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Abstract

Sign-Perturbed Sums (SPS) is a system identification method that constructs non-asymptotic confidence regions for the
parameters of linear regression models under mild statistical assumptions. One of its main features is that, for any finite
number of data points and any user-specified probability, the constructed confidence region contains the true system parameter
with exactly the user-chosen probability. In this paper we examine the size and the shape of the confidence regions, and we
show that the regions are strongly consistent, i.e., they almost surely shrink around the true parameter as the number of data
points increases. Furthermore, the confidence region is contained in a marginally inflated version of the confidence ellipsoid
obtained from the asymptotic system identification theory. The results are also illustrated by a simulation example.
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1 Introduction

Models of dynamical systems are of widespread use in
many fields of science and engineering. Such models are
often obtained using system identification techniques,
that is, the models are estimated from observed data.
There will always be uncertainty associated with mod-
els of dynamical systems, and an important problem is
the uncertainty evaluation. For example, if the model is
going to be used for design, the model uncertainty will
be one of the factors which determine how much robust-
ness needs to be built into the design. A common way
to characterize the uncertainty in the model parameter
is to use confidence regions, and in earlier papers (Csáji
et al., 2012, 2015), we introduced the Sign-Perturbed
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Sums (SPS) method for the construction of confidence
regions for the parameters of linear regression models.
The main features of the SPS method are that it con-
structs confidence regions from a finite number of data
points and that the confidence regions contain the true
parameter with an exact user-chosen probability. This
is in contrast to asymptotic theory of system identifica-
tion, e.g. (Ljung, 1999), which delivers confidence ellip-
soids which are only guaranteed as the number of data
points tend to infinity. SPS has some similarities with the
Leave-out Sign-dominant Correlation Regions (LSCR)
method (Campi and Weyer, 2005; Dalai et al., 2007;
Campi et al., 2009; Campi and Weyer, 2010) which also
generates confidence regions based upon a finite number
of data points. However, unlike SPS, LSCR usually only
provides an upper bound on the probability that the true
parameter belong to the confidence region. Numerical
implementations and further developments in the vein
of LSCR and SPS are considered in (Kieffer and Wal-
ter, 2013a,b; Granichin, 2012; Schoukens et al., 2013;
Kolumbán et al., 2015), while other methods and stud-
ies of finite sample properties in system identification
can be found in (den Dekker et al., 2008) and (Dabbene
et al., 2014).

Though the main draw card of SPS are the finite sample
properties, the asymptotic properties are also of interest,
since any reasonable method for uncertainty evaluation
should deliver smaller and smaller confidence sets as the
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information about the system increases. Here, we anal-
yse the asymptotic properties of SPS and we show that

• SPS is strongly consistent (Theorem 2), i.e., its con-
fidence regions shrink around the true parameter
and, asymptotically, all parameter values different
from the true one will be excluded.

• The SPS confidence regions are contained in
marginally inflated versions of the confidence ellip-
soids obtained from the asymptotic system identi-
fication theory (Theorem 3), where the amount of
inflation needed is asymptotically vanishing.

A simulation example is also included which illustrates
the behaviour of the SPS confidence region as the num-
ber of data points and sign-perturbed sums increase.

A preliminary version of the consistency result was pre-
sented in (Csáji et al., 2014) where, however, stronger
assumptions were applied. While the practical use of the
SPS method is not affected by the results in this paper,
they may increase the users’ confidence in the method.

The paper is organized as follows. In Section 2 we intro-
duce the system setting and briefly summarise the SPS
algorithm. The asymptotic results are given in Section
3, and they are illustrated on a simulation example in
Section 4. The proofs can be found in the Appendices.

2 Setting

Here we briefly summarise the Sign-Perturbed Sums
(SPS) method. For more details, see (Csáji et al., 2015).
We consider linear regression models of the form

Yt , ϕT
t θ
∗ +Nt,

where Yt is the output, Nt is the noise, ϕt is the regres-
sor, θ∗ is the true parameter (constant), and t is the
time index. Yt and Nt are scalars, while ϕt and θ∗ are
d dimensional vectors. We consider a sample of size n
which consists of the regressors ϕ1, . . . , ϕn and the out-
puts Y1, . . . , Yn.

The assumptions on the noise and the regressors are

A1 {Nt} is a sequence of independent random variables.
Each Nt has a symmetric distribution about zero.

A2 The regressors {ϕt} are deterministic and

Rn ,
1

n

n∑
t=1

ϕtϕ
T
t

is non-singular.

Although it is assumed that {ϕt} are deterministic, the
results in this paper also hold for stochastic regressors
as long as they are independent of the noise sequence.

2.1 Main Idea of SPS

The least-squares estimate (LSE) of θ∗ is given by

θ̂n , arg min
θ∈Rd

n∑
t=1

(Yt − ϕT
t θ)

2,

which can be found by solving the normal equation, i.e.,

n∑
t=1

ϕt(Yt − ϕT
t θ) = 0.

The main building block of the SPS algorithm is, as
the name suggests, m − 1 sign-perturbed versions of

the normal equation (normalised by 1
nR
− 1

2
n ). The sign-

perturbed sums are defined as

Si(θ) = R
− 1

2
n

1

n

n∑
t=1

αi,tϕt(Yt − ϕT
t θ),

i = 1, . . . ,m− 1, and a reference sum is given by

S0(θ) = R
− 1

2
n

1

n

n∑
t=1

ϕt(Yt − ϕT
t θ).

Here, R
1
2
n is a matrix 1 that satisfies Rn = R

1
2
nR

1
2 T
n , and

{αi,t} are independent and identically distributed (i.i.d.)
random variables (independent of {Nt}) that take on the
values ±1 with probability 1/2 each.

The key observation is that for θ = θ∗ one has

S0(θ∗) = R
− 1

2
n

1

n

n∑
t=1

ϕtNt,

Si(θ
∗) = R

− 1
2

n
1

n

n∑
t=1

αi,tϕtNt

As Nt is an independent and symmetric sequence, there
is no reason why ‖S0(θ∗)‖2 should be bigger or smaller
than any other ‖Si(θ∗)‖2. This property is exploited in
the construction of the confidence regions where the val-
ues of θ for which ‖S0(θ)‖2 is among the q largest ones
are excluded. As stated in Theorem 1, the confidence

1 One such matrix R
1/2
n can be found from the Cholesky de-

composition of Rn. However, the equation Rn = R
1/2
n R

1/2T
n

admits more than one solution R
1/2
n , and any solution can

be used.
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Table 1

Pseudocode: SPS-Initialization

1. Given a (rational) confidence probability p ∈ (0, 1),

set integers m > q > 0 such that p = 1− q/m;

2. Calculate the outer product

Rn , 1
n

n∑
t=1

ϕtϕ
T
t ,

and find a factor R
1/2
n such that

R
1/2
n R

1/2T
n = Rn;

3. Generate n (m− 1) i.i.d. random signs {αi,t} with

P(αi,t = 1) = P(αi,t = −1) = 1
2 ,

for i ∈ {1, . . . ,m− 1} and t ∈ {1, . . . , n};
4. Generate a random permutation π of the set

{0, . . . ,m− 1}, where each of the m! possible

permutations has the same probability 1/(m!).

region has exact probability 1 − q/m of containing the
true system parameter. In (Csáji et al., 2015) it has also
been noted that when θ − θ∗ is “large”, ‖S0(θ)‖2 tends
to be the largest of the m functions, so that θ values far
away from θ∗ will be excluded from the confidence set.

2.2 Formal Construction of the SPS Confidence Region

The SPS algorithm consists of two parts. The initializa-
tion (Table 1) sets the main global parameters and gen-
erates the objects needed for the construction of the con-
fidence region. In the initialization, the user provides the
desired confidence probability p. The second part (Table
2) evaluates an indicator function, which determines if a
particular parameter θ belongs to the confidence region.

The random permutation π generated in the initialisa-
tion defines a strict total order�π which is used to break
ties in case two values ‖Si(θ)‖2 and ‖Sj(θ)‖2, i 6= j are
equal. Given m scalars {Zi}, i = 0, . . . ,m− 1, �π is

Zk �π Zj if and only if

(Zk > Zj ) or (Zk = Zj and π(k) > π(j) ) .

The p-level SPS confidence region is given by

Θ̂n , { θ : SPS-INDICATOR( θ ) = 1 } .

As it was shown in (Csáji et al., 2015), the confidence

region Θ̂n contains θ∗ with exact probability p as stated
in the next theorem.

Theorem 1 Assuming A1 and A2, the confidence prob-
ability of the constructed confidence region is exactly p,

P
(
θ∗ ∈ Θ̂n

)
= 1− q

m
= p.

Table 2

Pseudocode: SPS-Indicator ( θ )

1. For a given θ, compute the prediction errors

εt(θ) , Yt − ϕT
t θ,

for t ∈ {1, . . . , n};
2. Evaluate, for i ∈ {1, . . . ,m− 1}, functions

S0(θ) , R
− 1

2
n

1
n

n∑
t=1

ϕtεt(θ);

Si(θ) , R
− 1

2
n

1
n

n∑
t=1

αi,t ϕtεt(θ);

3. Order the scalars {‖Si(θ)‖2} according to �π;

4. Compute the rank R(θ) of ‖S0(θ)‖2 in the ordering,

where R(θ) = 1 if ‖S0(θ)‖2 is the smallest in the

ordering, R(θ) = 2 if ‖S0(θ)‖2 is the second

smallest, and so on.

5. Return 1 if R(θ) ≤ m− q, otherwise return 0.

Note that this probability is w.r.t. both the noises {Nt}
and the random signs {αi,t}, i.e., the probability is a

product measure. It is known that the LSE, θ̂n, has the

property that S0(θ̂n) = 0 (cf. the normal equation).
Hence, the LSE is always included in the SPS confidence
region (Csáji et al., 2015), provided that it is non-empty.
Moreover the confidence region is star convex having the
LSE as a star center, see again (Csáji et al., 2015).

3 Asymptotic Properties of SPS

In addition to the probability of containing the true pa-
rameter, another important aspect is the size and the
shape of the confidence regions. In this section we show
that, under some additional mild assumptions, as the
number of data points gets larger, the confidence regions
get smaller. Moreover, as both n and m tend to infinity,
the confidence regions are contained in marginally in-
flated versions of the confidence ellipsoids obtained from
using asymptotic system identification results.

3.1 Strong Consistency

Our first result shows that SPS is strongly consistent, in
the sense that the confidence sets shrink around the true
parameter as the sample size increases, and eventually
exclude any other parameters θ′ 6= θ∗.

The following additional assumptions are needed:

A3 (nonvanishing excitation)

lim inf
n→∞

λmin(Rn) = λ̄ > 0.

where λmin(·) denotes minimum eigenvalue.
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A4 (regressor growth rate restriction)

∞∑
t=1

‖ϕt‖4

t2
<∞.

A5 (noise variance growth rate restriction)

∞∑
t=1

(E[N2
t ])2

t2
<∞.

In the theorem below, Bε(θ
∗) denotes the Euclidean

norm-ball centred at θ∗ with radius ε > 0, i.e.

Bε(θ
∗) , { θ ∈ Rd : ‖ θ − θ∗‖ ≤ ε }.

Theorem 2 states that the confidence regions Θ̂n will
eventually be included in any given norm-ball centred at
the true parameter, θ∗.

Theorem 2 Assume A1, A2, A3, A4 and A5. Then, for
all ε > 0 almost surely (a.s) there exists an N̄ such that

Θ̂n ⊆ Bε(θ∗) for all n > N̄ .

The proof of Theorem 2 can be found in Appendix A.
The actual sample size N̄ for which the confidence region
will remain inside an ε-ball depends on the noise real-
ization, that is N̄ is stochastic and depends on a generic
element of the underlying probability space.

Note also that, for this asymptotic result to hold, the
noise terms can be nonstationary and their variances
can grow to infinity, as long as their growth-rate satisfies
Assumption A5. Also, the magnitude of the regressors
can grow without bound, as long as it does not grow too
fast, as controlled by Assumption A4.

3.2 Asymptotic Shape

Here we analyse the shape of the SPS confidence regions
when n and m tend to∞. Before we present our results,
the confidence ellipsoids based on the asymptotic sta-
tistical theory, also widespread in system identification,
are briefly reviewed, see (Ljung, 1999) for details.

3.2.1 Confidence ellipsoids of the asymptotic theory

Assuming that {Nt} are zero mean and i.i.d. with vari-

ance σ2, under mild conditions
√
n (θ̂n−θ∗) converges in

distribution to the Gaussian distribution with zero mean
and covariance matrix σ2R−1, where R = limn→∞Rn
assuming the limit exists. As a consequence, n

σ2 (θ̂n −
θ∗)TR (θ̂n − θ∗) converges in distribution to the χ2 dis-
tribution with dim(θ∗) = d degrees of freedom.

An approximate confidence region can be obtained by
replacing the matrix R with its estimate Rn,

Θ̃n ,

{
θ : (θ − θ̂n)TRn (θ − θ̂n) ≤ µσ2

n

}
,

where the probability that θ∗ is in the confidence region

Θ̃n is approximately p = Fχ2(µ), where Fχ2 is the cumu-
lative distribution function of the χ2 distribution with d
degrees of freedom. In the limit as n tends to infinity θ∗

is contained in the set Θ̃n with probability Fχ2(µ), and
this result also holds if σ2 is replaced with its estimate,

σ̂2
n ,

1

n− d

n∑
t=1

(yt − ϕTt θ̂n)2.

3.2.2 Asymptotic shape of SPS confidence regions

In order to show that the SPS confidence regions asymp-
totically have similar shapes as the standard confidence
ellipsoids, the assumptions on the regressors and the
noise terms are strengthened to

A6 (regressor growth rate restriction)

lim sup
n→∞

1

n

n∑
t=1

‖ϕt‖4 <∞.

A7 (i.i.d. noise with bounded 4th order moment): {Nt}
is i.i.d. with E[N2

t ] = σ2 and E[N4
t ] = ρ <∞.

The theorem below is given in terms of relaxed asymp-
totic confidence ellipsoids, which are defined as

Θ̃n(ε) ,

{
θ : (θ − θ̂n)TRn(θ − θ̂n) ≤ µσ2 + ε

n

}
,

where ε > 0 is a margin. In the theorem, both n and m
(recall that m−1 is the number of sign-perturbed sums)

go to infinity, and we use the notation Θ̂n,m for the SPS
region to explicitly indicate the dependence on n and m.
We take qm = b(1−p)mc, where b(1−p)mc is the largest
integer less than or equal to (1−p)m, so that Theorem 1

gives a confidence probability of 1− qm
m , pm → p from

above as m→∞.

Theorem 3 Assume A1, A2, A3, A6 and A7. Then,
there exists a doubly-indexed set of random variables
{εn,m} such that limm→∞ limn→∞ εn,m = 0 a.s., and

Θ̂n,m ⊆ Θ̃n(εn,m).
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The proof of Theorem 3 can be found in Appendix B.

We know from the Gauss-Markov theorem (Kailath
et al., 2000; Gentle, 2013) that, under the assumptions
of Theorem 3, the least-squares estimator is the best
linear unbiased estimator (BLUE). Theorem 3 demon-

strates that in the long run Θ̂n,m is almost surely con-
tained in the asymptotic ellipsoid for the least-squares
estimate when the noise variance is increased by a small
(asymptotically vanishing) margin.

4 Simulation Example

In this section we illustrate the asymptotic properties of
the SPS method by a simulation example.

Consider the same second order data generating FIR
system as in (Csáji et al., 2015), that is,

Yt = b∗1Ut−1 + b∗2Ut−2 +Nt,

where θ∗ = [ b∗1 b
∗
2 ]T = [ 0.7 0.3 ]T is the true parameter

and {Nt} is a sequence of i.i.d. Laplacian random vari-
ables with zero mean and variance 0.1. The input is

Ut = 0.75Ut−1 + Vt,

where {Vt} is a sequence of i.i.d. Gaussian random vari-
ables with zero mean and variance 1. The predictor is

Ŷt(θ) = b1Ut−1 + b2Ut−2 = ϕT
t θ,

where θ = [ b1 b2 ]T is the model parameter, and ϕt =
[Ut−1 Ut−2 ]T is the regressor at time t.

Initially we construct a 95 % confidence region for θ∗ =
[b∗1 b

∗
2]T based on n = 25 data points, namely: (Yt, ϕt) =

(Yt, [Ut−1 Ut−2 ]T), t = 1, . . . , 25.

We compute the shaping matrix

R25 =
1

25

25∑
t=1

[
Ut−1

Ut−2

]
[Ut−1 Ut−2] ,

and find a factor R
1
2
25 such that R

1
2
25R

1
2 T
25 = R25. Then,

we compute the reference sum

S0(θ) = R
− 1

2
25

1

25

25∑
t=1

[
Ut−1

Ut−2

]
(Yt − b1Ut−1 − b2Ut−2),

and, using m = 100 and q = 5, we compute the 99 sign-
perturbed sums, i = 1, . . . , 99,

Si(θ) = R
− 1

2
25

1

25

25∑
t=1

αi,t

[
Ut−1

Ut−2

]
(Yt− b1Ut−1− b2Ut−2),

0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

b1

b2

 

 
True value
LS Estimate
Asymptotic
SPS

Figure 1. 95% confidence regions, n = 25, m = 100.

where {αi,t} are i.i.d. random signs. The confidence re-
gion is formed by those θ’s for which at least 5 of the
‖Si(θ)‖2, i = 1, . . . , 99, values are larger than ‖S0(θ)‖2.
It follows from Theorem 1 that the constructed con-
fidence region contains the true parameter with exact
probability 1− 5

100 = 95%.

The SPS confidence region is shown in Figure 1 to-
gether with the approximate confidence ellipsod based
on asymptotic system identification theory (with the

noise variance estimated as σ̂2 = 1
23

∑25
t=1(Yt−ϕT

t θ̂n)2).

It can be observed that the non-asymptotic SPS region
is similar in size and shape to the asymptotic confidence
region, but it has the advantage that it is guaranteed to
contain the true parameter with exact probability 95%.

Next, the number of data points were increased to n =
400, still with q = 5 and m = 100, and the confidence
region in Figure 2 was obtained. As can be seen, the
SPS confidence region shrinks around the true parameter
as n increases in accordance with Theorem 2 (observe
the smaller range of the two axes in Figure 2). This is
further illustrated in Figure 3 where the number of data
points has been increased to 4000. When q = 5 and
m = 100, we can still observe a difference between the
SPS confidence region and the confidence ellipsoid based
on the asymptotic theory, but when q = 200, m = 4000
is used, there is very little difference between the SPS
confidence region and the confidence ellipsoid based on
the asymptotic theory demonstrating the convergence
result established in Theorem 3.

5 Summary and Conclusion

In this paper we have investigated the asymptotic prop-
erties of the SPS method, which constructs confidence
regions for the parameters of linear regression models. It
was shown that SPS is strongly consistent in the sense
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Figure 2. 95% confidence regions, n = 400, m = 100.
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0.29
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SPS, m=4000
SPS, m=100

Figure 3. 95% confidence regions, n = 4000, m = 100 and
m = 4000.

that its confidence regions become smaller and smaller
as the number of data points increases, and any pa-
rameter value different from θ∗ will eventually be ex-
cluded. Moreover, as both the number of data points
and the number of sign-perturbed sums tend to infinity,
the confidence regions are included in the confidence el-
lipsoids from classical system identification theory when
the noise variance is slightly increased. This shows that,
in addition to its attractive finite sample properties, SPS
has also very desirable asymptotic properties.
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A Proof of Theorem 2: Strong Consistency

We will prove that, for any ε > 0, there is an n such that
‖S0(θ)‖2 becomes the largest element in the ordering for
all θ that are outside the ball Bε(θ

∗), so that all these
θ’s are excluded from the confidence region as n→∞.

Introduce the notations

ψn ,
1

n

n∑
t=1

ϕtNt,

γi,n ,
1

n

n∑
t=1

αi,t ϕtNt, (A.1)

Γi,n ,
1

n

n∑
t=1

αi,t ϕtϕ
T
t . (A.2)

We prove that ψn, γi,n, and Γi,n are almost surely van-
ishing as n→∞.

The almost sure convergence to zero of ψn follows from a
component-wise application of the Kolmogorov’s strong
law of large numbers (Theorem 8 in Appendix D). In-
deed, by using the Cauchy-Schwarz inequality as well as
A4 and A5, we have (ϕt,k is the k th component of ϕt)

∞∑
t=1

E[ϕ2
t,kN

2
t ]

t2
≤

∞∑
t=1

‖ϕt‖2

t

E[N2
t ]

t

≤

√√√√ ∞∑
t=1

‖ϕt‖4
t2

√√√√ ∞∑
t=1

(E[N2
t ])2

t2
<∞,

which shows that Kolmogorov’s condition is satisfied.

Therefore, ψn
a.s.−→ 0, as n → ∞. The almost sure con-

vergence to zero of γi,n is proven similarly since the vari-
ance of αi,t ϕtNt is the same as the variance of ϕtNt and,

hence, γi,n
a.s.−→ 0, as n → ∞. The result Γi,n

a.s.−→ 0,
as n → ∞, is obtained by applying the Kolmogorov’s
strong law of large numbers to each element of the matrix
and by noting that the Kolmogorov’s condition holds in
view of A4 since

∞∑
t=1

E[α2
i,t [ϕtϕ

T
t ]2j,k]

t2
=

∞∑
t=1

ϕ2
t,jϕ

2
t,k

t2
≤
∞∑
t=1

‖ϕt‖4

t2
< ∞.

Based on these convergence results, we can now
make a comparison between ‖S0(θ)‖2 and ‖Si(θ)‖2,
i = 1, . . . ,m− 1. Note that

S0(θ) =R
− 1

2
n

1

n

n∑
t=1

ϕt(Yt − ϕT
t θ)

=R
1
2 T
n θ̃ +R

− 1
2

n ψn,

where θ̃ , θ∗ − θ and, for i = 1, . . . ,m− 1,

Si(θ) =R
− 1

2
n

1

n

n∑
t=1

αi,tϕt(Yt − ϕT
t θ)

=R
− 1

2
n Γi,nθ̃ +R

− 1
2

n γi,n.

Based on the above expressions, for any θ /∈ Bε(θ∗), i.e.,

for any θ such that ‖θ̃‖ > ε, we have

‖S0(θ)‖2 − ‖Si(θ)‖2

= θ̃TRnθ̃ + ψT
nR
−1
n ψn + 2ψT

n θ̃

− θ̃TΓT
i,nR

−1
n Γi,nθ̃ − γT

i,nR
−1
n γi,n − 2γT

i,nR
−1
n Γi,nθ̃

= θ̃T
(
Rn − ΓT

i,nR
−1
n Γi,n

)
θ̃ + 2

(
ψT
n − γT

i,nR
−1
n Γi,n

)
θ̃

+
(
ψT
nR
−1
n ψn − γT

i,nR
−1
n γi,n

)
≥ ‖θ̃‖2λmin

(
Rn − ΓT

i,nR
−1
n Γi,n

)
− 2‖θ̃‖ · ‖ψT

n − γT
i,nR

−1
n Γi,n‖

‖θ̃‖
ε

− |ψT
nR
−1
n ψn − γT

i,nR
−1
n γi,n|

≥ ‖θ̃‖2
[
λmin

(
Rn−ΓT

i,nR
−1
n Γi,n

)
− 2
‖ψT

n−γT
i,nR

−1
n Γi,n‖

ε

]
− |ψT

nR
−1
n ψn − γT

i,nR
−1
n γi,n|.

Since ψn, γi,n, and Γi,n asymptotically vanish (a.s.), and
lim infn→∞ λmin(Rn) = λ̄ > 0 (Assumption A3), we
obtain that there exists (a.s.) an ni such that, for any
θ /∈ Bε(θ∗), ‖S0(θ)‖2 − ‖Si(θ)‖2 becomes positive from

that ni on. Hence, by the construction of Θ̂n, we have

that Θ̂n ⊆ Bε(θ∗), for all n ≥ max i∈{1,...,m−1} ni. 2

B Proof of Theorem 3: Asymptotic Shape

We first give a characterisation of an outer approxima-
tion of the SPS confidence region (cf. equation (B.3)).
Then, we show that this outer approximation can be
interpreted (as n → ∞) as the set of θ’s for which
n‖S0(θ)‖2 is smaller than the qmth largest value of m
independently drawn χ2 distributed random variables
(a consequence of Lemma 1), and, finally, we show that
as m → ∞ this set is included in a confidence ellipsoid
obtained from asymptotic system identification theory.

Let Pi(θ) = n · ‖Si(θ)‖2, i = 0, . . . ,m− 1. Hence,

P0(θ) =
√
n(θ − θ̂n)TRn

√
n(θ − θ̂n),

and, for i = 1, . . . ,m− 1,

Pi(θ) = (θ∗ − θ)T
√
nΓi,nR

−1
n

√
nΓi,n(θ∗ − θ)

+
√
nγT

i,nR
−1
n

√
nγi,n + 2

√
nγT

i,nR
−1
n

√
nΓi,n(θ∗ − θ),

7



where γi,n and Γi,n are given by (A.1) and (A.2).

Let P̄ (θ) = [P1(θ) · · ·Pm−1(θ)]T. The SPS confidence
set is contained in the set of θ’s for which

P0(θ)
qm
≤ P̄ (θ),

where P0(θ)
qm
≤ P̄ (θ) means that P0(θ) is less than or

equal to qm or more of the elements in the vector on the
right-hand side. P̄ (θ) can be written as

P̄ (θ) = s1(θ) + s2 + s3(θ),

where s1(θ) = [s1,1(θ) · · · s1,m−1(θ)]T, s2 = [s2,1 · · ·
s2,m−1]T and s3(θ) = [s3,1(θ) · · · s3,m−1(θ)]T, and, for
i = 1, . . . ,m− 1,

s1,i(θ) = (θ∗ − θ)T
√
nΓi,nR

−1
n

√
nΓi,n(θ∗ − θ),

s2,i =
√
nγT

i,nR
−1
n

√
nγi,n,

s3,i(θ) = 2
√
nγT

i,nR
−1
n

√
nΓi,n(θ∗ − θ).

Furthermore, let

s̃1,i =
√
nΓi,nR

−1
n

√
nΓi,n,

s̃3,i = 2
√
nγT

i,nR
−1
n

√
nΓi,n,

and let s̃1 = [‖s̃1,1‖ · · · ‖s̃1,m−1‖]T and
s̃3 = [‖s̃3,1‖ · · · ‖s̃3,m−1‖]T.

The confidence set can be written as

Θ̂n,m = Θ̂n,m ∩ Θ̂n,m

=

{
θ : P0(θ)

qm
≤ P̄ (θ) = s1(θ) + s2 + s3(θ)

}
∩ Θ̂n,m

⊆
{
θ : P0(θ)

qm
≤ ‖θ∗ − θ‖2s̃1 + s2 + ‖θ∗ − θ‖s̃3

}
∩ Θ̂n,m

(B.1)

As we are taking the intersection with Θ̂n,m, we can
restrict the considered values of θ in the first set of (B.1)

to Θ̂n,m thus obtaining the outer bound

Θ̂n,m ⊆
{
θ : P0(θ)

qm
≤ sup

θ∈Θ̂n,m
‖θ∗ − θ‖2s̃1

+s2 + sup
θ∈Θ̂n,m

‖θ∗ − θ‖s̃3

}
.

Let µ̂n,mσ
2 be the value of the qmth largest entry among

the the m− 1 entries of the vector

sup
θ∈Θ̂n,m

‖θ∗ − θ‖2s̃1 + s2 + sup
θ∈Θ̂n,m

‖θ∗ − θ‖s̃3. (B.2)

Hence, Θ̂n,m is included in a set characterised by

Θ̂n,m ⊆
{
θ : P0(θ) ≤ µ̂n,mσ2

}
. (B.3)

or, equivalently,

Θ̂n,m ⊆
{
θ : (θ−θ̂n)TRn(θ−θ̂n) ≤ µσ2

n
+

(µ̂n,m−µ)σ2

n

}
,

where Fχ2(µ) = p and Fχ2 is the cumulative distribution
function of the χ2 distribution with d degrees of freedom.
Let εn,m = (µ̂n,m−µ)σ2. In order to prove the theorem,
we must show that limm→∞ limn→∞ µ̂n,m = µ a.s..

The next Lemma characterises the convergence in dis-
tribution of (B.2) as n→∞.

Lemma 1 For a fixed m,

sup
θ∈Θ̂n,m

‖θ∗−θ‖2s̃1 +s2 + sup
θ∈Θ̂n,m

‖θ∗−θ‖s̃3
d→ σ2 ·χ2

m−1

as n→∞, where χ2
m−1 is a vector of m− 1 independent

χ2 distributed random variables with d degrees of freedom.

Proof. See Appendix C.

Based on Lemma 1, we can argue as follows to conclude
the proof of Theorem 3. From Lemma 1 the expression in
(B.2) (divided by σ2) converges in distribution as n→∞
to a vector of m − 1 independent χ2 distributed vari-
ables. The function selecting the qmth largest element in
a vector is a continuous function, and hence by Lemma
4 µ̂m , limn→∞ µn,m has the same distribution as the
qmth largest element ofm−1 independent χ2 distributed
random variables. We next show that µ̂m converges a.s.
to µ as m→∞, and this concludes the proof.

Given m− 1 values x1, . . . , xm−1 extracted from m− 1
independent χ2 distributed random variables with d de-
grees of freedom, consider the following empirical esti-
mate for the cumulative χ2 distribution function

F̂m(z) =
1

m− 1

m−1∑
i=1

I(xi ≤ z),

where I is the indicator function. From the Glivenko-
Cantelli Theorem (Theorem 6 in Appendix D), we have

sup
z
|F̂m(z)− Fχ2(z)| → 0 a.s. as m→∞. (B.4)

By construction, F̂m(µ̂m) = 1 − qm−1
m−1 = pm → p, and

Fχ2(µ) = p. Since Fχ2 is continuous and strictly mono-
tonically increasing, in view of (B.4) this implies that
limm→∞ µ̂m = µ almost surely. 2
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C Proof of Lemma 1

We first present two technical Lemmas which are needed
in the proof of Lemma 1.

Lemma 2 
R
− 1

2
n
√
nγ1,n

R
− 1

2
n
√
nγ2,n

...

R
− 1

2
n
√
nγm,n

 d→ N (0, σ2Imd),

where N denotes the normal distribution.

Proof. We only prove the result form = 2. The casem >
2 follows with obvious modifications. The main tools in
the proof are the Cramer-Wold Theorem (Theorem 4 in
Appendix D) and the Central limit theorem (Theorem
7 in Appendix D) using the Lyapunov condition (D.1).

We first show that, for any 2d-vector [aT
1 aT

2 ] 6= 0,

[aT
1 aT

2 ]

√nR− 1
2

n γ1,n
√
nR
− 1

2
n γ2,n

 d→ N (0, (aT
1 a1 + aT

2 a2)σ2).

Note that

[aT
1 a

T
2 ]

√nR− 1
2

n γ1,n
√
nR
− 1

2
n γ2,n

 = [aT
1 a

T
2 ]

1√
n

n∑
t=1

 α1,tR
− 1

2
n ϕtNt

α2,tR
− 1

2
n ϕtNt

,

and let ξt = [aT
1 a

T
2 ]

 α1,tR
− 1

2
n ϕtNt

α2,tR
− 1

2
n ϕtNt

. We haveE[ξt] = 0

and

D2
n =

n∑
t=1

E[ξ2
t ]

=

n∑
t=1

E[(aT
1 R
− 1

2
n ϕtα1,t + aT

2 R
− 1

2
n ϕtα2,t)

2]E[N2
t ]

=

n∑
t=1

((aT
1 R
− 1

2
n ϕt)

2 + (aT
2 R
− 1

2
n ϕt)

2)σ2

= n(aT
1 a1 + aT

2 a2)σ2, (C.1)

and

n∑
t=1

E[ξ4
t ] =

n∑
t=1

E[(aT
1 R
− 1

2
n ϕtα1,t + aT

2 R
− 1

2
n ϕtα2,t)

4]E[N4
t ]

=

n∑
t=1

(aT
1 R
− 1

2
n ϕt)

4 + 6(aT
1 R
− 1

2
n ϕt)

2(aT
2 R
− 1

2
n ϕt)

2+

(aT
2 R
− 1

2
n ϕt)

4)ρ = o(n2),

that is, the last term multiplied by 1/n2 tends to zero, a
fact due to Assumption A6. Using (C.1), the Lyapunov
condition (D.1) with δ = 2 holds. Hence,

1√
n

∑n
t=1(aT

1 R
− 1

2
n ϕtα1,tNt + aT

2 R
− 1

2
n ϕtα2,tNt)

σ
√
aT

1 a1 + aT
2 a2

d→ N (0, 1),

assuming a1 and a2 are not simultaneously null, and so

1√
n

n∑
t=1

(aT
1 R
− 1

2
n ϕtα1,tNt + aT

2 R
− 1

2
n ϕtα2,tNt)

d→ N (0, σ2(aT
1 a1 + aT

2 a2)).

Now, from the Cramer-Wold theorem (Theorem 4 in
Appendix D), it follows that

1√
n

n∑
t=1

 α1,tR
− 1

2
n ϕtNt

α2,tR
− 1

2
n ϕtNt

 d→ N

(
0, σ2

[
I 0

0 I

])
,

from which the lemma immediately follows. 2

Lemma 3 For a fixed m, each component of the terms
sup

θ∈Θ̂n,m
‖θ∗−θ‖2s̃1 and sup

θ∈Θ̂n,m
‖θ∗−θ‖s̃3 converge

to zero in probability as n→∞.

Proof. We consider sup
θ∈Θ̂n,m

‖θ∗−θ‖2s̃1 first. We need

to show that

P{ sup
θ∈Θ̂n,m

‖θ∗ − θ‖2 · ‖s̃1,i‖ > ε} → 0 as n→∞

for every ε > 0. Let βn = sup
θ∈Θ̂n,m

‖θ∗ − θ‖2. Since

‖s̃1,i‖ ≤

∥∥∥∥∥ 1√
n

n∑
t=1

αi,tϕtϕ
T
t

∥∥∥∥∥·‖R−1
n ‖·

∥∥∥∥∥ 1√
n

n∑
t=1

αi,tϕtϕ
T
t

∥∥∥∥∥ ,
the result follows if

P

{
β1/3
n ·

∥∥∥∥∥ 1√
n

n∑
t=1

αi,tϕtϕ
T
t

∥∥∥∥∥ > ε1/3

}
→ 0, (C.2)

and
P{β1/3

n ·
∥∥R−1

n

∥∥ > ε1/3} → 0, (C.3)

as n → ∞. (C.3) follows from Theorem 2 and Assump-
tion A3. Next we show (C.2). From Chebyshev’s inequal-
ity we have

P

{∥∥∥∥∥ 1√
n

n∑
t=1

αi,tϕtϕ
T
t

∥∥∥∥∥ > K

}
≤

E[‖ 1√
n

∑n
t=1 αi,tϕtϕ

T
t ‖2]

K2
.
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On the other hand,

E

∥∥∥∥∥ 1√
n

n∑
t=1

αi,tϕtϕ
T
t

∥∥∥∥∥
2


≤ traceE

[(
1√
n

n∑
t=1

αi,tϕtϕ
T
t

)(
1√
n

n∑
t=1

αi,tϕtϕ
T
t

)]

= trace

(
1

n

n∑
t=1

ϕtϕ
T
t ϕtϕ

T
t

)
=

1

n

n∑
t=1

‖ϕt‖4,

which is bounded by a constant C in view of Assumption
A6. Hence, P{‖ 1√

n

∑n
t=1 αi,tϕtϕ

T
t ‖ > K} ≤ C/K2, ∀n,

which is an arbitrarily small number provided K is large
enough. (C.2) now easily follows from Theorem 2 since

it implies that P{β1/3
n > ε1/3/K} → 0 as n→ 0.

We next investigate the term sup
θ∈Θ̂n,m

‖θ∗−θ‖s̃3,i. We

have ‖s3,i‖ = ‖2 1√
n

∑n
t=1 αi,tϕtϕ

T
t R
−1
n

1√
n

∑n
t=1 αi,tϕtNt‖.

The result follows provided that

P

{
β1/6
n ·

∥∥∥∥∥ 1√
n

n∑
t=1

αi,tϕtϕ
T
t

∥∥∥∥∥ > ε1/3

}
→ 0, (C.4)

P{β1/6
n · ‖R−1

n ‖ > ε1/3} → 0, (C.5)

and

P

{
β1/6
n ·

∥∥∥∥∥ 1√
n

n∑
t=1

αi,tϕtNt

∥∥∥∥∥ > ε1/3

}
→ 0, (C.6)

as n → ∞. Results (C.4) and (C.5) are essentially the
same as (C.2) and (C.3). Result (C.6) can be established
along the same lines as (C.2) above by noting that

E

[
‖ 1√

n

n∑
t=1

αi,tϕtNt‖2
]

=
1

n

n∑
t=1

‖ϕt‖2σ2,

which is bounded by Assumption A6. 2

Proof of Lemma 1. By Lemma 2 and 4 1
σ2 s2 converges

in distribution to a vector of independent χ2 distributed
random variables with d degrees of freedom. Lemma 1
now follows from Slutsky’s Theorem (see Appendix D)
since sup

θ∈Θ̂n,m
‖θ∗ − θ‖2s̃1 and sup

θ∈Θ̂n,m
‖θ∗ − θ‖s̃3

converge to zero in probability by Lemma 3. 2

D Main Theoretical Tools of the Proofs

LetXn andX be random vectors in Rs, and let
d→ denote

convergence in distribution. The following results can be
found in, e.g., (van der Vaart, 1998) or (Shiryaev, 1995).

Theorem 4 (Cramer-Wold Theorem) Xn
d→ X if

and only if aTXn
d→ aTX ∀a ∈ Rs.

Lemma 4 Let f be a continuous function from Rs to Rl.
If Xn

d→ X, then f(Xn)
d→ f(X).

The next theorem follows from Lemma 4.

Theorem 5 (Slutsky’s Theorem) Let f be a contin-

uous function from Rs+k to Rl. If Xn
d→ X and Yn =

[Yn,1 . . . Yn,k]T converges in probability to a constant vec-

tor c = [c1 . . . ck]T, then f(Xn, Yn)
d→ f(X, c).

Theorem 6 (Glivenko-Cantelli Theorem) Let
x1, . . . , xn be i.i.d. random variables with cumulative dis-
tribution function F (z) = Pr{x1 ≤ z}. Let Fn(z) be the
empirical estimate of F (z): Fn(z) = 1

n

∑n
t=1 I(xt ≤ z),

where I is the indicator function. Then,

lim
n→∞

sup
z∈R
|F (z)− Fn(z)| = 0 a.s..

Theorem 7 (Central Limit Theorem) Let ξ1, ξ2, . . .
be independent random variables with finite second
moments. Let mt = E[ξt], σ

2
t = E[(ξt − mt)

2] > 0,
Sn =

∑n
t=1 ξt, D

2
n =

∑n
t=1 σ

2
t and let Ft(x) be the cu-

mulative distribution function of ξt. If, for every ε > 0,
the following Lyapunov condition is satisfied for a δ > 0,

1

D2+δ
n

n∑
t=1

E[|ξt −mt|2+δ]→ 0, as n→∞, (D.1)

then
Sn − E[Sn]

Dn

d→ G(0, 1).

Theorem 8 (Strong Law of Large Numbers) Let
ξ1, ξ2, . . . be a sequence of independent random vari-
ables with finite second moments, and let Sn =

∑n
t=1 ξt.

Assume that

∞∑
t=1

E[(ξt − E[ξt])
2]

t2
<∞,

then

lim
n→∞

Sn − E[Sn]

n
= 0. (a.s.)
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