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Abstract

In this paper, we address two minimal controllability prerk, where the goal is to determine a
minimal subset of state variables in a linear time-invargstem to be actuated to ensure controllability
under additional constraints. First, we study the probldrocharacterizing the sparsest input matrices
that assure controllability when the autonomous dynammeatrix is simple. Secondly, we build upon
these results to describe the solutions to the robust mirdararollability problem, where the goal is to
determine the sparsest input matrix ensuring controltghithen specified number of inputs fail. Both
problems are NP-hard, but under the assumption that thendiggamatrix is simple, we show that it
is possible to reduce these two problems to set multi-cogguroblems. Consequently, these problems
share the same computational complexity, i.e., they arecdiplete, but polynomial algorithms to
approximate the solutions of a set multi-covering problem be leveraged to obtain close-to-optimal

solutions to either of the minimal controllability problem

I. INTRODUCTION

The problem of guaranteeing that a dynamical system canibendioward the desired state

regardless of its initial position is a fundamental questimat has been studied in control systems
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and it is referred to asontrollability. Several applications, for instance, control processetyal

of large flexible structures, systems biology and poweresyst[1]-[3] rely on the notion of
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controllability to safeguard their proper functioning.rthermore, as the systems become larger
(i.e., the dimension of their state space), we (often) aindenmtify a relatively small subset
of state variables that ensure the controllability of theteg, for instance, due to economic
constraints [4]. Consequently, it is natural to pose théofahg question.

Q1. Which state variables need to be directly actuated to ensluee controllability of a
dynamical system?

QuestionQ; can be formally captured by thminimal controllability problem(MCP) [4] that
aims to determine the minimum number of state variables ribatl to be actuated to ensure
system’s controllability. Unfortunately, the MCP problemas shown to be NP-hard [4], which
implies that a polynomial solution to determine its solatie unlikely to exist.

The MCP is also fundamental to understand resilience anastnbss properties of dynamical
systems since it unveils which variable need to be actuadteeke resilience/robustness properties
are crucial to coping with the adverse nature of the enviremswhere the actuators are deployed
and, due to the wear and tear of the materials, some of thésatacs may malfunction over
time. In addition, the inputs can malfunction due to a malisi external agent who aims to
tamper with the inputs to compromise the system behavidiadt) a classical example of such
malicious attack is the Stuxnet malware incident [5], in evhthe controller’s input response to
a tempered measured output lead the system away from itsahoperating conditions.

Therefore, from a design perspective, we would like to dgplctuators in the system such
that any subset with at most a specified number of actuatorsfaithwithout compromising
the controllability of the system. Subsequently, invoksigiilar reasons to the MCP, we can
seek to address the robust MCP (rMCP) that aims to deterrhmesparsest input matrix that
ensures controllability if at most a specified number of aftits fail. It is important to mention
that both minimal controllability problems can be statedareling observability, by invoking
the duality between controllability and observability iflLsystems [6]. In particular, [7]-[9]
provide necessary and sufficient conditions concerningséresor deployment to ensure that a
reliable estimate of the system is recovered. More imptgtathose conditions can be achieved
by design, by solving the rMCP.

Related Work: The understanding of which state variables need to be actuatasseverate
certain properties of the system has been an active resasrah10]. Initially, the goal was to

establish stability and/or asymptotic stability of the dymics for reference point, for instance,
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consensus or agreement value [11], [12]. The trend has eldatggassure that the system is
controllable, since (often) we want to ensure that a cotdwlexists such that an arbitrary goal
or desired state is achieved in finite time.

This paper follows up and subsumes some of the existingtitez where the dynamics’ matrix
is assumed to be the Laplacian, symmetric (modeling unidegraphs) and/or irreducible (mod-
eling directed graphs with the digraph representation dpairstrongly connected component).
In [13] the controllability of circulant networks is anala by exploring the Popov-Belevitch-
Hautus eigenvalue criterion, where the eigenvalues areactaized using the Cauchy-Binet
formula. The controllability in multi-agents with Laplasi dynamics was initially explored
in [14]. Later, in [15], [16], the controllability for Lapldan dynamics is studied, and necessary
and sufficient conditions are given in terms of partitionshaf graph. In [17], the controllability is
explored for paths and cycles, and later extended by the aathers to the controllability of grid
graphs by means of reductions and symmetries of the graghdf8 considering dynamics that
are scaled Laplacians. In [19], [20] the controllabilitysisidied for strongly regular graphs and
distance-regular graphs. Recently, in [21], [22] new ih&sgon the controllability of Laplacian
dynamics are given regarding the uncontrollable subspaaadition, in [23] the controllability
of isotropic and anisotropic networks is analyzed.

Furthermore, [21] concludes by pointing out that furthardst of non-symmetric dynamics
and the controllability is required — which we address in pnesent paper. Note that the MCPs
lie within the framework of sparse optimization subject toaak constraint. Further, we notice
that the problem addressed does not belong to known cladseie wolynomial solutions are
available [24], nor it resources to convex relaxation sobgnwhere no sub-optimality guarantees
are available. Instead, we consider a much less restriagamptionA is asimplematrix, i.e.,
all eigenvalues are distinct. Furthermore, there are aewagplications whered satisfies this
assumption, for instance, all dynamical systems modelecaadom networks of the Erdés-
Rényi type [25], as well as several known dynamical systesed as benchmarks in control
systems engineering [26].

Observe that the MCP problem presents both continuous @edetie optimization properties,
captured by the controllability property and the number oh4zero entries, respectively. To
avoid the nature of this problem, in [4] the non-zero entdéshe input matrix were randomly

generated. In the present paper, we ‘decouple’ the conisnaod discrete optimization proper-
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ties, and show that by first solving the discrete nature ofptedblem, it is always possible to
deterministically obtain a solution to MCP in a second ph&ssides, the first step reduces the
MCP to the set covering problem — well known to be NP-hard. élloeless, the set covering
problem is likely one of the most studied NP-hard problemsifpbly second only to the SAT
problem). Subsequently, although the set covering proldehP-hard, some subclasses of the
problem are equipped with sufficient structure that can leréged to invoke a polynomial
algorithm that approximate the solution with ‘almost’ opélity guarantees [27]. This contrasts
with the approach proposed in [4], where an approximateadtisol particular to the MCP problem
was provided. In addition, we study the rMCP which has nonbgeviously addressed in the
literature. Similarly to the MCP, we show that the rMCP carpbé&/nomially reduced to theet
multi-covering problemi.e., a set covering problem that allows the same elemertis tovered

a predefined number of times. Furthermore, extensions ghpatial approximation algorithms
are also available with similar optimality guarantees.

Alternatively, in [28] instead of determining the sparsegtut matrix ensuring the controlla-
bility, the aim is to determine the sparsest input matrix tasuresstructural controllability,
which we refer to as theninimal structural controllability problen{MSCP) — see Section Il
for formal definitions and problem statement. Briefly, the G#Sfocus on the structure of the
dynamics, i.e., the location of zeros/non-zeros, and thaimdd sparsest input matrix is such
that for almost all matrices satisfying the structure of the dynamics and tipaitimatrix, the
system is controllable [29]. Notwithstanding, in the presgaper, we provide an example where
the solution to the minimal structural controllability fmem is not necessarily a solution to
the minimal controllability problem when the dynamics’ mwatis simple; hencedisproving the
general belief that a solution to MSCP is a solution to MCPuclscasesFurther, we emphasize
that the solution to the MSCP has been fully explored in [2&] ean be determined by recurring
to polynomial complexity algorithms; more precisely{n?®) wheren is the dimension of the state
space. In addition, the minimum number of state variableactueve structural controllability
can account for the scenario where actuating state vasiafter in different cost [30]. Further,
if the collection of possible actuators is given a priori amd seek the minimum number of
these actuators to ensure structural controllabilityptiine problem is NP-hard [31]. Finally, [32]
studies the structural counterpart of the rMCP under orer&iwhich is also proved to be NP-

hard, and shown to be reducible tavaightedset covering problem. In particular, the reductions
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and the objects captured by the sets in the set coveringgmobi [32] are entirely different
from those of the problems explored in this paper, mainlg tluthe nature of the problems.
Main Contributions of the present paper are as followg:We characterize the exact solutions
to the MCP; {i) we show that for a given dynamics’ matrix almost all inputtegs satisfying
a specified structure are solutions to the MCH;) (ve prove that the rMCP is an NP-hard
problem; (v) we characterize the exact solutions to the rMCB;we show that the decision
version of both MCPs are NP-complet®j)(we provide approximated solutions to both MCPs
and discuss their optimality guarantees; and, finally,vin) (ve discuss the limitations of the
proposed methodology. o
The remainder of this paper is organized as follows. In $adti we formally state both MCPs
addressed in this paper. Next, in Section Ill, we review epite from computational complexity
and control systems that are essential to keep this pagezsehined. In Section IV, we present
the main results of this paper: we characterize the solsitiorthe MCPs, their complexity, and
polynomial algorithms that approximate the solution. Hjpan Section V we provide some
examples that illustrate the main results of the paper ascuds the limitations of the proposed
methodology.

Notation: We denote vectors by small font letters suchwa®,b and its corresponding
entries by subscripts; for example, corresponds to théth entry in the vectow. A collection
of vectors is denoted by’ } ;< 7, where the superscript indicates an enumeration of thexect
using indices from a set (usually denoted by calligraphitei® such as, 7 ¢ N. The number
of elements of a sef is denoted by|S|. Real-valued matrices are denoted by capital letters,
such asA, B, and 4, ; denotes the entry in theth row andj-th column in matrixA. We denote
by I,, the n-dimensional identity matrix. Given a matri%, o(A) denotes the set of eigenvalues
of A, also known as thepectrumof A. Given two matrices\/; € C**™ and M, € C"*™2, the
matrix [M; M,] corresponds to the x (m; +ms) concatenated complex matrix. The structural
pattern of a vector/matrix (i.e., the zero/non-zero pajter astructural vector/matrixhave their
entries in{0, x}, wherex denotes a non-zero entry, and they are denoted by a vectaxnvith
a bar on top of it. In other words4 denotes a matrix withd; ; = 0 if 4;,; =0 and 4;; = x
otherwise. We denote byl™ the transpose ofl. The function- : C* x C* — C denotes the

usual inner product ifC", i.e., v - w = viw, wherev' denotes the adjoint of (the conjugate
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of vT). With some abuse of notation; {0, x}" x {0,%}" — {0, +} also denotes the map where
v-w # 0, with v,w € {0,x}" if and only if there exists € {1,...,n} such thaty, = w; = *.
Additionally,

v||o denotes the number of non-zero entries of the veciareither{0, x}" or R".
Given a subspacH C C™ we denote byH° its complement with respect 10, i.e.,H = C"\ H.

In addition, inequalities involving vectors are to be ipt@ted component-wise. With abuse of
notation, we will use inequalities involving structuralcters as well — for instance, we say
v > w for two structural vectors andw if and the only if the following two conditions hold:
(i) if w; =0, thenw; € {0,%}, and (i) if w; = » thenv; = *.

[I. PROBLEMS STATEMENT

In this paper, we focus on dynamical systems modeled byetesd¢ime linear time-invariant
(LTI) systems, but the results are readily applicable totiomous-time LTI systems. We will
neglect the output equation because we are only addressghtrollability problem. Therefore,

consider systems described by
x(k+1) = Ax(k) + Bu(k), x(0) = x, (2)

wherez € R” is the state of the sytem, € R? is the input signal exert by the actuators, and
k € N denotes the time instance. The matrxe R™*", which is referred to as the system
dynamics’ matrix describes the coupling between statealbes. The matrix3 € R"*? is the
input matrix and describes the state variables that thetsnact on. As previously mentioned,
it is often desirable the LTI system (1) lmentrollable i.e., a system can be steered towards a
desirable state in at most steps despite the initial statg, in which case the paifA, B) is
said to be controllable.

The first problem addressed in this paper is the MCP, that eaiorimally stated as follows.
P1: Given the system dynamics’ matrix determine the input matri8 € R"*" such that

B* = arg min | B|o

BeRnXn (2)
S.t. (A, B) controllable.

Notice that the input matrix is assumed to he< n to ensure a solution to exist, since the

identity matrix always ensures system’s controllability.
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Alternatively, under the adverse scenarios of failure olicimus temper of the actuators, the

dynamics of the system can be modeled by
x(k + 1) = Az (k) + Bu(k) + a(k), (3)

where the malfunctioning inputs correspond to non-zergiestn a € R" representing an
alteration of the actuation in comparison with the actuél@aTherefore, an extra set of actuators
should be in place to ensure that it is still possible to aarttie system if some inputs falil, i.e.,
the system

x(k+ 1) = Ax(k) + Bapau(k), 4)

is controllable, whereB, 4 consists of the subset of columns with indices/Ai\ A, the set
M ={1,...,p} is the set of inputs’ labeling indices antl= {i € M : a;(k) # 0, k € N} the
set of indices of malfunctioning actuators. Therefdté, B 4) is desirable to be controllable,

and, subsequently, the rMCP can be posed as follows.

P, Given a dynamics’ matrid € R™*" and the number of possible input failuresdetermine
the matrix B* € R™*(+)» sych that

B* =arg min | Bllo (5)

BeRnXx(s+1)n

s.t. (A, Bypa) is controllable
A <5, ACM,

where M C {1,...,n} are the indices of the non-zero columns of the mafsixNotice that,
similarly to P, the dimension ofB aren x (s + 1)n to ensure that a solution always exist, in
particular, in the worst case scenario the mafixhat concatenatestimes the identity matrix
is a feasible solution. In practice, only the non-zero calsmof B matter, which we refer to as
effective inputs

In this paper, both MCPs proposed above will be addressedruhd following two assump-
tions.

Assumption 1 The dynamics’ matrix isimple i.e., all the eigenvalues ot are distinct. o

We notice that Assumption 1 is not very restrictive sincedhere several applications where

A satisfy this assumption. For example, dynamical systemdeted as random networks of
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the Erdds-Rényi type [25], as well as several known dymaihsystems used as benchmarks in
control systems engineering [26].
Assumption 2 A left-eigenbasisof A is available, i.e., the eigenbasis consisting of left-
eigenvectors ofA. o
The second assumption is required by technical reasortg aimeigenbasis is determined us-
ing numerical methods. Therefore, in practice, it may beposed of approximated eigenvectors
to a given floating-point error — see Section IV-E for furtliéscussion.

IIl. PRELIMINARIES AND TERMINOLOGY

In this section, we review some basic concepts in computatioomplexity theory, control
systems, and structural systems theory, to keep the palfeostained.

In what follows, we use some concepts of computational cerig theory [33], that address
the classification of (computational) problems into comitjeclasses. Formally, this classifica-
tion is for decision problems.e., problems with a ‘yes’ or ‘no’ answer. Further, for ac#on
problem, if there exists an algorithm that obtains the airemswer in a number of steps that
is bounded by a polynomial in the size of the input data of theblem, then the algorithm
is referred to as arfficientor polynomial solution to the decision problem and the decision
problem is said to be polynomially solvable or belong to thess of polynomially solvable
problems. A decision problem is said to be in NP (i.e., thelaf nondeterministic polynomially
solvable problems) if, given any possible solution ins&ntcan be verified using a polynomial
procedure whether the instance constitutes a solutioneqgothblem or not. It is easy to see
that any problem that is polynomially solvable (in P) is alsoNP, although, there are some
problems in NP for which it is unclear whether polynomialigmns exist. These latter problems
are referred to as being NP-complete. Consequently, tiss ofaNP-complete problems contains
those that are theardestamong the NP problems, i.e., those that are verifiable usshgpmial
algorithms, but no polynomial algorithms to solve them amewn to exist. Whereas the above
classification is intended for decision problems, it canrbenediately extended to optimization
problems, by noticing that every optimization problem canposed as a decision problem.
More precisely, given a minimization problem, we can poseftilowing decision problem: Is
there a solution to the minimization problem that is lesstba equal to a prescribed value?

On the other hand, if the solution to the optimization prables obtained, then any decision
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version can be easily addressed. Consequently, if a (degiproblem is NP-complete, then the
associated optimization problem is referred to as beinghhifek We refer the reader to [34] for

an introduction to the topic. In what follows, we will considthe following NP-hard problem.

Definition 1 ([35]). (Minimum Set Multi-covering Problem) Given a setrofelementsi/ =

{1,2,...,m} referred to as universe, a collection ofsetsS = {S;,...,S,}, withS; C U, with

je{l,...,n} U S; = U, and a demand functios: &/ — N that indicates the number of times
j=1
an element needs to be covered. In other word$;) is the minimum number of sets dhthat

need to be consider such thais member of all of this sets. The minimum set multi-covering
problem consists of finding a set of indic&s C {1,2,...,n} corresponding to the minimum

number of sets covering, where every elemerite U/ is covered at leastl(i) times, i.e.,

J*= argmin  |J]|
JC{1,2,..n}

st. {jeJ:ie8} >d@) .
In particular, we note that ifd(i) = 1 for all i € {1,...,n}, then we obtain the well known

minimum set covering problem o

The minimum set multi-covering problem plays a double ralethis paper: (i) we reduce
both MCPs to a minimum set multi-covering problem; and (i) folynomially reducing it to
the rMCP we show the latter to be NP-hard. A (computationadpfem is said to beeducible
in polynomial timeto another if there exists a procedure to transform the fortmehe latter
using a polynomial number of operations on the size of itsiispSuch reduction is useful in
determining the qualitative complexity class [34] a parée problem belongs to. For instance,

we will need the following result.

Proposition 1 ([34]). Let P, be an NP-hard problem. If there is a polynomial reductionniro

P4 to Py, from which a solution td?, can be determined, thehRz is an NP-hard problen

Similarly, the minimum set covering problem is used in thesent paper to show the NP-

completeness of the MCP, by considering the following resul

Lemma 1 ([34]). Let P, and Py be two NP-hard problems, arf#t¢ and P¢ be their decision
versions, respectively. If a proble®, is polynomially reducible tdPz (or equivalently, their
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decision versions) an@®p is polynomially reducible toP, (or equivalently, their decision

versions), then bot®P4 and P¢ are NP-complete. o
Now, given an arbitrary LTI system (1), we will focus on thdldaving controllability tests.

Theorem 1 ([6]). (PBH test for controllability using eigenvalues) The systeéescribed in (1)
is controllableif and only if rank([A VS B]) —nforall \eC. o

In fact, it suffices to verify the criterion of Theorem 1 forola\ € o(A). Observe that
Theorem 1 provides a polynomial method to check the coatndity of an LTI system since for
each eigenvalug of A only the computation of the rank @fi —\I,, B] is required. Nevertheless,
it does not provide any immediate information about whictriea of B should be different from
zero and with what particular values such that the rank ¢mmdis ensured. That is, verifying
if a B is a solution can be achieved in P, so the controllabilitybpgm is in NP. Therefore,
a naive usage of the PBH eigenvalue test would lead to algtdotnbinatorial procedure for

solving the MCP. Instead, we can consider the PBH test fotrotiability using eigenvectors.

Theorem 2 ([6]). (PBH test for controllability using eigenvectors) Givéh), the system is not

controllableif and only if there exists a left-eigenvectorof A such thatv!B = 0. o

To relate our results with the ones from structural systent farther understand the ad-
vantages and drawbacks of this approach, we will introdbeestructural counterpart of the
MCP, theminimal structural controllability problen{MSCP). But first, we need to review the

structural counterpart of controllability [29].

Definition 2 ([29]). (Structural Controllability) Given an LTI syste(d) with sparseness given
by (A4, B), with A € {0,x}"*" and B € {0,x}"*?, where the entries correspond to fixed zeros
and free real parameters, the paid, B) is said to be structurally controllable if there exists a

controllable pair (A, B), with the same sparseness @$, B). o

In fact, a stronger characterization of structural cotafwlity holds as stated in the following

proposition.

Proposition 2 ([36]). For a structurally controllable pair(A, B), the numerical realizations

(A, B) with the same sparseness (@b, 3) that are non-controllable are described by a proper
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variety inR™*™ x R"*P, In other words, almost all realizations respecting theustural pattern

of a structurally controllable pair are controllable. o

By almost all realizations, we mean that at most a set witbh tebesgue measure will lead
to numerical realizations that do not ensure controllghili

Subsequently, the MSCP is posed as follows: given the straicmatrix A € {0, x}"*"
associated with the dynamics’ matrik find B such that

B = argmin 1B'|o
B’E{O,*}nxn (6)
s.t. (A, B') is structurally controllable.

Now, note that, by Definition 2, a pairi, B) is controllable only if the corresponding structural
pair (A, B) is structurally controllable. Therefore, it is natural fits characterize all the sparsest
structures of input vectors that ensure structural colatdity, i.e., solutions to (6). In particular,
as a consequence of Proposition 2, we have the followindtreduch links the MCP to its

structural cou nterpart.

Proposition 3 ([28]). Given A € R™*", a solution B € R"*? for the MCP and a numerical
realization B’ € R™*? of a solution to the MSCP associated with the structural iratt, we

have
1Bllo > [|1B]]o-

More generally, for eachB that solves the MCP, there exists a solutiBhof the MSCP such
that

B> B,
whereB and B’ denote the structural matrix associated withand B’, respectively. Conversely,
given a structural matrixA and a solution3’ to the MSCP, for almost all numerical instancés

satisfying the structural pattern of, then almost all numerical instances satisfying the strait

pattern of 3’ are solutions to the MCP associated with o

[V. MINIMUM CONTROLLABILITY PROBLEMS

In this section, we provide the main results of this papeiSéction IV-A, we show that the

MCP can be exactly solved in two steps: (i) Polynomial reauncof the structural optimization
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problem (2) to a set-covering problem (Algorithm 1); angl deétermine a numerical parametriza-
tion of an input matrixB with specified input structur®, in a deterministic polynomial fashion
(Algorithm 2). Further, by sequentially performing the tvadgorithms, we are ‘decoupling’
the discrete and continuous properties of the MCP withosintp optimality (Theorem 4). In
other words, we treat separately the identification of thérimgattern 5 (discrete property)
and the computation of a numerical realization encompgstie 5 pattern, and ensuring
controllability of the system (continuous property). Inc8en 1V-B, we show that rMCP is
NP-hard (Theorem 7), and a similar procedure to that usealiee MCP is followed. More
specifically, we determine the sparsity of an input matrixpoyynomially reducing the problem
to a minimum set multi-covering problem (Theorem 8), and tan later be used to characterize
the solutions to rMCP (Theorem 9).

Complementary to the solutions to the MCPs, in Section MA@, show that in fact the
decision versions of MCP and rMCP (under Assumption 1) arecbifiplete (Theorem 10).
Further, in Section IV-D, because the MCPs are NP-hard, weuds a possible approach that
leverage existing polynomial algorithms used to deterngioed approximations of the solutions
to the minimum set multi-covering problem (for instanceg&ithm 3). Subsequently, we argue
that the approximate solution warrants some optimalityrguotees (Theorem 11). Finally, in

Section IV-E, we explore some numerical implications of wway Assumption 2.

A. A Characterization of the MCP Solution

In this section, we present a systematic method to obtaituticoto the MCP problem. First,
we show that given a left-eigenbasis of the dynamics’ matpit is possible to polynomially
reduce the MCP to the minimum set covering problem. This ctdn assumes that we only
have a single effective input to actuate the system, i.e.,itput matrix has a single non-zero
column. Notice that a feasible solution always exist beeadisis simple. Subsequently, we
say that the input vector is a solution to the MCP if the inpu@tnix obtained consists of one
effective input associated with that input. Further, in diteen 6, we show that this can be done
without loss of generality. The reduction is achieved byleiting the PBH eigenvector criterion
(Theorem 2) for controllability. More precisely, the retioa is obtained in two steps: first, we
provide a necessary condition on the structumef the sparsest input vectér(see Lemma 2),

which is obtained by formulating a minimum set covering peob (see Algorithm 1) associated
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with the structure (i.e., location of non-zero entries) loé teft-eigenvectors of the dynamics’
matrix A. Secondly, we show that a possible numerical realizatioh which solves the MCP
may be generated using a polynomial construction (Algorift). Both algorithms (Algorithm 1
and Algorithm 2) have polynomial complexity in the numbersthte variables (Theorem 4).
Further, the sequential use of these algorithms providesi@matic solution to the MCP (see
Theorem 5).

The first set of results provides necessary conditions osttiieture that an input vectémust
satisfy to ensure controllability afA, b), and a polynomial complexity procedure (Algorithm 1)
that reduces the problem of obtaining such necessary gtalgbatterns to a minimum set

covering problem.

Lemma 2. Given a collection of non-zero vectofs’} ;. with o/ € {0, «}", the procedure of
finding b* € {0,x}" such that

b* = arg min 16]]0
bc{0,x}n (7)
st. ©-b#£0, forall j€J
is polynomially (in|7| and n) reducible to a minimum set covering problem with univeise

and a collectionS of sets by applying Algorithm 1. o

Algorithm 1 Polynomial reduction of the structural optimization prerol (2) to a set-covering

problem
Input: {v7};c7, a collection of| 7| vectors in{0,x}".

Output: S = {Si}icq1

»y andi, a set ofn sets and the universe of the sets, respectively.

1 setS;={}fori=1,...,n
2:for j=1,...,|J]
fori=1,...,n
if 5/ # 0 then
Si=8uU{jh
end if
end for
end for .
3: setS ={Si,...,S,} andif = USi'

i=1
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Next, we show that given the structure obtained in Lemmarfipat all possible real numerical

realizations lead to a vectéore R” that is a solution to the MCP.

Theorem 3. Let {v'},c7 to be the set of left-eigenvectors 4f and b a solution to(7). Then,

almost all numerical realizations of b are solutions to the MCP. S

Observe that Theorem 3 differs from the converse result opésition 3 in a subtle, yet

important, manner which we describe in the following remark

Remark 1. The converse result in Proposition 3 about the generic prigethat characterize
structural controllability shows that almost all parameteof both dynamics and input matrices
satisfying a given structural pattern are controllable.t#dugh, in Theorem 3 the dynamics’
simple matrixA is fixed, i.e., a numerical instance with specified strugtarel density arguments
are provided to the numerical realizations of the input weawith certain structure ensure

controllability of the system. o

Although Theorem 3 ensures that almost all parameterizatgovide a feasible solution to
the MCP, we need to determine one parameterization thatgtees controllability. Toward this
goal, in Algorithm 2, we present an efficient algorithm to abtsuch parameterization. The

correctness and computational complexity of the algorithrprovided in the next result.

Theorem 4. Algorithm 2 is correct and has complexit9(|.7|), where|7| is the size of the

collection of vectors given as input to the algorithm. o

Whereas Algorithm 2 provides an efficient formulation thatleles to retrieve a possible
parametrization ensuring controllability, one can easiyend this framework to more general
scenarios aiming to capture some additional control netfdnterest, for instance, the control-

lability energy. This extensions are described in furthetad in the following remark.

Remark 2. Suppose the objective function in Algorithm 2 is givenftyys). Then, this can
be chosen to satisfy additional design constraints. Fotainse, f(B) = ¢"B1, wherec could
capture an actuation cost, i.e., entrycaptures how desirable is to actuatg and1 is a vector
of ones with appropriate dimensions. Subsequently, one maay additional constraints such
that the total actuation budget available is bounded, for instancef(B)| < r and B; ; > 0
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Algorithm 2 Determines a numerical parametrization of an input malriwith specified input
structure3

Input: {v7},c7, a collection of| 7| complex vectors, and € {0, x}"*™.

Output: B* € R™*™ solution to (8).

B* =arg min 0
BERTLXTI’L

st.  (W)'B>0, jeg

Bl7k:0if Bhk:O, l,k:zl,...,n

to avoid negative entries that will restrain the objectiveayj Alternatively,f(B) can also be
considered to be nonlinear, while capturing control-thetar properties; in particular, it can be
a function of the controllability Grammian [37], with some@ropriate constraints to ensure

the problem to be well defined. o

Next, we show that the sparsest vector pattern given by Le@ynt@gether with Algorithm 2,

leads to a numerical realization that is a solution to the MCP

Lemma 3. Given {v'};cs with v* € C", the procedure of finding* € R™ such that
b* = arg min 1161]0
beR™ (8)
st. v'-b#£0, forall i € 7,

is polynomially (in|J| and n) reducible to a minimum set covering problem (provided by

Algorithm 1), with numerical entries determined using Alition 2. o
Now, we state one of the main results of the paper.

Theorem 5. The solution to the MCP can be determined by first identifyiregsparsity of the
input vector as in Lemma 2, followed by determining the nicakrealization of the non-zero

entries using Algorithm 2. o

Finally, we characterize the sparsity solutions to the M@Bidies those described by a single

effective input.
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Theorem 6. Let b € R™ be a solution to the MCP as described in Theorenmb &s sparsity
and A C {1,...,n} the indices wheré is non-zero, i.e N = {i: b; = x, andi = 1,...,n}.

If B € {0,%}™" has exactly one non-zero entry in th¢h row, wherei € A/, then the output
B € R™" of Algorithm 2, whenB and the left-eigenbasis of are considered, is a solution to
the MCP. o

In particular, from Theorem 6, we obtain the following rdsudgarding the scenario where

every effective input actuates a single state variablecline refer to asledicatedinputs.

Corollary 1. Letb € R” be a solution to the MCP as described in Theorend &s sparsity
and N C {1,...,n} the indices wheré is non-zero, i.e. N’ = {i: b; = x, andi = 1,...,n}.
If B € {0,%}"*" has exactly one non-zero entry in théh row and each column, wheies N,
then the outpuB € R™*" of Algorithm 2, whenB and the left-eigenbasis of are considered,

is a dedicated solution to the MCP, i.e., every effectivaiirgrtuates a single state variable.

B. On the Exact Solution of the Robust Minimal ControllakifProblem

Now, we study the rMCP, by first showing that this is an NP-hanablem (Theorem 7). Then,
similarly to the previous subsection, we first show that dipalar subclass of input matrices is a
solution to this problem. More specifically, we characterike dedicated solutions to the rMCP
(Theorem 8), and, subsequently, we provide a charactenizaf the solution to the rMCP in

Theorem 9.
Theorem 7. The rMCP is NP-hard. o

Now, similar to the reduction proposed from MCP to the setecimg problem, we can
characterize the dedicated solutions to the rMCP by conegl@ set multi-covering problem

as stated in the next result.

Theorem 8. Letv!, ... v" be a left-eigenbasis of, ands the number of possible input failures.
Further, consider the set multi-covering probléfS,, ..., Sy}, U = {1,...,n};d), where
the demand isi(i) = s+ 1 fori e U, and S, = {j : [v']; # 0, andl — 1 = k mod n} for
ke K ={1,...,(s+ 1)n}. Then, the following statements are equivalent:

() M* is a solution to the set multi-covering probl€fS;, ..., S}, U = {1,...,n}; d);
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(i) B,(M*) is a dedicated solution to rMCP, whef®,,(M*)];; = 1 for [ =i mod n and

1 € M* C K, and zero otherwise. o

Remark 3. A matrix B, (M’) described by the concatenation @f+ 1) solutions to the MCP
achieves feasibility to the rMCP, but it is not necessarity @gptimal solution to the rMCP. In
Section V-C, we provide an example where the concatenafi@olotions is not a solution to
the rMCP. o

In Theorem 8, we provided a characterization of dedicatédisas to the rMCP. In particular,
we notice that the solution may require that several noo-zstries in a row of a dedicated
solution are considered. In other words, the same statablarneeds to be actuated by different
actuators to ensure robustness §anput failures.

Next, we characterize the solutions of the rMCP, i.e., ndy dhe ones that are dedicated.
Towards this goal, we need to introduce the followimgerging procedure. Let two distinct
effective inputsi and j, associated with two non-zero columns of the input matfixand®’, be
such that they share no non-zero enitpyi.e., [b'], # [0’], for k € {1,...,n}. These two inputs
are said to be merged into one ingtit where[v*],, = [b'], when [v'], # 0, and [6"], = [b/];,
when[b']; # 0, for k € {1,...,n}. Further, it is implicitly assumed that takes the place df
and¥’ is set to zero. In other words, the effective inpus associated witth’ and the effective

input 5 is discarded.

Theorem 9. Let B,(M*) € R™*(+hn pe a dedicated solution to the rMCP as described in
Theorem 8. In addition, lez € {0,x}"*+)" pe the sparsity of the matrix resulting of the
merging procedure between any of the effective input8,joM*). Then, the matrixB € R"*"

obtained using Algorithm 2, witl® and the left-eigenbasis of, is a solution to the rMCP.o

C. Computational Complexity

In the previous subsections, we have mentioned that bothd@#NP-hard. The NP-hardness
assesses that a problem is at least as difficult as anothéahPproblem. In this subsection, we
show that both MCPs are NP-complete, i.e., their decisiosiors are NP-complete. Therefore,
we provide an interesting remark about NP-completeness dlam results known in control

systems. Also, it sets the grounds for the next subsectidmerevpolynomial approximation
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algorithms (that obtain a suboptimal solution to the settihoalvering problem) are leveraged

to obtain approximate solutions to the MCP and rMCP.

Theorem 10. The MCP and rMCP are NP-complete. o

Additionally, Theorem 10 leads to the following interestiobservation.

Remark 4. By Proposition 3 (the converse part), it follows that a smntof the MCP almost
always coincides with a numerical realization of a soluttonan associated minimal structural
controllability. Combining this with the fact that the MCB NP-complete when the eigenvalues
of A are simple (see Theorem 10), it follows that the set of sidp&amics’ matrices that lead

to NP-complete problems has zero Lebesgue measure. o

As stated in Theorem 10, the condition that the matridebe restricted to have simple
eigenvalues, is, in fact, necessary in a sense for the pedposduction of the MCP to the

minimum set covering problem to be polynomialin This fact is explored in the next remark.

Remark 5. The proposed reduction from the MCP to the minimum set cogegproblem is
polynomial inmax(|J|,n), where|7| denotes the number of left-eigenvectors. Nevertheless,
because the number of left-eigenvectors can grow expaiigniit follows that the proposed
reduction cannot be used to show that the decision versitimeofgeneral) MCP is NP-complete.
However, this does not imply that the decision version of M@P for arbitrary dynamics’
matrices (i.e., whem is not restricted to have simple eigenvalues) is not NP-detapwhich

remains an open question. o

Finally, we notice that the fact that a problem is NP-hardpieés not mean that all instances are
not solved polynomially; notwithstanding, these can beeblexactly [38], [39]. Furthermore,
the NP-completeness stated in Theorem 10, allows us todmmisie subclasses of the set multi-
covering problem that are known to be polynomially solvabdeidentify polynomially solvable
subclasses of the MCPs. This enables a new characterizat®oiutions to the question posed
in [21], regarding the existence of polynomial algorithméseto determine controllable graph
structures. In particular, we notice that in several of ¢heases, the graphs are associated with
dynamics’ matrices that are simple — the case explored snpiteisent paper. Alternatively, by the

proposed construction, if the set multi-covering problebtammed possess additional structure,
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then this can be leveraged to use polynomial algorithms pocegimate the solutions with close-

to-optimal solutions, as we discuss in the next subsection.

D. Polynomial Approximations to the Solution of the Minin@antrollability Problems

As a consequence of Theorem 10, it follows that we can obtaipnpmial approximations
for both the multi-set covering problem and the rMCP. Noticat, in particular, a solution to
the MCP can be obtained by considering that no input failerétore, in Algorithm 3, we
propose an algorithm that leverages the submodularityegsti@s [40] of the set multi-covering
properties to obtain a dedicated solution to the rMCP. Sututaoity properties ensure that the
associated polynomial greedy algorithms have sub-opityngiliarantees while performing well
in practice [40], see also Remark 6. Subsequently, follgveirsimilar reasoning to that presented
in Theorem 8, we can obtain the following result.

Algorithm 3 Approximate Solution to the rMCP
Input: Left-eigenbasis!, ... v" associated withd € R"*" and the number of possible input failures

Output: Dedicated solutior3,,(M’) € R™*(s+1)n,

1 Let Sy, ..., Seeq1yn, WhereS, = {j : [v7]; #0, andl — 1=k mod n} for ke K={1,...,n(s+1)}.
2: setyd’ = (), with i = 1,...,s > denote the indices it/ that are covered times and the indices of the sets
covering them, respectively.
3 setg =10
4:fori=1,...,s+1
setUt ={k:|{kelU:keS;,je T} >i} > the indices that are already covered by at leastts
5: while U* # U
selectS; with largest number of indices & \ ¢/*
setJ + JU{j}
setU’ + U'US;
end while
end for

set M/ + T;

Theorem 11. The matrix B, (M’) obtained using Algorithm 3, witl and the left-eigenbasis
of A, is a feasible solution to the rMCP. Further, the computagibcomplexity of Algorithm 3

is O(sn), and it ensures an approximation optimality bound@®(flog n). o
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Remark 6. Algorithm 3 produces suboptimal solutions that are oftertirogl solutions to
the rMCP, as illustrated in Section V-A. The practical peniance, together with the linear
computational complexity motivated the choice of suchguace. Nonetheless, the information
on the structure of the left-eigenvectors, or equivalernhtig structure of the sets in the set multi-
covering problem, can be leveraged to obtain better appnations, for instance, see [27], [41].
In particular, the approximation algorithm from [27] outderms the majority of the known
approximation algorithms if the number of elements of thgdat set is small. The authors
obtained an approximation optimality bound 6X(d logdc), wherec is the size of an optimal
solution andd the number of elements of the largest set, and its compuatdticomplexity is
O(cnlog ). Further, [42] extends the latter results by using a lineaogramming relaxation,
which has comparable computational complexity, but withettds approximation ratio that is
smaller by a constant factor. Also, in [42] the approach igedtly applicable to set multi-covering

problems, required to determine the solution to the rMCP. o
Finally, by invoking Theorem 9, we obtain the following résu

Corollary 2. Let B,(M') € R™(+1)" pe a dedicated solution to the rMCP as described in
Theorem 11. In addition, leB € {0, x}"*(+*Yn pe the sparsity of the matrix resulting of the
merging procedure between any of the effective input8,joM’). Then, the matrixB € R"*"
obtained using Algorithm 2, wits and the left-eigenbasis of, achieves feasibility to the rMCP

and is computed in polynomial time. o

E. Numerical and Computational Remarks

Now, for the sake of completeness, we discuss the implicatad waiving Assumption 2 and
the impact on the input vector in the MCP. The results triyiaiktend to the general solution
to the MCPs. Towards this goal, we need the following reswitnf [43].

Theorem 12 ([43]). Let A € C™*™ be a matrix with simple eigenvalues. The deterministic
arithmetic complexity of finding the eigenvalues and theemrgctors ofA is bounded by
O (n®) + t (n,m) operations, where(n,m) = O ((nlog?n) (logm + log®n)), for a required
upper bound o27||A|| on the absolute output error of the approximation of the eigdéues

and eigenvectors aofl and for any fixed matrix nornj - ||. o

September 24, 2018 DRAFT



21

More precisely, Theorem 12 states that in practice, onlyraarical approximation of the left-
eigenbasis is possible in polynomial time. In this case¢let27||A|| be as in Theorem 12,
then the results stated in Lemma 2 and Lemma 3 (see also &lgod and Algorithm 2) can
only be used in ar-approximationof the left-eigenbasis of the dynamics’ matrix. Therefore,
the e-approximation of the left-eigenbasis may lead to the feoifg issues:

(i) an entry in the left-eigenvectors is considered as agh®re in fact it can be some non-zero
value that (in norm) is smaller then Consequently, the sets generated using Algorithm 1 (see
also Lemma 2) do not contain the indices associated withethos-zero entries. Thus, additional
sets need to be considered to the minimum set covering, wimphes that the structure of the
input vector may contain more non-zero entries than thessgainput vector that is a solution
to the MCP. In other words, we obtain an over-approximatibthe sparsest input vector that
is a solution to the MCP.

(i) an entry in the left-eigenvectors in theapproximationof the left-eigenbasis is non-
zero. Then, it does not represent an issue when computingttheture of the input vector as
described in Lemma 2 (see also Algorithm 1), but it can reprea problem when determining
the numerical realization by resorting to Algorithm 2. Ntredess, by Theorem 3 it follows that
such issue is unlikely to occur.

To undertake a deeper understanding of which entries fahenfirst issue presented above,
several methods to compute eigenvectors can be used atidsslposteriorly compared, see [44]

for a survey of the different methods and computationalessassociated with those.

V. ILLUSTRATIVE EXAMPLES

In this section, we provide some examples that illustragertfain results of the paper.

September 24, 2018 DRAFT



22

A. Minimal Controllability Problem

To illustrate the first main result of this paper, i.e., toadgtine a solution t@;, consider the
dynamics’ matrixA given by

(6 -3 3 2 —1]
08 0 0 0
A=|4 3 7 2 1|, )
00 0 6 0
|4 -3-3-2 3

whereo(A) = {2,4,6,8,10} consists of distinct eigenvalues, so the mattixs simple and the
results in Section IV-A are applicable. Consequently, ttambthe solution to the MCP, we first
compute the left-eigenvectors of that are as followsv' = [1100 1], v>* =[0010 1],
v  =[00010],v* =[01000]T andv® = [1 01 10]T. Therefore, their structures are
given by o' = [xx00%]T, 2> = [00x0x], 2 = [000x0]", 7" = [0x000]" and
the j-th set corresponds to the set of indices of the left-eigetovevhich have a non-zero entry
on thej-th position. In particular, we obtai§; = {}L, 5}, So ={1,4}, S3 = {2,5}, Sy = {3, 5},
Ss = {1, 2}, and the universe set is given by= USi =1{1,2,3,4,5}. Now, it is easy to see
that a solution to this minimum set covering prigtl)lem is theadeéndicesZ* = {2, 3,4}, since
U =85,US;US, and there is no pair of sets, i.€, = {i,7'} with 4,7 € {1,...,5} such that

U =3S;US,. Therefore, a possible structure of the vedidhat is a solution to the MCP is
b=1[0x%xx*0]" (20)

Additionally, to find the numerical parametrization ipfunder the sparsity pattern bf we have
to solve the following system with three unknownhs:bs, by, # 0 andbs + b, # 0. By inspection,

a possible choice i = [0 1 11 0], but the numerical parametrization can be obtained by

.....

structure ofb given byb in (10). For the sake of completeness, we, the controltgiitiatrix is
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given by
C =1[bAb A% A3b A%]

0 2 44 608 7184
18 64 512 4096
= (112 120 1176 11520 |,
16 36 216 1296

| 0 =8 —104 —1112 —11264 |

and the raniC) = 5, which implies that(A, b) is controllable.

Observe that the single-input solution obtained with- [0 1 1 1 0]T, can be immediately
translated into a solution with two effective inputs, by aking Theorem 6. In particular, two
possible solutions ar& = [p! p2] with b = [01100]" andb* =[00010]T, andB =
(ot 2 3] withdo! =[01000],0°=[00100]Tandb®=[000 1 0], where the latter is a
dedicated solution. Alternatively, if we consider for imsteB = [p! 12| with b =[0 100 0]T
andb®* =[00 —1 1 0]7, thenvTB = 0 for the left-eigenvector = [1 (0 1 1 0]T which renders
the pair(A, B) uncontrollable. Thus, as prescribed in Theorem 6, by imldlgorithm 2, one
can obtain a new realization d? that ensures controllability ofA, B); for instance, the same
bt andb? =[00 2 1 0]

In Section IV-D, a systematic polynomial approximation te tMCP can be obtained by
considering the rMCP with the number of input failures eqieat = 0. In fact, by doing so,
one obtains the same sparsitybtd.e., b, as in the aforementioned example, and the subsequent

analysis follows. Furthermore, we notice that the appratérsolution is a solution to the MCP.

B. Minimal Structural Controllability Problem

The solution to the MSCP consideringassociated with in (7) is given byb’ = [0 x 0 % 0]T,
see [28] for details. Therefore, the structural contraligbsolution to the MSCP provides a
strict lower bound on the number of state variables we shagldiate with the input, i.e.,
the sparsity of the input vector (in accordance to Propmsi). More precisely, we achieve
structural controllability by actuating two variables ésdically x, and z,), but in order to
ensure controllability an additional state variable needse actuated, for instance; as obtained
in Section V-A. Therefore, structural controllability icessary, but not sufficient, to achieve

controllability even when the matrixl is simple. In particular, considering the converse part
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of Proposition 3, we note that the numerical values of therimat fall into the set of zero
Lebesgue measure (see also Proposition 2), where thewohgsociated with the MSCP does
not provide a solution to the MCP. As a consequence, notiae Theorem 3 is different and
stronger than Proposition 3 (as observed in Remark 1). Mpeeifically, in Theorem 3 the
matrix A has fixed values and only the non-zero entries3oére taken into account, whereas
in Proposition 3 both non-zero entries 4fand B are considered not to be fixed.

To sharpen the intuition behind these results and obsenstive perturbed the matrix by
adding a random uniform noise on the inter{all0~'°, 10~'°] to each of its non-zero entries,
which leads to a new matrix that we denote Ay(with the same structure a$). The structure
of the left-eigenvector of the matri¥’ now becomest’™ = [x x x « ], 12 = [ « « % x|T,

2 =[000%0]T, 0" =[0%x000]" andv”® = [x x x x x|T. Subsequently, building the sets
for the minimum set covering problem as in Algorithm 1, basedv, with i = 1,...,5, we
obtainS] = {1,2,5}, S = {1,2,4,5}, S§ = {1,2,5}, S, = {1,2,3,5} and S = {1,2,5}, and
the universe of the minimum set covering problendfis= {1,2, 3,4, 5}. Finally, by inspection,
we can see that a solution of this minimum set covering prolidethe set of indiceg™ = {2,4}.
Hence, the sparsity of the solution to the MCP coincides thighsolution to the MSCP associated
with A. Lastly, we observe that this example illustrates the amichs of Proposition 2 and
Proposition 3.

C. Robust Minimal Controllability Problem

Now, we illustrate how to find a solution 1B,. Let us apply the developments of Section IV-B,
when we consider the dynamics’ matrix in (9). First, if we swler that at most one input fails,
we use Algorithm 1, where a set multi-covering problem is stdered with the sets as in
Section V-B, universé/ = {1,...,5} and with a demand functiod(i) = 2 for i = 1,...,5,
i.e., each element must be covered twice. Subsequentlyndpection, we conclude that the
setsS, and S, need to be considered twice, since the eleménésid 4 only appear in these
sets, respectively. After this, we need to cover the eler@eaind to this end we can choose
S3 or S5 or twice one of them, so a possible solution to the multi-setecng problem is
M* = {2,3,4,2,3,4}. Therefore,B,(M*) is a solution to the rMCP, and, in particular, the
solution is the same as concatenating twice a dedicatedi®olto the MCP, see Remark 3.

Further, Algorithm 3 produces an optimal solution as oftenuss in practice (Remark 6).
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In fact, if we apply the developments of Section IV-B whemputs are allowed to fail, i.e.,
for demand functioni(:) = s + 1 for i = 1,...,5, we notice that the setS, and S, need to
be considered + 1 times since the elementsand 4 only appear in these sets, respectively.
Besides, we need to cover the elemenso we can choose eithék or S5 s + 1 times, which
implies thatB(M*), with M* = {2,3,4,...,2,3,4} where the element’ 3 and4 appears + 1
times, is a solution. Similarly, the solution consists ohcatenatings + 1 times a dedicated
solution to the MCP, and the same remarks are applicable Reenark 3 and Remark 6.

Notwithstanding, the concatenation ©ft 1 solutions to the MCP is not always a solution to
the rMCP when at most inputs are allowed to fail. Let us consider the dynamics’nraind
associated left-eigenvectors as follows:

4 =2 2 | | | 101
A=|-1 3 1 and V= |[u' 23| =1110]. (11)
1 -15 L 011

First, we note thatr(A) = {2,4,6}, so A is simple, and we can apply the results in
Section IV-B. Secondly, the structure of the left-eigeriges of A is given byo! = [x x 0]T,
v2 = [0+ +]T andv® = [ 0 «]|T. Further, we consider that at most one input failure is jikel
to occur, i.e.,s = 1. Then, we can invoke Algorithm 1 to build the sets for the sefitim
covering problem, which are as follows: = {S;, S, 83}, with §; = {1,2}, S; = {2,3} and
Ss = {1,3}, andid = |J>_, S; = {1,2,3}. By inspection, we obtain thatt’ = {1,2,3} is the
optimal solution, where the indices cover each elemebt tfice. Further, observe that a solution
to the dedicated input MCP always has size equal to two, artlisncase, the concatenation
of two solutions lead to a solution that has one more input tih@ optimal solution obtained.
Observe that this is a small dimensional example that inicucsa solution that is already3%
worst than the optimal. Alternatively, if we apply Algorith3 to approximate the solution to
the rMCP, we obtain one that is optimal, i.&(M') where M’ = {1, 2, 3}, which is consistent
with Remark 6.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we addressed two minimal controllabilityldemns, with the goal of characteriz-

ing the input configurations that actuate the minimal sub§efriables yielding controllability,
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under a specified number of failures. The problems explor@ whown to be NP-complete, and
a polynomial reduction of these to a set multi-covering peobwas provided. In particular, the
strategies followed by us separate the discrete and castinature of the minimal controllability
problems. Subsequently, we discussed greedy solutiorteetontnimal controllability problems
that yields feasible (but sub-optimal) solutions to rMCP.

A possible, and interesting, direction for future researcthis line of work includes the use
of the obtained inputs’ structure and consider methods sischoordinate gradient descent to

minimize an energy cost, and to consider the case where tldelmonot exactly known.
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APPENDIX

Proof of Lemma 2:Consider the set§ and i/ obtained in Algorithm 1. The following
equivalences hold: Ief C {1,--- ,n} be a set of indices anfg the structural vector whosieth
component is non-zero if and only ife Z. Then, the collection of set§S;}c7 in S covers
U if and only if Vj € J, Jdk € T such that; € Si, which is the same a8;j € 7, Jdk €
7 such thatw) # 0 and b, # 0, this can be rewritten agj € 7, 3k € Z such thato]b;, # 0
and thereforevj € J o7 -b # 0. In summary,b; is a feasible solution to the problem in (7).
In addition, it can be seen that by such reduction, the optsoltion b* of (7) corresponds to
the structural vectobz., where{S;};cz- is the minimal collection of sets that cové, i.e., Z*
solves the minimum set covering problem associated Withind/. Hence, the result follows
by observing that Algorithm 1 has polynomial complexityprely O(max{|J|,n}?). [

Proof of Theorem 3:The proof follows by showing that ifv’},c s with countable7 such
that v’ # 0 for all i € J and b a solution to (7), then the sét = {h € R* : v'-b =
0 for somei € 7, andb is a numerical instance df; has zero Lebesgue measure. The proof

follows similar steps to those proposed in [45], but due ® dlditional sparsity constraint we
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devise an independent proof. L&t'},c 7, with countable7, be given and leb be a solution
to problem (8). Fom € R", the equation’ - b = 0 represents a hyperplari¢' ¢ C" (provided
v' # 0 for all 7), thus the equation® - b # 0 defines the spacg&™ \ H'. Therefore, the set df

that satisfies’ b # 0 for all i € 7, is given by (] (C" \ H') = C™\ < U ”H”) and the sef2 of
i€J €T

values which does not verify the equations is the complemeant (C”\ 'U Hi)c = 'U H',
which is a set with zero Lebesgue measur&ih since|J| is countable. < <
Now, if {v'};cs is taken to be the set of left-eigenvectors 4fand b the corresponding

solution to problem (8), each member of the Setonstitutes a solution to (8) and hence the
MCP. Since, by the preceding argumeritshas Lebesgue measure zerddh, it follows readily
that almost all numerical instances lofire solutions to the MCP. |

Proof of Theorem 4.The existence of a solution is granted by Theorem 3, and fé®h [
one obtains the complexity for linear programming proposed [ |

Proof of Lemma 3:By Lemma 2, given{#'},c 7, problem (8) is polynomially (in.7| and
n) reducible to a minimum set covering problem. Now, given tson b to (7), Algorithm 2
can be used to obtain a numerical instantiatiomith the same structure assuch that’-b # 0
for all i € 7, which incurs polynomial complexity (in7| andn) by Theorem 4. Furthermore,
it is readily seen that any feasible solutibhto (8) satisfies||t/||o > ||b]lo = ||b]lo. Hence,b
obtained by the above recipe is a solution to (8) and the el®sissertion follows by observing
that all steps in the above construction, yieldingave polynomial complexity (in7| andn).
|

Proof of Theorem 5The proof follows by invoking the PBH eigenvector test in ©ham 2
and the left-eigenbasis that is available by Assumptionnd], @oticing that the problem in (8)
is a restatement of the MCP in (2). [ |

Proof of Theorem 6:The feasibility of the solution is ensured by proceedingilsirty to
Theorem 3 and Theorem 4, when the left-eigenbasis of thendiyisa matrix is considered to
invoke the PHB eigenvector criterion. The optimality felt® similar steps to those presented in
Lemma 3. |

Proof of Theorem 7:The proof follows by noticing that we can polynomially re@uthe
MCP to an instance of the rMCP, and invoking Proposition Iparticular, the rMCP is already

the result of such reduction since the MCP can be obtained e total number of inputs
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allowed to fail iss = 0. [ |
Proof of Theorem 8:First, we observe that, by construction of the sgf$s,...,Sis11)n}
and the demand functiod(i), for i € {1,...,n}, there exists always + 1 entries matching
every non-zero entry of the vectors in a left-eigenbasiss Tinplies that if at most sensors
fail, at least one entry of a columnof B is such that for each left-eigenvectar: # 0, implying
v''B # 0 for i € {1,...,n}. Hence, the system is controllable by Theorem 2, and we have a
feasible solution. Now we need to show that the solution ignogd, i.e., there is not another
solution with less dedicated inputs to the rMCP. We will med by contradiction, so assume that
there is a solution to a demand functiéq) = w for i € {1,...,n} and somev < s+ 1. Then,
for some entry of a left-eigenvectorit is only ensured the existence of columns inB whose
inner product is not zero. Therefore uif dedicated inputs fails, i.e., the corresponding columns
of B are now zero, therB is such thaw™B = 0, for some eigenvector. Thus, contradicting
the assumption that there is a sparser solution to the rMCP. |
Proof of Theorem 9:The proof follows similar steps to those presented in Theofe
In particular, one as to recall the notion of merging procedand the guarantees obtained in
Theorem 8. |
Proof of Theorem 10From [4], we have that the MCP is NP-hard, and, in particulze,
minimum set covering problem can be polynomially reducedt.td herefore, we just need to
show that the MCP assuming thatcomprises only simple eigenvalues and the left-eigenbasis
is known, i.e., under the assumption made in this paper, eareuced polynomially to the
minimum set covering problem.

To this end, note that, given the det'} ;. s of left-eigenvectors ofi, the MCP is equivalent to
problem (8), the latter being polynomially (ji7| andn) reducible to the minimum set covering
problem (see Lemma 3). Sinde/| = n, the overall reduction to the minimum set covering
problem is polynomial im and the result follows by invoking Proposition 1.

Similar arguments hold with rMCP, where the problem was shtmbe NP-hard in Theorem 7,
and a reduction to the minimum set multi-covering problem ba obtained as in Theorem 8.

[ |
Proof of Theorem 11:First, notice that the output of Algorithm 3, i.eB,(M’), is a
feasible solution since the algorithm stops when each oktements in the universe of the set

multi-cover iss + 1 times covered.
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The computational complexity of Algorithm 3 is obtained by toverall complexity of steps 1,
4 and 5. In step 1, we need to comp(te-1)n sets, in step 5 at mostsets need to be considered,
and, in step 4(s+ 1) iterations are performed, each with the number of stepsepf 5t yielding
(s + 1)n computational steps. Summing up the complexity of each, #krithm 3 has, in the
worst case, computational complexity of ord@(sn). In addition, notice that the performance
attained in a multi-set covering problem is the same as inrlEP, as a consequence of
Theorem 10. Furthermore, the solution obtained incurs in@mality gap of at mos©(log n)
since the algorithm implements the greedy algorithm assediwith submodular functions, as

it is the case of the multi-set covering problem, and theltdsliows. [ |
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