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Abstract

In this paper, we consider a stabilization problem of an uncertain system in a networked control setting. Due to the network, the
measurements are quantized to finite-bit signals and may be randomly lost in the communication. We study uncertain autoregressive
systems whose state and input parameters vary within given intervals. We derive conditions for making the plant output to be mean square
stable, characterizing limitations on data rate, packet loss probabilities, and magnitudes of uncertainty. It is shown that a specific class of
nonuniform quantizers can achieve stability with a lower data rate compared with the common uniform one.

1 Introduction

This paper studies stabilization of a linear system in which
the plant outputs are transmitted to the controller through a
bandwidth limited lossy channel and the exact plant model
is unavailable. For control over finite data rate channels, it is
well known [1,2] that there exists a tight bound on the data
rate for stabilization of linear systems, which is expressed
simply by the product of the unstable poles of the plant.
Such data rate limitations have been developed under a va-
riety of networked control problems. For general nonlinear
systems, it has been pointed out that the limitation is related
to topological entropy [3–5]. For an overview on the topic,
we refer to [6]; for more recent works, see, e.g., [7, 8]. On
the other hand, control over packet dropping channels has
also been studied actively (see, e.g., [9, 10]). Interestingly,
by modeling the behavior of the losses as i.i.d. random pro-
cesses, the maximum packet loss probability for achieving
stabilization can also be characterized solely by the product
of the unstable poles of the plant. Recent works have ex-
tended such results to the case of Markovian packet losses.
In particular, [11] and [12] have derived the minimum data
rates for the static and time-varying rate cases, respectively.
We note that the works mentioned above assume perfect
knowledge of the plant models.

⋆ This work was supported in part by the JST-CREST Program,
by JSPS Postdoctoral Fellowship for Research Abroad, and by
JSPS KAKENHI Grant Number JP16H07234.
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Despite the active research in the area of networked con-
trol, uncertainties in plant models have received limited at-
tention and are thus the focus of this work. In general, it is
difficult to deal with the combination of uncertainties in the
systems and incompleteness in the communication. In par-
ticular, in data rate limited control problems, the state evolu-
tion must be estimated through quantized information, but in
the uncertain case, this task becomes complicated and often
conservative. In [13, 14], linear time-invariant systems with
norm bounded uncertainties are considered, and controllers
to robustly stabilize the systems are proposed. In [15], scalar
nonlinear systems with stochastic uncertainties and distur-
bances are studied, and a data rate bound sufficient for the
moment stability is derived. Moreover, related stabilization
problems are studied from the viewpoints of adaptive con-
trol [16] and switching control [17] as well. In these results,
however, only sufficient conditions on data rates have been
obtained, and they are not concerned with characterizing
the minimum. On the other hand, observation problems of
nonlinear time-varying uncertain systems are studied in [4].
Both required and sufficient data rates for observability are
characterized by using the notion of topological entropy.

More specifically, we consider the stabilization of a para-
metrically uncertain plant over a Markovian lossy channel.
The plant is represented as an autoregressive system whose
parameters vary within given intervals. We develop bounds
on the data rate, the packet loss probability, and plant un-
certainty for stabilizability. The results become tight for the
scalar plants case. In the course of our analysis, we demon-
strate that the data rate can be minimized by employing a
class of nonuniform quantizers, which is constructed in an
explicit form. These quantizers have an interesting property

http://arxiv.org/abs/1506.03518v4


that the cells are coarser around the origin and finer further
away from the origin; such a structure is in contrast to the
well-known logarithmic quantizer [18].

For the case of uncertain state parameters, the authors have
studied the minimum data rate under model uncertainties and
packet losses for the i.i.d. [19] and the Markovian [20] lossy
channels. It is also noted that, in [21], for a similar class of
uncertain plants, stabilization techniques have been devel-
oped based on the logarithmic quantizers [18]. This paper
aims at further studying the more realistic situation where
uncertainty is also present in the actuator of the plant. That
is, the parameter of the control input may also be uncertain.

The main difficulty in the current setup can be described
as follows. Evaluation of the estimation error and its evo-
lution is the key to derive the minimum data rate. Due to
plant instability, the estimation error grows over time, but it
can be reduced based on state observations. In our previous
work [20], we have assumed uncertainty only in the state
coefficients. In the presence of uncertainty in the actuator,
the results there are not applicable. In particular, when the
control input is large, the estimation error will grow further,
making the analysis more involved. We show that uncer-
tainty in the actuator side introduces additional nonunifor-
mity in the quantizer structure when compared to our pre-
vious results.

This paper is organized as follows. In the next section, we
formulate the stabilization problem for the networked con-
trol system. In Section 3, we consider the fundamental case
for the scalar plant systems. The general order plants case
is considered and a sufficient condition for the stability is
shown in Section 4. In [20], a necessary condition for the
general order plants case is also provided. However, in this
paper, we do not include the corresponding result since in
general it contains some conservativeness and its signifi-
cance may be limited. Finally, concluding remarks are given
in Section 5. The material of this paper was presented in [22]
in a preliminary form, but this version contains updated re-
sults with their full proofs.

Notations: Z+ is the set of nonnegative integers andN stands
for the set of natural numbers. log2(·) is simply written as
log(·). For a given interval Y on R, denote its infimum,

supremum, and midpoint by Y, Y, and c(Y) := (Y +Y)/2,

respectively; its width is given by µ(Y) := Y − Y.

2 Problem setup

We consider the networked system depicted in Fig. 1, where
the plant is connected with the controller by the communi-
cation channel. At time k ∈ Z+, the encoder observes the
plant output yk ∈ R and quantizes it to a discrete value.
The quantized signal sk ∈ ΣN is transmitted to the decoder
through the channel. Here, the set ΣN represents all possible
outputs of the encoder and contains N symbols. Thus, the
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Markovian 

lossy 

channel 

Fig. 1. Networked control system

data rate R of the channel is given as R := log N; thus, the
term refers to the bit rate of the communication, which is
consistent with the literature [11, 12]. The decoder receives
the symbol and decodes it into the interval Yk ⊂ R, which
is an estimate of yk. The transmitted signal sk may be lost in
the channel. The result of the communication is notified to
the encoder by the acknowledgment signals before the next
communication starts. Finally, using the past and current es-
timates, the controller provides the control input uk ∈ R.

The plant is the following autoregressive system with un-
certain parameters:

yk+1=a1,kyk+a2,kyk−1+· · ·+an,kyk−n+1 + bkuk. (1)

The parameters are bounded and may be time varying as

ai,k ∈ Ai :=
[
a∗i − ǫi, a

∗
i + ǫi

]
, i = 1, 2, . . . , n,

bk ∈ B :=
[
b∗ − δ, b∗ + δ

]
, (2)

where ǫi ≥ 0 and δ ≥ 0. The initial values yk, k = −n +
1, . . . ,−1, 0, are in the known intervals as yk ∈ Yk, where
0 < µ(Yk) < ∞. To ensure controllability at all times, we
introduce the following assumption: For every time k ∈ Z+,
the input parameter bk is nonzero. That is,

|b∗| − δ > 0. (3)

In the communication channel, transmitted signals may be
randomly lost. Denote the channel state at time k by the
Markovian random variable γk ∈ {0, 1}. This state represents
whether the packet is received (γk = 1) or lost (γk = 0).
The loss probability at time k depends on the previous state
γk−1 and is denoted by the failure probability p and the
recovery probability q as follows: Prob(γk = 0 | γk−1 = 0) =
1 − q, Prob(γk = 1 | γk−1 = 0) = q, Prob(γk = 0 | γk−1 = 1) =
p, Prob(γk = 1 | γk−1 = 1) = 1 − p. To make the process
{γk}k ergodic, assume p, q ∈ (0, 1). Moreover, without loss
of generality, assume that at the initial time k = 0 the packet
is successfully transmitted, i.e., γ0 = 1.

The communicated signal sk ∈ ΣN := {1, 2, . . . ,N} is the
quantized value of the plant output yk and is generated by
the encoder as sk = φN(yk/σk). Here, the quantizer φN(·) is
a time-invariant map from [−1/2, 1/2] to ΣN with a scaling
parameter σk > 0. The quantizer divides its input range
[−1/2, 1/2] into N cells and its output is the index of the cell
into which the input falls. We assume the boundaries of the
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quantization cells to be symmetric about the origin. When
N is even, we denote the boundary points of nonnegative
quantization cells as hl, l = 0, 1, . . . , ⌈N/2⌉, where

h0 = 0, h⌈N/2⌉ =
1

2
, hl < hl+1. (4)

If N is odd, the nonnegative boundaries can be written by hl,
l = 1, 2, . . . , ⌈N/2⌉, where 0 < h1 < h2 < · · · < h⌈N/2⌉ = 1/2.
For notational simplicity, we add h0 = 0 and use the same

notation {hl}
⌈N/2⌉

l=0
for this case also.

Based on the channel output γk sk, the decoder determines
the intervalYk ⊂ R, which is the estimation set of yk. When
the packet arrives successfully, i.e., γk = 1, Yk is the quan-
tization cell which yk falls in. Otherwise, Yk is taken as the
entire input range [−σk/2, σk/2] of the quantizer.

The initial value of the scaling parameter σk and its update
law are shared between the encoder and the decoder. The
parameter σk is updated as follows. At time k, the encoder
and the decoder predict the next plant output yk+1 based on
the past estimates Yk−i+1, i = 1, 2, . . . , n. As time progresses
from k to k+1, the past outputs yk−i+1 ∈ Yk−i+1 are multiplied
by ai,k ∈ Ai. Let Y−

k+1
⊂ R be the set of predicted values for

yk+1 in the form of
∑n

i=1 ai,kyk−i+1 and is given by

Y−k+1 := {a1y′k + · · · + any′k−n+1 : a1 ∈ A1, . . . , an ∈ An,

y′k ∈ Yk, . . . , y
′
k−n+1 ∈ Yk−n+1}. (5)

Moreover, since the applied input is bkuk, the set {y− + buk :
y− ∈ Y−

k+1
, b ∈ B} is large enough to include yk+1. Note that

the above prediction set in (5) is computable on both sides
of the channel by the acknowledgment signal regarding γk−1

from the decoder to the encoder. Finally, this set {y− + buk :
y− ∈ Y−

k+1
, b ∈ B} must be covered by the quantizer to avoid

saturation. Hence, the scaling parameter σk is a function of
Y−

k+1
and must be large enough that

σk+1 ≥ 2 sup
y−∈Y−

k+1
, b∈B

|y− + buk|. (6)

The controller provides the control input uk based on the
past and current estimates Yk−n+1, . . . ,Yk as

uk =

n∑

i=1

fi,k (Yk−i+1) , (7)

where fi,k(·) are maps from an interval in R to a real number,
which determine the input based on the estimates.

This paper investigates stabilization of the uncertain net-
worked system in Fig. 1 by designing the encoder, the de-
coder, and the controller under the constraints (4)–(7).

Definition 1. The feedback system depicted in Fig. 1 is
stabilizable if there exists a pair of an encoder φN with

the scaling parameter σk satisfying (6) and a controller (7)
such that the worst case output yk over all deterministic
perturbations is mean square stable (MSS): E[supy∈Yk

|y|2]→

0 as k → ∞. Here, Yk is the decoder output at time k and
the expectation is taken with respect to the packet losses γ0,
. . . , γk.

Remark 2. We note that the results and the proofs in this
paper have been polished compared with our previous paper
[20] thanks to the help of the anonymous reviewers. In [20],
the definition of stabilizability and the proof of the necessary
condition for the scalar plants case should be updated. This
however does not change the bounds on the data rate and
the loss probabilities shown in the theorem.

Remark 3. To simplify the analysis in dealing with un-
certainties, we have introduced some structures in the en-
coder and the controller. While they are closely related to
those employed in, e.g., [13, 15, 23] for obtaining sufficient
conditions, there is some conservatism. In Definition 1, the
supremum is taken over Yk, which contains all possible yk

over {ai, j}
k
j=0

, ai, j ∈ Ai, i = 1, 2, . . . , n, {b j}
k
j=0

, b j ∈ B, and

y j ∈ Y j, j = −n + 1,−n + 2, . . . , 0. If we do not limit the
controller class to (7), there may exist one which can com-
pute an estimation set tighter than Yk, though it is difficult
to describe the tightest estimation set analytically. Further-
more, for Definition 1, it is important that the quantizer does
not saturate. This is guaranteed by (6), and there is always
a quantization cell containing yk.

3 Scalar plants case

We first analyze the simple setup with the scalar plant (a
first-order autoregressive process):

yk+1 = akyk + bkuk,

ak ∈ A :=
[
a∗−ǫ, a∗+ǫ

]
, bk ∈ B =

[
b∗−δ, b∗+δ

]
, (8)

where ǫ ≥ 0 and δ ≥ 0. We assume that its dynamics is
always unstable in the sense that the parameter ak has mag-
nitude greater than 1 at all times, i.e.,

|a∗| − ǫ > 1. (9)

To express the main result of this section, let

ra :=
|a∗| − ǫ

|a∗| + ǫ
, rb :=

|b∗| − δ

|b∗| + δ
, ∆ := ǫ + δ

|a∗|

|b∗|
,

ν :=

√
1 +

p
{
(|a∗| + ǫ)2 − 1

}

1 − (1 − q)(|a∗| + ǫ)2
. (10)

Here, ra, rb, and ∆ reflect the magnitudes of the uncertainties
and ν represents the effect of packet losses in the required
data rate as we will see in (11). We show later, in the proof
of the next theorem, that the radicand of ν is positive when
the feedback system is stabilizable. If ak is a constant, i.e.,
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ak = a for all time k, it has been shown in [11] that mean-
square stability implies that q > 1 − 1/a2. Taking account
of the case that a = |a∗| + ǫ, we have ν2 > 0. The following
theorem shows a condition on the data rate R = log N, the
loss probabilities p, q, and the magnitude of uncertainty ∆
for stabilizability.

Theorem 4. Consider the feedback system in Fig. 1 with
the scalar plant in (8). If the system is stabilizable, then the
following inequalities hold:

R > Rnec :=


log

log{(1−∆ν)2}

log(rarb)
if ǫ >0 or δ>0,

log |a∗| + log ν if ǫ = δ = 0,
(11)

q > qnec :=1−
1

(|a∗| + ǫ)2
+∆

2
p2

{
1 − (|a∗| + ǫ)−2

}

1 − ∆2
, (12)

0 ≤ ∆ < 1. (13)

Furthermore, if these inequalities are satisfied with an even
N, it is possible to construct a stabilizing controller.

We note that when (12) and (13) hold and ǫ > 0 or δ >
0, we have that 0 < 1 − ∆ν < 1 and hence Rnec is well
defined; see the last part of the proof of Theorem 4 for
details. This theorem provides limitations for stabilization
on the data rate, the packet loss probabilities, and the plant
uncertainty. The required data rate Rnec and the recovery
probability qnec are monotonically increasing with respect to
the uncertainty bounds ǫ and δ. This means that more plant
uncertainty requires better communication with higher data
rate and recovery probability.

We see that the sum of the uncertainties ∆ = ǫ + δ|a∗|/|b∗|
appears in the limitations. It is interesting that there is no
explicit limitation on ǫ or δ, but the sum ∆ of these uncer-
tainties must be smaller than 1. This indicates some trade-
off in the tolerable uncertainties for ak and bk. In particular,
the product δ|a∗| implies that for more unstable plants, the
bound δ on the input parameter bk has more effect on the
stability conditions in the theorem. We remark that when
the input parameter is known and is constant as bk ≡ b∗,
i.e., δ = 0, then the limitations Rnec and qnec coincide with
those shown in [20], where uncertainty is present only in
ak. Moreover, if ak is also known, i.e., ǫ = δ = 0, then the
limitations are equal to those in [11], where the exact plant
model is assumed to be available.

We provide an example to illustrate the limitations in The-
orem 4. Consider a plant with a∗ = 2.0 and b∗ = 1.0 and a
channel with the loss probabilities p = 0.05 and q = 0.90.
Fig. 2 shows the bound Rnec on the data rate versus the un-
certainties ǫ in ak and δ in bk. When the sum of the uncer-
tainties ∆ is large as (12) is not satisfied, 1 − ∆ν in (11) is
nonpositive and hence the required data rate for stabilizabil-
ity becomes infinite.

Remark 5. The works of [13] and [15] have shown suffi-
cient conditions for stabilization of uncertain plants via fi-
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1
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Fig. 2. The data rate limitation Rnec versus the magnitudes of the
uncertainties ǫ and δ (a∗ = 2.0, b∗ = 1.0, p = 0.05, and q = 0.90)

nite data rate and lossless channels. We remark that those
conditions contain conservatism even for the scalar plants
case. Consider the scalar plant (8) when the input coefficient
is known (δ = 0) and the channel is lossless. For such sys-
tems, the sufficient bound on the data rate Rsuf in [13] and
the one R′

suf
from [15], respectively, become

Rsuf := log
|a∗| − ǫ(|a∗| + ǫ)

1 − ǫ(2|a∗| + 2ǫ + 1)
and R′suf := log

|a∗|

1 − ǫ
.

It can be verified that our result is tighter than these bounds
as Rnec < Rsuf and Rnec < R′

suf
. For general order plants, how-

ever, it is difficult to compare these results since the types of
uncertainties are different: In [13], unstructured uncertain-
ties are considered, and it is hard to describe the data rate
limitation in an explicit form, while [15] deals with nonlin-
ear plants but only scalar ones.

We now present the proof of Theorem 4. The key idea lies in
evaluating the expansion rate of the state estimation sets due
to plant instability. The proof consists of two steps, which
are presented in Sections 3.1 and 3.2, respectively.

Remark 6. Compared with our previous work [20], the main
difficulty is that we have to take account of the expansion in
the state estimation sets by control inputs. If we know the
exact control input applied to the plant, then the width of the
estimation set is not affected by the input since we can track
the variation of the state precisely. However, in the current
setup, the estimation set may expand by the control input
due to the uncertainty in bk. Hence, the scaling parameter
σk+1 must be selected to cover this expansion in addition to
that by plant instability.

3.1 The quantizer minimizing the expansion rate

In this subsection, we introduce the expansion rate for a
given quantizer. Then we show the optimal quantizer which
minimizes the rate in the worst case.

4



For a given quantizer whose boundary points are {hl}
⌈N/2⌉

l=0
, let

wl :=



2(|a∗|+ǫ)hl+1 if N is odd and l = 0,

(|a∗|+ǫ)
(
1+ δ
|b∗|

)
hl+1 − (|a∗|−ǫ)

(
1− δ
|b∗|

)
hl

else,

(14)

for l = 0, 1, . . . , ⌈N/2⌉ − 1. We see later in Section 3.2 that
this wl characterizes the expansion rate of the volume of the
estimation set for one sampling period due to the uncertain
parameters ak ∈ A and bk ∈ B. The rate varies depending
on l, which represents the cell which observed output falls
into and we have to consider the worst case to guarantee
stability against uncertainties.

The tight lower bound on the worst-case expansion rate
can be derived as shown in Lemma 7 below. Let us de-
fine the boundary points {h∗

l
}m
l=0

dividing [−hm, hm], where
m ∈ {1, 2, . . . , ⌈N/2⌉}, as

h∗l :=


hm

1−t(rarb)l

1−t(rarb)m if ǫ > 0 or δ > 0,

hm
l−t′

m−t′
if ǫ = δ = 0.

(15)

Furthermore, define w∗m, which is used in the following
lemma to represent the worst-case expansion rate as

w∗m :=


hm (|a∗|+ǫ)

(
1+ δ
|b∗|

)
1−rarb

1−t(rarb)m if ǫ > 0 or δ > 0,

hm
|a∗ |

m−t′
if ǫ = δ = 0,

t :=


1+δ/|b∗|

1−ǫ/|a∗ |
if N is odd,

1 if N is even,

t′ :=

{
1
2

if N is odd,

0 if N is even.
(16)

Lemma 7. Given a quantizer {hl}
⌈N/2⌉

l=0
dividing [−1/2, 1/2]

into N cells, consider a subset of the quantization region
[−hm, hm], where m ∈ {1, 2, . . . , ⌈N/2⌉}. The worst-case ex-
pansion rate of the cells in [−hm, hm] is bounded as

max
l∈{0,1,...,m−1}

wl ≥ w∗m. (17)

The equality in (17) holds if hl = h∗
l

for l = 0, 1, . . . ,m.
Furthermore, consider the subset of the quantization region
[hm′ , hm], where 1 ≤ m′ < m ≤ ⌈N/2⌉. Then, it follows that

max
l∈{m′,m′+1, ...,m−1}

wl

≥



{
hm−(rarb)m−m′hm′

}
(|a∗|+ǫ)

(
1+ δ
|b∗|

)
1−rarb

1−(rarb)m−m′

if ǫ > 0 or δ > 0,

(hm − hm′ )
|a∗|

m−m′
if ǫ = δ = 0.

(18)

Proof. To prove the inequalities (17) and (18), we first

assume that there exists a set of boundary points {ĥl}
m
l=i

,

i ∈ {0,m′}, such that ĥi = hi, ĥm = hm, and wl are the same
for all l ∈ {i, i + 1, . . . ,m − 1}, i.e., for a constant ŵ

wl = ŵ, ∀l ∈ {i, i + 1, . . . ,m − 1}. (19)

We shall show that for all quantizers {hl}
m
l=i

, it holds that

max
l∈{i,i+1,...,m−1}

wl(h) ≥ ŵ, (20)

where wl(h) denotes the expansion rate wl in (14) with the
quantization boundaries {hl}

m
l=i

. This is done by contradic-
tion. Suppose that maxl∈{i,i+1,...,m−1} wl(h) < ŵ. Then, from
(19), it follows for all l ∈ {i, i + 1, . . . ,m − 1} that

wl(h) ≤ max
l′∈{i,i+1,...,m−1}

wl′ (h) < ŵ = wl(ĥ). (21)

We shall compare hl with ĥl for each l using (21). For l = i,

we have ĥi = hi. Substituting these into (14) yields

wi(h) =



2(|a∗| + ǫ)hi+1 if N is odd and i = 0,

(|a∗| + ǫ)
(
1 + δ

|b∗|

)
hi+1 − (|a∗| − ǫ)

(
1 − δ

|b∗|

)
hi

else,

wi(ĥ) =



2(|a∗| + ǫ)ĥi+1 if N is odd and i = 0,

(|a∗| + ǫ)
(
1 + δ

|b∗|

)
ĥi+1 − (|a∗| − ǫ)

(
1 − δ

|b∗|

)
ĥi

else.

Since wi(h) < wi(ĥ) from (21), it follows that

hi+1 < ĥi+1. (22)

Moreover, by (14), we have for l = i+ 1, i+ 2 . . . ,m− 1 that

wl(h) = (|a∗|+ǫ)

(
1+
δ

|b∗|

)
hl+1 − (|a∗|−ǫ)

(
1−
δ

|b∗|

)
hl,

wl(ĥ) = (|a∗|+ǫ)

(
1+
δ

|b∗|

)
ĥl+1 − (|a∗|−ǫ)

(
1−
δ

|b∗|

)
ĥl.

By substituting these into (21), we obtain

hl+1 ≤ rarbhl +
maxl′∈{i,i+1,...,m−1} wl′ (h)

(|a∗| + ǫ)
(
1 + δ

|b∗|

) ,

ĥl+1 = rarbĥl +
ŵ

(|a∗| + ǫ)
(
1 + δ

|b∗|

) .

By introducing the relation (22) to the above, we recursively

obtain hl < ĥl for every l ∈ {i+1, i+2, . . . ,m}. This however

is in contradiction with ĥm = hm. Thus (20) holds.

To establish (17) and (18), we must show the existence of
{ĥl}

m
l=i

satisfying the assumptions made at the beginning of
this proof. First, for (17), consider the quantizer {h∗

l
}m
l=0

in
(15) dividing the subset [−hm, hm] of the quantization range.
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Quantizer input

(a) Less uncertainty (δ = 0.0)
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Quantizer input

(b) More uncertainty (δ = 0.3)

Fig. 3. Boundaries of the optimal quantizer φ∗N (N = 8, a∗ = 3.0,
ǫ = 0.5, and b∗ = 1.0)

By a routine calculation and the relation h0 = 0 in (4), one
can confirm that {h∗

l
}m
l=0

satisfies h∗
0
= h0 = 0, h∗m = hm, and

(19) with i = 0 and ŵ = w∗m. Hence, (17) follows with the
equality condition.

Next, to show the case of (18) with [hm′ , hm], suppose that i =
m′ and consider the following sequence for l = 0, 1, . . . ,m−
m′:

ĥm′+l =



(rarb)lhm′ +

{
hm − (rarb)m−m′hm′

}
1−(rarb)l

1−(rarb)m−m′

if ǫ > 0 or δ > 0,

hm′ + (hm − hm′)
l

m−m′
if ǫ = δ = 0.

We then have that ĥm′ = hm′ , ĥm = hm, and (19) where ŵ
is equal to the right-hand side of (18). This concludes the
proof. �

Let us denote by φ∗
N

the quantizer consisting of the bound-

aries {h∗
l
}
⌈N/2⌉

l=0
in (15). This quantizer is optimal in the sense

that it minimizes maxl∈{0,1,...,⌈N/2⌉−1}wl, and the minimum is
given as w∗

⌈N/2⌉
from (17). Quantization of φ∗

N
is nonuniform

and becomes more so when the plant has more uncertainty.
To see this, consider the plant with a∗ = 3.0, ǫ = 0.5, and
b∗ = 1.0, and take N = 8. The boundaries of φ∗

N
for δ = 0.0

are shown in Fig. 3 (a) and for δ = 0.3 in Fig. 3 (b).

The nonuniformity of φ∗
N

is an outcome of minimizing the
effect of the plant uncertainty on the state estimation. This
characteristic can be explained as follows. Due to quanti-
zation, only the interval Yk containing the true output yk is
known to the controller. After one time step, because of the
plant instability, the interval in which the output should be
included will expand. When the plant model is known, the
expansion ratio is constant and is equal to |a∗| for any quan-
tization cell. However, with plant uncertainties, the ratio de-
pends on the location of the cell. In particular, cells further
away from the origin expand more. Moreover, to bring such
cells around the origin, larger control inputs are required
compared with cells closer to the origin. Because of the un-
certainty in the input parameter bk, larger control input will
result in further expansion of the interval. This fact is illus-
trated in Fig. 4(a) when uniform quantization is employed.
In contrast, when the proposed quantizer φ∗

N
is used, the cells

after one step have the same width (Fig. 4(b)). We note that

(a) Uniform quantizer case (b) Optimal quantizer case

Fig. 4. Expansion of quantization cells: With the uniform quantizer,
cells further away from the origin expand more at each time after
applying control, while with the optimal one, all cells result in the
same width.

when there is no uncertainty in the plant, i.e., ǫ = δ = 0,
then φ∗

N
becomes the uniform quantizer.

The quantizer structure above is similar to that introduced
in our previous work [20], which studied plant uncertainties
only in ai,k. We also note that nonuniform quantizers have
appeared in the networked control literature, e.g., in stabi-
lization problems [18, 24] and identification problems [25].

3.2 Derivation of the limitations in Theorem 4

We are now ready to prove Theorem 4. The central problem
in the proof is to evaluate the expansion rate of the estima-
tion set Yk during one sampling period. First, a tight bound
on the expansion rate is shown, and then with the bound
and the optimal quantizer φ∗

N
, the limitations (11)–(13) for

stabilizability are derived.

Proof of Theorem 4. (Necessity) Suppose that the feedback
system is stable in the sense of Definition 1 with an encoder
and a controller. We first show that E[supy∈Yk

|y|2] → 0 as

k → ∞ implies that E[σ2
k
]→ 0. The estimation setYk avail-

able at the controller corresponds to a quantization cell. By
(6), this set Yk is guaranteed to contain yk. Let d > 0 de-
note the smallest width of the quantization cells. Then, from
the definition of the quantizer, we have that µ(Yk) ≥ dσk,
and hence supy∈Yk

|y| ≥ dσk/2. Therefore, limk→∞ E[σ2
k
] = 0

follows from the mean square stability of the system.

The rest of the proof consists of three steps. The first step is
to prove the following inequality, which provides a bound
on the expansion rate of σk:

σk+1 ≥ ηkσk. (23)

Here, ηk is the random variable defined as

ηk :=

{
|a∗| + ǫ if γk = 0,

wlk if γk = 1,
(24)

where wl is defined in (14) and lk ∈ {0, 1, . . . , ⌈N/2⌉ − 1} is
the integer such that infy∈Yk

|y/σk| = hlk , which is the index
of the quantization cell which yk falls into.
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To establish (23), we recall (6) and claim that for any control
input uk, we have that

σk+1 ≥ 2 sup
y−∈Y−

k+1
, b∈B

|y− + buk|

≥ 2 sup
y−∈Y−

k+1
, b∈B

|y− + bu∗(Y−k+1)|

= µ(Y−k+1) +
2δ

|b∗|
|c(Y−k+1)| =: σ∗k+1, (25)

where the input u∗(·) is defined as

u∗(Y) := −
c(Y)

b∗
(26)

for an interval Y on R. The input u∗(Y−
k+1

) brings the mid-
point of the prediction set Y−

k+1
into the origin when the

parameter bk is equal to b∗.

For the derivation of (25), we first consider the case that
c(Y−

k+1
) > 0 and b∗−δ > 0. In this case, it is obvious that the

input uk minimizing supy−∈Y−
k+1
, b∈B |y

−
+ buk| is nonpositive.

For such inputs uk ≤ 0, we have that

sup
y−∈Y−

k+1
, b∈B

|y− + buk|

= max

{
Y−k+1 + (b∗ − δ)uk, −Y

−
k+1 − (b∗ + δ)uk

}
. (27)

Take an arbitrary nonpositive input and denote it as uk =

u∗(Y−
k+1

)+∆uk
. With this expression and (26), the right-hand

side of (27) is equal to

max

{
µ(Y−

k+1
)

2
+
δ

b∗
c(Y−k+1) + (b∗ − δ)∆uk

,

µ(Y−
k+1

)

2
+
δ

b∗
c(Y−k+1) − (b∗ + δ)∆uk

}
,

which takes its minimum when ∆uk
= 0. This proves (25).

The case of c(Y−
k+1

) ≤ 0 or b∗ − δ < 0 can be reduced to the

above by appropriately flipping signs of Y−
k+1

, Y−
k+1

, and b∗.

The lower bound σ∗
k+1

on σk+1 in (25) is in fact equal to the
right-hand side of (23), i.e.,

σ∗k+1 = ηkσk. (28)

Here, ηk is present because the expansion rate of σk is af-
fected by the packet losses γk. To derive (28), we consider
three cases (i)–(iii) depending on the location of the estima-
tion set Yk as follows. For simplicity, assume a∗, b∗ > 0.

(i) Yk ≥ 0: This case occurs only when the packet arrives,

i.e., γk = 1. In addition, from (24), ηk = wlk where N is even
or lk , 0. From the basic results for products of intervals [26]
and (9), for the interval Y−

k+1
, we obtain its supremum and

infimum as Y−
k+1
= (a∗ + ǫ)Yk and Y−

k+1
= (a∗ − ǫ)Yk,

respectively. Substitution of these into the left-hand side of
(28) gives

µ(Y−k+1) +
2δ

|b∗|
|c(Y−k+1)|

=

{
(a∗+ǫ)

(
1+
δ

b∗

)
hlk+1 − (a∗−ǫ)

(
1−
δ

b∗

)
hlk

}
σk.

Hence, by (14) the relation in (28) holds.

(ii) Yk < 0 < Yk: In this case, we have

Y−k+1 = (a∗ + ǫ)Yk, Y
−
k+1 = (a∗ + ǫ)Yk. (29)

Moreover, because of the symmetry in the quantization
cells, it holds that c(Y−

k+1
) = 0 and hence u∗(Y−

k+1
) = 0.

Thus, σ∗
k+1
= µ(Y−

k+1
). To compute this width µ(Y−

k+1
),

consider the following two cases: (ii-1) If γk = 0,
then Yk = [−σk/2, σk/2]. Hence, by (29), we have
µ(Y−

k+1
) = (a∗ + ǫ)σk. (ii-2) Otherwise, N must be odd and

lk = 0 from the symmetry of the quantizer and the condition
(ii). Thus, µ(Y−

k+1
) = 2(a∗ + ǫ)h1σk. Hence, (28) holds for

this case also.

(iii) Yk ≤ 0: This case can be reduced to (i).

From (25) and (28), we have established (23).

As the second step, we consider the mean squares of both
sides of (23) and derive an inequality regarding the expan-
sion rate of σk. Note that due to packet losses, the expan-
sion rate ηk is a random variable that depends on the previ-
ous channel state. This time dependency causes difficulties
in the analysis. To avoid this, we consider intervals between
the times at which packets successfully arrive at the con-
troller side; it is known that the intervals become an i.i.d.
process [27]. We formally state this fact in the following.

Let t j, j ∈ Z+, be the times at which packets arrive, i.e., γt j
=

1. From the assumption on the initial communication, stated
in Section 2, we have 0 = t0 < t1 < · · · . Then, denote the
interval between the times t j−1 and t j by τ j := t j−t j−1, j ≥ 1.
The process {τ j} j is i.i.d. and, for each j, it holds that

Prob(τ j = i) =

{
1 − p if i = 1,

pq(1 − q)i−2 if i > 1.
(30)

From (23) and the fact that

γk =

{
1 if k = t j,

0 if k ∈ [t j + 1, t j+1),

a lower bound on the expansion of σk from time t j to t j+1

is given by σt j+1
≥ (|a∗| + ǫ)τ j+1−1wlt j

σt j
. Here, the value of
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wlt j
varies depending on lt j

, which is the index of the cell

that yt j
fell in. Since we have to take account of all possible

deterministic perturbations, we consider the maximum over
the suffix of wlt j

:

σt j+1
≥ (|a∗| + ǫ)τ j+1−1 max

l∈Lt j

wlσt j
, (31)

where Lt j
contains the set of all possible lt j

, which is a subset
of the index set {0, 1, . . . , ⌈N/2⌉−1}. More precisely, at time
k, Lk is the indices of the quantization cells which intersect
with {y− + buk−1 : y− ∈ Y−

k
, b ∈ B}.

As to the right-hand side of (31), we shall prove that

max
l∈Lk

wlσk ≥ w∗⌈N/2⌉σ
∗
k, (32)

where w∗• and σ∗
k

are given by (16) and (25), respectively.

Let Ŷ−
k

be the union of the quantization cells which have
intersection with {y− + buk−1 : y− ∈ Y−

k
, b ∈ B}. Consider

the following two cases.

(i) inf Ŷ−
k
≤ 0 ≤ sup Ŷ−

k
: Let m ∈ {1, 2, . . . , ⌈N/2⌉} be

the cardinality of Lk. We then have that maxl∈Lk
wl =

maxl∈{0,1,...,m−1} wl and supy−∈Ŷ−
k
|y−| = hmσk. Thus, from (17)

in Lemma 7, it holds that

max
l∈Lk

wlσk ≥
w∗m

hm

sup
y−∈Ŷ−

k

|y−| ≥ 2w∗⌈N/2⌉ sup
y−∈Ŷ−

k

|y−|,

where we have used w∗m/hm ≥ 2w∗
⌈N/2⌉

to obtain the second

inequality. Furthermore, since Ŷ−
k
⊇ {y− + buk−1 : y− ∈

Y−
k
, b ∈ B} and by (25), we have 2 sup

y−∈Ŷ−
k
|y−| ≥ σ∗

k
. Thus,

we obtain (32) for this case.

(ii) inf Ŷ−
k
> 0 or sup Ŷ−

k
< 0: In this case, we can de-

fine integers m′ and m such that 1 ≤ m′ < m ≤ ⌈N/2⌉,
infy−∈Ŷ−

k
|y−| = hm′σk, and supy−∈Ŷ−

k
|y−| = hmσk. By using

(18) in Lemma 7, it follows that

max
l∈Lk

wlσk

≥



{
sup

y−∈Ŷ−
k
|y−|−(rarb)m−m′ inf

y−∈Ŷ−
k
|y−|

}

× (|a∗|+ǫ)
(
1+ δ
|b∗|

)
1−rarb

1−(rarb)m−m′ if ǫ >0 or δ>0,

µ(Ŷ−
k

) |a
∗ |

m−m′
if ǫ = δ = 0.

(33)

If ǫ = δ = 0, noticing that µ(Ŷ−
k

) ≥ σ∗
k
, we have (32) for this

case. When ǫ > 0 or δ > 0, a routine calculation shows that


sup

y−∈Ŷ−
k

|y−| − (rarb)m−m′ inf
y−∈Ŷ−

k

|y−|


1

1 − (rarb)m−m′

≥


µ(Ŷ−

k
)

2
+
δ

|b∗|

∣∣∣c(Ŷ−k )
∣∣∣


1

1 − t(rarb)m

≥
σ∗

k

2{1 − t(rarb)m}
. (34)

Here, for the first inequality, we have used sup
y−∈Ŷ−

k
|y−| =

µ(Ŷ−
k

)/2 + |c(Ŷ−
k
)|, infy−∈Ŷ−

k
|y−| = −µ(Ŷ−

k
)/2 + |c(Ŷ−

k
)|, and

0 < tr < 1, and the second one follows by Ŷ−
k
⊇ Y−

k
. From

(33) and (34), and by m ≤ ⌈N/2⌉, we arrive at (32).

From (25), (31), and (32), we have

E[σ∗t j+1

2
] ≥ E[(|a∗| + ǫ)2(τ j+1−1)]

(
w∗⌈N/2⌉

)2
E[σ∗t j

2
]. (35)

Notice that τ j+1 is independent of σt j
. Since E[σ2

k
]→ 0 and

by (25), the coefficient of E[σ∗t j

2] in (35) is smaller than 1.

After some computation using (30) and that {τ j} j is i.i.d.,
we obtain

E[(|a∗| + ǫ)2(τ j+1−1)] = 1 +
p
{
(|a∗| + ǫ)2 − 1

}

1 − (1 − q)(|a∗| + ǫ)2
= ν2

and |(1 − q)(|a∗| + ǫ)2| < 1. The inequality boils down to

0 < (1 − q)(|a∗| + ǫ)2 < 1, (36)

which implies ν2 > 0. Hence, we arrive at

νw∗⌈N/2⌉ < 1. (37)

The last step is to derive (11)–(13) from (36) and (37). First,
suppose that ǫ or δ is positive and that N is even. Then, with
the definition (16), it follows that w∗

⌈N/2⌉
= ∆/{1−(rarb)⌈N/2⌉}.

Substituting this into (37), we obtain (rarb)N/2 < 1− ν∆ and
by taking logarithm of both sides,

N > N(e) := 2
log(1 − ∆ν)

log(rarb)
.

Note that

1 − ν∆ > 0 (38)

since (rarb)N/2 > 0. If N is odd, then similarly, from (37),
we have that

N > N(o) := 2
log(1 − ∆ν) − log t

log(rarb)
− 1,
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where t := (1 + δ/|b∗|) / (1 − ǫ/|a∗|). Comparing the lower
bounds N(e) and N(o), by the assumption (3) on b∗ and (9), we
can show N(o) > N(e). Thus, the smaller bound N(e) appears
as the data rate limitation in (11). To establish (12) and (13),
we see from (36) and (38) that

(1 − ∆2)
{
1 − (1 − q)(|a∗| + ǫ)2

}
> ∆2

{
(|a∗| + ǫ)2 − 1

}
.

Noticing that the right-hand side is positive and so is the left-
hand side, we have (12) and (13) after some calculations.

If ǫ = δ = 0, we have that w∗
⌈N/2⌉

= |a∗|/N by (16). Noticing

this relation and applying the same analysis, with (37), we
have (11)–(13) for this case also.

(Sufficiency) We employ the control scheme where σk+1

is determined so that the equality holds in (6) and uk =

u∗(Y−
k+1

). With this control, we have the equality in (23).
Moreover, let the quantizer be the optimal one φ∗

N
, where

the boundaries are {h∗
l
}
⌈N/2⌉

l=0
in (15). Then, equality holds in

(32) also. From (12) and (13), we have that ν2 > 0 and (36),
and then (38). In addition, with (11), the key inequality (37)
in the necessity part follows and thus, E[σ2

k
] → 0. Since

σk/2 ≥ supy∈Yk
|y| by definition of the quantizer, we have

that E[supy∈Yk
|y|2]→ 0 as k → ∞. �

4 General order plants case

In this section, we consider general order plants in (1), and
present a control scheme to make the feedback system MSS
along with a sufficient condition providing a stability test.
In the course, we will see that results of Markov jump linear
systems [28] play a central role. A related approach can be
found in [12], where the known plants case has been studied.

Given a data rate R = log N and a quantizer {hl}
⌈N/2⌉

l=0
, we set

the control law as follows: In the encoder and the decoder,
the scaling parameter σk is determined by

σk = µ(Y
−
k ) +

2δ

|b∗|
|c(Y−k )| (39)

at each time k. Here c(·) is the midpoint of an interval.
Furthermore, the control input uk is given as

uk = −
c(Y−

k+1
)

b∗
. (40)

Next, we introduce some notation. For i = 1, 2, . . . , n, let the
random variables θi,k be given by

θi,k :=

{
|a∗

i
| + ǫi if γk−i+1 = 0,

wi if γk−i+1 = 1.
(41)

Here, wi is defined for the given quantizer as follows:

wi :=



max{w
(0)

i
,w

(1)

i
} if N is odd and Ai = 0,

max
{
ǫi + δ

|a∗
i
|

|b∗|
, w

(0)

i

}
if N is odd and Ai ∋ 0,

w
(1)

i
if N is even and Ai = 0,

ǫi + δ
|a∗

i
|

|b∗ |
if N is even and Ai ∋ 0,

where w
(0)

i
and w

(1)

i
are given by

w
(0)

i
:= 2(|a∗i | + ǫi)h1, (42)

w
(1)

i
:= max

l∈{0,...,⌈N/2⌉−1}

{
(|a∗i | + ǫi)

(
1 + δ

|a∗
i
|

|b∗|

)
hl+1

− (|a∗i | − ǫi)

(
1 − δ

|a∗
i
|

|b∗|

)
hl

}
. (43)

We will see in the proof later that wi is used to express an
upper bound of the expansion rate of the quantization cells
enlarged by the parameter ai,k. Moreover, let the matrix HΓk

containing θ1,k, . . . , θn,k be

HΓk
:=



0 1 · · · 0

...
. . .

. . .
...

0 0 · · · 1

θn,k θn−1,k · · · θ1,k



. (44)

Here, Γk is the random vector defined as Γk := [γk−n+1 γk−n+2

· · · γk], which is determined by the results of the past n com-
munications. The transition probability matrix P ∈ R2n×2n

for the random process {Γk}k is given by, for n ≥ 2,

P :=


I2n−2

I2n−2

 ⊗ Q, Q :=


1 − q q 0 0

0 0 p 1 − p

 ,

where ⊗ is the Kronecker product, and when n = 1,

P :=


1 − q q

p 1 − p

 .

Finally, we define the matrix F using HΓk
and P by

F := F1F2, (45)

where F1 := PT ⊗ In2 , F2 := diag(HΓ(1) ⊗ HΓ(1) , . . . ,HΓ(2n) ⊗
HΓ(2n) ), and Γ(1), . . . , Γ(2n) represent all possible vectors of Γk

indexed arbitrarily. Let ρ(·) be the spectral radius of a matrix.

We are ready to present the main result of the subsection.

Theorem 8. Given the data rate R = log N, the loss proba-

bility p ∈ [0, 1), and the quantizer {hl}
⌈N/2⌉

l=0
, if the matrix F
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in (45) satisfies

ρ(F) < 1, (46)

then under the control law using (39) and (40), the feedback
system is MSS.

For the scalar plants case, the inequality (46) holds if and

only if νw1 < 1 and
{
(1 − q)(|a∗| + ǫ)2

+ (1 − p)w2
1

}
/2 ≤ 1.

Notice that the first inequality is equal to (37) in the proof
of Theorem 4 when the quantizer is the optimal one φ∗

N
.

Thus, for this case, the condition (46) is tight in the sense
that if R ∈ N, p, q ∈ (0, 1), and ∆ satisfy (11)–(13), then
there always exist an encoder and a controller such that (46)
holds.

To establish the theorem, consider the Markov jump system

zk+1 = HΓk
zk, z0 := [σ−n+1 σ−n · · · σ0]T . (47)

The stability of the feedback system can be reduced to that
of this system. This is shown in the following lemma, whose
proof is given in the Appendix.

Lemma 9. If the Markov jump system (47) is stable in the
sense that E[zkzT

k
] converges to the zero matrix, the original

feedback system is MSS with the control law (39) and (40).

Remark 10. In [20], a necessary condition for the multi-
dimensional plants case, which is similar to the scalar case
result, is given. This result has been shown under the setup
that the structures of state estimators and controllers are con-
strained as (5) and (7). As we discussed in Remark 3, this
may cause some conservativeness. Therefore, in this paper,
we do not present the result corresponding to Theorem 4.

5 Conclusion

In this paper, we have addressed a stabilization problem of
parametrically uncertain plants over data rate limited chan-
nels subject to random data losses. The result for the scalar
case establishes limitations and trade-off relationships for
stability among the data rate, the transition probabilities of
the channel states, and the uncertainty bounds. As mentioned
in the Introduction, uncertain systems in networked settings
have not been studied much. We plan to extend our research
in this area in the future.

Acknowledgment: The authors would like to thank M. Fujita,
S. Hara, and R. Tempo for helpful discussions on this work.
We are also grateful to the anonymous reviewers for their
comments that helped us improve the paper quality.

A Proof of Theorem 8

Proof of Lemma 9 We first verify that the mean square sta-
bility of {σk}k implies that the feedback system is MSS under

the control law (39) and (40). This is done by substituting
(40) into (1) and by the definition (5) of Yk+1 to obtain

|yk+1| =

∣∣∣∣∣∣a1,kyk + · · · + an,kyk−n+1 − bk

c(Y−
k+1

)

b∗

∣∣∣∣∣∣

≤
1

2

(
µ(Y−k+1) +

2δ

|b∗|
|c(Y−k+1)|

)
=
σk+1

2
.

Next, to establish that the stability of (47) implies that {σk}k
is MSS, we prove the following relation:

σk ≤ (zk)n for k = 0, 1, . . . , (A.1)

where (·)n is the nth element of a vector. The scaling param-
eter (39) can be decomposed as

σk+1 =

n∑

i=1

µ(AiYk−i+1) +
2δ

|b∗|
|c(Y−k+1)|

≤

n∑

i=1

{
µ(AiYk−i+1) +

2δ

|b∗|
|c(AiYk−i+1)|

}
. (A.2)

Here, the equality follows from the Brunn-Minkowski theo-
rem and the inequality from applying the triangle inequality
to the second term. Next, we explicitly compute the width
µ(AiYk−i+1) of the product of intervals Ai and Yk−i+1. Re-
callAi = [a∗

i
− ǫi, a

∗
i
+ ǫi]. Based on basic results for interval

products [26], we can obtain

µ (AiYk−i+1)=



(
|a∗

i
| + ǫi

)
µ(Yk−i+1)

if Yk−i+1 ∋ 0,

|a∗
i
|µ(Yk−i+1)+ǫi|Yk−i+1+Yk−i+1|

if Yk−i+1 = 0 and Ai = 0,

2ǫi max

{
|Yk−i+1|, |Yk−i+1|

}

if Yk−i+1 = 0 and Ai ∋ 0,

(A.3)

for i = 1, 2, . . . , n. Similarly, the absolute value of the center
of the interval AiYk−i+1 can be computed as

|c(AiYk−i+1)|

=



0 if Yk−i+1 ∋ 0,

1
2

[
(|a∗

i
| + ǫi) max

{
|Yk−i+1|, |Yk−i+1|

}

+(|a∗
i
| − ǫi) min

{
|Yk−i+1|, |Yk−i+1|

}]

if Yk−i+1 = 0 and Ai = 0,

|a∗
i
|max

{
|Yk−i+1|, |Yk−i+1|

}

if Yk−i+1 = 0 and Ai ∋ 0.

(A.4)

We use (A.3) and (A.4) to obtain an upper bound on the ith
term in (A.2) over all possible Yk−i+1 as

µ(AiYk−i+1) +
2δ

|b∗|
|c(AiYk−i+1)| ≤ θi,kσk−i+1. (A.5)
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This is shown by examining the following three cases de-
pending on the packet loss process γk−i+1 and N.

(i) γk−i+1 = 0: In this case, by construction in Sec-
tion 2, Yk−i+1 is the entire input range, that is, Yk−i+1 =

[−σk−i+1/2, σk−i+1/2]. This interval contains the origin as
an interior point. Thus, by (A.3) and (A.4), we have

µ (AiYk−i+1) +
2δ

|b∗|
|c(AiYk−i+1)| = (|a∗i | + ǫi)σk−i+1.

From (41), we have |a∗
i
| + ǫi = θi,k for this case and hence,

(A.5) holds.

(ii) γk−i+1 = 1 and N is odd: We must deal with two cases.

(ii-1) Yk−i+1 < 0 < Yk−i+1: This implies that Yk−i+1 is the

center quantization cell, i.e., its boundaries (Yk−i+1,Yk−i+1)

are (−h1σk−i+1, h1σk−i+1) (see (4) for the definition of the
cells). Thus, from (A.3) and (A.4), we have

µ (AiYk−i+1) +
2δ

|b∗|
|c(AiYk−i+1)| = w

(0)

i
σk−i+1, (A.6)

where w
(0)

i
is defined in (42).

(ii-2) Otherwise: For this case, Yk−i+1 does not contain the
origin as an interior point and hence, by (4), its bound-

aries (Yk−i+1,Yk−i+1) are equal to (hlσk−i+1, hl+1σk−i+1) or

(−hl+1σk−i+1,−hlσk−i+1) for some index l. Therefore, with
(A.3) and (A.4),

µ(AiYk−i+1) +
2δ

|b∗|
|c(AiYk−i+1)|

=



{
(|a∗

i
| + ǫi)

(
1 + δ

|b∗|

)
hl+1 − (|a∗

i
| − ǫi)

(
1 + δ

|b∗|

)
hl

}
σk−i+1

if Ak−i+1 = 0,

2
(
ǫi + δ

|a∗
i
|

|b∗ |

)
hl+1σk−i+1 if Ak−i+1 ∋ 0.

Taking the maximum of the right-hand side of the above
equality over l ∈ {1, 2, . . . , ⌈N/2⌉ − 1}, we have

max
l
µ (AiYk−i+1) +

2δ

|b∗|
|c(AiYk−i+1)|

=


w

(1)

i
σk−i+1 if Ak−i+1 = 0,(

ǫi + δ
|a∗

i
|

|b∗|

)
σk−i+1 if Ak−i+1 ∋ 0,

(A.7)

where w
(1)

i
is defined in (43). From (A.6) and (A.7), we

confirm (A.5) for the case (ii) also.

(iii) γk−i+1 = 1 and N is even: This case can be reduced to
(ii-2) since Yk−i+1 = 0 holds.

From (A.2) and (A.5), we have σk+1 ≤
∑n

i=1 θi,kσk−i+1. Here,
notice that the right-hand side is equal to the nth entry of the
vector HΓk

[σk−n+1 σk−n+2 · · · σk]T , where the matrix HΓk
is

given in (44). Thus, using the nth state of the Markov jump
system (47), we obtain (A.1). This implies that if E[zkzT

k
]

goes to the zero matrix as k → ∞, then E[σ2
k
]→ 0. �

From the stability result [28, Theorem 3.9] for Markov jump
systems, the inequality (46) is equivalent to that (47) is MSS.
Therefore, from Lemma 9, this inequality (46) is a sufficient
condition for mean square stability of the original feedback
system. This concludes the proof of Theorem 8.
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