations and richer model structures. One way to
obtain richer model structures, is to incorporate more
structure of the underlying problem. For some systems
this can be achieved by starting to use Linear Parameter
Varying (LPV) model structures [11]. In this paper, we
develop novel methods for Linear Parameter Varying
(LPV) subspace identification.

LPYV systems are a very useful subclass of non-linear sys-
tems. They are time-varying systems, but their depen-
dence on time is strictly through a scheduling sequence.
This system description is very useful for applications
for which the scheduling sequence is known. Some appli-
cation examples are wind turbines [3] , [9], aircraft ap-
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plications [1], batteries [25] and compressors [11]. Unlike
descriptions of systems that are completely non-linear,
there are control methodologies available for LPV sys-
tems which can guarantee stability and performance in
the face of uncertainties [26]. These control methodolo-
gies of course require models of the system, which can be
obtained from first principles approaches or from iden-
tification.

Our focus is on the development of novel LPV identifi-
cation methods. More specifically, we allow for arbitrar-
ily varying scheduling sequence. This class of systems
also encompasses bilinear systems, where the schedul-
ing sequence equals the inputs. Models can be obtained
from experimental data by using identification methods.
LPV Identification can be divided into global and local
approaches. Global approaches perform only one iden-
tification experiment, while local approaches perform
several experiments at fixed scheduling parameters and
then interpolate. Therefore, they perform differently de-
pending on the application [6] , [22] , [27]. In this pa-
per only global approaches will be discussed. There are
two major approaches to (global) LPV identification: the
subspace approach and the Prediction Error (PE) ap-
proach. Both have received considerable attention in lit-
erature [2] , [29] , [31]. The advantage of subspace meth-
ods is that they produce state-space models which can
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be directly used by the mainstream LPV control design
methodologies [26]. This is advantageous, because trans-
forming between input-output and state-space models
in the LPV setting is non-trivial [29]. Another advan-
tage is that subspace methods can extend naturally to
Multiple Input Multiple Output (MIMO) and closed-
loop systems. But they also have a major disadvantage:
they suffer from the curse-of-dimensionality and yield
unwieldy parameter counts [31]. There are several solu-
tions proposed in literature. Some solutions are based on
regularization, such as Tikhonov or Nuclear Norm regu-
larization [31] , [10]. Some other solutions are tailored to-
wards scheduling sequences which are periodic [8], white
noise [7] or piecewise constant [30]. However these so-
lutions either only partially alleviate this bottleneck or
only work for specific cases.

In this paper the origin of the curse-of-dimensionality
of LPV subspace methods is pinpointed. It is shown
that the curse-of-dimensionality appears when structure
of the LPV sub-Markov parameters is not preserved in
the parametrization. More specifically, not all the struc-
ture of the LPV sub-Markov parameters need to be pre-
served. This will be made clearly visible by reformulat-
ing the LPV data equation using tensors. Such a refor-
mulation will be presented using the inner product of
a structured LPV sub-Markov parameter tensor and a
corresponding data tensor. Based on this insight, a novel
method based on tensor regression [34] , [24] , [16] is
proposed. Tensor regression is generally used in order
to deal with curse-of-dimensionality, such as Magnetic
Resonance Imaging (MRI) data [34]. Tensor arise natu-
rally in several more applications such as facial recogni-
tion [32] and gait recognition [23], and preserving that
structure can be highly beneficial [28]. The novel method
preserves structure just sufficiently to avoid the curse-
of-dimensionality. This method is named the Predictor-
Based Tensor Regression method (PBTR). Simulation
results show that this method has higher performance
than both state-of-the-art (LPV subspace) methods and
also other non-convex methods in the sense of variance
accounted for.

In previous work, we presented variants of PBTR for
both for LTI [14] , [15] and LPV [13] systems. The novel
LPV parametrization presented here, has been presented
before in [13] using unnecessarily complicated matrices.
In this paper we now present everything explicitly us-
ing tensor forms in order to greatly improve clarity on
the true system, the parametrizations of several meth-
ods and the cause of the curse-of-dimensionality. These
tensor forms are the inherent form for tensor regres-
sion. This also allows for a clear discussion of the de-
sign choices made with PBTR. Furthermore, we compare
PBTR with existing non-convex methods, and present
simulation results which show that PBTR can outper-
forms them in terms of variance. We do remark that the
formal proof to generalize these simulation results re-
mains an open issue. This paper provides a complete

and concise investigation of tensor regression for LPV
subspace identification.

The outline of this paper is as follows. The basics of LPV
subspace identification are discussed in the next section.
Afterwards in Section 3, PBTR is presented together
with its motivations. Simulations results are presented
in Section 4. Finally the conclusions are presented.

2 LPYV subspace identification

In this section, LPV subspace identification is reviewed.
The focus will be on the work of [31] and [33].

An LPV system can be described by a discrete LPV
state-space equation:

Try1 = Alpur)zr + Bpe)ur + wp (1a)
Y = C(pur)zr + D(pr)ur + v, (1b)

where z € R", u € R" and y € R! are the state, input
and output vector variables. This description takes into
account both process noise w and measurement noise v.
The subscript k£ indicates the sample number. The ma-
trices A, B, C and D are the appropriately dimensioned
state-space matrices. The scheduling sequence pui is
time-varying and affects the state-space matrices. We
assume that the relation of the scheduling sequence to
the state-space matrices is affine:

m

Ap) =D AD, (2)
=1

and similarly for the other state-space matrices. The
scalar ,u,(;) is defined as the k-th sample of the i-th

scheduling parameter, and ,u,(cl) = 1. Additionally we
assume in this paper that:

Assumption 2.1 The scheduling sequence iy is known.

For presentation reasons we also restrict ourselves to
LPV systems whose output equations are independent
of the scheduling sequence. We also omit D for presen-
tation purposes. The extension to include D is straight-
forward.

For identification purposes, the innovation representa-
tion is commonly used [21]. This representation uses the
innovation term e to describe the system. For our LPV
system, the resulting expression becomes:

Thy1 = Z/LS) (A2 + BDuyp + KWei)  (3a)
i=1

yr = Cxp + ep (3b)



This representation uses the properties of the Kalman
filter.

If the system is closed-loop, then the inputs and noise
are correlated due to the feedback. This causes open-
loop identification methods to produce biased estimates.
The state-of-the-art (LPV subspace) method presented
in this section is a closed-loop method, and deals with
the correlation between the input and noise by using a
predictor-based representation of (3):

m o o Tu

B = 30 (A0 4 B ] )
i=1 Yk

yr = Cxy + ex, (4b)

where A®) = A® — KO C and B® = [B®, K®)]. This
representation has two nice properties. First, notice that
now the innovation only appears at the output equa-
tion. Second, the equations now describe the observer
error states and use the corresponding observer error dy-
namics AW = AW — K. The observer error dynam-
ics can be assumed to be uniformly exponentially sta-
ble [31] , [5] , [17], and hence the influence of the states
at time k£ will decay with time. This can be exploited. It
appears that if the LPV description (4) is (uniformly)
exponentially stable, then it can be approximated arbi-
trarily well under the assumption that the effect of an
initial state is exactly zero after some p time steps [18].
In other words: the current state can be arbitrarily well
approximated by using the p past inputs and outputs
without any (initial) states:

Thtp = KP Zyp, (5)

where KP contains the (LPV sub-Markov) parameters
and Zj, the effective (past input and output) data. In this
factorization [31], the scheduling sequence is absorbed
into Z and KP? is independent of the scheduling sequence.
These two matrices will be defined explicitly later in this
section. The output equation follows directly:

Yktp = CKP Ziip + €hip, (6)

which is very useful for the first identification step be-
cause it directly allows for linear regression. Next, for
completeness we present the parameter matrix CXCP and
effective data matrix Zj,.

The matrix CK? contains the sub-Markov parameters
and is independent of the scheduling sequence. Recall
that the scheduling sequence is absorbed into Zj. The
matrix CKP is a function of the predictor-based state-
space matrices:

CKP = [Ly, ..., L4], (7)

where £; contains all possible routes from inputs to out-
puts of length (5 + 1):

¢, =[BW,...,B™)] (8a)
Co = [AWcy, ..., AMcy] (8b)
Cit1 = [ANC;, ..., Ay (8c)
L;=CC; (8d)

Notice that this definition is slightly different from [31]
in the sense that we absorb the C matrix into L.

During the first regression step of predictor-based meth-
ods, the matrix C'CP has to be estimated. But unlike in
the LTI case, CKP now has a very large number of ele-
ments:

g=11+r)Y_m’ (9)
j=1

This creates a problem for linear regression because lin-
ear regression uses as much parameters as there are el-
ements in CKP, namely ¢g. More specifically, state-of-
the-art LPV subspace methods suffer from the curse-of-
dimensionality:

Definition 2.1 Identification methods suffer from the

curse-of-dimensionality if their number of parameters
scales exponentially with the past window p.

The main contribution of this paper is a novel method
which does not suffer from the curse-of-dimensionality
and has good numeric properties.

The effective data matrix Zj, is:

2, = NP, Z, (10)

where N ,f_p contains the scheduling sequence and Zj
the input-output data relevant to yx. The matrix N} is:

Py 0 0
0 P, 1jpes - 0

S B ' . , (11a)
0 0 -+ Pijkip1

Polk = Hkap—1 @+ @ g @ Ly, (11b)

where ® is defined as the Kronecker product [4]. The
matrix Zy is:

Zy=1| ‘' |,z = [Uk] (12)



The general estimation procedure is as follows. First, the
matrix CKP? is estimated using the data-equation (6). Af-
terwards the estimate of CKP is used in order to choose
a model order and obtain an estimate of the state se-
quence. Together with that estimate, the state-space ma-
trices can be readily estimated [31].

The state-of-the-art (LPV subspace) method [31] follows
these same steps, but additionally deploys a dual (or ker-
nel) approach with Tikhonov regularization in the first
step. Its regularization parameter is chosen using Gener-
alized Cross Validation [12]. This reduces computational
complexity and improves the quality of the estimate in
most cases.

Alternatively, non-convex methods exist such as [20]
and [33]. These methods directly parametrize the state-
space matrices (3). The resulting parametrizations are
polynomial and very sensitive to local minima. In order
to somewhat ease this issue, most of these methods as-
sume K = 0. In this paper PBTR is compared among
others with the output-error method of [33].

In the next section, the novel representation and PBTR
are presented.

3 Predictor-based Tensor Regression

The novel method, Predictor-based Tensor Regression,
is presented in this section. First some general (ten-
sor regression) expressions are presented. Afterwards
we show that the LPV subspace identification problem
contains structure that can be exploited. This can be
done using tensor regression in order to avoid the curse-
of-dimensionality. We show how the LPV sub-Markov
parameters indeed form a parameter tensor. Then the
parametrization of PBTR and its algorithm are pre-
sented.

3.1 General tensor regression expressions

We first present some general (tensor regression) expres-
sions.

Define [M]; ; as the entry of M at row ¢ and column j.
Let [M]. ; and [M]; . respectively be a column and row
vector. For a two-by-two matrix M:

o [{Mh,l [M]l,ﬂ _ l[Mh,:] _ [[M]zl [M]:Z}

(13)
For both row and column vectors, define [v]; as the i-th
entry of v.

We define an operator to form tensors from a set of vec-
tors, like in [34]. Let 84 represent a vector with size d;-
by-1. Then the outer product S10850---08p is a tensor

of size R41:42:-dD with entries:

D

[Bro---0Bpliy,.ip = H[Bd]id, (14)

d=1

A tensor can be represented in several forms. For the
use of tensor regression, the most natural form is the
rank-R decomposition [34] (or CANonical DEComposi-
tion/PARAllel FACtors in psychometrics [19]). This de-
composition decomposes a tensor into the sum of exactly
R outer products. For example consider a tensor 7 with
D dimensions. This tensor can then be rank-R decom-
posed into:

R

T= 8700 0pY, (15)

r=1

where the Bi*) represent vectors and o is the outer prod-
uct [34] which turns vectors into a tensor. The subscript
indicates the vector group, and the superscript indicates
which individual vector to take. There are in total R
times D vectors.

In the succeeding subsections, the structure of the LPV
subspace problem and PBTR are presented explicitly
and in tensor form.

3.2 The highly-structured parameter tensor

In this subsection we use the LPV sub-Markov param-
eters to build a highly-structured parameter tensor.
We present this tensor in rank-R decomposition form,
such that tensor regression can be directly applied. This
will allow for a clear view on the parametrization of
PBTR and why it is sufficient to avoid the curse-of-
dimensionality.

We present the structure of the LPV sub-Markov param-
eters explicitly in tensor form. For this purpose, consider
the LPV sub-Markov parameters:
CKP =1[Ly, Lp_1,...,L1] (16)
For presentation purposes, consider the part:
Lo = 0[4(1)3(1)714(1)3(2)’A(Q)B(l), . ..A(M)B(m)]
Notice that there is structure present. This structure

becomes more apparent if we re-organize the parameters
to:

CAVBY CANBD . CAM B
CAMBO CAMBD . ¢ A B



or even more clear:

CAM
CA®

)
&)
I

BV, B@ .. BM), (17)
C Alm)

where the reorganization changed the size from [-by-
(I +r)ym? to Im-by-(I + r)m.

However, this description using matrix products is not
directly suitable for tensor regression. For that reason we
now move towards a rank- R decomposition form, which
is a sum of outer products of vectors. First we solve this
problem for one output C; and one effective input Bj.
Equation (17) then becomes:

C1AM

_ C1A® | _

Lht = | BY, ..., BI™), (18)
CLAm)

Then we can rewrite the equation above by splitting
out every single summation inside the matrix multipli-
cations:

[C1]:[AM)];
_ LI Cl i 4(2) 1,7 — (1 —(m
L= “ [: 0 (B B
[C1]:[A™)];

[AM)],
~ n o n [A(Q)]z,] ~ .
£y =33 | T UB) L 1B
i=1 j=1 .
[At™]; 5

Now there are just products of vectors instead of prod-
ucts of matrices. Hence, we can set up the following rank-
R decomposition:

Lyt =33 o oug o0y (21)

i=1 j=1

where we have:

where tildes have been used to indicate definitions which
are only valid for the single output and single effective
input case (18).

Now we can extend to the case of a full C' matrix. This is
done by redefining v;". While previously it was a scalar,
we now turn it into a vector. The resulting outer product
becomes three-dimensional. Simply define:

v =[Ol (22)
Now we can extend to the case of a full B matrix as well.
This is more involved, because we already had a vector
group devoted to B;. The solution is to devote two vector
groups to B. First, we define v3 to incorporate the entire
B matrix. This requires another superscript index &:

[BM]jx
o= (23)
(B

J.k

Notice that previously & was fixed at one. Also notice
that j cycles the states, and & cycles the width of B#).
We want to map this added complexity on a new dimen-
sion. For that purpose, we define v, as:

L=y Y W o o oufd),  (25)

we obtain a RH™ ™" tensor where the last dimension
cycles over the width of B#). That is, [L2].....: corre-
sponds to the i-th column of all B#). Notice that L
and £, have the same entries, but in different positions.
Basically, we reorganized L5 into L9 in order to make it

suitable for rank- R decomposition and tensor regression.

The resulting expression (25) is valid for any LPV sys-
tem, but describes only the LPV sub-Markov parame-
ters in L5. Hence, we need to extend this formulation



to capture all the LPV sub-Markov parameters. Before
searching for an expression containing all the LPV sub-
Markov parameters, we first investigate an expression
containing the LPV sub-Markov parameters of £,. Its

added complexity is the appearance of multiple A within
every product. We accommodate this complexity by us-
ing multiple vs, one for each appearance of A within ev-
ery product:

n l+r
£=3" 3 o 0l o0 oo
i,j R=1
n I+r
L= 3 Lol euf oo
4,5,01,...,0p_2 K=1

o oFr29) 6y 6 )

O’U3 O’U4 5

where Zp is a REL™mmil+T tensor. Notice that the su-
perscripts continue to form a chain link (i,d1), (01, d2)
etc. This is a result of the underlying matrix multiplica-
tions, as was explained for (20).

The following step is to define a single tensor which con-
tains all the LPV sub-Markov parameters. This requires
the stacking of all L,. These will be stacked over a new
dimension, which runs from 1 to p and has index p. So
L1 will be at the first index and so forth. However, the
tensors L, do not have equal size. The solution is to
make all these tensors the same size. For this purpose,
consider the first product of the first L,:

£, =[CBWY,. ] (27a)
Ly =[CAVBWD ] (27b)
Ly =[CAWADBD (27¢)

The dimension mismatch of different Ij# appears be-
cause they have a different number of terms in their
products. This can be easily solved by adding identity
matrices:

L, =[CI,I,BYW,...] (28a)
Ly =[CAVL,BW . ] (28b)
Ly =[CAWADBD (28¢)

Now every L, has the same number of terms inside their
products, and we can redefine:

Definition 3.1 The tensors [Ij

Redefine the tensors E_j as:

l+r

1.4,81,.0p 2 =1
WlPo=2) o R o 4 (F)

I+r
Lm0 Tofi o
07,01 5enes Op—2 =1
o [I]5,_5,1lm o véj S vf)
l+r )
Lo = Z Zv(z) o vél’él) o [I]s,,6,1m 0
,5,01,...,0p—2 R
o [1s,- im0t oof?
n I+r

[1}6176217n O...

El Z Z UY) o [I]iﬂh im (¢]

65,6150 s0p—2 R=1

o [I](;pf?’jim o véj’R) o vff),

such that all L£; have the same dimensions which is
REmommmiltr - The tensor L; contains all entries
of L; and their transformation back and forth is one-
to-one. Basically the smaller tensors are padded with

themselves until they have the appropriate size.

Now we can safely stack L. over a new dimension to
obtain the parameter tensor. Define:

Definition 3.2 Define the tensor £L € RbL™multrp
as:
P 615—1
L= Lyo| 1 |, (30)
P _
Op—ﬁ

using Definition 3.1, (22), (22), (23) and (24). Notice
that L and CKP have the same entries (with some du-
plicates), but in different positions. Basically, we reorga-
nized CKP into L in order to make it suitable for rank-R
decomposition and tensor regression.

We have finished deriving the highly-structured parame-
ter tensor L. Its expression is different from the parame-
ter matrix CKCP, but contains the same LPV sub-Markov
parameters. The new expression will be useful for clar-
ifying which pieces of structure are discarded in state-
of-the-art methods and why the curse-of-dimensionality
appears. This relates strongly to the chosen parametriza-
tions. In the next section, we present the parametriza-
tions of both the state-of-the-art method and PBTR and
investigate the resulting parameter counts.



3.8 Parametrizations

In this subsection, we present the parametrization of
PBTR and compare it to the parametrization of state-
of-the-art methods. We show which pieces of struc-
ture are ignored where, and what causes the curse-of-
dimensionality to appear.

Consider the LPV predictor-based data equation:

yr ~ CKPZ, + e (31)

This equation is parametrized by state-of-the-art LPV
subspace methods element-wise as:

1(0) = [CKP)(0) Zk (32)

As a result, the parameter count of state-of-the-art LPV
subspace methods is equal to the number of entries in
CKP. Because this number scales exponentially with the
past window p, so these methods suffer from the curse-
of-dimensionality.

The PBTR is a tensor regression method, therefore we
present a novel rewritten LPV data equation which is
more suitable for tensor regression. This data equation
uses the inner product of the parameter tensor £ (Def-
inition 3.2) and and appropriate data tensor Zj. This
appropriate data tensor is a reorganization of Zj;, which
matches the reorganization of CKP into £, where the
data corresponding to duplicate parameters are scaled
down. This tensor-form LPV data equation is:

yp = < L, 21, > +ex, (33)

where the inner product is redefined in order to deal with
multiple outputs:

Definition 3.3 Consider the inner product of two ten-
sors: < T,U >. Normally this requires T and U to have
equal size. But in order to deal with multiple outputs,
we extend the definition of this operator as follows. Let
T € Rbddn gnd Y € RN, Then their inner
product exists and equals:

<Ti,U>
<T,U>

where T; € R4 4s an appropriate part of T .

The parametrization of PBTR is a tensor regression
parametrization, and as a result multi-linear in nature.
Additionally, the parametrization revolves around the

predictor-based state-space matrices. It can then be
written as:

L(O) = Ep: Ly0)0 | 1 (35a)

L,(0) = Z Z”li) (61) o vg'él)(ez,l) o...

§§,01,.00p—2 R=1

0 vy (Bap-1) 0 0" (6) 0 v (35D)

n I+r
Loa@) = > S ol(01)0vs " (021) 0.
4,01, 0p—2 K=1

O[I](;

R=
il 00 (05) 0 0¥ (35¢)
where each individual vector is parametrized element-
wise. The sizes of the parameter group are as follows. The
61 has In parameters, 02 ; has n?m parameters for all i €
{1,...,p—1}, and 65 has (I + r)nm parameters. Notice
that this parametrization is not a direct parametriza-
tion in the LPV predictor-based state-space matrices
(4), because the A are spuriously parametrized in or-
der to obtain a multi-linear parametrization. Notice that
PBTR exploits more structure than the state-of-the-art
LPV subspace methods do and does not suffer from the
curse-of-dimensionality.

It is also possible to use the polynomial non-convex
method [33], which enforces available structure by di-
rectly parametrizing the regular state-space matrices.
Notice that this method does not have a second esti-
mation step. This method also does not suffer from the
curse-of-dimensionality, and the surplus enforced struc-
ture slightly further reduces the parameter count. No-
tice that both PBTR and the polynomial non-convex
method have a non-convex parametrization. Therefore
they require an initial estimate (including a model or-
der). This initial estimate can be obtained from state-
of-the-art (LPV subspace) methods. This places PBTR
and the polynomial non-convex method as refinement
methods for LPV subspace methods.

The parameter counts are summarized in Table 1. No-
tice that the parameter counts of the evaluated meth-
ods scale differently. The state-of-the-art LPV subspace
methods suffer from the curse-of-dimensionality, because
their parameter count scales exponentially with p. Us-
age of kernels (dual approaches) changes the parameter
count to scale with data instead, but have the disadvan-
tage that they result in ill-conditioned problems. Regu-
larization can only partially solve this problem [31]. Both
PBTR and the polynomial method do not suffer from
the curse-of-dimensionality.

This concludes the evaluation of the parameter counts



Table 1
Comparison of the parameter counts for the (first)
estimation step

Method

Parameter count
D )
0> m’
j=1
(N — 2p)

LPV-PBSID, (primal) I(r+

LPV-PBSID,,; (dual)

PBTR 2
nl+n({l+r)m+n“m(p—1)
(with free parametrization)

Polynomial method nl + nrm + nm

of PBTR and state-of-the-art methods. In the next sub-
section, the full PBTR algorithm is presented.

3.4 Algorithm

Algorithm 3.1 The PBTR

Define the cost function of PBTR as:

N
= (e — 90(0)" (g — 9x(0)),  (36a)
k=1

k() =< L(0), Z (36D)

where i, is the model output, L(0) is defined in (35) and
Zy, is defined in the previous subsection. This is a multi-
linear parametrization in the predictor-based state-space
matrices with additional structure. It is possible to obtain
a consistent estimate of all 0 using multi-linear optimiza-
tion [34], for cases where equation (6) is not an approxi-
mation but an equality. This can be done using Alternat-
ing Least Squares [34] or MATLAB’s ’fmin’ command.
Notice that the only indeterminacy is modulo global state-
coordinate transformation, which is common. After ob-
taining an estimate of L, an estimate of CKP can be di-
rectly and one-to-one constructed. The succeeding steps
follow the same methodology as other predictor-based sub-
space methods as presented in Section 2.

This concludes the section on PBTR. In the next section,
the simulation results are presented.

4 Simulations

In this section simulation results are presented in or-
der to compare PBTR with state-of-the-art methods for
several cases in terms of bias, variance and parameter
count.

4.1 Simulation settings

In this subsection, the general simulation settings and
some definitions are presented.

The results presented in this paper are based on 100
Monte Carlo simulations. For every Monte Carlo sim-
ulation different realizations of both the input and the
innovation vector were used. During every Monte Carlo
simulation, first estimates of the state-space matrices are
obtained from both the unregularized and the regular-
ized variant of the LPV subspace method [31]. Then the
estimate of the regularized variant is used as an initial
estimate for the non-convex methods: PBTR and the
method of [33]. It is worth noting that we do not consider
the prediction error variant of the method of [33], be-
cause the authors indicated that that variant performs
badly. The variant that we do use, fixes the parameters
of K to zero in order to somewhat relieve its involved
parametrization. All methods are provided with the sys-
tem order n, which is assumed to be known, and the
information that D = 0 and C is LTT.

We also present the following settings which are the same
for every case. The matrix K(®) for i = {1,...,m} is
obtained from the Discrete Algebraic Ricatti Equation
(DARE) with A®)| C and identity covariance of the con-
catenated process and measurement noise. Every signal
of the input vector u; and innovation vector ey is white
noise. The data size IV is chosen as 200, and both the
past window p and the future window f are 6.

The quality of the estimates is evaluated by investigating
the Variance Accounted For (VAF) on a validation data
set different from the one used for identification, in the
sense that different realizations of both the input and the
innovation vector are used. The VAF for single-output
systems is defined as [31]:

VAF(gr, Jx) = maz 1 — w,o * 100%
var (k)

Notice that the noise-free simulated output of the sys-
tem can be used when evaluating the VAF, because
the data is obtained from simulations. This allows the
VAF to reach 100% when the model is equal to the true
system modulo global state-coordinate transformations,
such that the analysis becomes more clear. The noise-
free (simulated) output of the system is denoted as .
Similarly, i is used for the noise-free (simulated) model
output. The var(x) operator denotes the variance.

In the case that a non-convex method produces an es-
timate with an identification data VAF less than half
the identification data VAF of the initial estimate, the
refined estimate is rejected and substituted directly by
the initial estimate. This is possible, because the identi-
fication data is available during estimation. Notice that
this does not prevent local minima, but merely serves to
reject poor optimization results.

The cases and their results are presented in the follow-
ing subsection. A parameter count investigation is per-



formed in the last subsection.
4.2 Simulation results Case 1

This case uses the following LPV state-space system (3):

4 1] 3 _1
[A(l) A(Q)] _ 15 15 20 60
’ _11f_1 3 |’
6 30 60 20
110.2
BB = || o= [1o].
0/0.2

and the Signal-to-Noise Ratio (SNR) is 1. The remaining
settings are as described in Subsection 4.1. The system
is evaluated at two different affine scheduling sequences
with:

II
u,(f) = cos(ZWkN)/Q +0.2,

where II = 20 for the first and II = 4 for the second
scheduling sequence.

Table 2
Mean VAF for different methods for Case 1
Scheduling  Method VAF
LPV-PBSID,p: (kernel) 95.8
= 20 Reg. LPV-PBSID,,; (kernel) 96.6
PBTR 98.0
Polynomial non-convex method  96.5
LPV-PBSID,p: (kernel) 23
M4 Reg. LPV-PBSID,p¢ (kernel) 97.0
PBTR 98.1
Polynomial non-convex method  96.7
Boxplot of VAF values for Case 1 and scheduling sequence 1
100} e — — .

951 - T |
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2
Methods

Fig. 1. Boxplots of the VAF results of Case 1 for the evaluated
methods at scheduling sequence 1. The methods are: 1. Reg.
LPV-PBSID,p¢, 2. PBTR, 3. Polynomial method.

From the results of Table 2 it can be seen that PBTR
has superior VAF in comparison to the other methods.
The other (polynomial) non-convex method has com-
parable VAF to state-of-the-art LPV subspace method.
Furthermore, the VAF of the unregularized variant of
the state-of-the-art LPV subspace method appears to

Boxplot of VAF values for Case 1 and scheduling sequence 2

100 —— _ _

95 .

'
90 g

VAF

851 + T

801 1

2
Methods

Fig. 2. Boxplots of the VAF results of Case 1 for the evaluated
methods at the scheduling sequence 2. The methods are: 1.
Reg. LPV-PBSID,,¢, 2. PBTR, 3. Polynomial method.

vary considerably with the scheduling sequence. These
results are further supported by Fig. 1 and 2.

4.8 Simulation results Case 2

This case uses the following LPV state-space system (3):

4 1| 3 _1]2 2
15 15 20 60 | 405 81

MA@ 406 =
[AY A AW

111 3 1 52
6 30| 60 20 81 405
110.2

1 g G =
(B, B\Y B']

"=l

and the Signal-to-Noise Ratio (SNR) is 2. The remaining
settings are as described in Subsection 4.1. The system
is evaluated at two different affine scheduling sequences
with:

010.2

II
u,(f) = cos(Qﬂk;N)/Q +0.2

1I
3

where II = 20 for the first and II = 4 for the second
scheduling sequence.

Table 3
Mean VAF for different methods for Case 2
Scheduling Method VAF
LPV-PBSID,,: (kernel) 81
o= 20 Reg. LPV-PBSID,p: (kernel) 97.4
PBTR 98.4
Polynomial non-convex method 97.6
LPV-PBSID,,: (kernel) 7.3
O—4 Reg. LPV-PBSID,,; (kernel) 97.7
PBTR 98.4

Polynomial non-convex method 97.6

From the results of Table 3 it can be seen that PBTR
has superior VAF in comparison to the other methods.



Boxplot of VAF values for Case 2 and scheduling sequence 1
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Fig. 3. Boxplots of the VAF results of Case 2 for the evaluated
methods at scheduling sequence 1. The methods are: 1. Reg.
LPV-PBSID,pt, 2. PBTR, 3. Polynomial method.

Boxplot of VAF values for Case 2 and scheduling sequence 2
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Fig. 4. Boxplots of the VAF results of Case 2 for the evaluated
methods at the scheduling sequence 2. The methods are: 1.
Reg. LPV-PBSID,p¢, 2. PBTR, 3. Polynomial method.

The other (polynomial) non-convex method has com-
parable VAF to state-of-the-art LPV subspace method.
Furthermore, the VAF of the unregularized variant of
the state-of-the-art LPV subspace method appears to
vary considerably with the scheduling sequence. These
results are further supported by Fig. 3 and 4.

4.4 Simulation results Case 3

This case uses the following LPV state-space system (3):

r—=1 1 11 8 |-3 1 1 11
300 30 75 75 |10 6 30 30
3 1 -3 3|1 7 -1 -1

[A(l)vA(Q)]: 20 20 20 20 | 20 60 20 20 ,
=29 1 32 7 | =9 3 31 9
100 10 75 25 |20 20 60 20
11 -1 -3 23 -1 1 1 1
L300 60 100 300 | 30 30 30 10
110.2
0/10.2

1 2 .

[B(),B()]z 7(]:[1000},
0/10.2
0/10.2

and the Signal-to-Noise Ratio (SNR) is 0.5. The remain-
ing settings are as described in Subsection 4.1. The sys-

10

tem is evaluated at the affine scheduling sequence with:

20
MS) = cos(?wkﬁ)/Q +0.2,

Table 4

Mean VAF for different methods for Case 3
Method VAF
LPV-PBSID,,: (kernel) 81
Reg. LPV-PBSID,, (kernel) 85.1
PBTR 90.8
Polynomial non-convex method  80.9

Boxplot of VAF values for Case 3
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Fig. 5. Boxplots of the VAF results of Case 3 for the evalu-
ated methods. The methods are: 1. Reg. LPV-PBSID,¢, 2.
PBTR, 3. Polynomial method.

From the results of Table 4 it can be seen that PBTR has
superior VAF in comparison to the other methods. The
other (polynomial) non-convex method however fails to
refine the initial estimates supplied by the state-of-the-
art LPV subspace method. These results are supported
by Fig. 5.

4.5 Parameter counts

The parameter counts of the evaluated methods for
Cases 1 and 2 are presented in Table 5. It is visible that
the PBTR has a parameter count roughly in between
the state-of-the-art LPV subspace methods and the
polynomial non-convex method. The PBTR does not
suffer from the curse-of-dimensionality, while also hav-
ing a superior performance in terms of VAF as shown
in the previous subsections.

5 Conclusions

In this paper a novel method for LPV identification was
presented, which is named PBTR. The benefit of PBTR
over state-of-the-art LPV subspace methods is that it
does not suffer from the curse-of-dimensionality. This
was achieved by first pinpointing the origin of the curse-
of-dimensionality, which appeared to be the ignoring of
inherent structure of the LPV sub-Markov parameters,



Table 5
Comparison of the parameter counts for the (first)
estimation step for some cases

Method Case 1 Case 2
LPV-PBSID,: (primal) 252 2184
LPV-PBSID,,: (dual) 188 188
PBTR 50 4
(with free parametrization)

Polynomial method 18 26

and then using tensor regression to prevent it. This does
make PBTR a non-convex method. The difference of
PBTR with other non-convex methods is that it uses
tensor regression to exploit only the structure neces-
sary to avoid the curse-of-dimensionality. Though the
formal proof remains an open issue, simulation results
show that PBTR has better performance with respect
to state-of-the-art LPV subspace techniques and non-
convex techniques by looking at the variance.
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