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Abstract 

This paper discusses a cooperative control problem by two one-link flexible Timoshenko arms. The goal is to control a 
grasping force to collect an object with the two flexible arms, and to simultaneously suppress the vibrations of the arms. To 
solve this problem, we propose a boundary controller that is based on a dynamic model represented by a hybrid PDE-ODE 
model; the exponential stability of the closed-loop system is then proven by the frequency domain method. Finally, several 
numerical simulations are carried out to investigate the validity of the proposed boundary cooperative controller.  
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1. Introduction 

A flexible arm is a controlled system modeled by partial 
differential equations (PDEs) to present the dynamics of 
the elastic links, and ordinary differential equations 
(ODEs) to present the dynamics of sensors, actuators, and 
tip loads. The dynamic model of the flexible arm is thus a 
hybrid PDE-ODE model. The Euler-Bernoulli beam model 
in particular is widely used to present the dynamics of the 
elastic links. On the other hand, the Timoshenko beam 
model is a modified model of the Euler-Bernoulli beam 
model that includes the effects of shear and rotational iner-
tia. Therefore, the Timoshenko beam model can be used in 
a wider range of applications than the Euler-Bernoulli 
beam model (Huang, 1961; Han, Benaroya, & Wei, 1999). 
Here, the flexible arm, modeled as a Timoshenko beam, is 
called the flexible Timoshenko arm.  

There have been several relevant studies about the flex-
ible Timoshenko arm based on the hybrid PDE-ODE mod-
el (Morgül, 1992; Zhang et al., 1997; Taylor & Yau, 2003; 
Macchelli & Melchiorri, 2004; Grobbelaar-Van Dalsen, 
2010; He, Zhang, & Ge, 2013; Muñoz Rivera, & Ávila, 
2015; Endo, Sasaki, & Matsuno, 2017; and references 
therein). However, many of these studies on hybrid PDE-
ODE infinite dimensional settings address only the vibra-
tion suppression problem. This is insufficient for use of the 
flexible arm for more complex tasks. In addition to the vi-
bration control, the force control, that is the control of the 
contact force at the contact point where the flexible arm 
touches an object or the environment, is necessary for real-
ization of more complex tasks (Yoshikawa, 2000; Hokayen 
& Spong, 2006). Very few studies, Endo, Sasaki, and 
Matsuno (2017) have investigated the force control prob-
lem of the flexible Timoshenko arm. 

This paper discusses the cooperative control problem of 
two one-link flexible Timoshenko arms modeled by hybrid 
PDE-ODE infinite dimensional model. This problem is a 
typical applied force control problem. In the cooperative 
control problem, two one-link flexible Timoshenko arms 
grasp an object, and the flexible arms control the contact-
force at the contact point to achieve the desired grasping 
force. From the point of view of cooperative control, con-
trol of grasping force must consider the following: how to 
control the internal force applied to the grasped object by 
the two flexible Timoshenko arms, and how to control the 
motion of the grasped object. For cooperative control of 
the flexible arms, it is necessary to suppress vibration in 
the arms, as well as to control the grasping force. Although 
there has been little research on the cooperative control of 
flexible arms, several studies have investigated the infinite 
dimensional settings (Matsuno & Hayashi, 2000; Morita et 
al., 2003; Endo, Matsuno, & Kawasaki, 2009; Dou & 
Wang, 2014). These studies (Matsuno & Hayashi, 2000; 
Morita et al., 2003; Endo, Matsuno, & Kawasaki, 2009), 
discussed the cooperative control by two one-link flexible 
arms modeled by the Euler-Bernoulli beam model, and 
proposed asymptotic/exponential stabilizing controllers. 
Dou and Wang (2014) had a slightly different focus, pro-
posing a cooperative controller for a system in which two 
rigid arms grasp a flexible object modeled by the Euler-
Bernoulli beam. To the best of our knowledge, however, 
there has been no study of cooperative control by the flexi-
ble Timoshenko arms based on the hybrid PDE-ODE infi-
nite dimensional model. As mentioned above, the Timo-
shenko beam model is a modified model of the Euler-
Bernoulli beam model, and its application range is wide. 
Thus, the cooperative control problem by two one-link 
flexible Timoshenko arms is a challenging and useful issue.  
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In this paper, we propose a simple boundary cooperative 
controller for the cooperative control of two one-link flexi-
ble Timoshenko arms. Many boundary controllers have 
been proposed for various hybrid PDE-ODE infinite di-
mensional models other than the flexible Timoshenko arm 
(e.g., Littman & Markus, 1988; Slemrod, 1989; d'Andréa-
Novel et al., 1994; Luo, Guo, & Morgul, 1999; Matsuno, 
Ohno, & Orlov, 2002; Choi, Hong, & Yang, 2004; Yang, 
Hong, & Matsuno, 2005; Krstic & Smyshlyaev, 2008; 
Nguyen & Hong, 2010; He et al., 2011; Endo, Matsuno, & 
Kawasaki, 2014; Curtain & Zwart, 2016). In the boundary 
controller, the control action is at the boundary of the sys-
tems. Consideration of the distributed controller of the hy-
brid PDE-ODE model (e.g. Hong, 1997; He et al., 2016) 
reveals that implementation of the boundary controller is 
generally easy from a practical point of view. We therefore 
propose a boundary controller to solve the cooperative 
control problem by two one-link flexible Timoshenko arms 
modeled by the hybrid PDE-ODE model. The proposed 
system consists of two flexible Timoshenko arms installed 
on a slider. The two arms push an object toward each other 
from opposite sides using the same force; together they 
produce a positive internal force and the object is grasped 
by the flexible arms. In addition, the motion of the grasped 
object is realized by the motion of the slider. We prove that 
cooperative control is accomplished; that is, we prove the 
exponential stability of the closed-loop system by the fre-
quency domain method. In addition, we consider the ro-
bustness of the proposed boundary controller with respect 
to the disturbance at the grasped object and the control in-
put. The paper is organized as follows: in the next section, 
we formulate the control problem and propose a simple 
boundary cooperative controller. Section 3 presents the 
semigroup setting of the closed-loop system. Exponential 
stability and the robustness are given in Section 4. The 
numerical simulation results, which demonstrate the validi-
ty of the proposed boundary controller, are presented in 
Section 5. Finally, Section 6 contains our conclusions.  

2. System description and boundary controller 

2.1. A controlled system 

Fig. 1 illustrates a controlled system. The system con-
sists of two one-link flexible arms and a grasped object. 
One end of flexible arm i, 2 ,1=i , is clamped to the rota-
tional motor i, and the other end has a concentrated mass 
mi. The mass makes contact with a surface of the grasped 
object. Two rotational motors are installed on the slider; 
thus, we used three actuators here. This is because, in the 
vibration control problem of one-link Timoshenko beam, it 
is well known that a system with one actuator at the free 
end is exponentially stable if and only if the two wave 
speeds are equal (this is a physically impossible condition) 
(Soufyane & Wehbe, 2003; Almeida Júnior, Santos, & 
Muñoz Rivera, 2013). To obtain exponential stability while 
avoiding this physically impossible condition, it is desira-
ble that the effects of two actuators, such as force and 
torque, act on one beam. Here, we set two rotational mo-
tors and one slider to act as the effects of force and torque 

at each flexible beam. Using these actuators, the flexible 
arms rotate and translate in the XY plane in Fig. 1, and thus 
it is not affected by the acceleration of gravity. The flexible 
arm i, with mass per unit length ρi, mass moment of inertial 
μi, flexural rigidity EIi, cross sectional area Ai, shear modu-
lus Gi, shear coefficient κi, and length l, satisfies the Timo-
shenko beam hypothesis. 

In Fig. 1, XY is an absolute coordinate system, and xiyi is 
a local coordinate system, which rotates with the rotor of 
the motor i and translates with the slider. Let ),( txw ii  and 

),( txii  be the transverse displacement and the rotation of 
the cross section of the flexible arm i, respectively, where 
xi is the spatial point on the local coordinate system xiyi, 
and t is a time. In addition, let )(ti , )(ti , Ji, s(t), F(t), 
and Ms be the angle, torque, and inertial moment of motor i, 
the position of the slider between O and the center of the 
slider, the force of the slider, and the mass of the slider, 
respectively. The disturbance d acts at the grasped object, 
and the disturbance response is discussed in subsection 4.2. 
For the grasped object, let M and L be the mass and length 
of the object, respectively, and ),( MM yx  be the position 
vector of the center of mass in XY. Note that ),( txw ii , 

),( txii , )(ti , and s(t) are assumed to be small, and the 
distance between motors 1 and 2 is L. Here, note that we 
make the assumption that the distance between motors 1 
and 2 is L to derive the homogeneous boundary conditions. 
If we do not assume this point, we cannot obtain homoge-
neous boundary conditions such as (4), and we could not 
analyze the system. We plan to consider how to eliminate 
the need for this assumption in future work. In addition, in 
terms of the contact between the grasped object and flexi-
ble Timoshenko arms, we assume the following: the con-
tact is described by a frictional point contact model (Mur-
ray, Li, & Sastry, 1994); there is no slippage and no con-
tact break; the positions of contact points on the X-axis are 
equal to xM, and these do not change during movement be-
cause both flexible Timoshenko arms are equal in length. 
Therefore, the flexible arms exert force to the grasped ob-
ject only in the Y direction, and the grasped object is 
moved only on the Y-axis.  

 
Fig. 1. Grasped object and two flexible Timoshenko arms 
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Since the tip mass makes contact with the surface of the 
grasped object, we obtain the following geometric con-
straint:  

.2 ,1for      ,0)(),()()(: ==−++= itytlwtlts Miii   (1) 

The kinetic energy Ek and the potential energy Ep of the 
system are expressed as follows: 
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where iiii AGK =: , a dot denotes the time derivative, and a 
prime denotes the partial derivative with respect to the cor-
responding spatial variable. Further, the virtual work is 
given by )( )()()(2

1 tstFttW i ii  += =
. Thus, the follow-

ing equations of motion can be obtained by applying Ham-
ilton’s principle and the Lagrange multiplier, and using the 
same procedures as Endo, Matsuno, and Kawasaki (2009) 
and Endo, Sasaki, and Matsuno (2017). For 
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with the algebraic relations 
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where 21 mmMm ++= , )},(),({ tlwtlKf iiii
−=  , 2 ,1=i , 

λi(t) is the Lagrange multiplier and is equivalent to the con-
tact force of the flexible arm i, which arises in the opposite 
direction along the normal vector of the constraint surface. 

2.2. Boundary cooperative controller 

The control objective is to construct a boundary control-
ler satisfying: dii t  →)( , 0),( →txw ii

 , 0),( →txii
 , 
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 , 0)( →ts , and 0)( →tyM

 , where di  is a con-
stant desired grasping force of the flexible arm i. At the 
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In particular, in the steady state, if dii  =  holds, then we 
obtain dii  = . 

Based on these results, we construct the controller satis-
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To realize the desired relations (7), we propose the follow-
ing boundary controller 
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where feedback gains ik1 , ik2 , ik3 , 4k , 5k , 6k , 2 ,1=i , 
are positive constants. The controller (8) is the input to mo-
tor i, and the controller (9) is the input to the slider. In the 
controller (8), the first and second terms are PD control of 
the rotational angle, and the third term is for the vibration 
suppression. The fourth term is the compensation term of 
the reaction torque ),0( tEI ii . On the other hand, in the 
controller (9), the first and second terms are PD control of 
the position control, and the third term is the term of vibra-
tion suppression. Here, note that controller (9) has no com-
pensation term of the reaction force because of 

0)}0()0({
2

1
=− =i didii wK  . With controllers (8) and (9), the 

effects of the vibration suppression through the force and 
the torque act at each flexible arm, and thus exponential 
stability without the physically impossible condition can be 
expected. In the controller, )(ti  and )(ts  are measured by 
the encoder, )(ti

  and )(ts  are obtained by the numerical 
difference method, ),0( tEI ii  is measured by the strain 
gauges, and the shear force )},0(),0({ twtK iii

−  is ob-
tained by the strain gauges and the difference method (Luo, 
Kitamura, & Guo, 1995). So, ),0( tEI ii

  and 
)},0(),0({ twtK iii

 −  are obtained by the numerical differ-
ence method or by using a speed-reference-type servo am-
plifier with speed feedback and the high-gain characteris-
tics of the amplifier (Luo, 1993). Therefore, the proposed 
boundary controller is easily implemented. 

3. Semigroup settings 

Based on (Endo, Matsuno, & Kawasaki, 2009), let us 
introduce the following new variables: 
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Here, ),(1 txy ii  and ),(2 txy ii  contribute to the movement 
of the equilibrium point to its origin, and )(ti  and )(t  
are introduced so that the closed-loop system becomes dis-
sipative, as shown in (17). Then, the closed-loop system 
can be written as follows: For + Rltxi ),0(),(  and 2 ,1=i , 
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where iiii kkkD 3121 −= , 6452 kkkD −= , and we assumed 
that 01 iD  and 02 D . 

Now, we introduce the functional space H as the state 
space of the closed-loop system: for ,,,,( 21211111 vuvuz =
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where ),0( lH m  is the usual Sobolev space of order m, 
),0(2 lL  is the usual square integrable functional space, and 
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It is easy to see that H with the inner product (13) becomes 
a Hilbert space, because the norm induced by (13) is 
equivalent to the standard norm in H. Further, we define 
the unbounded linear operator HHADA →)(:  as fol-
lows: 
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Then, the closed-loop system can be written as the follow-
ing first order evolution equation on H: 
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Ttttttyty ))( ),( ),( ),( ),,(),,( 212222    is the state, and 0z  is the 

initial value. 
We obtain the following lemma as the properties of the 

closed-loop system (16).  
 
 
Lemma 1: The operator A generates a C0-semigroup of 
contractions. In addition, the operator A-1 is compact. 
Therefore, the spectrum σ(A) of the operator A consists on-
ly of the isolated eigenvalues. 

 

Proof: First, we show that the operator A is dissipative. 

From simple calculations using integration by parts and the 

boundary conditions in (15), we obtain 

 

 ,0|)0(|                          

|)}0()0({)0(| 
1

   

|)0(||)0()0(|
1

,,,Re2

2
112

2
2

1
121146

26

2

1

2
21

2
2213

13

+





−+

+
−

+−
+

−=

+=





=

=

vDM

uuKukk
DkM

vJDuEIukk
DkJ

AzzzAzzAz

s

i
iii

s

i
iiiiiiii

iii

HHH

 (17) 

for )() , , , , , , , , , , ,( 212222121221211111 ADvuvuvuvuz T =  . 
Thus, the operator A is dissipative. 

Next, we show )(0 A , where )(A  is the resolvent 
set of the operator A. For any given ,ˆ,ˆ,ˆ(ˆ

211111 uvuz =

Hvuvuv T )ˆ ,ˆ ,ˆ ,ˆ ,ˆ,ˆ,ˆ,ˆ,ˆ
212222121221  , we find a solution 

)() , , , ,,,,,,,,( 212222121221211111 ADvuvuvuvuz T =   of the 
equation zAz ˆ= . Eliminating iv1 , iv2 , i , and   in this 
equation, we obtain the following: 
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
















−=−+

−=−

=−

===

−=−−

−=−





=

=

.(0)ˆˆ)}0()0({(0)

,(0)ˆˆ)0( (0)

 ,ˆ)}()({

0,)(  ),()(  ),0()0(

  ),(ˆ)()}()({

  ),(ˆ)}()({

112

2

1
12114

21221

2

1
12

212111211

2212

112

uDuuKuk

uDuEIuk

mluluK

lululuuu

xvxuEIxuxuK

xvxuxuK

i
iii

iiiiiii

i
iii

i

iiiiiiiiiii

iiiiiiii











 (18) 

Integrating the first equation of (18) and substituting it into 
the second equation of (18) leads to  

,
2

               

d)(ˆ)(d)(ˆ)(
2

)(

32
21

0 20 1
2

2

iiii

i

i

x

ii

i

ix

ii

i

i
ii

cxcx
EI

c

ssvsx
EI

ssvsx
EI

xu
ii

+++

−+−−= 


 (19) 

where the coefficients 3 ,2 ,1 ,2 ,1 , == jic ji  are constant, de-
termined by the boundary conditions. Further, integrating 
the first equation of (18) twice, and then using (19) in the 
obtained equation yields 

,
2

            

6
d)(ˆ)(            

d)(ˆ)(
2

d)(ˆ)(
6

)(

43
22

311

0 1

0 2
2

0 1
3

1

iiii
i

i

i

i
i

i

ix

ii

i

i

x

ii

i

ix

ii

i

i
ii

cxcx
c

x
EI

c
x

K

c
ssvsx

K

ssvsx
EI

ssvsx
EI

xu

i

ii

+++

+−−+

−+−−=









 (20) 

where ic4  is constant. Substituting these solutions into the 
boundary conditions, we obtain the matrix form relation: 

fccccccccM T =],,,,,,,[ 4232221241312111 , where 88CM  is a 
matrix, and 18Cf  is a vector. A simple calculation 
shows 0)}3/()({det 2112112112114

2 +++−= EIEIlkkEIEIkkklM , 
and thus the coefficients ,4, ,1 ,2 ,1 , == jic ji  can be 
uniquely determined. The remaining unknowns, iv1 , iv2 , 

i , and   can be found using iu1  and iu2 . Thus, we ob-
tain )(0 A . 

As the operator A is dissipative and )(0 A , the opera-
tor A generates a C0-semigroup of contractions from the 
Lumer-Phillips theorem (Liu & Zheng, 1999). Finally, we 
obtain the compactness of the operator A-1 as a direct con-
sequence of Sobolev imbedding (Pazy, 1983).       □ 

 
Let )(tS  be a C0-semigroup of contractions generated 

by the operator A. Lemma 1 means that the closed-loop 
system (16) has a unique classical solution for )(0 ADz  . 
In addition, the system (16) has a unique mild solution for 

Hz 0 , which is the solution of the integral equation 

0
0

d)()( zsszAtz
t

+=   (Engel & Nagel, 2000). Here, note 
that the mild solution becomes the classical solution if the 
operator A generates a differentiable C0-semigroup (Pazy, 
1983; Luo, Guo, & Morgul, 1999). To check the differenti-
ability of the semigroup, a spectral analysis of the operator 
A is required (Pazy, 1983; Liu & Zheng, 1999). We leave 
the spectral analysis to show that the mild solution of the 
operator A becomes the classical solution for future work. 
If the closed-loop operator A under the boundary control-
lers (8) and (9) cannot generate a differentiable C0-
semigroup, we will propose a boundary controller so that 

the close-loop operator A generates a differentiable C0-
semigroup. 

4. Stability 

4.1. Exponential stability 

We investigate the exponential stability of the closed-
loop system (16). Although there are several powerful ap-
proaches for investigating exponential stability, such as the 
Lyapunov functional method and Riesz basis approach, we 
use the frequency domain method because the calculations 
are simple. To prove the exponential stability of a C0-
semigroup of contractions in a Hilbert space, we need to 
show the following two facts (Liu & Zheng, 1999): 

(i)  ,R:}R: {)( iiA =   (21) 

(ii)  .)( lim 1

||
− −

→ H
Ai


 (22) 

In the following, we show fact (i) in Lemma 2, and (ii) in 
Lemma 3. 
 
 
Lemma 2: For the operator A, (21) holds. 

 
Proof: We have shown that the spectrum σ(A) of the opera-
tor A consists only of the isolated eigenvalues in Lemma 1. 
Thus, to prove (21), we need to show that there are no ei-
genvalues on the imaginary axis. 

Let is =  and ,,,,,,,,,( 54232221241312111  =

)(),, 76261 ADT   be an eigenvalue and the corresponding 
eigenfunction of the operator A, respectively, where R . 
Now, let us consider the eigenvalue problem  sA = . 
Noting the fact )(0 A  in Lemma 1, we can obtain 

0,Re =
H

A  , which means the following from (17): 









=====−

=−+
=

.0)0()0(  ,0)0()0(

  ,0)}0()0({)0(

76214331

2

1
13114





iiiiii

i
iii

EIk

Kk
 (23) 

Eliminating the elements of other than i1  and i3  in the 
equation,  sA =  leads to: 









=+=

====

=+−==−

.0)0()0(  ),()(

,0)(  ,0)0()0()0(

 ,)(  ,0)(

1221111211

3331

3
2

3311
2

31







KKll

l

sEIKsK

iiii

iiiiiiiiiiii

(24) 

Solving the first, second, and third equations in (24) gives 















−
−

=

−−

−
−

=

 ,coshcosh)(

 ,sinh)(                                            

sinh)(
)(

)(

][

]

[

21

21

3

212

121

2121

1

iiii

i

iii

xx
cd

x

xb

xb
d

x













 (25) 

where ii Ksa /2= , iii EIKsb /)( 2 +=  , and ii EIKc /−= . 
Further, 1  and 2  are roots of 0)(2 =+++− abcba  , 
and we can show that 21    using the same procedure as 
in Han and Xu (2009). The constant d  is determined by 
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the remaining boundary conditions. Now, the solutions 
(25) with the boundary condition 0)(3 = li  leads to 

031 == ii  , which means 0= . This contradicts the fact 
that   is an eigenfunction, and thus the proof is completed.
          □ 

 
 

Lemma 3: For the operator A, (22) holds. 
 

Proof: According to the contradiction argument method 
(Liu and Zheng, 1999), if (22) is false, then there exists a 
sequence Rn  with →n , and a sequence )(ADzn   
with 1=

Hnz  such that 

,in     0:)( HzAi nnn →=−   (26) 

where , , , , , , , , , ,( 12222121221211111 nnnnnnnnnnn vuvuvuvuz =
T

nn ) ,2  , ,,,,,,,,,( 54232221241312111 nnnnnnnnnn  =
T

nnn ),, 76261  . Here, (26) means the following: 

,/)(    , 2121111 iniininiinninininn uuKvivui  =−+=−  (27) 

,/                                                       

/)(  ,

42

122322

iniini

iininiinninininn

uEI

uuKvivui





=−

−+=−
 (28) 

,/)}()({ 5

2

1
12 n

i
inininn mluluKi  =−−

=

 (29) 

,)0()0()0( 622121 ininiiniiniinn uEIvDuki  =+−−  (30) 

.)}0()0({)0()0( 7

2

1
12112114 n

i
inininnnn uuKvDuki  =−−−− 

=

 (31) 

We show the contradictions of 1=
Hnz , i.e., 0→

Hnz . For 
clarity, we divide the proof into four steps. 

(1st step) We derive the required estimations for the 
proof. From the fact that 0→n  in H, we obtain the fol-
lowing: 









→→→

→→→−

→→→

  ,0  ,0  ,0 

  ,0)0(  ,0)0(  ,0 

  ,0  ,0  ,0 

756

3113

342

2

222

nnin

ininLinin

LinLinLin







 (32) 

where  =
l

L
x

0

22
d||  2 . In addition, the estimate 

),,0(),0(),(for     ,),(),( 11
21

2

121

2

221 lHlHuuuuuu iiiiii    (33) 

and (32) gives 

,0  ,0  ,0 222 311 →→→
LinLinLin   (34) 

where  













+++=

+

+−+=

,),(2

,)0(
2

                                                                   

)0(),(2

2

2

2

2

2

1

2

1

2

221

2

1
4

2

21

2

12

2

2

2

121

2222

22

LiLiLiLiii

i

iiLiiiLiiii

uuuuuu

u
k

ukuuKuEIuu

 (35) 

  is a positive constant, (see Appendix A for proof of es-
timate (33)). Note that, from the equation 

 +=
l

ininin ssl
0 111 )0(d)()(  , the Cauchy-Schwarz inequality, 

(32), and (34), and the inequality 

,C,for     ),|||(|2|)||(||| 2222 +++ babababa  (36) 

we obtain  

.0|)(| 1 →lin  (37) 

On the other hand, we obtain 0,)(Re →−
Hnnn zzAi  

from (26). This, with the boundary conditions in (15), 
means 













→→→→

→−+

→−


=

.0  ,0 ,0)0(  ,0)0( 

  ,0)}0()0({)0( 

 ,0)0()0( 

12

2

1
12114

221

||

nininin

i
ininin

iniini

vv

uuKuk

uEIuk



 (38) 

Finally, from the first equations in (27) and (28), (32) 
and (38), we have 









→→

→→→→


=

.0)0(  ,0)0( 

,0)0(  ,0)0(  ,0)0(  ,0)0( 

2

1
12

2211

i
iniin

ininnininn

uKu

uuuu 

(39) 

(2nd step) Combining the two equations in (27) gives 

./)( 21121
2

ininniininiinn iuuKu  −−=−−  (40) 

Multiplying (40) by inii ulx 1)( − , and integrating it yields 

.d))((                                    

d))}(({

0 121

0 1121
2





−+−=

−−−

l

iiniininni

l

iiniininiinni

xulxi

xulxuuKu




 (41) 

Using integration by parts, (39), and the Cauchy-Schwarz 
inequality, the right-hand side of (41) can be estimated as  

,}{           

d))((

22222 1221111

0 121

LinLinLinnLinLin

l

iiniininni

uCuC

xulxi

++

−+− 



 (42) 

where 1C  and 2C  are positive constants. Here note that 

21 Linnu  is bounded from the first equation in (27), (34), 

1=
Hnz , and the inequality (36). In addition, we obtain the 

boundedness of 21 Linu  from (31) and 1=
Hnz . Thus, from 

(41), (32), and (34), we obtain  

.0d))}(({
0 1121

2 →−−−
l

iiniininiinni xulxuuKu  (43) 

Here, a simple calculation using the integration by parts 
and (39) leads to 

.0|)0(|                  

d)(Re2             

d))}(({Re2

2

1
2

1

0 12

2

1

0 1121
2

2

2

→−+

−−−=

−−−





Liniini

i

l

ininiiLinni

l

iiniininiinni

uKulK

xuulxKu

xulxuuKu





 (44) 

Summarizing (44) for 1=i , and 2 , and using (39) gives 

.0                                                 

d)(Re2

2

1

2

1

2

1
0 12

2

1

2

1

2

2

→−

−−−



 

=

==

i
Lini

i
i

l

ininii
i

Linni

uK

xuulxKu

 (45) 
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Similarly, combining the two equations in (28), multi-
plying the obtained equation by inii ulx 2)( − , and integrat-
ing it, produces a similar calculation  

.0                                                           

d)(Re2)
1

(

2

1

2

2

2

1
0 21

2

1

2

22

2

2

→−

−+−−



 

=

==

i
Lini

i
i

l

ininii
i

Linn

n

i

uEI

xuulxKu




 (46) 

Taking the sum of (45) and (46) leads to 

.0}                                                         

)
1

({

2

2

2

22

2

1

2

1

2

1

2

222

→+

−++
=

Lini

Linn

n

iLiniLinni
i

uEI

uuKu 



 (47) 

Here, each coefficient is positive, and thus we obtain 

.0  ,0  ,0  ,0 2222 2211 →→→→
LinLinnLinLinn uuuu   (48) 

In addition, from the first equations in (27) and (28), (34), 
and (48), we obtain 

.0  ,0 22 21 →→
LinLin vv  (49) 

(3rd step) We multiply the first equation in (27) by 

ini v1 , and the first equation in (28) by ini v2 . Then, the 
sum of the obtained two equations gives 

,0dd
0 220 11 →+ 
l

iininni

l

iininni xvuixvui   (50) 

using the Cauchy-Schwarz inequality, (34), and (49). Simi-
larly, we multiply the second equation in (27) by ini u1 , 
and the second equation in (28) by ini u2 . The sum of the 
two obtained equations then gives 

,0dd)(                   

dd)(d

0 220 212

0 220 1120 11

→−−+

+−+




l

iinini

l

iininini

l

iininni

l

iininini

l

iininni

xuuEIxuuuK

xuvixuuuKxuvi 
(51) 

using (33), 1=
Hnz , and (32). Note here that we can easily 

obtain 0|)(| →lu jin  for 2 ,1=j , from the same procedure as 
derived in (37). Using this estimate, the integration by 
parts, and (39), (51) can be rewritten as follows 

.0                                                             

dd

2

2

0 22

2

120 11

2

2

→+

+−+ 

Lini

l

iininniLinini

l

iininni

uEI

xuviuuKxuvi 
 (52) 

Finally, by taking the sum of (50) and (52), and by tak-
ing the real parts of the obtained estimate, we obtain the 
following 

.0    ,0 22 212 →→−
LinLinin uuu  (53) 

(4th step) Multiplying (40) by inii ux 1
 , and integrating it 

yields 

,0d)}({
0 1121

2 →−−
l

iiniininiinni xuxuuKu  (54) 

using the same procedure as in the 2nd step and (37). Tak-
ing the real parts of (54), the calculation using the integra-
tion by parts, and (39) leads to 

.0)(dRe2)(
2

10 12

2

1 →+−  lulKxuuxKlul ini

l

iininiiinni   (55) 

Noting that 
2

1

2

20 12 22dRe2
LiniLini

l

iininii ulKulKxuuxK + , (48), 
and (53), we obtain the following from (55):  

.0)(    ,0)( 11 →→ lulu ininn  (56) 

From the first equation in (27), (36), (37), and (56), we ob-
tain 0|)(| 2

1 →lv in , which means 

,0 →n  (57) 

from the boundary condition in (15). 
Finally, from (49), (53), (39), (38), and (57), we obtain 

0→
Hnz , and this is the contradiction of 1=

Hnz . Thus, 
the claim is proved.         □ 

 
Lemmas 2 and 3 summarize the following theorem for 

the exponential stability of the closed-loop system. 
 
 

Theorem 1: The closed-loop system (16) is exponentially 
stable. 

 
Proof: From Lemmas 2 and 3, and the frequency domain 
method (Liu & Zheng, 1999), the closed-loop system (16) 
is exponentially stable.          □ 

 

4.2. Boundedness to the disturbance at the grasped object 

We now investigate the boundedness of the closed-loop 
system with respect to the disturbance at the grasped object. 
This situation is considered, for example, when there is 
disturbance at the grasped object because the object makes 
contact with the environment during transportation, and 
some contact force arises at the object. Here, we assume 
that the disturbance d  acts in the direction of the Y-axis 
(Fig. 1), and that d  satisfies the following conditions: 

Kd ||  for a positive constant K , and 1Cd . 
By considering disturbance d  at the object, the 6th 

equation in (11) becomes 

.)},(),({)(
2

1
12 dtlytlytm

i
ii +−=

=

  (58) 

In this case, the closed-loop system (16) can be rewritten 
as follows: 

,)0(    ,)()( 0zzFtAztz =+=  (59) 

where TmdF )0 ,0 ,0 ,/ ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0(= , and the operator 
A is the infinitesimal generator of an exponential stable C0-
semigroup )(tT ; that is, )(tT  satisfies )exp()( tMtT

H
−  

for some positive constants M  and  . Here, it is easy to 
show that F  is continuously differentiable on ],0[ T  for all 

],0[ Tt  because 1Cd . Thus, the closed-loop system 
(59) has a unique classical solution for )(0 ADz   and a 
unique mild solution for Hz 0  (Curtain & Zwart, 1995) 

.d)()()()(
00  −+=
t

ssFstTztTtz  (60) 
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Now, by taking the norm in (60), we obtain 

,)e1(e)( 0 K
KM

zMtz t

H

t

H
−+ −− 


 (61) 

where K  is a positive constant. Therefore, we found that 
the solution of the closed-loop system is bounded when the 
disturbance acts at the grasped object, and the proposed 
boundary controllers (8) and (9) are robust to such disturb-
ance. Here, note that we could not obtain the relationship 
between the upper bound K  and the gains in the control 
laws even if we used the other approach described in the 
next subsection. However, we carry out numerical simula-
tions and investigate the relationships between the gains 
and the performance of the controller on disturbance re-
sponse in Section 5. These results give guidance as to how 
to adjust the gains to improve the performance on disturb-
ance response. 

4.3. Boundedness to the disturbance at the inputs 

On the other hand, it is important to investigate the re-
sponse of the disturbance at the inputs from a practical 
point of view. Let di, i = 1, 2, and d3 be the disturbances 
acting at the input )(ti  and )(tF , respectively. Further, 
we assume that Kdi ||  for a positive constant K, and 

1Cid  for i = 1, 2, 3. 
In this case, the 5th and 6th equation in (11) become 
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It is clear that the solution is bounded with respect to the 
disturbances at the inputs di, i = 1, 2, and d3 using the same 
procedures described in section 4.2. Now, we investigate 
the influences of the disturbances to the system. 

Let us consider the energy of the system 2||||:)( HztE =  . It 
is easy to see that the time derivative of )(tE  becomes the 
following from (17): 
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By integrating both sides with respect to t, the right-hand 
side is estimated as follows: 
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Here, we used the inequality  /2
22

baba +  for 
C , ba , +R , to obtain the first inequality. Combining 

(63) and (64), and setting }/,max{ 13 iiii DJk  and 
}/,max{ 263 DMk s  leads to the following estimation: 
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where 
2

0)0(
H

zE = . From this estimation, we obtain the 
following relationships between the disturbances and the 
gains in the control laws: The effect of the disturbance di, i 
= 1, 2, on the 2||||)( HztE =  can be made small by setting a 
small k3i or large D1i (i.e., a large k2i and small k1i). In addi-
tion, the effect of disturbance d3 on the 2||||)( HztE =  can be 
made small by setting a small k6 or large D2 (i.e., a large k5 
and small k4). In either case, if we set the gains as stated, 
the terms about the damping become dominant in the con-
troller, and thus the response of the system becomes slow.  

5. Numerical simulations 

To evaluate the proposed controller, we carried out two 
numerical simulations. The first is the step responses of the 
desired grasping force, and the other is the disturbance re-
sponse. In each case, the numerical simulation is conduct-
ed by the finite difference method, and we set 01.0= ix  
and 004.0=t  for the mesh of the spatial variable ix  and 
the time variable t , respectively. In addition, to avoid nu-
merical errors, we used the following small parameters: 

016.01 = , 018.02 = , 025.01 = , 028.02 = , 
12121 ===== lKKEIEI , 05.0=M , 025.021 == mm , 

5.1=sM , and 121 == JJ .  

5.1. Step responses  

As the first simulation, we investigated the step respons-
es of the desired grasping force 5.01 −=d , 5.01 =d , and 

6.0=ds . Note here that 5.01 −=d  means that flexible 
arm 1 pushed the object with a force of 5.0  N. In addition, 
we compared the proposed controller with the PD control-
ler:  
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),,0()( })({)( 21 tEItktkt diiiidiiii  −−−−=   (66) 

),( })({)( 54 tskstsktF d −−−=  (67) 

which cannot exponentially stabilize the system because of 
the result of the compact perturbation (Gibson, 1980; Rao, 
1994). As the PD controller, we set the feedback gains as 
follows: 211 =k , 7.121 =k , 1112 05.1 kk = , 2122 05.1 kk = , 

 
(a) the transverse displacement ),( 11 txw  

 
(b) the rotation of the cross section ),( 11 tx  

 
(c) the angle of the motor )(1 t  

 
(d) the position of the slider )(ts  

 
(e) the grasping force )(1 t  

Fig. 2. Step response of the proposed controller 

 
(a) the transverse displacement ),( 11 txw  

 
(b) the rotation of the cross section ),( 11 tx  

 
(c) the angle of the motor )(1 t  

 
(d) the position of the slider )(ts  

 
(e) the grasping force )(1 t  

Fig. 3. Step response of the PD controller 
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44 =k , and 3.35 =k . On the other hand, we set the fol-
lowing feedback gains for the proposed controller: 211 =k , 

7.121 =k , 1112 05.1 kk = , 2122 05.1 kk = , 44 =k , 3.35 =k , 
8.031 =k , 3132 05.1 kk = , and 8.06 =k . Figs. 2 and 3 

show the step response of the proposed controller and the 
PD controller, respectively. In particular, as an example, 
we show the responses of ),( 11 txw , ),( 11 tx , )(1 t , s(t), 
and )(1 t  in each figure. In the figures, the dotted line 
shows the desired value of the corresponding value. From 
the simulation results, we found that the ),( txw ii , 

),( txii , )(ti , s(t), and )(ti  converged to the desired 
value. Here, note that, not counting the sign (plus or mi-
nus) of the value, the responses of ),( 22 txw , ),( 22 tx , 

)(2 t , and )(2 t  were almost the same as the responses 
of ),( 11 txw , ),( 11 tx , )(1 t , and )(1 t , respectively. On 
the other hand, the responses of the PD controller left some 
vibrations. Thus, we consider the proposed controller 
worked well in the step response, and had a higher perfor-
mance than the PD controller, which could not exponen-
tially stabilize the system.  

5.2. Disturbance responses  

In the next simulation, we confirmed the boundedness of 
the closed-loop system under the disturbance at the 
grasped object described in section 4.2. The same feedback 
gains and physical parameters as in the case of the step re-
sponses were used in this simulation. As the disturbance, 
the settings were that 1.0=d  acted 1 s after the start of the 
simulation:  








=

).1(  1.0

)10(     0

t

t
d  (68) 

As an example, we show the response of )(1 t  in Fig. 4, 
where we considered the disturbance response of the pro-
posed controller of 5.01 −=d , 5.01 =d , and 6.0=ds . In 
Fig. 4, (a) shows the response of d, and (b) shows the re-
sponse of )(1 t  with the disturbance. Note that Fig. 2 (e) is 
the response of )(1 t  without the disturbance. In Fig. 4 (b), 
the dotted line shows the desired grasping force 1d . From 
Fig. 2 (e), the response of )(1 t  without the disturbance 
had no steady error; on the other hand, from Fig. 4 (b), it 
may be seen that the response of )(1 t  with the disturbance 
had a steady error, but did not diverge, and we could con-
firm the boundedness of )(1 t . Of course, we confirmed 
the boundedness of the other states of the system, and 
found that the proposed controller was robust with respect 
to the disturbance at the grasped object.  

Next, we investigated the relationship between the feed-
back gains and performance on disturbance response. The 
solution of the closed-loop system is estimated as (61) 
when the disturbance acts at the grasped object. The first 
term of the right-hand side in (61) corresponds to the initial 
response, and the second term to the disturbance response. 
To emphasize the disturbance response, we carried out 
simulations using the same physical parameters and the 
following disturbance:  

 
(a) Energies in case (i) 

 
(b) Energies in case (ii) 

 
(c) Energies in case (iii) 

Fig. 5. Influences of gains in the disturbance response 

 
(a) disturbance 

 

(b) the grasping force )(1 t  with the disturbance. The response of 

)(1 t  without the disturbance is Fig. 2(e). 

Fig. 4. Disturbance response of the proposed controller 
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
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As the feedback gains of the proposed controller, we set 
0.21 =ik , 7.12 =ik , and 8.03 =ik , for 2 ,1=i , 0.44 =k , 
3.35 =k , and 8.06 =k , and we show the simulation results 

for the following three cases: case (i) 11k  was changed as 
follows: 8.0 ,2.1 ,6.1 ,0.211 =k , while other gains were not 
changed; case (ii) 21k  was changed as follows: 

0.3 ,5.2 ,0.2 ,7.121 =k  while other gains were held steady; 
and case (iii) 31k  was changed as follows: 

1.0 ,4.0 ,6.0 ,8.031 =k , while other gains were not changed. 
Here the changing ranges of the gains were set so that 

01 iD  and 02 D  were satisfied. 
Figs. 5(a), (b), and (c) show the response of the energy 

2||||)( HztE =  in cases (i), (ii), and (iii), respectively. From 
Fig. 5(a), it may be seen that the steady error caused by the 
disturbance was reduced when 11k  was large, but the up-
per bound of the response increased. Fig. 5(b) shows that 
the upper bound was small when 21k  was large. However, 
note that we could not set 21k  to be too large, because 

)(ti
  was usually obtained by the numerical difference. On 

the other hand, the steady error did not change as 21k  was 
changed. Fig. 5(c) shows that the upper bound became 
small when 31k  was small, but became large when 31k  
was too small, because the small 31k  led to large vibration 
in the response. On the other hand, the steady error did not 
change as 31k  was changed. Here, note that we obtained 
the same results for the cases in which the other gains were 
changed; that is, 12k  and 4k  had the same performance as 

11k ; 22k  and 5k  had the same performance as 21k ; 32k  
and 6k  had the same performance as 31k . These results 
give the following guidance as to how to adjust the gains to 
the disturbance at the grasped object: to obtain a small 
steady error, large ik1  and 4k  are required while 01 iD  
and 02 D are maintained. To obtain a small upper bound, 
we need a large ik2  and 5k  or small ik3  and 6k  while 
maintaining 01 iD  and 02 D , and while noting the 
vibration of the response.  

6. Conclusions 

In this paper, we considered a cooperative control prob-
lem by two one-link flexible Timoshenko arms. To solve 
the cooperative control problem, we proposed a boundary 
cooperative controller based on the hybrid PDE-ODE 
model. The proposed controller has a simple structure, and 
is thus easy to implement. Further, to obtain exponential 
stability without the physically impossible condition, we 
set the design so that the control actuator consisted of the 
motor and slider, and the effects of force and torque acted 
at each flexible beam. The exponential stability of the 
closed-loop system was proven by the frequency domain 
method. In addition, we investigated the robustness of the 
proposed controller with respect to the disturbance at the 
grasped object and the control input. Finally, in numerical 
simulations, we confirmed that the proposed controller 
works well for the step and disturbance responses, and the 
controller has good performance. 

In this paper, we considered a fixed contact model be-
tween the flexible arm and grasped object. To make the 
controller more practical, other contact modes, including 
rolling contact, are desirable, and we plan to propose such 
a controller for the cooperative control problem using flex-
ible Timoshenko arms in future research. 

Acknowledgements 

This paper was supported in part by JSPS KAKENHI 
Grand Number 23700143 and by the Major International 
Joint Research Project of NSFC under grant no 
61520106010. 

References 

Almeida Júnior, D.S., Santos, M.L., & Muñoz Rivera, J.E. (2013). 
Stability to weakly dissipative Timoshenko systems, Mathe-
matical Methods in the Applied Sciences, 36(14), 1965–1976. 

d'Andréa-Novel, B., Boustany, F., Conrad, F., & Rao, B.P. (1994). 
Feedback stabilization of a hybrid PDE-ODE system: Applica-
tion to an overhead crane, Math. Control Signals Syst., 7(1), 1-
22. 

Choi, J.Y., Hong, K.-S., & Yang, K.-J. (2004). Exponential stabi-
lization of an axially moving tensioned strip by passive damp-
ing and boundary control. J. Vib. Control, 10(5), 661-682. 

Curtain, R.F., & Zwart, H.J. (1995). An introduction to infinite-
dimensional linear systems theory. Springer-Verlag New York.  

Curtain, R., & Zwart, H. (2016). Stabilization of collocated sys-
tems by nonlinear boundary control. Systems & Control Let-
ters, 96, 11-14. 

Dou, H., & Wang, S. (2014). A boundary control for motion syn-
chronization of a two-manipulator system with a flexible beam, 
Automatica, 50(12), 3088–3099. 

Endo, T., Matsuno, F., & Kawasaki, H. (2009). Simple boundary 
cooperative control of two one-link flexible arms for grasping, 
IEEE Trans. Autom. Control., 54(10), 2470–2476. 

Endo, T., Matsuno, F., & Kawasaki, H. (2014). Force Control and 
Exponential Stabilization of One-Link Flexible Arm, Interna-
tional Journal of Control, 87(9), 1794-1807. 

Endo, T., Sasaki, M., & Matsuno, F. (2017). Contact-Force Con-
trol of a Flexible Timoshenko Arm, IEEE Trans. Autom. Con-
trol., 62(2), 1004-1009. 

Engel, K.-J., & Nagel, R. (2000). One-Parameter Semigroups for 
Linear Evolution Equations. Springer-Verlag New York.  

Gibson, J.S. (1980). A note on stabilization of infinite dimension-
al linear oscillators by compact linear feedback, SIAM J. of 
Control and Optimization, 18(3), 311–316. 

Grobbelaar-Van Dalsen, M. (2010). Uniform stability for the Ti-
moshenko beam with tip load, J. Math. Anal. Appl., 361(2), 
392–400. 

Han, S.M., Benaroya, H., & Wei, T. (1999). Dynamics of trans-
versely vibrating beams using four engineering theories. J. 
Sound Vib., 225(5), 935–988. 

Han, Z.J., & Xu, G.Q. (2009). Stabilization and Riesz Basis 
Property of Two Serially Connected Timoshenko Beams Sys-
tem. Z. Angew. Math. Mech., 89(12), 962–980. 

Hong, K.-S. (1997). Asymptotic behavior analysis of a coupled 
time-varying system: Application to adaptive systems. IEEE 
Trans. Autom. Control, 42(12), 1693-1697. 

He, W., Ge, S.S., How, B.V.E., Choo, Y.S., & Hong, K.-S. 
(2011). Robust adaptive boundary control of a flexible marine 
riser with vessel dynamics. Automatica, 47(4), 722-732. 

He, W., Zhang, S., & Ge, S.S. (2013). Boundary output-feedback 
stabilization of a Timoshenko beam using disturbance observ-
er, IEEE Trans. Ind. Electron., 60(11), 5186–5194. 

He, W., Yang, C., Meng, T., & Sun, C. (2016). Distributed con-
trol of a class of flexible mechanical systems with global con-
straint. International Journal of Control, 89(1), 128-139. 



 12  

Hokayem, P.F., & Spong, M.W. (2006). Bilateral teleoperation: 
An historical survey, Automatica, 42(12), 2035–2057. 

Huang, T.C. (1961). The effect of rotary inertial and of shear de-
formation on the frequency and normal mode equations of uni-
form beams with simple end conditions. J. Appl. Mech., 28(4), 
579–584. 

Krstic, M., & Smyshlyaev, A. (2008). Boundary Control of PDEs. 
SIAM. 

Littman, W., & Markus, L. (1988). Stabilization of a hybrid sys-
tem of elasticity by feedback boundary damping. Annu. Mat. 
Pura Appl., 152(1), 281-330. 

Liu, Z., & Zheng, S. (1999). Semigroups associated with dissipa-
tive systems. Chapman and Hall/CRC.  

Luo, Z.H. (1993). Direct strain feedback control of flexible arms: 
New theoretical and experimental results, IEEE Trans. Autom. 
Control., 38(11), 1610–1622. 

Luo, Z.-H., Guo, B.-Z., & Morgul, O. (1999). Stability and Stabi-
lization of Infinite Dimensional Systems with Applications. 
Springer-Verlag London Limited. 

Luo, Z.H., Kitamura, N., & Guo, B.Z. (1995). Shear force feed-
back control of flexible robot arms, IEEE Trans. Robot. Auto-
mat., 11(5), 760–765. 

Matsuno, F., & Hayashi, A. (2000). PDS cooperative control of 
two one-link flexible arms, Proc. of the 2000 IEEE Int. Conf. 
Robotics & Automation, San Francisco, CA (pp.1490–1495). 

Matsuno, F., Ohno, T., & Orlov, Y.V. (2002). Proportional deriv-
ative and strain (PDS) boundary feedback control of a flexible 
space structure with a closed-loop chain mechanism. Automat-
ica, 38(7), 1201-1211. 

Morgül, Ö. (1992). Dynamic boundary control of the Timoshen-
ko beam. Automatica, 28(6), 1255–1260. 

Morita, Y., Matsuno, F., Ikeda, M., Ukai, H., & Kando, H. (2003). 
PDS cooperative control of two one-link flexible arms consid-
ering bending and torsional deformation, Proc. of the 29th Ann. 
Conf. of the IEEE Industrial Electronics Society, (pp.466–471). 

Muñoz Rivera, J.E., & Ávila, A.I. (2015). Rates of decay to non 
homogeneous Timoshenko model with tip body, J. Differen-
tial Equations, 258(10), 3468–3490. 

Murray, R.M., Li, Z., & Sastry, S.S. (1994). A Mathematical In-
troduction to Robotic Manipulation. CRC Press LLC. 

Nguyen, Q.C., & Hong, K.-S. (2010). Asymptotic stabilization of 
a nonlinear axially moving string by adaptive boundary con-
trol. J. Sound Vib., 329(22), 4588-4603. 

Pazy, A. (1983). Semigroups of linear operators and applications 
to partial differential equations. Springer-Verlag New York.  

Rao, B. (1994). Recent progress in non-uniform and uniform sta-
bilization of the SCOLE model with boundary feedbacks. In J. 
P. Zolésio (ed.), Bounday control and variation (pp.357–365), 
Marcel Dekker New York. 

Slemrod, M., (1989). Feedback stabilization of a linear control 
system in Hilbert space with an a priori bounded control, Math. 
Control Signals Syst., 2(3), 265-285. 

Soufyane, A., & Wehbe, A. (2003). Uniform stabilization for the 
Timoshenko beam by a locally distributed damping, Electron. 
J. Differential Equations, 29, 1–14. 

Taylor, S.W., & Yau, S.C.B. (2003). Boundary control of a rotat-
ing Timoshenko beam, J. ANZIAM, 44, E143–E184. 

Yang, K.-J., Hong, K.-S., & Matsuno, F. (2005). Boundary con-
trol of a translating tensioned beam with varying speed. 
IEEE/ASME Trans. Mechatronics, 10(5), 594-597. 

Yoshikawa, T. (2000). Force control of robot manipulators. Proc. 
of the 2000 IEEE Int. Conf. Robotics & Automation, San Fran-
cisco, CA (pp.220–226). 

Zhang, F., Dawson, D.M., de Queiroz, M.S., & Vedagarbha, P. 
(1997). Boundary control of the Timoshenko beam with free-
end mass/inertial dynamics. Proc. of the 36th IEEE Conf. on 
Decision and Control, San Diego, CA (pp.245–250). 

 

Appendix A. Proof of estimate (33) 

We prove estimate (33). From the equation 
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)0(d)()( , the Cauchy-Schwartz inequality, 
and (36), we obtain 
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where 1  is a positive constant. On the other hand, inte-
grating the equation 
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where }2/,4/min{ 12 ii kEI= , and }4/,4/)/11(min{ 43 kKi  −= . 

Here, if we set 1)/(21 12 +  iK , we can obtain the posi-

tive constant 4  satisfying 
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Here, (A.4) means the estimate (33). 
 


