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Abstract

We propose a novel frequency control approach in between centralized and distributed architectures, that is a continuous-time
feedback control version of the dual decomposition optimization method. Specifically, a convex combination of the frequency
measurements is centrally aggregated, followed by an integral control and a broadcast signal, which is then optimally allocated
at local generation units. We show that our gather-and-broadcast control architecture comprises many previously proposed
strategies as special cases. We prove local asymptotic stability of the closed-loop equilibria of the considered power system
model, which is a nonlinear differential-algebraic system that includes traditional generators, frequency-responsive devices, as
well as passive loads, where the sources are already equipped with primary droop control. Our feedback control is designed
such that the closed-loop equilibria of the power system solve the optimal economic dispatch problem.

1 Introduction

The quintessential task of power system operation is to
match electrical load and generation. The power balance
in an AC power network can be directly accessed via
the system frequency, making frequency regulation the
fundamental mechanism to ensure the load-generation
balance. This task is subject to operational constraints,
system stability, and economic interests, and it is tradi-
tionally accomplished by adjusting generation in a hi-
erarchical structure consisting of three layers: primary
droop control, secondary automatic generation control
(AGC), and tertiary control (economic dispatch). These
layers range from fast to slow timescales, and from de-
centralized to centralized control architectures [2,3].

With the increasing integration of variable renewable
sources, such as wind and solar power, low-inertia power
electronic generation, larger peak loads, such as elec-
tric vehicles, and liberalized reserve markets on increas-
ingly slower times (and their accompanying determinis-
tic frequency errors), power grids are subject to larger
and faster fluctuations [4]. In such a distributed genera-
tion environment, frequency control requires more fast-
ramping generators to act as spinning reserves nowadays
mostly provided by gas-driven generation, which is ex-
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pensive, inefficient, and the resulting emissions defeat
the purpose of renewables [5]. As a partial remedy, dis-
tributed frequency control through inverter-interfaced
sources [6] or loads [7] has a high potential due to the fast
ramping capabilities of these devices. In any case, the
task of frequency regulation will have to be shouldered
by more and more small-scale and distributed devices.

From a control perspective, the main objective of fre-
quency control is to regulate the system frequency sub-
ject to operational constraints and economic interests
such as load sharing, optimal generation dispatch, or ac-
cording to the outcome of reserve markets. Further con-
straints include a partial information structure account-
ing for distributed generation, liberalized markets, and
limited system knowledge. A plethora of strategies has
been developed to address these tasks ranging from fully
decentralized to centralized architectures, partially re-
lying on time-scale separation and hierarchical control,
and being dependent on the detailed system model, load
and generation forecasts. While centralized strategies
such as AGC often suffer from a single point of failure,
distributed or fully decentralized approaches often fall
short in practical implementations and typically require
a retrofitting of a costly peer-to-peer communication ar-
chitecture. We postpone a detailed literature review to
Section 2.4, where we also present some novel results of
independent interest concerning robustness and fairness
issues.

In this paper, we consider a nonlinear, differential-
algebraic equation (DAE), and heterogeneous power
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system model including traditional generation, power
electronic sources, and frequency-responsive as well as
passive loads. We assume that the sources are already
equipped with primary droop control, and we focus on
designing the secondary control strategy while simulta-
neously solving a tertiary economic dispatch problem.
Our control approach falls square in between centralized
and distributed architectures, and it is motivated and
developed by exploiting parallels in dual decomposition
methods in optimization [8], auctions in markets [9],
mean field control [10], as well as classic AGC [2]. Inter-
estingly, our control architecture includes many previous
frequency control strategies for specific parameter sets.

Specifically, we start with an online optimization routine
for the steady-state dynamics based on the dual decom-
position method that evaluates the price of frequency
violation in feedback with the optimal generation re-
sponse of each generator. Our iterative algorithm resem-
bles a decentralized auction mechanism for a spot mar-
ket. Next, we propose a continuous-time feedback control
version of this optimization scheme as an aggregation of
a convex combination of frequency measurements, fol-
lowed by integral control and optimal local allocations
of a broadcast control signal. Our gather-and-broadcast
controller is such that the closed-loop equilibria of the
power system are optimizers of the economic dispatch.
We believe that our gather-and-broadcast control strat-
egy combines appealing features from both centralized
and distributed strategies. It robustifies the frequency
control by drawing upon the information of multiple sen-
sors and distributing the control actions to multiple gen-
erators, it does not require any model knowledge, it re-
lies on unidirectional broadcast communication, and it
is privacy preserving: no participant needs to communi-
cate its internal model or cost function. We prove local
asymptotic stability of the nonlinear closed-loop DAE
system for a specific class of strictly convex cost func-
tions that give rise to typical secondary control curves
encountered in practice, including dead-bands, linear re-
sponse regions, and saturation effects. The main techni-
cal results in this paper generalize those in our prelim-
inary work [1], which are based on quadratic cost func-
tions and more restrictive assumptions on the system
parameters. Our analysis relies on a dissipative Hamil-
tonian formulation of the closed loop system, an incre-
mental Bregman-type Lyapunov function as in [11], con-
vex analysis [12], and a LaSalle invariance principle for
DAE systems [13,14].

The paper is organized as follows. In Section 2 we intro-
duce the frequency control problem that includes both
frequency regulation and optimal economic dispatch,
and we provide a comprehensive literature review. In
Section 3 we propose our novel frequency control strat-
egy, and in Section 4 we show local asymptotic stability
of a desirable subset of the closed-loop equilibria. In Sec-
tion 5, we illustrate the performance of our strategy with
a simulation case study on the IEEE39 New England

grid and also compare it to other controllers. Section 6
concludes the paper and raises some open questions.

Notation

R, R>0, R≥0, R<0, R≤0 denote the set of real, posi-
tive real, non-negative, negative and non-positive real
numbers, respectively. A> ∈ Rm×n denotes the trans-
pose of A ∈ Rn×m. Given some matrices A1, . . . , AN ,
diag (A1, . . . , AN ) denotes the block diagonal matrix
with A1, . . . , AM in block diagonal positions. Given
some functions or scalars f1, . . . , fN , we use the vec-
tor notation f := [f1, . . . , fN ]> and matrix notation
F := diag (f1, . . . , fN ), unless differently specified.
1N (0N ) denotes a vector in RN with elements all
equal to 1 (0). Given a function f : RN → R, the
operator ∇f(·) : RN → RN denotes the gradient[
∂f
∂x1

(x), . . . , ∂f
∂xN

(x)
]>

. The sum operator, i.e.,
∑
i or∑

i,j , applies to all terms on its right side as in [12].

2 Frequency control in power systems

2.1 Power system model

Consider a power system modeled as a graph G = (V, E)
with nodes (or buses) V = {1, . . . , N} and edges (or
branches) E ⊆ V ×V. With each bus i ∈ V, we associate
a harmonic voltage waveform Vi cos(ω∗t + θi), where
ω∗ = 2π · f∗ (and f∗ = 50 Hz or f∗ = 60 Hz is the nom-
inal grid frequency). We consider a lossless high-voltage
transmission grid with topology induced by the sparse
susceptance matrix B̃ ∈ RN×N . We partition the buses
as V = G ∪F ∪P corresponding to synchronous genera-
tors G, buses with frequency-responsive devices F (e.g.,
frequency-sensitive loads or inverter sources performing
droop control), and passive buses P (e.g., static loads or
inverters performing maximum power-point tracking).
The associated DAE model reads as [14,2]

∀i ∈ G : Miθ̈i +Diθ̇i = Pi + ui −
∑
j∈V

Bi,j sin(θi − θj)

(1a)

∀i ∈ F : Diθ̇i = Pi + ui −
∑
j∈V

Bi,j sin(θi − θj) (1b)

∀i ∈ P : 0 = Pi + ui −
∑
j∈V

Bi,j sin(θi − θj) (1c)

where, for all i ∈ V, Pi ∈ R is a constant power injection
or demand (positive for sources and negative for loads),
ui ∈ Ui = [ui , ui] ⊂ R is a controllable injection or de-

mand, and Bi,j := B̃i,jViVj is the effective susceptance
for all i, j ∈ V. A generator i ∈ G is characterized by
its rotational inertia Mi > 0 and primary droop control
coefficient Di > 0. A frequency-responsive device i ∈ F
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is characterized by its frequency-sensitivity Di > 0 (e.g,
the droop coefficient for inverters or actively controlled
loads, or the damping of a frequency-dependent load).
Passive buses (inverters performing power-point track-
ing and static loads) have no dynamics. Finally, the ab-
sence of integral control at node i ∈ V is modeled by
Ui = {0}.

Remark 1 (Unmodeled dynamics) We do not
model reactive power and voltage dynamics, as they do
not affect the frequency control problem on the consid-
ered time scales – though all of our forthcoming analyses
can be extended under a definiteness assumption on the
power flow Jacobian; see [15] for a related analysis. �

Finally, we note that the vector field in (1) is invariant
under a rigid rotation of all angles. Accordingly, all equi-
libria of the power system model (1) are sets that are in-
variant under rigid rotations, and all properties such as
uniqueness, optimality, and asymptotic stability of equi-
libria are to be understood modulo rotational symmetry.

2.2 Frequency regulation

Note that if there is a synchronized solution to (1) sat-

isfying θ̇i = ωsync∈ R for all i ∈ V, then by summing up
all steady-state equations (1), the synchronous frequency
(relative to ω∗) is obtained from the net power balance:

ωsync :=

∑
i∈V Pi + ui∑
i∈G∪F Di

. (2)

If transmission losses are taken into account, there would
be another strictly negative term on the right-hand side
of (2) depending on the steady-state flow pattern.

Note that in absence of controllable injections {ui}i∈V
the synchronous frequency ωsync in (2) is determined by
the constant power injections {Pi}i∈V of possibly slow-
ramping generation units, fluctuating renewable sources,
and unknown loads. We are interested in regulating the
frequency deviation (2) to its nominal (zero) value by
scheduling the controllable injections {ui}i∈V .

Problem 1 (Frequency regulation) Schedule the in-
jections {ui ∈ Ui}i∈V to balance load and generation, i.e.,
so that the frequency deviation ωsync in (2) is zero. �

Remark 2 (Multi-area systems) In an intercon-
nected grid, a second objective aside from load-generation
balancing (or equivalently frequency regulation) is to
balance the net tie-line interchange power Pnet ∈ R
(positive for an area generation surplus) over a control
area. Typically both objectives are unified in a single area
control error [3,2] that is added to the frequency error
in the integral controllers presented in Section 2.4. Our
analysis can be extended to this case by appropriately

adding Pnet to the frequency control signals. Henceforth,
we restrict ourselves to a single-area grid. �

2.3 Centralized and competitive resource allocation

A basic feasibility condition to solve Problem 1 is that
the total power imbalance can be met by the controllable
and constrained injections {ui ∈ Ui := [ui , ui]}i∈V .

Standing Assumption 1 (Feasibility)

−
∑
i∈V

Pi ∈
∑
i∈V
Ui =

∑
i∈V

[ui , ui].

�

If this feasibility condition is met, then there are many
options to schedule the controllable injections {ui}i∈V
to (asymptotically) regulate ωsync in (2) to zero.

Since we are also interested in solving a resource alloca-
tion problem, we associate to every controllable injection
a cost function to trade off operating costs, emissions,
capacities, and other levels of preference.

Problem 2 (Optimal economic dispatch) Schedule
the controllable injections to balance load and genera-
tion, while minimizing the aggregate operational cost:

min
u∈RN

∑
i∈V

Ji(ui)

s.t.
∑

i∈V
Pi + ui = 0 ,

(3)

where Ji is the cost associated with node i ∈ V. �

Throughout the paper, we consider the following stand-
ing assumption.

Standing Assumption 2 (Strict convexity) For all
i ∈ V, the cost function Ji : Ui → R is strictly convex
and continuously differentiable. �

Note that we directly incorporate the constraints
{ui ∈ Ui = [ui , ui]}i∈V in the domain of the cost func-
tions {Ji}i∈V . This can be done also in a smooth way,
e.g., using barrier functions. The economic dispatch
problem in (3) is typically solved on different time scales
and, in a longer planning horizon, it can also include
binary unit-commitment constraints and inequality
constraints penalizing power flows violating thermal
constraints. Here we focus on the reserve scheduling
problem, where fast ramping generation and control-
lable loads are dispatched to meet the real-time net
demand indicated by the frequency deviation in (2).

Consider now the Lagrangian function associated with
the economic dispatch optimization problem in (3), i.e.,

L(u, λ) :=
∑

i∈V
Ji(ui)− λ (ui + Pi) , (4)
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where the scalar λ ∈ R is the Lagrange multiplier asso-
ciated with the constraint

∑
i∈V ui + Pi = 0 in (3). The

necessary KKT optimality conditions [16] require that

∂L(u,λ)
∂u = 0N =⇒ J ′i(u

?
i ) = λ? ∀i ∈ V , (5)

where J ′i is the derivative of Ji. A basic insight from
(5) is the economic dispatch criterion [3] stating that all
marginal utilities must be identical in the unconstrained
case:

J ′i(u
?
i ) = J ′j(u

?
j ) ∀ i, j ∈ V . (6)

So far we took the perspective of centralized social wel-
fare optimization. Motivated by a competitive market
perspective (in particular, a spot market), let us now
consider the utility maximization (that is, cost minus
benefit minimization) of each market participant i ∈ V:

min
ui∈Ui

L(ui, λ) = min
ui∈Ui

(Ji(ui)− λui) . (7)

Here, λ is the nodal price which is identical for every par-
ticipant (in this setup neglecting network congestion).
The optimal generation as a function of the price is then

obtained by ui(λ
?) = J ′i

−1
(λ?). Accordingly, the con-

straint in (3) can then be formulated as the intersection
of the aggregated supply bid and demand curves:

0 =
∑

i∈V
Pi + ui =

∑
i∈V

Pi + J ′i
−1

(λ?). (8)

The market clearing price λ∗ is then obtained from (8).

Independent of a centralized optimization or a game-
theoretic market setup, solving Problem 2 also amounts
to asymptotically regulating the frequency, that is, solv-
ing Problem 1. Frequency regulation is often referred
to as secondary control, whereas offline optimization is
referred to as tertiary control. As there are no clear
boundaries between these two control objectives, there
are many solutions available in the literature to solve the
optimal economic power dispatch in (3) via online fre-
quency regulation. These solutions range from the clas-
sic centralized automatic generation control (AGC) [3,2]
to distributed optimal frequency regulation algorithms.
We provide a brief review in the following paragraph to-
gether with some lemmas and case studies highlighting
common pitfalls, which are of independent interest.

2.4 Critical review of (de)centralized frequency regula-
tion strategies and their common pitfalls

Decentralized secondary integral control

To regulate steady-state frequency deviations, one may
consider simple decentralized integral controllers, that is,

ki λ̇i = −ωi, ui = λi ∀i ∈ K ⊆ V , (9)

where K ⊆ V is the set of sites where integral control is
applied with control gain ki > 0. Such decentralized inte-
gral controllers nominally regulate the frequency – even
with global stability guarantees [17, Theorems 1 and 2],
but they also induce additional closed-loop equilibria re-
sulting in undesired injection profiles violating load shar-
ing and economic dispatch objectives [18, Lemma 4.1].
Moreover, it is well known in power systems [2] and in
control theory [19], that multiple decentralized integral
controllers may fail to achieve frequency regulation [20,
Theorem 1] and induce instabilities if the frequency mea-
surements are subject to noise; see also the simulation
studies [20, Section V.B]. In the following, we make this
idea precise and show that decentralized integral control
subject to heterogeneous measurement biases actually
leads to the complete absence of synchronous solutions.

Proposition 1 (Absence of synchronous solutions)
Consider the power system in (1) under decentralized
integral control (9) subject to biased measurements, i.e.,

ki λ̇i = −ωi + ηi, ui = λi ∀i ∈ K ⊆ V , (10)

where ηi ∈ R is the measurement bias for controller
i ∈ K. There exists a synchronous solution θ̇ such that
limt→∞ θ̇i(t) = ωsync for all i ∈ V only if either

(i) |K| = 1, i.e., there is only one integral controller; or

(ii) there is η ∈ R so that ηi = η for all i ∈ K, i.e., all
measurement biases are identical.

In both cases, a synchronous solution θ(t) satisfies

limt→∞ θ̇i(t) = −η for all i ∈ V, where η is the measure-
ment bias. �

PROOF. Observe that if there exists a synchronous
solution θ̇(t) to the closed loop (1), (10) such that

limt→∞ θ̇i(t) = ωsync for all i ∈ V, then by (10) this solu-

tion must also satisfy 0 = limt→∞ θ̇i(t) + ηi = ωsync + ηi
for all i ∈ K . Therefore, ωsync = −ηi for all i ∈ K ⊆ V
and the statement follows. �

The intuition behind this “instability” mechanism is
that different units – in spite of being coupled – aim to
stabilize different frequencies and thus fight the physical
dynamics. Example 1 illustrates this phenomenon.

Example 1 (Bias-induced instability) Consider
the power system in (1) under decentralized integral
control (10), with measurement biases drawn from a
unit variance and zero mean Gaussian distribution. For
the system parameters given in Section 5, the resulting
frequency dynamics are unstable as shown in Figure 1.�

Automatic generation control

The industrial standard is the centralized AGC [3,2]
where a frequency measurement is integrated (together

4
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Fig. 1. The power system (1), with decentralized integral
control (9) is unstable under biased frequency measurements.

with the area control error) at a single site i? ∈ V, and
the load-generation mismatch is allocated to individual
generating units according to their participation factors
{1/Ai > 0}i∈V , often selected as inverse power ratings of
the sources, which define their individual contribution:

k λ̇ = −ωi? , ui = 1
Ai
λ ∀i ∈ V. (11)

Note that the AGC signal in (11) may be written as

k λ̇ = −ωi? , ui = J ′i
−1

(λ) ∀i ∈ V , (12)

if the cost function is the quadratic function Ji(ui) =
1
2Aiu

2
i . Hence, the AGC strategy (12) achieves identi-

cal marginal costs (6) and is implicitly optimal for a
quadratic cost. On the other hand, AGC may not be
suited for a distributed generation environment due ro-
bustness issues (aside from being centralized it relies on
a single measurement at i? that can be compromised)
and since a single node i? may not have the authority to
command the control strategies of all other nodes.

Distributed secondary controllers

As alternatives to decentralized integral control (9)
or centralized AGC (11), distributed secondary inte-
gral controllers have been proposed that average the
integral actions among the generation units through a
communication network between the controllers. Dif-
ferent distributed secondary integral approaches have
been proposed on the basis of continuous-time consen-
sus averaging with all-to-all [21,22,23,24] or nearest-
neighbor [25,26,27] communication. These distributed
secondary control approaches can be merged with the
tertiary optimization layer, based on the economic
dispatch criterion (6) that all marginal utilities must
be identical. Different approaches realize this objec-
tive based on continuous-time optimization approaches

[28,18,17,29,20,30,11,31,32,33], game-theoretic ideas
[34], nodal pricing [35], or discrete-time algorithms
[36,37,38]. All of these algorithms rely on the fact that
frequencies should be nominal and marginal costs should
be identical in an optimal steady state. Such goals are
typically achieved by integrating the associated error
signals or dual multipliers; see [39] for a summary. Ac-
cordingly, for all i ∈ V, distributed averaging-based
integral (DAI) controllers of the form

kiλ̇i = −ωi +
∑
j∈V

wi,j
(
J ′i(ui)− J ′j(uj)

)
, ui = λi, (13)

are commonly considered, where W = W> ∈ RN×N≥0 in-
duces an undirected and connected communication net-
work. Unlike decentralized integral control (9), the dis-
tributed averaging-based integral control strategy (13)
is robust to measurement errors [20, Corollary 4].

In comparison with the centralized price-based coordi-
nation in (7)-(8) (see also (12)), the strategy in (13) relies
on bilateral agreements, and one can imagine scenarios
where individual agents aim to maximize their benefit by
reporting biased marginal costs to their neighbors (see
Example 2). Another drawback of distributed strategies
is that the existing controllable units must be retrofitted
with peer-to-peer bidirectional communication architec-
ture. Finally, aside from the above concerns on opera-
tional cost and market power, other issues include the
utilities’ concern that they give the power system op-
eration out of their hands as well as vulnerabilities to
cyber-physical faults and security breaches to which dis-
tributed strategies as in (13) (relying on local sensing
and bidirectional communication) may be more suscep-
tible than a broadcast architecture as in AGC (12).

Example 2 (Cheating under DAI control) The
profit of a unit can be maximized by cheating in the com-
munication protocol of the DAI control (13) as follows.
For simplicity, we consider a setup without injection con-
straints, i.e., Ui = R for all i ∈ V. Consider the power
system (1) under DAI control (13) and the following
strategy executed by node k to maximize its profit:

1. Node k (illegally) reports zero marginal cost to its
neighbors so that in all DAI controllers i ∈ V \ {k}
in (13) we have J ′k(uk) = 0 as input from node k.

2. Node k does not listen to the messages of others
nodes by setting wk,j = 0 for all j ∈ V in (13).

In this case, the closed-loop system (1), (13) admits a

steady state with θ̇i = ωi = 0 for all i ∈ V, ui = 0 for
all i 6= k, and uk = −

∑
i∈V Pi. Hence, node k exclu-

sively regulates the system frequency and accordingly re-
ceives a higher compensation than in the fair load sharing
case (6). Observe, that this modification is not detectable
by steady-state frequency measurements. A simulation of
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this scenario is shown in Figure 2 for the system param-
eters given in Section 5, where generator 10 follows the
above cheating strategy to uniquely balance the system
and exclusively receive compensation. We refer to [40] for
further cheating mechanisms related to DAI control. �
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Fig. 2. Time-domain plots of frequencies of the closed loop
system (1),(13) and the DAI controller injections if one gen-
erator follows the cheating strategy outlined in Example 2.

To conclude this section, let us remark that all integral
control mechanisms presented in Subsection 2.4 could
also have been implemented also as proportional-integral
(PI) controllers to improve the system performance and
enhance its stability. Indeed, AGC is sometimes imple-
mented through PI control [2]. Note that any propor-
tional error feedback is inactive at steady state and does
not affect the system equilibria. Thus, even under PI-
feedback, the instability mechanism in Proposition 1
persists, and the cheating strategy in Example 1 is still
viable.

3 Semi-decentralized frequency control

3.1 Market-based discrete-time dual decomposition

In the following, we provide an alternative frequency
control algorithm based on a central price update for vio-
lating the net power balance, and inspired by the market-
based and game-theoretic insights to the economic dis-
patch optimization presented in Subsection 2.3.

Specifically, we exploit the fact that the Lagrangian
function L(u, λ) in (4) associated with the optimization
problem in (3) is separable. Therefore, as the individual
costs {Ji}i∈V are strictly convex and bounded, the op-
timization problem in (3) can be solved iteratively via
the gather-and-broadcast dual decomposition method [8,
Sections 2.1–2.2]. This reads as the following iterative
dual-ascent algorithm, where k ∈ N denotes a discrete
time index, and α ∈ R>0 is a sufficiently small step size:

ui(k + 1) := arg min
υ∈Ui

(Ji(υ)− λ(k) υ) , ∀i ∈ V , (14)

λ(k + 1) := λ(k)− α
(∑

i∈V
Pi + ui(k + 1)

)
. (15)

At every discrete time step k, each node i ∈ V computes
its optimal injection according to (14) as a function of
the current price λ(k). At the same time, the price λ(k)
for the power imbalance is updated in (15) via a discrete-
time integral type control of the power balancing error,
that is directly measurable through the frequency signal

ω(k + 1) :=

∑
i∈V Pi + ui(k + 1)∑

i∈G∪F Di
. (16)

Thus, the update (15) drives the frequency error (16) to
zero. The iteration in (14)–(15) can be implemented in
a semi-decentralized fashion. The dual update (or inte-
gral control) (15) determining the current price λ(k) is
performed at a central site 1 using the steady-state fre-
quency error (16), and the primal update (14) can be
carried out locally as a function of the current price λ(k)
and the cost function Ji(·). In this regard, the gather-
and-broadcast update in (14)-(15) is conceptually simi-
lar to AGC (11), with the advantage of guaranteed global
convergence [16, Chapter 6], [8, Chapter 2], even for non-
quadratic costs and local injection constraints.

Proposition 2 (Discrete-time global convergence)
For a sufficiently small step size α > 0, the sequence
({ui(k)}i∈V , λ(k))k∈N defined iteratively in (14)–(15)
asymptotically converges, from any initial condition, to
the unique primal-dual optimal solution to (3). �

From a market perspective, the updates (14) and (15)
correspond to an iterative local utility maximization
(14), communication of bids u?i (k+ 1), subsequent price
announcement (15), which is again followed by the opti-
mal generation response (14), and so on. Such a scheme
is referred as an auction [9]. Auctions are known to be de-
centralized yet robust market mechanisms compared to
the exchange trade based on a (central) price (7)-(8) and
the bilateral over the counter trading scheme (13) [41] -
all of which lead to a Pareto-optimal solution to (7). Fi-
nally, since each generation unit follows a best response
strategy in (14), there are no incentives for unilateral
cheating as in Example 2 for the DAI control (13).

3.2 Continuous gather-and-broadcast frequency control

In view of the dual decomposition algorithm in (14)-(15),
we derive a corresponding continuous-time version that
acts as a feedback control law stabilizing the frequency
deviations of the nonlinear DAE model in (1). We as-
sume that a central aggregator collects a set of frequency

1 In principle, the update in (15) can also be carried out
locally using ωi instead of (16), since the steady-state fre-
quency error (16) is identical throughout the network. How-
ever, in a real-time setting such decentralized integral-type
updates are subject to the drawbacks listed in Section 2.4.
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measurements in the network and integrates these mea-
surements to form the overall area frequency error as

k λ̇ = −
∑

i∈V
Ci ωi, (17)

where k > 0 is a gain, and {Ci}i∈V ∈ [0, 1] is a set of
convex weighting coefficients such that

∑
i∈V Ci = 1.

Note that this normalization can be made without loss of
generality, through an appropriate scaling of the gain k.
Next the signal λ from (17) is broadcast to the individual
nodes, where it is dispatched according to

ui := J ′i
−1

(λ) ∀i ∈ V. (18)

This feedback control scheme relies on the following
mean-field-type loop [10]: construction of the measure-
ment average −

∑
i∈V Ciωi as a global variable that is

centrally processed via an integrator and then broadcast
back to the individual nodes. In the following, we refer
to (17)–(18) as gather-and-broadcast control. Note that
the broadcast-topology is “one-to-all”, whereas in prin-
ciple the measurement aggregation can include either
only one measurement or possibly all measurements.
Finally, observe that the generation allocation in (18)
achieves identical marginal costs J ′i(u

?
i (t)) = J ′j(u

?
j (t))

as in (6) even during transients – though, feasibility of
(3) (i.e., power balance) is achieved only asymptotically.

3.3 Comparison with methods proposed in the literature

For specific parameter choices, the gather-and-broadcast
frequency control in (17)–(18) reduces to different con-
trol architectures proposed in the literature:

Automatic generation control [3,2]: If only a single mea-
surement coefficient Ci is non-zero and each cost func-
tion Ji is quadratic, then the control scheme in (17)-(18)
reduces exactly to the conventional AGC in (11).

All-to-all averaging control [18,21,22,23]: The gains Ci =
Di for all i ∈ V have been employed for the analysis of
centralized averaging-based PI controllers in [18,21,24]
and experimental implementations in [22,23].

Mean field control [10]: If all frequencies are weighted
equally, Ci = 1/N for all i ∈ V, we have a true mean-
field setup with all nodes treated equally.

Market mechanism [9]: The control scheme in (17)–(18)
corresponds to an auction mechanism, where the accu-
mulated frequency error in (17) serves as pricing signal.

Note that our controller is inspired by a market mecha-
nism, but in its final form (17)–(18) it does not involve
any real-time auctions, prizing, and bidding. Rather it
gathers frequency measurements, integrates a convex
combination thereof in (17), and locally allocates the

generation as in (18). However, extensions are conceiv-
able in the spirit of transactive control [42] that involve
markets and auction mechanisms at discrete and peri-
odic time instants interfaced with the continuous physics
through an optimal generation allocation as in (18).

4 Closed-loop stability analysis

4.1 Closed-loop equilibria

In this section, we analyse the equilibrium states of the
closed-loop system in (1), (17)–(18). For a compact pre-
sentation, we write the closed-loop system as

θ̇ = ω (19a)

Mω̇ = −Dω −∇U(θ) + P + J ′
−1

(λ) (19b)

k λ̇ = −c>ω , (19c)

where M := diag ((Mi)i∈V), Mi > 0 if i ∈ G, 0 oth-
erwise, D := diag ((Di)i∈V), Di > 0 if i ∈ G ∪ F , 0
otherwise, P := [P1, . . . , PN ]>; we have introduced the

notation J ′
−1

(·) := [J ′1
−1

(·), . . . , J ′N
−1

(·)]> : R → RN ,
c := [C1, . . . , CN ]>, and the network potential function
U : RN → R is defined as

U(θ) :=
∑
{i,j}∈E

Bi,j
(
1− cos(θi − θj)

)
. (20)

Note that U satisfies the overall balance equation
1>N∇U (θ) = 0 due to the symmetry of the power flow.

We remark that when expanding the compact formula-
tion, the equation in (19b) is still a set of coupled differ-
ential and algebraic equations that read as follows:

∀i ∈ G: Miθ̈i +Diθ̇i= − ∂U
∂θi

(θ) + Pi + J ′i
−1

(λ) (21a)

∀i ∈ F: Diθ̇i= − ∂U
∂θi

(θ) + Pi + J ′i
−1

(λ) (21b)

∀i ∈ P: 0= − ∂U
∂θi

(θ) + Pi + J ′i
−1

(λ). (21c)

The overall closed-loop system in (19) has the property
that if an equilibrium exists, then there exists a unique
scalar λ∗ ∈ R such that the power balance is satisfied in
steady state. We formalize such a property of the closed-
loop equilibria in the following statement.

Proposition 3 (Closed-loop equilibria) The equi-
libria (θ∗,ω∗, λ∗) of the closed-loop system (19) are
such that ω∗ = 0N , and λ∗ ∈ R is the unique solution to∑

i∈V
Pi + J ′i

−1
(λ∗) = 0. (22)

Moreover, each equilibrium state is an optimal solution
to the economic dispatch problem in (3). �

7



PROOF. In steady state, we have θ̇ = 0N , ω̇ = 0N ,
and λ̇ = 0. Hence, from (19a) in steady state we get
ω∗ = 0N . Then Equation (19b) reads in steady state as

−∇U(θ∗) + P + J ′
−1

(λ∗) = 0N . (23)

If we multiply this equation from the left by 1>N , since
1>N∇U(θ∗) = 0, then we obtain Equation (22). Since

the functions {J ′i
−1

(λ∗)}i∈V are strictly increasing (due

to strict convexity), so is the sum
∑
i∈V J

′
i
−1

(λ∗). Thus,
Equation (22) admits a unique solution λ∗. Finally, opti-

mality of the steady-state injections {J ′i
−1

(λ∗)}i∈V fol-
lows by construction of the control law in (18). �

4.2 Local asymptotic stability

We now perform a stability analysis of the equilibria of
the differential-algebraic closed-loop system in (19). For
simplicity we make use of following assumption.

Assumption 1 (Scaled cost functions) There ex-
ists a strictly convex, continuously differentiable func-
tion J : [u, u] → R, for some u ∈ R<0, u ∈ R>0, such

that: J ′(0) = 0; for all i ∈ V, Ji(·) = J
(

1
Ci
·
)

, where

{Ci}i∈V are as in (17) and positive; limu→u J(u) =
limu→u J(u) =∞. �

Assumption 1 restricts our frequency control problem to
systems with (i) each frequency being accounted for in
the controller, (ii) strictly convex cost functions that are
identical up to heterogeneous scaling factors, and (iii)
frequency measurements that are weighted according to
these factors. Equivalently, from the perspective of sec-
ondary control, it follows from Assumption 1 that, for

all i ∈ V, J ′i
−1

(·) = Ci J
′−1(·), which implies that

J ′
−1

(·) =

 J′1
−1(·)
...

J′N
−1(·)

 =

[
C1

...
CN

]
J ′
−1

(·) = c J ′
−1

(·).

(24)
Consequently, each unit in (19) applies the same control
input up to a scaling factor. This includes the usual linear
controllers but also more general strategies such as com-
monly encountered frequency response curves with lin-
ear regions, deadband (around the nominal frequency),
and saturation (at the capacity of the unit) [2]. These
curves are scaled for each unit similarly as primary con-
trol curves are scaled according to the bid capacity.

We now state the main technical result of the paper, that
is, the local asymptotic stability of the equilibria of the
differential-algebraic nonlinear closed-loop system (19),
asymptotic frequency regulation (Problem 1) and the
optimal economic power dispatch (Problem 2).

Theorem 1 (Local asymptotic stability and
steady-state optimality) If Assumption 1 holds, then
any equilibrium of the closed-loop system in (19) satis-
fying |θ∗i − θ∗j | < π/2 for all {i, j} ∈ E is locally asymp-
totically stable. The control inputs {ui(·)}i∈V defined in
(18) satisfy the optimal dispatch criterion in (6) for all
t ≥ 0, and asymptotically solve Problems 1, 2. �

The proof of Theorem 1 relies on the construction of
an Hamiltonian function which includes the Luré-type
integral function I : R→ R

I(λ) :=

∫ λ

λ0

J ′
−1

(ξ) dξ , (25)

for some λ0 ∈ R, characterized by the following proper-
ties.

Lemma 1 The function

λ 7→ I(λ)− I(λ∗)− I ′ (λ− λ∗)

from (27), (25) is strictly convex with unique minimizer
λ = λ∗, radially unbounded and has compact sublevel
sets. �

PROOF. First note that I is continuous, hence locally
bounded and with closed sublevel sets levI (·) := {x ∈
R | I(x) ≤ ·} [12, Theorem 1.6]. Then we note that J
being strictly convex is equivalent to J ′(·) being strictly
increasing [12, Theorem 12.17]. Moreover, it follows from
the inverse function theorem [43, Theorem 2.11] that

(J ′)
−1

(·) = I ′(·) is strictly increasing. In turn, it follows
that I is strictly convex [12, Theorem 12.17].

Since J is continuously differentiable, lim
u→u

J(u) =

lim
u→u

J(u) = ∞ implies that lim
u→u

J ′(u) = ∞ and

lim
u→u

J ′(u) = −∞, and in turn lim
y→∞

(J ′)
−1

(y) =

u > 0 and limy→−∞ (J ′)
−1

(y) = u < 0. Therefore,

limλ→∞ I(λ) =
∫∞
0

(J ′)
−1

(ξ) dξ = ∞. Symmetrically,
limλ→−∞ I(λ) = −∞. This implies that I is radially
unbounded, and thus I has compact sublevel sets.

Therefore, also the function λ 7→ I(λ) − I(λ∗) −
I ′(λ∗) (λ− λ∗) is strictly convex, with a unique mini-
mizer, radially unbounded, and compact sublevel sets.

We characterize its minimizer via the first order condi-
tion, that is, I ′(λ) − I ′(λ∗) = 0, which is equivalent to

J ′
−1

(λ) = J ′
−1

(λ∗). Since the solution must be unique,
we conclude that λ = λ∗ is the unique minimizer. �

PROOF. (Theorem 1) By employing the steady-
state formulation in (23) and due to the special struc-
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ture (24), we can write the closed-loop system in (19)
compactly as follows.

θ̇ = ω

Mω̇ = −Dω −
(
∇U(θ)−∇U(θ∗)

)
+
(
J ′
−1

(λ)− J ′−1
(λ∗)

)
k λ̇ = −c>ω (26)

The compact form in (26) reveals the dissipative nature
of the closed loop when using the Hamiltonian function

H (θ,ω, λ) := U(θ)− U(θ∗)−∇U(θ∗) (θ − θ∗) +

1

2
ω>Mω + k (I(λ)− I(λ∗)− I ′(λ∗) (λ− λ∗)) , (27)

where I is the Luré-type integral function in (25). In (27)
we used the Bregman distance of U(θ) and I(λ) to θ∗

and λ∗, respectively, to construct an incremental Hamil-
tonian function as in [11]. Next we show some properties
related to this integral function.

To proceed, we calculate the derivative of H (θ,ω, λ)
along trajectories of the closed-loop system in (26) as

Ḣ (θ,ω, λ)

=


∇U(θ)−∇U(θ∗)

Mω

k (I ′(λ)− I ′(λ∗))


> 

θ̇

ω̇

λ̇


= (∇U(θ)−∇U(θ∗))

>
ω + ω>Mω̇+

(I ′(λ)− I ′(λ∗)) k λ̇
= (∇U(θ)−∇U(θ∗))

>
ω + ω>·

· (−Dω −(∇U(θ)−∇U(θ∗)) + c I ′(λ)− c I ′(λ∗))
− (I ′(λ)− I ′(λ∗)) c>ω

= −ω>Dω ≤ 0 .

(28)
Thus, the Hamiltonian function H is non-increasing
along the closed-loop trajectories, and we are in a posi-
tion to apply the LaSalle invariance principle for DAE
systems [13, Theorem 2.5], [14, Theorem 3]. Namely,
we need to construct a compact set (i) in which the
vector field in (26) is twice continuously differentiable,
(ii) within which the Hamiltonian has a strict minimum
(modulo rotational symmetry) at the desired equilib-
rium, and (iii) in which the Jacobian of the algebraic
equations in (21c) with respect to the algebraic variable
θP := [(θi)i∈P ]> is nonsingular.

In the following, we show that the sublevel set

Ωρ :=
{

(ω,θ, λ) ∈ R2N+1
∣∣H(ω,θ, λ) ≤ ρ ,

|θi − θj | < π/2 ∀{i, j} ∈ E} (29)

satisfies all of the above conditions, for sufficiently small
ρ > 0. First, observe that the vector field in (26) is twice
continuously differentiable in Ωρ. Next, we show that
the dynamics in (26) are bounded in Ωρ. Note that the
Hessian of U(·) has {i, j} element

[
∇2U(θ)

]
i,j

equal to

∂2U(θ)

∂θj∂θi
=

{
−Bi,j cos (θi − θj) if j 6= i∑N
k=1,k 6=iBi,k cos (θi − θk) if j = i.

(30)

By assumption, |θ∗i − θ∗j | < π/2 for all {i, j} ∈ E . There-

fore,∇2U(θ∗) is a positive semidefinite and irreducible
(due to connectivity) Laplacian matrix with nullspace
aligned along 1N corresponding to the rotational sym-
metry, i.e., the dynamics in (26) are invariant under a
rigid rotation of all angles θ. Hence, within Ωρ in (29),
U(θ) is locally positive definite and its sublevel sets are
compact (modulo rotational symmetry). Thanks to this
fact and due to Lemma 1, the Hamiltonian function H
is locally positive definite with respect to an equilibrium
(θ∗,0N , λ∗) ∈ Ωρ, and its sublevel sets are compact
(modulo rotational symmetry).

The above reasoning together with the fact that Ḣ ≤ 0
guarantees boundedness of the frequencies ω, the inte-
gral variable λ, as well as the relative angles θi − θj for
all {i, j} ∈ E , that is, v>θ is bounded for any v ∈ RN
such that v ⊥ 1N . To show boundedness of the re-
maining coordinate, the sum of all angles 1>Nθ, we inte-
grate the controller equation in (26) as k(λ(t)−λ(0)) =
c>(θ(t) − θ(0)). Since λ(t) is bounded, it follows that
c>θ(t) = 1>NCθ(t) is bounded. Thus, both 1>NCθ and
v>θ are bounded for any v ⊥ 1N . It follows that 1>Nθ is
bounded, and the overall dynamics (19) are bounded.

Finally, within Ωρ, the Jacobian matrix associated with
the algebraic equation (21c) is a principal submatrix of
the irreducible Laplacian matrix in (30). Since submatri-
ces of irreducible Laplacians are nonsingular [44, Lemma
2.1], it follows from the implicit function theorem [45,
Theorem 9.28] that the algebraic equations (21c) are
solvable with respect to the algebraic variable θP .

Therefore, all the conditions of the LaSalle invariance
principle for DAE systems are met. It follows that
the closed-loop trajectories asymptotically converge to
largest invariant set in Ωρ satisfying Ḣ(ω,θ, λ) = 0.

It remains to be shown that these trajectories converge
to a desired equilibrium (θ∗,0N , λ∗). From (28) we con-

clude that Ḣ(ω,θ, λ) = 0 implies ωG∪F = 0|G|+|F|. The
latter implies for the dynamics in (26) that

(
∇U(θ)−∇U(θ∗)

)
= c

(
J ′
−1

(λ)− J ′−1(λ∗)
)
,

k λ̇ = −
∑

i∈P
Ci ωi , (31)
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that is, equations (21a), (21b) are in equilibrium, the
algebraic constraint (21c) is met, and the integral state
λ is possibly non-stationary so that the control input

u = J ′
−1

(λ) is possibly not at equilibrium J ′
−1

(λ∗).

By summing over the first set of equations in (31), we

find that 0 = 1>N c ·
(
J ′
−1

(λ)− J ′−1(λ∗)
)

= J ′
−1

(λ)−
J ′
−1

(λ∗), that is, the integral variable λ must be at the
equilibrium λ∗. Thus,

(
∇U(θ) − ∇U(θ∗)

)
= 0N , so

that the system (26) is at equilibrium (modulo symme-
try). Note that the system (26) being at an equilibrium
implies that all dynamic states (θG∪F ,ωG∪F , λ) are sta-
tionary, and so all algebraic states θP must be stationary
as well due to non-singularity of the algebraic equation.

It follows that any equilibrium of the closed loop (19) sat-
isfying |θ∗i −θ∗j | < π/2 for all {i, j} ∈ E is locally asymp-
totically stable. The condition in (6) on the identical
marginal costs follows directly by (18), as Ji (ui(t)) = λ
for all i ∈ V and all t ≥ 0, which implies that the control
inputs limt→∞{ui(t)}i∈V solve Problem 2. �

Note that the additional assumption |θ∗i − θ∗j | < π/2 in
Theorem 1 is common in power system analysis where it
is also referred to as a security or thermal limit constraint
and restricts the solution space to desirable power flows.

5 Numerical simulations

Fig. 3. IEEE New England test power system.

We evaluate the performance of different controllers on
the IEEE New England power grid shown in Figure 3.
The system has 10 generators and 39 buses, serving a
total load of about 6 GW. The generator inertia coef-
ficients {Mi}i and line susceptances {Bi,j}{i,j} are ob-
tained from the Power System Toolbox [46]. The droop
coefficients are chosen uniformly Di = 1 for all buses i.
The cost coefficients {Ci}i are randomly generated, uni-
formly in (0, 1). We set the integral gains of all controllers

to k = 60. We simulate the same scenario as in [17]: at
time t = 1 s, the demand changes by 33 MW at buses 4,
12 and 20, creating a power imbalance and causing the
frequencies to drop below the nominal 60 Hz.

We compare our gather-and-broadcast control strategy
(17)–(18) for quadratic cost functions Ji(λ) = λ2/Ci
and resulting linear controllers ui = Ci λ with the fully
decentralized linear integral control [17, Section III] and
with the linear DAI control (13) based on the same com-
munication graph as in [17, Section V]. Figure 4 shows
the frequencies and the marginal costs of five generators
for the three control schemes. Observe that all controllers
drive the system frequencies to the nominal value. As
expected, the decentralized integral controller does not
achieve asymptotically identical marginal costs; on the
other hand, both the DAI controller and the proposed
one asymptotically solve the optimal economic dispatch
problem. In addition, our gather-and-broadcast control
guarantees identical marginal costs even during tran-
sients. From the qualitative point of view, Figure 4 shows
that the closed-loop frequency response induced by our
controller is comparable to that of the DAI controller,
despite many fewer tuning gains and the communication
requirements being lower.

In the following, we illustrate the degrees of freedom
in the choice of the cost functions in the gather-and-
broadcast control. Consider the class of controllers ui =
Ci J

′−1(λ), for i ∈ V, according to the family of functions

J ′
−1

(λ) = tanh
(
k1 · λk2

)
(32)

that are smooth and strictly increasing nonlinear func-
tions encoding a saturation, a smoothly approximated
deadzone, and a linear behavior parameterized by k1 > 0
and an odd k2 > 0. The associated cost function J(·)
satisfies Assumption 1. Two indicative nonlinearities are
shown in Figure 5 and their effect to the closed-loop sys-
tem compared to that of the previous linear controller.
Observe that the nonlinear control curves (32) result in
a qualitatively comparable closed-loop performance as
the linear control strategies, while additionally enforc-
ing injection constraints and reducing the control effort
due to the deadzone.

A formal comparison between the considered control
laws in terms of specific closed-loop-performance met-
rics as in [47] requires additional theoretical analysis and
structured numerical experiments that we leave for fu-
ture work.

6 Conclusion and outlook

Summary : We have proposed a novel frequency con-
trol approach that achieves both local asymptotic stabil-
ity of the closed-loop equilibria of power systems, mod-
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Fig. 4. Frequency and marginal costs of generators 2, 4, 8, 10, for the different control schemes.
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Fig. 5. Frequency and control inputs under different nonlinear controllers (32) and a linear one.

eled as a nonlinear, differential-algebraic, dynamical sys-
tem, and economic-dispatch optimality. The control ar-
chitecture is based on a semi-decentralized gather-and-
broadcast protocol. Hence the communication require-
ments are significantly lower than those of distributed
architectures, and we avoid certain shortcomings of the
proposed decentralized or distributed architectures.

Open problem: Extensive numerical tests indicate that
closed-loop local asymptotic stability holds true even if
Assumption 1 on the cost functions is violated. Proving
or disproving such a claim is currently an open problem.
Likewise, it is of interest to remove the Standing As-
sumption 2 to allow for non-differentiable or non-strictly
convex cost functions that result in a wider range of ad-
missible control strategies.

Outlook : An important extension would be the inclu-
sion of forecasts and inter-temporal constraints into the
semi-decentralized frequency control architecture, with
the aim of designing predictive control actions, while
maintaining minimal communication requirements.
Note that market mechanisms inspired our gather-and-
broadcast strategy, but its final implementation is a
distributed feedback control based on frequency mea-
surements. An interesting avenue for future research
is to explicitly consider bidding schemes and market
mechanisms that are interfaced with the continuous-
time power system dynamics at periodic time instants.
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