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Abstract

The local approach to linear parameter varying (LPV) system identification consists in interpolating individually estimated
local linear time invariant (LTT) models corresponding to fixed values of the scheduling variable. It is shown in this paper
that, without any global structural assumption of the considered LPV system, individually estimated local state-space LTI
models do not contain sufficient information for determining similarity transformations making them coherent. It is possible
to estimate these similarity transformations from input-output data under appropriate excitation conditions.
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1 Introduction

Linear parameter varying (LPV) models provide an ef-
fective approach to handling nonlinear control systems
[14, 9, 6, 11]. Some successful methods for LPV system
identification have been reported recently [17, 8, 5, 13,
21, 10]. In the local approach to LPV system identifi-
cation, interpolation is essential to establishing global
models from a collection of locally estimated linear time
invariant (LTT) models [14, 2, 1]. As LTI state-space
models can be estimated in an arbitrary state basis, it
is necessary to use a coherent collection of local models
for the purpose of interpolation.

This paper is focused on the problem of making local
state-space models coherent, without treating the inter-
polation step. Only state-space models are considered in
this paper, as local model coherence is not relevant for
other models. For shorter expressions, the words “state-
space” will be omitted from terms like “local state-space
model” and “LTT state-space model”. In practice, inter-
polation is based on a finite set of local LTI models, each
corresponding to a specific value of the scheduling vari-
able p(t), the main discussion of this paper is thus about
the case where p(t) evolves within a finite set, but its mo-
tivation is indeed with the perspective of interpolation
for continuous values of p(t).

It seems natural to transform all the local LTI models
to some canonical form in order to make them coherent.
The main purpose of this paper is to point out the fact
that, in the local approach to LPV system identification,
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structurally independent local LTT models themselves do
not contain sufficient information to determine similar-
ity transformations making them coherent. However, lo-
cally estimated LTI models can be made coherent by
making use of the information contained in some input-
output data sequences across all the working points, no-
tably with an algorithm initially introduced in the frame-
work of piecewise linear hybrid systems [18, 20].
Preliminary results of this work have been presented in
[20], which are completed in the present paper with a
rigorous proof of the main result.

2 Problem statement

Let u(t) € R?and y(t) € R® berespectively the input and
the output at discrete time instant ¢t = 0,1,2,..., p(t) be
the scheduling variable evolving within a compact set I1.
An LPV system is described by the state-space model

z(t +1) = A(p(t)z(t) + B(p(t))u(t) + w(t)  (la)
y(t) = Cp(t)z(t) + D(p(t))u(t) +ov(t)  (1b)

where z(t) € R™ is the state vector, A(p(t)), B(p(t)),
C(p(t)), D(p(t)) are matrices of appropriate sizes de-
pending on p(t) € M, and w(t) € R™v(t) € R®
are state and output noises with covariance matrices
Q(p(t)), R(p(t)).

Based on the fact that the LPV system (1) becomes an
LTI system when the scheduling variable p(t) is main-
tained at a fixed value, the following definitions aim at
establishing a link between LPV and LTI models.
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Consider a set of m LTI models indexed by the integer i:

x(t+1) = Ajz(t) + Biu(t) + w(t) (2a)
y(t) = Ciz(t) + Dju(t) + v(t) (2b)

characterized by matrices A;, B;, C;, D; of appropriate

sizes, and noise covariance matrices (); and R;.
The notation

0; £ (A, Bi,Ci, Dy, Qi, R;) (3)

will be used to denote the matrices characterizing the i-
th local LTT model (2), or the LTI model itself by abuse
of notation. The set of LTI models will be denoted by

;m}. (4)

Definition 1 A set of local LTI models

Y={o;:i=1,2,...

> ={(A;,B;,C!,D;,Qf,R}):i=1,2,...,m} (5)
is called a multi-snapshot of the LPV system (1) for

p(t) € P={p1,...,pm} C I, (6)

Af = A(pi), Bf = B(pi), Cf = C(pi),
Dj = D(pi), Q7 = Q(pi), Ri = R(pi).

In the local approach to LPV system identification [14,
2, 1], a set of locally estimated LTI models are interpo-
lated to obtain a global model. As such local LTI models
are typically estimated up to different and arbitrary sim-
ilarity transformations, they do not constitute a multi-
snapshot of the underlying LPV system in the sense of
Definition 1. It is thus important to make the local mod-
els “coherent” before the interpolation step.

What does mean a “coherent” set of local LTI models
with the perspective of their interpolation? The follow-
ing auxiliary definition will be helpful.

Definition 2 The input-output behavior of a set of local
LTI models ¥ = {o1,...,0,} is the input-output behav-
ior of the multi-model switching system consisting of the
same set of LTI models, such that the i-th LTI model o;
is active when p(t) = p; € P = {p1,...,pm}, and at ev-
ery transition between two LTI models, the initial state
of the new active model is equal to the final state of the
previous active LTI model. O

For example, following this definition, the input-output
behavior of a multi-snapshot ¥* (see Definition 1) of an
LPV system (1) is identical to input-output behavior the
LPV system when p(t) evolves within the restricted set
P.

If the interpolation of a set of local LTI models is ex-
pected to describe correctly an LPV system for all se-
quences of p(t) within N, it should also be true in the par-
ticular case where p(t) evolves within the restricted set
P={p1,...,pm} C I, including when p(¢) switches be-
tween different values within P. It means that a “coher-
ent” set of local LTT models should have the same input-
output behavior as the underlying LPV system when
p(t) € P, in the sense of Definition 2. This requirement
will be satisfied by Definition 4 through Property 1.

Definition 3 Two LTI models ¢ = (A,B,C,D,Q, R)
and & £ (A,B,C,D,Q,R) are related by a similarity
transformation characterized by an invertible matrix T €
R™*™ and denoted as

01,5, (®)

if the matrices characterizing the two LTI models satisfy

A=TAT™', B=TB, C=CT}, (9a)
D=D, Q=TQT", R=R. (9b)
O
Definition 4 A set of LTI models
Y={5;:i=1,2,...,m}

is said coherent with another set
Y={o;: i=1,2,...,m},

if there exits an invertible transformation matriz T €
R™ ™ common to the local models, such that

0; L.6; foralli=1,...,m. (10)
This relationship between Y and Y is then denoted by
v L3 (11)

The local LTI models &; are simply said coherent when
the reference model set X is obvious. O
The relevance of this definition is justified by the follow-
ing property, as discussed before Definition 3.

Property 1 If a set of local models X is coherent with
the multi-snapshot ¥* of the LPV system (1), then ¥ has
the same input-output behavior (in the sense of Defini-
tion 2) as that of the LPV system (1) with the scheduling
variable p(t) restricted to the finite set {p1,...,pm} and
with appropriate initial states. O
The proof of this property is trivial: under the assumed
conditions, the LPV system (1) and its multi-snapshot
3* have the same input-output behavior, and the states
of ¥* and ¥ are related by the transformation matrix 7T'.
Property 1 is a necessary condition that a relevant def-
inition of local model coherence should satisfy. It does



not exclude other possible definitions, notably those
based on p-dependent state transformation matrices
T'(p). Such considerations, related to LPV system equiv-
alent state-space representations as investigated in [3],
would be out of the scope of this technical communiqué.

In practice, local LTI models are estimated from a fi-
nite data sample subject to random uncertainties, thus
the definition of coherent local models is understood in
an approximative sense. If the estimation of each local
model is consistent, then Definition 4 can also be under-
stood for the limiting models when the data size for each
local model estimation tends to infinity.

If some global structural assumptions of the matrix func-
tions A(p), B(p), etc. were assumed, then they could be
used to make estimated local LTI models coherent. This
paper is focused on structurally independent local LTI
models, as defined below.

Definition 5 A set of local LTI models o; are struc-
turally dependent if their parametrizations are such that
fizing the matrices A;, B;, C;, D;, Q;, R; reduces the de-
grees of freedom of the matrices A;, B;,C;,D;,Q;, R;,
for j # i; otherwise they are structurally independent.
O

For instance, if a set of local LTI models is parametrized
such that all the matrices A; share an equal entry at
the same position, say A;(1,1) = A,(1,1) for all ¢,j =
1,2,...,m, then the local models are structurally de-
pendent. A less trivial counterexample will be given in
Section 3.2 with equation (27).

3 Making local LTI models coherent

Apply different similarity transformations 7} to a set of
local LTI models ¥*, resulting in a transformed set of

models f), which is not coherent with ¥*. Assume that
neither T; nor X* is known, is it possible to derive, solely
from X, a model set ¥ coherent with ¥*7

3.1 Structurally independent local LTI models

Proposition 1 Given a set of structurally independent
LTI models

Y ={of:i=12,...,m}, (12)

assume that a set of arbitrary unknown invertible ma-
trices

{T; e R™™ :i=1,2,...,m} (13)
transform the LTI models
o} 1,6, (14)
resulting in a set of transformed models
S={6;:i=1,2,...,m}, (15)

then it is impossible to determine invertible matrices
T; € R™*"™ (not necessarily equal to T;) fori=1,...,m,

solely based on the set of transformed models 2, such that
the further transformed set of models

i=1,2,...,m} (16)

through

0 10,05 (17)
is coherent with the original set X*, or more precisely,
Ly (18)

for some unknown T € R™ ™. O

Proof. The proof proceeds by contradiction, starting
by assuming the contrary of Proposition 1, in which the
word “impossible” is replaced by “possible”, or more
compactly, “solely based on 3, the original model set
>* can be determined up to an unknown transformation
matrix 7' common to all local LTT models”. As the ma-
trix T' € R™*™ can be any invertible matrix, what is de-
termined from 3, is a set of (infinitely many) sets of LTI
models, which will be denoted by S(3) in what follows.
The contrary of Proposition 1 then means

S(E)={2: *LX, T e R det(T) £ 0}.  (19)

Within this set, the particular element >* corresponds
to the identity transformation matrix 7', hence

¥ e S(D). (20)
Consider a set of m invertible and pairwise distinct ma-
trices S; € R"*", 4 =1,2,...,m and a model set
Y={ol:i=1,2,...,m} (21)
such that
ol Sy (22)
for i = 1,2,...,m. The two transformations (22) and
(14) then imply
0; 1,6 (23)

with Ti’ = T1S;, for i = 1,2,...,m. This result means
that the model set & originating from X* through
transformations (14) could also have originated from ¥’
through transformations (23). Therefore, following the
same reasoning as at the beginning of this proof, that

has led to X* € S(X), it yields ¥/ € S(3). This result



and (19) imply that £*<53 for some invertible T’ In
terms of the LTI models composing ¥* and ¥, it means

of .0 (24)

with a common T for all ¢ = 1,2,...,m. This result is
clearly in contradiction with (22), where S; are pairwise
distinct matrices. This contradiction invalidates the as-
sumption made at the beginning of this proof, hence
proving Proposition 1. O

3.2  Ezamples based on global structural assumptions

The result of Proposition 1 may seem in contradiction
with some known methods for making local LTI mod-
els coherent. In fact, these methods assume (implicitly)
some particular structure of the matrix-valued functions
A(p), B(p) etc., therefore, the local LTI models are not
structurally independent in the sense of Definition 5. To
better clarify the situations, some examples are recalled
below, by pointing out their particular global structural
assumptions.

3.2.1 Coherent LTI models based on canonical forms

In order to make local LTI models coherent, a natural
idea is to find similarity transformations of the local LTI
models leading to some LTT canonical state-space form,
or to estimate local LTI models directly in such a form
[19, 12, 7, 2]. This practice assumes that the local LTI
models are coherent when they are all transformed into
the same LTI canonical form ' .

For the sake of presentation simplicity, consider the
case of single-input-single-output (SISO) models. In
the controllable form, the m local models involve, for
1=1,2,...,m,

0 1 0 0
- 0 0 1 0 _
A= ) , Bi= (25)
a£1) 52) aﬁ(z) agn) 1

The assumption that the local LTI models in this canon-
ical form are coherent implies that there exists a com-
mon invertible matrix 7" € R™*™ such that, for all i =
1,2,...,m, A; = TA*T~L. Let N(M) denote the sub

! Transforming the local LTT models to the same LTI canon-
ical form does not lead to a canonical form of the underlying
LPV system, as pointed out in [15].

matrix of M excluding its last row, then

(26)

By assuming that M (TA;‘T’l) are equal to the same
matrix for all ¢ = 1,2,...,m, the local LTI models are
not structurally independent in the sense of Definition 5.

3.2.2 Coherent LTI models based on the observability
matric

In [1] another method is proposed to make local LTI
models coherent, in a framework more general than the
one of the present paper. In the particular case of SISO
observable systems, this method consists in finding dif-
ferent similarity transformations so that the m trans-
formed local LTT models all have the same observabil-
ity matrix. It implies the assumption that the local LTI
systems composing a multi-snapshot of the underlying
LPV system all have the same observability matrix, or
more explicitly,

CiA; = C; A3 (27)

foralli,j € {1,2,...,m}and s € {0,1,...,n—1}. Again
the local LTI models are not structurally independent
in the sense of Definition 5.

Remark. This observability matrix-based method is
incompatible with the previously presented example of
canonical form-based method, in the sense that in gen-
eral the two resulting model sets are not coherent with
each other. Moreover, the canonical observable form-
based method is incompatible with the canonical control-
lable form-based method, and similarly the observability
matrix-based method is incompatible with the controlla-
bility matrix-based method. These incompatibilities be-
tween “natural” methods illustrate the fact that there
is no generally natural global structural assumption for
making estimated local LTT models coherent. O

4 Data-based transformations for coherent LTI
models

In order to make local LTI models coherent, as an alter-
native to global structural assumptions, the information
contained in some data sequences can be used.

The idea is based on Property 1 that is satisfied by co-
herent local LTI models. In particular, the state trajec-
tory “continuity” in Definition 2 is essential: when the
scheduling variable p(t) switches from one value to an-
other within P, the local LTI model switches accordingly,
but the initial state of the new active LTI model is equal
to the final state of the previous active LTI model.



Given adataset D = {(p(¢), u(t),y(t)) : t=1,2,...,N}
with p(t) € P, start by segmenting the data sequence
into pieces of constant p(t) value. If the local LTT mod-
els are estimated from pieces of this data set, the whole
state trajectory on each data segment can be obtained
as a by-product of the identification procedure [16]. If
the local LTI models have been estimated from another
data set, then the initial state and the whole state tra-
jectory on each data segment of D can be estimated with
the already estimated local LTI models [4]. Similarity
transformations of the local LTI models are then deter-
mined so that, when the local LTI model switches, the
initial state of the new active LTI model is equal to the
final state of the previous active LTI model.

A complete data-based algorithm for making local LTI
models coherent has been introduced in [18] in the frame-
work of piecewise linear hybrid systems. A variant algo-
rithm has been presented in [20].

5 Conclusion

It has been shown in this paper that structurally inde-
pendent local LTI models estimated from data collected
with fixed scheduling variable of an LPV system do not
contain sufficient information to make themselves coher-
ent with the perspective of LPV model interpolation.
Nevertheless, well designed data sequences can be used
to address this problem.
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