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Abstract

Light electric vehicles are a viable way of reducing urban congestion and local pollutant emissions. Electric bicycles combine
electrical and human power, hence they represent an appealing class of hybrid vehicles in such a context. Differently from
other hybrid vehicles, the energy management of hybrid bicycles is little investigated in the literature. In this work, we study
the problem for a series electric-human-powered hybrid architecture, in which there is no direct mechanical link between the
pedals and the wheel. We tackle the problem using optimal control principles, aiming to minimize the perceived physical
exertion while guaranteeing a predetermined electric range. We build on an approximated solution of the problem and propose
a control system that copes with incomplete trip information. In a series of simulation and experimental tests, the proposed
strategy approaches the acausal optimum and significantly improves performance if compared to a baseline causal policy; the
discussion also encompasses the sensitivity of the results to the requested information.
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1 Introduction

Electrical Power Assisted Bicycles (EPACs) are meeting
growing success in every-day urban usage, due to their
convenience in congested areas, to the absence of noise
and pollutant emissions and to their efficient use of the
energy stored in the battery [2]. EPACs are a class of light
Hybrid Electrical Vehicles (HEVs), in that they combine
the electrical energy stored in the battery with human
power. While hybridization is extensively studied for pas-
senger vehicles and trucks [3–13], energy management of
Hybrid Electrical Bicycles (HEBs) has not received as
much attention in the literature.

The existing literature is mainly devoted to parallel
HEBs, in which the mechanical power at the wheel is sup-
plied by the cyclist and a motor. As in passive bicycles,
the cyclist’s cadence and the vehicle velocity are kine-
matically linked. Most products on the market let the
cyclist determine the level of assistance, without explic-
itly accounting for energy efficiency or human dynamics.
In [14,15] the optimal pacing to complete a track in mini-
mum time is computed using a model of muscular fatigue;
however, the approach is not for online implementation.

? Preliminary results related to this research appeared in [1].
The authors gratefully acknowledge the support of zeHus srl.

An online energy management approach for a Full HEB
is presented in [16–18]: the algorithm improves the rider’s
metabolic efficiency, reduces perceived muscular fatigue
and sustains the charge of the battery, which needs not
be recharged from the grid. The effects on the cyclist’s
fatigue have been experimentally investigated as well.

Series HEBs lack the mechanical connection between the
pedal and the wheel, as the power transmission is purely
electric. This in principle lets the cyclist always pedal
in optimal conditions, and provides more freedom to the
designer to influence the pedal feel and the cyclist’s ef-
fort [19,20]. Possible practical applications include a light
Electrical Vehicle (EV) with a human, emission-free range
extender, and a moving exercise bike. On another front,
the chainless concept opens several control problems,
such as ensuring a comfortable feeling at the pedals or
managing the dispatch of traction power between the bat-
tery and the cyclist.

In this paper, we address the real-time optimal energy
management of series HEBs and test it experimentally.
Our benchmark is SeNZA, the prototype depicted in
Fig. 1 and previously presented in [21, 22]. The goal is
here to minimize an index of perceived exertion and to
cope with a constraint on the final state of charge of the
battery, to avoid excessive depletion before a charging
station is available.
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(a) Visual interface for the cyclist. (b) HR Monitor.

(c) Instrumented prototype of the chainless bicycle SeNZA.

Fig. 1. Some details of the setup employed in the experiments.

With this goal in mind, a review of the physiologic litera-
ture suggests to use a cost function based on the cyclist’s
heart rate; this variable is also easily measurable, there-
fore model identification and real-time implementation
are simplified. In [1], the same setup was the base for an
acausal solution study, comparing two approaches based
on Pontryagin’s Minimum Principle. The first approach
was the so-called indirect technique to numerically solve
Optimal Control Problems (OCPs) [23]. The second ap-
proach was tailored for the series HEB, showing that an
approximated technique attains close-to-optimum perfor-
mance concentrating the knowledge of future cycling con-
ditions in a single tuning parameter. A similar result is
known in the literature on the Equivalent Consumption
Minimization Strategy (ECMS) [5] for the energy man-
agement of HEVs.

In this paper, we build on this approximated approach
and propose a real-time strategy, in which the tuning pa-
rameter is adapted online to the current cycling condi-
tions. The strategy can use a forecast of the elevation pro-
file, to improve performance and enhance the use of bat-
tery charge, especially on hilly routes. While the focus is
here on series HEBs, the approach could also be applied
to parallel HEBs. An intuitive, simple strategy is also
proposed as a baseline. In the proposed simulations, the
approach performs closely to the acausal optimum, and
outperforms the baseline. A sensitivity study investigates
the dependence of these results on the elevation profile.
Experimental results are in line with those from simula-
tions, and suggest that the approach can have practical
interest.

The paper is structured as follows. The architecture of
the chainless bicycle is introduced in Section 2, while the
model of the human-electric powertrain is detailed in Sec-
tion 3. After presenting a baseline strategy in Section 4,
the proposed energy management strategy is discussed in
Section 5. Section 6 presents the corresponding simula-
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Fig. 2. Conceptual scheme of the series HEB.

tion results, while Section 7 summarizes the experimental
results.

2 System architecture

The test vehicle, depicted in Fig. 1, is the prototype of
SeNZA, a series HEB developed by the mOve research
group at the Politecnico di Milano and zeHus srl. For a
detailed decription of the prototype the reader is referred
to [21,22]. In sum, the bicycle is equipped with:

• A 500 W brushless DC traction motor/generator con-
nected to the rear wheel.
• A 250 W brushless DC generator linked to the pedals.
• Two custom made Electronic Control Units (ECUs) to

control the generator and motor. The generator ECU
hosts the energy management system described in this
paper. Measurements of motors and battery currents,
vehicle velocity and pedal cadence are also available.
• A battery pack, with a Battery Management System

(BMS) that performs several safety checks and esti-
mates the state of charge SoC based on current and
voltage measurements using a Kalman filter [24].
• Two brake switches, to detect friction braking.
• A CAN bus for the communication between all the

ECUs and a data logger.
• A Mio ALPHA Heart Rate Monitor (see Fig. 1) to

measure the cyclist’s heart rate HR.

Fig. 2 depicts the functional representation of the power-
train. Differently from standard HEVs, the prime mover
is a cyclist and not a thermal machine. The energy man-
agement system splits the motor power Pm between bat-
tery power Pb and generated power Pg. The motor power
Pm depends on the wheel power Pw, while the generated
power Pg is a function of the output power of the cyclist
Pc. As the arrows in Fig. 2 show, power can only flow
from the cyclist to the generator, to either recharge the
battery or supply the motor. The motor works as a gen-
erator when the wheel power is negative and regenerative
braking is performed [21,22].

The control algorithm outputs the optimal amount of
electrical power Pg that the cyclist should generate. Dif-
ferently from other HEVs, Pg cannot be directly enforced,
since it ultimately depends on the cyclist’s power output.
Hence, a lower layer is introduced to control the human
generator in our experiments. The optimal value of Pg is
sent via CAN bus to a visual interface (see again Fig. 1)
that shows to the cyclist the difference between suggested
and measured Pg. Since Pg is influenced by both the pedal
speed ωc and the pedal torque Tc, a PID controller reg-
ulates ωc to a constant value that is comfortable for the
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cyclist. Simultaneously, the cyclist adjusts Tc according
to the information displayed on the interface, aiming to
keep the error between suggested and measured Pg close
to zero.

To enable a fair comparison between different tests, our
experimental setup reproduces a given speed profile. The
bicycle is mounted on a roller that replicates the road re-
sistance, and the speed profile is tracked by a speed reg-
ulator, also implemented on the generator ECU, that di-
rectly controls the torque of the traction motor. For the
sake of simplicity, we consider a flat road profile in the
experiments; the effect of the elevation profile on perfor-
mance is studied in simulation.

Finally, in our real-time framework we exploit:

• an estimate of the travel time T̂ ;

• an estimate of the distance to travel d̂(T̂ );

• an estimate of the road grade profile ϑ̂(d̂);

• a target for the final state of charge SoC o(T̂ ).

The first three pieces of information can be easily ob-
tained with the aid of a navigation system. Setting
SoC o(T̂ ), the user can limit the recharge time spent at
destination before being able to travel again.

3 System Modeling

The supervisor will be designed based on a model of the
human-electric hybrid powertrain, that is presented in
this section.

Vehicle dynamics The longitudinal dynamics of the
bike relate the longitudinal speed v and the road grade ϑ
with the torque Tw and speed ωw of the wheel

Mv̇(t) =
Tw(t)

Rw
− Fb(t)− Ff (t), ωw(t) =

v(t)

Rw
, (1)

where M is the mass of the bike and of the cyclist, Rw is
the wheel radius, Fb is the mechanical braking force. The
term Ff can be detailed as

Ff (t) = Mg sinϑ(t)+CrMg cosϑ(t)+
1

2
ρACxv(t)2, (2)

where g is the gravitational acceleration, ρ is the air den-
sity, A,Cr, Cx are respectively the reference area and the
rolling friction and drag coefficients of the bike. Consis-
tent with the above notation, we denote the mechanical
power at the wheel by Pw = Twωw.

Traction Motor Since the traction motor is directly
connected to the rear wheel, the motor power Pm is com-
puted as

Pm(t) = Pw(t)η− sign(Tw(t))
m , (3)

where the efficiency ηm(Tw, ωw) depends on the mechan-
ical operating point.
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Fig. 3. Two choices for HR weighting: l∗ in (5) and l in (6).

Power Link The power at the traction motor can
be supplied by the battery and the electric generator
Pm(t) = Pb(t) + Pg(t), where Pb is the battery power
and Pg is the electrical power generated by the cyclist.

Battery The battery power can be computed as
Pb(t) = vb(t)ib(t), where vb is the voltage across the bat-
tery pack and ib is the current (positive in discharge). The
equivalent circuit encompasses a voltage generator and a
resistor. The former outputs the open circuit voltage voc
that is measured when the battery is disconnected from
any load. The resistor Rb accounts for Joule losses due
to non-ideal electro-chemical conversion. The equation
for battery voltage is therefore vb(t) = voc(t) − Rbib(t),
where Rb is constant and voc is an affine function of the
battery state of charge SoC [6], voc(t) = AbSoC (t) +Bb.
The parameters Ab, Bb are found experimentally.

In the model, the state of charge of the battery SoC ∈
[0, 1] is defined [6] based on the battery capacity Qb

˙SoC (t) = − ib(t)
Qb

. (4)

Human physiology and cyclist modeling The
physiological effects of cycling have been fairly studied in
the literature, for instance in [25–29]. Most models, how-
ever, are not developed for control purposes and rely on
sophisticated equipment, experiments and tuning that
make them unsuitable for real-time applications.

Our focus is on the penalization of physical exertion,
which has been related e.g. to aerobic and anaerobic re-
serves [30, 31], to muscular fatigue [14, 15] and to heart
rate [32]. Since the heart rate (HR) is easy to measure,
real-time applications employing this variable are envis-
aged. In particular, in [32] it is shown that different ex-
ertion scales can be defined, each one having a different
functional dependence on the HR.

A possible choice is the piecewise-quadratic running cost

l∗(t) =

{
0, HR(t) <

∼
HR

ν(HR(t)− ∼
HR)2dt, HR(t) >

∼
HR

. (5)

Ideally, a very high HR is penalized more because it is
a reliable indicator of intense activity; below a threshold
∼
HR, no penalization is introduced, since small deviations
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may be due to other reasons than physical activity. How-
ever, a non-smooth running cost complicates the mathe-
matical analysis; thus, a smooth running cost is adopted

l(t) = ν
κ1

2(
κ2 + e−κ3HR(t)+κ4

)2 . (6)

A comparison between the two choices l∗ and l is shown
in Fig. 3.

For a control oriented model of the HR as a function of the
cyclist power Pc we refer to [33] and the references quoted
therein. In [33] a dynamic model is proposed and experi-
mentally validated for a cyclist riding a bicycle equipped
with a Continuously Variable Transmission (CVT). The
following model is found to be a reasonable compromise
between accuracy and complexity:

HR = HR0 +Gc(s)Pc, (7)

where HR0 is the base HR and Gc is the transfer function

Gc(s) =
µc

(1 + sT1)(1 + sT2)
. (8)

According to this model, deviations of the HR from its
base value are proportional to the output power in steady
state (with a factor µc); this is consistent with energetic
models and can be related to aerobic mechanisms. Tran-
sients – involving anaerobic mechanisms – are modeled
through two time constants T1, T2.

The mechanical power produced by the cyclist is con-
verted into electrical power by means of an electric ma-
chine with efficiency ηg, Pg(t) = Pc(t)ηg.

4 Baseline Strategy

Before introducing the proposed technique, a baseline
strategy is presented. The latter only employs a SoC feed-
back, basic route information and a simple regulation ar-
chitecture. It is used in the next sections as a real-world
benchmark for the proposed control approach. Clearly,
different baseline policies can be defined for other pur-
poses: due to lack of space, this task is left to future re-
search.

We consider as a baseline strategy a PI controller that
employs only the SoC measurement to track a reference
signal SoC o. While good tracking performance facilitates
the fulfillment of the SoC constraints, it also requires
higher levels of power generation to the cyclist. Tuning is
therefore a compromise between these two conflicting ob-
jectives. We found an initial tuning linearizing the battery
model (with input Pb and output SoC ) and setting the
closed loop bandwidth to about 0.01 rad/s. The final tun-
ing (proportional gain 3.2 × 104, integral gain 0.77) was
then obtained with the aid of simulations on the cycling
profiles analyzed in the remainder of the paper. The im-
plemented power split logic also considers the case when

PI

S
HR

SoCPb

PgPm

−
d

d̂(T̂ ) SoCo(T̂ )

SoCo

d

SoC

Fig. 4. Block diagram of the baseline strategy. d and d̂(T̂ )
indicate elapsed and estimated total distance, respectively.

the cyclist does not supply the requested power: the sur-
plus power can still be supplied by the battery, unless
the legislation constraints are exceeded (250 W in steady
state for this work). In the latter case, less power than
required is supplied to the motor.

The reference SoC o influences the cyclist’s workload dis-
tribution along the trip. If no information is available
(neither on the target SoC o(T̂ ) at destination, nor on the

distance to travel d̂(T̂ )), the reference SoC o is a ramp de-
creasing from the initial SoC to the minimum acceptable
SoC and a constant afterwards; the slope of the ramp is
decided at the design stage and clearly affects the over-
all performance. A more favorable situation is considered

here, i.e. the target SoC o(T̂ ) and the estimate d̂(T̂ ) are
known in advance. Hence, the reference SoC o is simply
generated as a ramp decreasing linearly with distance,
from the initial SoC to the target SoC o(T̂ ).

5 Real-time Control

In this section we propose a real-time control strategy.
We first summarize the acausal optimal control policy
described in [1] that we use in the remainder of the paper
(we refer to the original work for details); we then describe
the proposed real-time control framework in detail.

5.1 Optimal and approximated acausal policies

In [1], the energy management of the series HEB is for-
mulated as an OCP with time horizon T . The output
power of the generator is the control variable u = Pg,
the traction motor power is an exogenous input w = Pm,
and the state variables are (i) the SoC of the battery
x1 = SoC , (ii) the deviation of the HR with respect to
the base value x2 = HR − HR0 and (iii) its derivative

x3 = ḢR, as defined by (7), (8). The control constraints
u(x,w) < u(t) < u(x,w) depend on the current values
of the states and of the exogenous input, as well as on
static bounds on Pg and Pb (P g, P g, P b, P b). The SoC

is constrained to the set
[
SoC ,SoC

]
, and a soft terminal

constraint is set to bring the terminal SoC (T ) to a target
value SoC o(T ).

The main analytical tool in [1] is Pontryagin’s Minimum
Principle, which has also been used for HEV energy man-
agement (see e.g. the ECMS [5,7] and the least costly ap-
proach [34–37]). The Minimum Principle gives the ana-
lytical expressions of the Hamiltonian H, of the adjoint
states derivatives ṗ1, ṗ2, ṗ3 and of their boundary condi-
tions p1(T ), p2(T ), p3(T ). An optimal control policy must
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satisfy

π1(t) = arg min
u(t)∈U

{H(t)}, ∀ 0 ≤ t ≤ T, (9)

and the optimal trajectories are found solving numeri-
cally the resulting two point Boundary Value Problem
(BVP). Policy π1 will be used as the acausal benchmark
in the remainder of the paper.

A suboptimal policy π2 is also defined in [1], approximat-
ing (under some hypotheses detailed therein) the deriva-
tives of the adjoint states to zero ṗ1 = ṗ2 = ṗ3 ≈ 0. Pol-
icy π2 is still based on Hamiltonian minimization; how-
ever, the adjoint states are now constant and a simpler
technique can be used instead of solving the BVP. Global
performance is found to depend on the (constant) value
of the first adjoint state p1, which affects the final value
of the SoC . In the acausal setting considered in [1], the
optimal value of p1 can be found iteratively; the resulting
performance is close to the optimum defined by π1.

In the real-time setting considered here, future route in-
formation is incomplete and uncertain. Nonetheless, pol-
icy π2 is a good starting point for real-time control. The
main issue for real-time implementation is to exploit the
available information to optimally adapt p̂1. In the litera-
ture on energy management of HEVs and plug-in HEVs,
causal approaches like the Telemetry-based ECMS (T-
ECMS) [8] and the Adaptive ECMS (A-ECMS) [9] mit-
igate the uncertainty adapting the adjoint state in real-
time. In several literature contributions [10–13,35,38–40],
this adaptation uses past data and limited information
on the future driving schedule. Remarkably, in plug-in
HEVs and extended range EVs this enables the optimal
depletion of battery charge.

The causal implementation presented in this section is
depicted in Fig. 5. The power split is based on policy π2;
since the optimal tuning of p1 requires the full knowledge
of future driving conditions, an estimate p̂1 is adapted
according to a causal law, based on the error between the
current SoC and its reference value SoC o. The causal law,
presented in the next sub-section, is time invariant, but
can be tuned at the beginning of the trip. The following
sub-section shows how the reference SoC o is generated
at the beginning of the trip.
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Fig. 6. Fitting of the optimal closed loop power P ∗g in steady
state (black points) with the proposed relationship (10).

5.2 p̂1 causal adaptation law

A PI law based on SoC tracking error is used here to
adapt p̂1 to the actual driving conditions, in order to
guarantee that the SoC at the end of the trip is close
to the specified target. This law is derived based on a
simplified model of the system when policy π2 is applied.
The optimal closed loop power P ∗g for a static exogenous
input Pm is approximated with a relationship of the form

P ∗g = p̂1 (ϕ1Pm + ϕ2) = p̂1φ (Pm) , (10)

where ϕ1 and ϕ2 are fitting parameters. Fig. 6 compares
the fitted surface to the optimal values of P ∗g , correspond-
ing to constant values of Pm (on the x axis) as a function
of the tuning parameter p̂1 (on the y axis). Long-term
predictions of Pm based on route forecasts are inherently
quasi-static, because fast transients are mostly due to un-
predictable phenomena, such as traffic or human behav-
ior. Therefore, the approximated model (10) seems a rea-
sonable way to describe the system behavior under policy
π2 on slow time scales.

Taking the approximation Pb ≈ ibvoc one gets

p̂1 ≈
P ∗g

φ (Pm)
=
Pm − Pb
φ (Pm)

=
Pm

φ (Pm)
+
Qbvoc
φ (Pm)

˙SoC . (11)

After applying the Laplace transform, a PI law can be
tuned based on the approximated transfer function from
the adjoint state p̂1 to the battery SoC

SoC (s)

p̂1(s)
= − φ(P̂m)

sQbvoc
, (12)

where P̂m is a prediction of the average motor power in
the trip. A block diagram of the approximated system
considered for the tuning is depicted in Fig. 7. A PI con-
troller with proportional gain Kp and integral time Ti is
tuned to achieve a closed loop cutoff frequency ωc in the
SoC reference tracking. Assuming to choose Ti � 1/ωc,
in a neighborhood of the cutoff frequency the loop trans-
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Fig. 7. Block diagram of policy π2 with causal adaptation of
the adjoint state p1. Block S indicates the battery and the
human-electric generator.

fer function is approximated as

L(s) ≈ −φ(P̂m)Kp

sQbvoc
, (13)

which can be used to tune the proportional gain based on
the desired cutoff frequency

Kp = ωc
Qbvoc

φ(P̂m)
. (14)

In addition to the PI law, it is beneficial to add a constant
term to the estimate

p̂FF1 =
P̂m

φ(P̂m)
+
Qbvoc

φ(P̂m)

∆SoC

T̂
, (15)

which comes directly from (11) if the estimates of the mo-

tor power P̂m, of the trip duration T̂ and of the battery
discharge ∆SoC = SoC o(T̂ ) − SoC (0) are used. In Sec-
tion 2, we assumed to know the latter two quantities, as

well as an estimate of the overall distance d̂. The aver-
age speed for the trip can then be estimated, and using
the vehicle model in Section 3 the average P̂m is found.
The estimate of P̂m can be refined using the knowledge
of the elevation profile, if available. The resulting adap-
tation scheme for p̂1 is represented in Fig. 7.

5.3 SoC reference generation

The real-time strategy is now completed with a generator
of the reference SoC o. This can be done in a basic way
as in the baseline strategy, where the reference SoC o de-
creases linearly with the traveled distance, from the ini-
tial SoC to the target SoC o(T̂ ). In this case, the only
a-priori information needed is the overall trip distance.

If more information on the route is available, it can be
used to generate the reference SoC o in a more accurate
way. This is beneficial for instance when riding on hilly
routes, where the optimal policy can yield very long seg-
ments of battery depletion during uphills and of regenera-
tive braking during downhills; in such a case, the optimal
SoC trend significantly deviates from a simple decreasing
ramp, and a suboptimal policy can violate the SoC op-
erating constraints, as well as not meet the target SoC .

In the simulations presented in this work, the reference
generation procedure is run at the beginning of the trip
and can be summarized as follows:

Table 1
Model and control parameters

M bicycle and cyclist mass kg 100
Rw wheel radius m 0.35
Cr bicycle roll coefficient - 0.0036
Cx bicycle drag coefficient - 0.9
ρa air density kg/m3 1.18
A bicycle and cyclist reference area m2 0.4

Ab battery voc parameter V 5
Bb battery voc parameter V 37
Qb battery nominal capacity A h 10
Rb battery internal resistance Ω 0.25

SoC 0 battery initial state of charge % 75
SoC maximum battery state of charge % 90
SoC minimum battery state of charge % 20
P b maximum battery power W 250
P b minimum battery power W -1000

ηg generator efficiency - 0.8
HR0 cyclist base heart rate bpm 60
µc cyclist heart rate parameter bpm/W 0.3
T1 cyclist heart rate parameter s 22
T2 cyclist heart rate parameter s 55
P g maximum generated power W 1000
P g minimum generated power W 0

• A-priori information, i.e. target SoC o(T̂ ) and de-

sired/expected trip duration T̂ , is collected from the
user.

• Available information on the track, i.e. distance and
elevation profile, is collected from a navigation system
(here we use Google Maps API).

• Speed and slope profiles are estimated with a heuris-

tic, ensuring that the trip distance d̂ is covered in the
expected duration T̂ . A constant wheel power Pw is
pursued on flat and uphill segments; in other words, in
steady state the speed estimate is a function of slope
only. Speed transients are done at constant acceleration
and deceleration rates, for simplicity. Moreover, during
downhill segments the speed is saturated to 25 km/h
and the wheel power Pw is computed accordingly.

• The motor power is estimated simulating the models of
the vehicle body dynamics and of the traction motor,
presented in Section 3.

• The optimal power generation policy is estimated. The
average generated power Pg is assumed to equal the
average motor power Pm minus the constant value of
battery power Pb such that the target SoC is achieved
at the end of the trip. In this computation, Pb is satu-
rated to 250 W due to legislation limits; the average cy-
clist load is lowered to compensate the additional load
when battery is saturated.

• The reference SoC o signal is computed based on the
estimated profile of the battery power

SoC o(t) = SoC (0)− 1

Qbvoc

∫ t

0

Pb(τ)dτ. (16)

6 Simulation Results

In this section, we present a simulation study to compare
the performance of:

• policy π1, the acausal strategy presented in Subsec-
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Table 2
Parameters of the cycling tracks.

Track T1 T2 T3 T4
Length km 18.2 6.6 42 3.3

Max speed km/h 25 25 25 22
Average speed km/h 10 16 16 11

Duration min 109 25 150 15
Max uphill slope % 18 15 15 0

Min downhill slope % 14 11 11 0
Altitude variation m 210 70 70 0

tion 5.1 representing the optimum;
• policy πs, the causal strategy proposed in Section 5 and

summarized in Fig. 5;
• policy πb, the baseline strategy presented in Section 4.

In particular, we inspect the trajectories of the most sig-
nificant variables and compare the relative cost with re-
spect to policy πb

Φ(HR) , 100

∫ T
0
l(t)dt|πi∫ T

0
l(t)dt|πb

(17)

and the peak value of the HR

‖HR‖∞ , sup
0≤t≤T

HR(t) . (18)

Another index is defined as the error in battery internal
energy at the end of the trip, normalized to the motor
energy

ΓSoC = 100
vocQb∫ T

0
Pm(t)dt

(SoC (T )− SoC o(T )) . (19)

Hence, the deviation from the final SoC target is weighted
according to the total energy demanded during the trip.
The model described in Section 3 is implemented in
Simulink using the parameters summarized in Table 1.

Several real-world cycling profiles are compared: their
main parameters are summarized in Table 2. Track T1
shows significant distance, altitude variation and peaks
in the road slope; the intensity is partially mitigated by
the low average speed. Track T2 combines altitude vari-
ations, peak slopes and average speed; it represents a
brief but intense workout. Track T3 covers a long distance
at relatively high average speed, has significant altitude
variations, and represents a long workout of an amateur
cyclist.

6.1 Cycling Track T1

The three policies are compared in Fig. 8 for the case of
the cycling track T1; the terminal target SoC o(T ) is ini-
tially set to 55 %, which is an intermediate value between
charge sustenance (75 %) and maximum assistance to the
cyclist (37.2 %).

The comparisons in Fig. 8 show some deviations of the
proposed strategy πs from the benchmark policy π1. In
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Fig. 8. Simulation of policies π1, πs, πb on Track T1: speed and
elevation, battery power Pb, heart rate HR, state of charge
SoC .

the long uphill phase, the SoC with policy πs is slightly
higher than with policy π1; after reaching a maximum
around minute 60, the difference decreases and the two
policies attain the same final SoC . The deviation in the
SoC is reflected in a deviation in the HR: from minute 40
to minute 60, policy πs yields a (slightly) higher HR than
π1; conversely, after minute 60 policy πs increases the

Table 3
Real-time control: simulation results on Track T1.

SoCo(T ) (%) Φ(HR) (%) ‖HR‖∞ (bpm) ΓSoC (%)

37.2
π1 - 76 0
πs - 76 0
πb - 79 −2

55
π1 0 87 0
πs 0 89 −1
πb 100 113 −10

75
π1 0 99 0
πs 0 102 2
πb 100 125 −3
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battery usage, thus reducing the HR and the deviation of
the SoC from the optimal trend.

Table 3 summarizes the performance indexes, showing
that there is no significant difference in the cumulated

cost: both π1 and πs keep the HR below
∼
HR, aside from

two brief events; the peak HR is only 2 bpm higher with
policy πs. Conversely, the baseline policy πb leads to in-
creased cumulated cost and to a peak HR 26 bpm higher
than the optimum. This is also apparent from Fig. 8: the
HR suggests that the load on the cyclist is not equally dis-
tributed along the route, which brings the HR well over
∼
HR during the long uphill segments.

Table 3 summarizes also the performance for other SoC
scenarios, namely SoC o(T ) = 37.2 % and SoC o(T ) =
75 %. Although in both cases the baseline policy πb
achieves a final SoC closer to the target (the index ΓSoC

is smaller than in the other case), the performance in
terms of HR is below that of policy πs. This is especially
true in the charge sustaining case: the same comments
as before apply and the only relevant difference is that
– due to the higher load on the cyclist – the peak HR is

higher than
∼
HR also for policy πs.

6.2 Cycling Track T2

The recorded speed and elevation profiles for this route
are shown in Fig. 9. For this scenario, the feasible target
set is found to be 67 % ≤ SoC o(T ) ≤ 75 %; the intermedi-
ate case of SoC o(T ) = 71 % is analyzed first. Both speed
and elevation profiles are quite harsh and their combi-
nation make the cycle demanding, as the HR profiles in
Fig. 9 suggest. During the initial descent – until minute
10 approximately – the optimal policy π1 maintains the
SoC to the initial level, with little deviations due to local
changes of slope and speed. In a specular way, the cyclist
HR settles at about 80 bpm after an initial transient and
again with some deviations due to local events. The up-
hill segment – until minute 17 – causes the steep drop of
the SoC , which falls down to the final level. Notice that
in this phase the battery is operating almost constantly
at maximum power, meaning that the discharge rate and
the assistance to the cyclist are maximum. This is the
reason why the HR is so irregular during this segment,
with a peak of about 170 bpm: the cyclist has to supply
all the excess power required to follow the cycling profile.
The final segment has a quite steep descent and a brief
uphill in the very last portion of the route. It is observed

Table 4
Real-time control: simulation results on Track T2.

SoCo(T ) (%) Φ(HR) (%) ‖HR‖∞ (bpm) ΓSoC (%)

67
π1 99 166 0
πs 100 167 0
πb 100 167 −1

71
π1 19 167 0
πs 23 174 −3
πb 100 238 −7

75
π1 22 168 0
πs 23 182 6
πb 100 248 −1
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Fig. 9. Simulation of policies π1, πs, πb on Track T2: speed and
elevation, battery power Pb, heart rate HR, state of charge
SoC .

that during the descent the battery is almost constantly
recuperating energy, letting the SoC slightly increase and
the HR decrease to a level of about 80 bpm. The very last
ascent still requires some effort to the cyclist and quickly
depletes the battery SoC down to the target value.

Performance is summarized in Table 4. Notice that in this
case it is not possible to keep the HR below the threshold
∼
HR; the increase in the cumulated cost with policy πs is
of 4 % with respect to the optimum, while the peak HR
is 7 bpm higher.

With the baseline strategy πb, the profile of battery power
Pb is quite similar to the other strategies in the first seg-
ment (until minute 12); however, the level of assistance to
the cyclist is slightly higher, as shown by the lower HR.
As a consequence, the SoC decreases more rapidly than
with other strategies. In the following segment, during
the long uphill, policy πb does not saturate the battery
to avoid excessive depletion, therefore the load on the cy-
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Table 5
Real-time control with unknown elevation profile: simulation
results on Track T3.

SoCo(T ) (%) Φ(HR) (%) ‖HR‖∞ (bpm) ΓSoC (%)

35
π1 0 96 0
πs 29 116 0
πb 100 152 1
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Fig. 10. Policies π1, πs, πb on Track T3: heart rate HR and
state of charge SoC when the elevation profile is unknown.

clist is very high. Notice that the peak value reached by
the HR (238 bpm) is unrealistic: in a real experiment, the
cyclist would cut power generation and a less demanding
speed profile would be realized.

Similar comments apply to the charge sustaining scenario
(SoC o(T ) = 75 %). By contrast, in the scenario of maxi-
mum assistance to the cyclist (SoC o(T ) = 67 %) the per-
formance of the three approaches is close.

This can be explained as follows: when the motor power
Pm is not negative – i.e. there is regenerative braking –
it is very often higher than the maximum battery power.
As a consequence, the optimal strategy is, for most of
the time, either to store braking energy or to deplete the
battery at full power. In both cases, this is naturally done
also by policy πb, hence the close-to-optimum results.
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Fig. 11. Speed and elevation profiles on Track T3.

Table 6
Real-time control with known elevation profile: simulation
results on Track T3.

SoCo(T ) (%) Φ(HR) (%) ‖HR‖∞ (bpm) ΓSoC (%)

35
π1 1 96 0
πs 2 96 0
πb 100 115 0
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Fig. 12. Policies π1, πs, πb on Track T3: heart rate HR and
state of charge SoC when the elevation profile is known in
advance.

6.3 Sensitivity study on Cycling Track T3

In this sub-section, we investigate to what extent the per-
formance of policy πs is affected by the knowledge of the
elevation profile. Policy πb actually does not use that in-
formation and generates the reference SoC o based on the
trip length only.

To understand the effect of these different approaches, the
two policies are here fed with the same reference SoC o:
it is generated as explained in Section 5, first assuming
that the track is flat, then considering also the elevation
profile. Fig. 11 shows the speed and elevation profiles on
track T3, which consists of 5 repetitions of a downhill-
uphill track followed by a brief, almost flat segment.

The results obtained when the elevation profile is not
known in advance are shown in Fig. 10 and in Table 5.
Having the same SoC reference, policies πs and πb yield
quite close SoC trends. Both strategies fail to keep an
almost constant HR as policy π1 does, because the sub-
optimal reference SoC o does not consider the presence
of long uphills and downhills. The cyclist load and HR
are apparently influenced by the road profile; nonethe-
less, despite the reference SoC o is the same, the two poli-
cies have different power split strategies, and policy πs
achieves a smoother HR trajectory, lower cumulated cost
(71 % less) and lower peak HR (36 bpm less).

The case when the elevation is known in advance and is
used in the generation of the reference SoC o is depicted
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in Fig. 12 and in Table 6. The SoC trends are closer to
the optimal one than in the previous case. As for the HR,
policy πs shows smaller and less frequent variations than
the baseline policy πb. This leads to a big difference in the
cumulated cost (98 % less) and to a reduction of 19 bpm
of the peak HR.

7 Experimental Results

The experimental setup is described in Section 2. Fig. 13
depicts the speed profile tracked during the experiments:
it is a real speed profile recorded on track T4, an urban
path, for a duration of about 15 min and a distance of
3.3 km, as summarized in Table 2. Tracking this speed
profile using only battery power, i.e. letting Pg = 0, would
deplete about 7.5 % of the SoC . The experiments are per-
formed setting a target SoC o(T ) = SoC (0) − 4.5 % to
reach at destination; in terms of battery charge usage,
this represents an intermediate scenario between charge
sustenance and maximum charge depletion, similar to
those studied in simulation. We present here the results
obtained in six experiments, all performed by one sub-
ject on the same bike equipped either with the proposed
policy πs (in three tests) or with the baseline policy πb
(in three other tests). Results from different tests under
the same policy are shown in Fig. 13 with different lines
of the same color and style.

The behavior of policy πs in the experiments is affected by
the parameters of the cyclist model. For the experiments,
policy πs is parametrized with the same values used so far,
that were identified in [33] for a different subject. While
this choice likely introduces uncertainty in the model, it
also makes the experiments closer to a real application,
because the identification procedure described in [33] is
quite cumbersome and may not be repeated for every
single user.

The results depicted in Fig. 13 and summarized in Table 7
suggest some observations. The trajectories of the battery
power Pb, of the heart rate HR and of the state of charge
SoC are pretty similar in the three different experiments,
both with policy πs and with policy πb. Clearly the HR
is subject to greater variations, that can be due also to
other reasons than physical activity. When using policy
πs, variations in the HR imply variations of the reference
Pg that is requested to the cyclist. Moreover, both with
policy πs and with policy πb, it is not guaranteed that
the cyclist actually produces as much Pg as requested. In
closed loop, this mismatch justifies the small deviations in
the trajectories of the SoC and Pb under the same policy.

Table 7
Real-time control: experimental results on Track T4.

SoCo(T ) (%) Φ(HR) (%) ‖HR‖∞ (bpm) ΓSoC (%)

70.5

πs

29 107 −5
31 106 −2
31 109 −3

πb

59 130 −4
62 137 −4

100 136 −3

-200 0 200 400 600 800 1000 1200
0

10

20

30

v
(k

m
/h

)

-200 0 200 400 600 800 1000 1200
-100

0

100

200

300

P
b
(W

)

7Pb

:b

:s

-200 0 200 400 600 800 1000 1200
50

100

150

H
R

(b
p
m

)

gHR
:b

:s

-200 0 200 400 600 800 1000 1200
time (s)

70

72

74

76

S
oC

(%
)

:b

:s

Fig. 13. Experimental validation of policies πs and πb on Track
T4: speed profile, battery power Pb, heart rate HR, state of
charge SoC . Different lines of the same color and style refer to
different tests performed using the same policy. The shaded
areas highlight the segment when the experiment is ongoing.

In spite of small deviations, the experiments exhibit a be-
havior of the HR similar to that observed in simulation.
In particular, policy πs manages to keep the HR approx-
imately constant by properly adjusting the requested Pg.
Policy πb instead causes large variations of the HR, that
in two segments drops below the value obtained with pol-
icy πs, but for most of the time is significantly higher.
These apparent differences in the HR trajectories are re-
flected in less apparent differences in the Pb and SoC tra-
jectories. Nonetheless, the target SoC o is met by both
policies in all the experiments, as can be inferred both
from Fig. 13 and from the last column in Table 7.

As for the global performance, summarized in Table 7,
the proposed policy πs outperforms the baseline policy
πb, both in terms of cumulated cost and in terms of peak
HR. A possible direction for future research is the adap-
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tation to human variations; notice, however, that human
model uncertainty is not only due to differences between
subjects, but also to disregarded physiological and psy-
chological factors.

Table 7 shows that the indexes of policy πb are subject to
a greater variability than those of policy πs. Fig. 14, in
which the reference and measured Pg are compared, pro-
vides some insight into this. It can be observed that the
reference is well tracked, apart from some fluctuations at
relatively high frequency (that are due to the non-uniform
supply of torque during a pedal revolution). However, in
some segments policy πb requires high power generation
and the cyclist fails to track it. While the excess power is
supplied by the battery, the global performance summa-
rized in Table 7 appears to be affected by the behavior
during these segments, that changes quite unpredictably
from test to test. This is unavoidable, regardless of the
employed strategy.

8 Conclusion

This paper deals with real-time energy management of a
series HEB. The main goals of the supervisor are to mini-
mize the exertion perceived by the cyclist and to guaran-
tee that the battery SoC at the end of a trip approaches
a target defined by the cyclist. An approximated solution
to the acausal OCP is used to develop a real-time algo-
rithm. The use of route information is found to be quite
important to ensure that the battery SoC at the end of
the trip is close to the target set by the user; this in turn
affects the global performance in terms of perceived exer-
tion. Results from simulations and experiments are dis-
cussed to evaluate the performance of the proposed real-
time framework, also in the presence of uncertain route
information. Possible future work includes the extension
of the approach to parallel HEBs.
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