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Stabilization ofMISO fractional systemswithdelays ?

Le Ha Vy Nguyen a, Catherine Bonnet a,

aInria, Université Paris-Saclay, L2S-CentraleSupélec, 3 Rue Joliot-Curie, 91192 Gif-sur-Yvette, France

Abstract

We consider multi-input single-output (MISO) fractional systems of commensurate fractional orders with different input or
output delays. We derive explicit expressions of left and right coprime factorizations over H∞ and of the associated Bézout
factors of the transfer matrix of the systems. These factors allow the construction of the Youla-Kučera parametrization of the
set of stabilizing controllers which guarantee the internal stability of the closed-loop systems.
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1 Introduction

Fractional systems are systems described by differential
equations involving non-integer order derivatives and/or
integrals. Consequently, in the frequency domain, their
transfer functions contain non-integer powers of the
Laplace variable s. This kind of models has become
more popular in many fields in the past two decades
since it provides a better fit to data being then more
succinct than a standard model. Refer, for example, to
[7] for basic backgrounds on fractional calculus and to
[17,5] for its recent applications on modeling.

Delays are encountered almost everywhere due, for ex-
ample, to distance of transmission and it is well-known
that they have important effects on the stability of the
systems [16].

While integer-order systems with delays have been in-
tensively studied [16], the literature on fractional sys-
tems with delays is still quite small. Particularly, the sta-
bilization problem of fractional systems with delays has
rarely been addressed. Some available studies are clas-
sical [13] and fractional PID controller design [6], frac-
tional sliding mode control [18], factorization approach
to control synthesis [1,3].

In the framework of fractional representation approach
to synthesis problems [20], SISO fractional delay sys-
tems was considered in [1,3] and coprime factorizations
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together with the corresponding Bézout factors of the
transfer function of these systems have been derived. In
[4], coprime factors were presented for a large class of
MIMO infinite-dimensional systems which include delay
systems. The factors were determined from a state-space
realization of the (regular) system which was given in
terms of the semigroup of the system. Such realizations
are not much considered for fractional systems.

For the particular class of MIMO (integer-order) sys-
tems with I/O delays, the problem of parametrization of
stabilizing controllers was solved in [8,9]. The idea was to
reduce the problem to an equivalent finite-dimensional
stabilization problem by involving an unstable finite-
dimensional system and a stable infinite-dimensional
system (FIR filter). In [10], a procedure to compute right
coprime factorizations over a Bézout domain was pro-
posed for spectrally controllable MIMO (integer-order)
systems with input delays. For MISO structure, a class
of (integer-order) systems with multiple transmission
delays was studied in [2] and coprime factorizations and
associated Bézout factors over H∞ were derived.

In this paper, we are interested in the stabilization
problem of MISO fractional systems with different I/O
delays which are not necessarily commensurate. This
MISO structure appeared, for example, in communica-
tion systems [15]. We would like to obtain the set of all
stabilizing controllers by determining a doubly coprime
factorization over H∞ of the transfer matrix and the as-
sociated Bézout factors, which allow the construction of
the Youla-Kučera parametrization [20]. As in the finite-
dimensional case, the Youla-Kučera parametrization
gives the set of all H∞-stabilizing controllers in terms
of one free parameter. Note that in [14], a parametriza-
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tion of the set of all stabilizing controllers is given in
terms of two free parameters for MIMO systems once
we already know a particular stabilizing controller. Our
strategy here is to work directly on the Bézout identity
in order to get explicit expressions of Bézout factors
in terms of the matrix transfer function. Such explicit
expressions could not be easily derived in [8,9,10] even
in the case of standard delay systems. We hope that
the explicit form will facilitate the use of these factors
in controllers design while the use of the frequency do-
main representation of the systems agrees well with the
modeling practice of fractional systems [17].

The paper is organized as follows. In Section 2, the class
of systems of interest and some background are pre-
sented. The results are stated in Sections 3 and 4. We
give in Section 3 explicit expressions of left coprime fac-
torizations and associated Bézout factors overH∞ of the
transfer function of the systems under study. Right co-
prime factorizations and right Bézout factors are given in
Section 4 for a large subclass of the class of systems con-
sidered. Examples are provided to illustrate the results.
Finally, Section 5 gives conclusions and perspectives.

2 A class of MISO fractional time-delay systems

We consider systems described by transfer matrices of
the form

G(s) =
[
e−sh1R1(sα), . . . , e−shnRn(sα)

]
, (1)

where 0 ≤ hk ∈ R for k = 1, . . . , n are the delays;
α ∈ R, 0 < α < 1; Rk(sα) = q̃k(sα)/p̃k(sα), where p̃k
and q̃k are polynomials of integer degree in sα, p̃k(sα)
and q̃k(sα) have no common roots, and deg p̃k ≥ deg q̃k
for k = 1, . . . , n; dk is the degree in sα of p̃k; s is in the
principle branch C\R−, that is arg(s) ∈ (−π, π), in or-
der to guarantee a unique value of the transfer function
involving sα with α ∈ (0, 1).

Some notations used are C+ = {s ∈ C |Re(s) > 0},
Z+ = {p ∈ Z | p > 0}, Z+ = {p ∈ Z | p ≥ 0}.

We are interested in H∞-stability, i.e. a SISO system is
stable if its transfer function K(s) belongs to the H∞
space of analytic and bounded functions in C+ with
‖K‖H∞ = sups∈C+

|K(s)|. Let us denote M(H∞) the
set of matrices whose components are in H∞.

The following notion of coprimeness is considered.

A system G is said to have a right coprime factorization
(r.c.f.) (N,M) over H∞ if G = NM−1, detM 6= 0, N ,
M ∈M(H∞) and there exist X, Y ∈M(H∞) such that
XM + Y N = I. Then X, Y are called right Bézout
factors.

A system G is said to have a left coprime factorization

(l.c.f.) (M̃, Ñ) over H∞ if G = M̃−1Ñ , det M̃ 6= 0, M̃ ,

Ñ ∈M(H∞) and there exist X̃, Ỹ ∈M(H∞) such that

M̃X̃+Ñ Ỹ = I. Then X̃, Ỹ are called left Bézout factors.

For M̃ , Ñ ∈M(H∞), there exist X̃, Ỹ ∈M(H∞) such

that M̃X̃+Ñ Ỹ = I if and only if infs∈C+
σm([M̃, Ñ ]T ) >

0, where σm(·) is the smallest singular value of a matrix
[20, Lemma 8.1.13 and Example 8.1.15].

If G has an r.c.f. (N,M) and an l.c.f. (M̃, Ñ), then the
set of all controllers guaranteeing the internal stability
of the closed-loop system is given by the Youla-Kučera
parametrization

C(G) = {(X −RÑ)−1(Y +RM̃) |R ∈M(H∞),

det(X −RÑ) 6= 0}
= {(Ỹ +MR)(X̃ −NR)−1 |R ∈M(H∞),

det(X̃ −NR) 6= 0},

whereX, Y and X̃, Ỹ are respectively the corresponding
right and left Bézout factors [20]. For R = 0, we obtain
two particular stabilizing controllers C = X−1Y and

C = Ỹ X̃−1.

Poles (resp. roots) in the closed right half-plane C+ are
referred to as unstable poles (resp. roots).

The following notations will be of intense use later.

Denote p(sα) the lowest common denominator ofRk(sα)
for k = 1, . . . , n; d the degree in sα of p(sα). Then ratio-
nal transfer functions Rk(sα) can be rewritten as

Rk(sα) =
qk(sα)

p(sα)
,

where qk are polynomials in sα.

We can decompose

p(sα) = (sα)m0

(
N∏
i=1

(sα − bi)mi
) N ′∏

j=1

(sα − cj)m
′
j

 ,

where bi ∈ D := {σ ∈ C\{0} | − πα/2 ≤ Arg(σ) ≤
πα/2}; cj ∈ C\{D ∪ {0}}; m0 ∈ Z+, mi, m

′
j ∈ Z+ for

i = 1, . . . , N and j = 1, . . . , N ′. Hence si = b
1/α
i are the

non-zero unstable roots in s of p(sα).

Similarly, we write

p̃k(sα) = (sα)m0k

(
N∏
i=1

(sα − bi)mik
) N ′∏

j=1

(sα − cj)m
′
jk

 ,
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where m0k, mik, m′jk ∈ Z+ for i = 1, . . . , N ,

j = 1, . . . , N ′ and k = 1, . . . , n. It is obvious that
m0k ≤ m0, mik ≤ mi, and m′jk ≤ m′j .

3 Left coprime factorizations and Bézout fac-
tors

In this section, we present l.c.f.’s and Bézout factors for
the transfer matrix (1).

3.1 Left coprime factorizations

Due to the dimension of the transfer matrix, finding an
l.c.f. is straightforward. The next proposition was pre-
sented in [11] and is recalled here together with its proof
for the paper to be self-contained.

Proposition 1 ([11]) Let G(s) be given by (1). Then

(M̃(s), Ñ(s)), where

M̃(s) =
p(sα)

(sα + 1)d
,

Ñ(s) =
1

(sα + 1)d
[
e−sh1q1(sα), . . . , e−shnqn(sα)

]
,

(2)
is an l.c.f. over H∞ of G(s).

PROOF. It is obvious that M̃(s)−1Ñ(s) = G(s).

We see that M̃(s) ∈ H∞. Also, each component of Ñ(s)

is in H∞, and then Ñ(s) ∈M(H∞).

For all roots σ of p(sα), there exists at least one 1 ≤ k ≤
n such that qk(σ) 6= 0. Thus infs∈C+(

∑n
k=1 |Ñk|+|M̃ |) >

0 which ensures that (M̃, Ñ) is an l.c.f. over H∞ of G.

3.2 Bézout factors

Now we propose left Bézout factors corresponding to the
l.c.f. obtained above. From the left Bézout identity, we

derive that X̃ = M̃−1(1 − Ñ Ỹ ). The idea is to choose

Ỹ ∈ M(H∞) such that X̃ ∈ H∞. To achieve that, we

interpolate (1− Ñ Ỹ ) at unstable zeros of M̃ .

For some simple classes of systems (1), Bézout factors
were derived in [11]. In this paper, we consider the most
general case of systems (1) where techniques developed
in [2,11] are no longer applicable and we need here to

include non-commensurate powers of s in X̃ and Ỹ .

First, let us denote

k0 := min{k | k ∈ {1, . . . , n},m0k = m0}, (3)

ki := min{k | k ∈ {1, . . . , n},mik = mi}, i = 1, . . . , N,
(4)

fk :=
∑

i∈{1,...,N}:ki=k

mi, k = 1, . . . , n,

L(m0, α) := {x ∈ R | x = a+ bα < m0α, a, b ∈ Z+}.

The latter set will be of use to describe the power in s
of the product sa(sα)b with a, b ∈ Z+.

Proposition 2 Let G(s) be given by (1). Then Bézout
factors corresponding to the l.c.f. (2) are given by

X̃(s) =
(sα + 1)du(sα)−

∑n
k=1 e

−shkqk(sα)µk(s)

p(sα)u(sα)
,

Ỹ (s) =

[
µ1(s)

u(sα)
, . . . ,

µn(s)

u(sα)

]T
,

where u(sα) is a polynomial in sα of degree greater or
equal to d whose zeros are stable, and for k = 1, . . . , n
the polynomials µk(s) have the following form

µk(s) =



∑
λ∈L(m0,α)

βλks
λ +

m0+fk−1∑
j=m0

β(jα)k(sα)j if k = k0,

fk−1∑
j=0

β(jα)k(sα)j if k 6= k0,

and satisfy[
(sα + 1)du(sα)−

n∑
k=1

e−shkqk(sα)µk(s)

]
= O(sm0α)

(5)
as s→ 0 and[

(sα + 1)du(sα)−
n∑
k=1

e−shkqk(sα)µk(s)

](l)
= 0 (6)

for each non-zero unstable root s = b
1/α
i , i = 1, . . . , N ,

of p(sα) and for 0 ≤ l ≤ mi − 1.

Remark 1 If fk = 0, then µk(s) =
∑
λ∈L(m0,α)

βλks
λ

when k = k0 and µk(s) = 0 otherwise.

PROOF. It is easy to verify that X̃(s) and Ỹ (s) satisfy
the left Bézout identity.

The degree of µk(s) is smaller than or equal to the degree

of u(sα), and so Ỹ (s) ∈M(H∞).
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We see that X̃(s) is bounded at ∞ in C+. Moreover,

due to (6), the numerator of X̃(s) has the same non-zero
unstable roots as the denominator, which assures that

X̃(s) is analytic in C+. The boundedness of the function

at s = 0 is satisfied by (5). Then X̃(s) ∈ H∞.

Now it remains to prove the existence of µk(s) satisfying
the two conditions (5) and (6). The details are reported
in Appendix A.

Remark 2 If m0α ≤ 1 (this case has been considered in
[11]) or α = 1/m with m ∈ Z+\{0, 1}, then λ are multi-
ples of α and we obtain an elegant formula of µk0 which
only contains the terms in sα. More generally, if α is ra-
tional, then µk0 contains powers of s of commensurate
exponents.

The following example illustrates the case where α is
irrational.

Example 1

G(s) =

[
e−s

sπ/2(sπ/4 − 1)2
,

e−3s

sπ/4 − 1

]
We have p(sπ/4) = sπ/2(sπ/4 − 1)2 with degree d = 4
in sπ/4. Its unstable roots are b0 = 0 and b1 = 1 with
multiplicity m0 = 2 and m1 = 2 respectively. Obviously,
q1(sπ/4) = 1 and q2(sπ/4) = sπ/2(sπ/4 − 1). Then from
Proposition 1, we obtain an l.c.f. as follows

M̃(s) =
sπ/2(sπ/4 − 1)2

(sπ/4 + 1)4
,

Ñ(s) =
1

(sπ/4 + 1)4

[
e−s, e−3ssπ/2(sπ/4 − 1)

]
.

To complete the expressions of the Bézout factors given
in Proposition 2, we now choose u(sπ/4) and search for
µ1(s) and µ2(s) by solving the equations imposed by the
two conditions (5), (6).

Here, we choose u(sπ/4) = (sπ/4 + 1)4. It is easy to see
that k0 = 1, k1 = 1, f1 = 2, f2 = 0 and L(m0, α) =
L(2, π/4) = {0, π/4, 1}. Therefore, µ1(s) and µ2(s) have
the forms

µ1(s) = β01 + β(π/4)1s
π/4 + β11s+ β(π/2)1s

π/2

+ β(3π/4)1s
3π/4,

µ2(s) = 0.

The numerator of X̃(s) is then (sπ/4 + 1)8 − e−sµ1(s).

Its development around zero is

(1− β01) + (8− β(π/4)1)sπ/4 + (β01 − β11)s+O(sπ/2).

The condition (5) implies that all powers of s with degree
smaller than π/2 vanish, thus leads to β01 = 1, β(π/4)1 =
8, and β11 = 1.

The other coefficients are derived from the condition (6),
which is represented by

(sπ/4 + 1)8 − e−sµ1(s) = 0,

[(sπ/4 + 1)8 − e−sµ1(s)]′ = 0

at s = 1. The unique solution of these two equations is
β(π/2)1 = −2(11π+ 128eπ− 2 + 512e)/π and β(3π/4)1 =
4(3π + 128eπ − 1 + 256e)/π.

Hence, the Bézout factors are

X̃(s) =
(sπ/4 + 1)8 − e−sµ1(s)

sπ/2(sπ/4 − 1)2(sπ/4 + 1)4
,

Ỹ (s) =

[
µ1(s)

(sπ/4 + 1)4
, 0

]T
,

where

µ1(s) = 1 + 8sπ/4 + s− 2(11π + 128eπ − 2 + 512e)

π
sπ/2

+
4(3π + 128eπ − 1 + 256e)

π
s3π/4.

4 Right coprime factorizations and Bézout fac-
tors

The previous section showed that the systems G(s) un-
der study admit l.c.f.’s over H∞. Since H∞ is a Hermite
ring, then there exist r.c.f.’s for G(s) [19].

While l.c.f.’s and left Bézout factors of our transfer ma-
trices are vectors and scalars, the right counterparts are
vectors and square matrices with a lot more entries to be
determined. Regarding calculation complexity, we sep-
arate the study into two classes of systems. The first
class consists of systems with distinct unstable poles, i.e.
p̃k(sα) and p̃k′(s

α) have no common unstable roots if
k 6= k′, for which M(s) can be chosen to be of diagonal
form. This simple form cannot be applied to the second
class of systems with identical unstable poles, for which
our first attempt is to consider a particular case.

Some particular cases of the systems considered here
have been studied in [12].

4.1 Distinct poles

In this context of determining right Bézout factors, the
choice of µk for k = 1, . . . , n is not very different from
that presented in Proposition 2.
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Proposition 3 Let G(s) be given by (1). Suppose that
all (zero and non-zero) unstable roots of p̃k(sα) for
k = 1, . . . , n are distinct. Then one r.c.f. and associated
Bézout factors are given by

N(s) = [N1(s), . . . , Nn(s)],

M(s) =


M11(s) · · · 0

...
. . .

...

0 · · · Mnn(s)

 ,

X(s) =


X11(s) · · · X1n(s)

...
. . .

...

Xn1(s) · · · Xnn(s)

 ,
Y (s) = [Y1(s), . . . , Yn(s)]T ,

where for k, k′ ∈ {1, . . . , n} and k 6= k′

Nk(s) =
e−shk q̃k(sα)

(sα + 1)dk
, (7)

Mkk(s) =
p̃k(sα)

(sα + 1)dk
, (8)

Yk(s) =
µk(s)

u(sα)

∏
1≤j≤n,j 6=k

(
(sα)m0j

N∏
i=1

(sα − bi)mij
)
,

Xkk(s) =
1− Yk(s)Nk(s)

Mkk(s)
,

Xkk′(s) = − Yk(s)e−shk′
q̃k′(s

α)

p̃k′(sα)
,

where dk is the degree of p̃k in sα; u is a polynomial of
degree d in sα that has no unstable zeros; and µk(s) have
the following form

µk(s) =
∑

λ∈L(m0k,α)

βλks
λ+

m0k+
∑N

i=1
mik−1∑

j=m0k

β(jα)k(sα)j ,

satisfying

u(sα)(sα + 1)dk − e−shkµk(s)q̃k(sα)

×
∏

1≤j≤n,j 6=k

(
N∏
i=1

(sα − bi)mij
)

= O(sm0kα) (9)

as s→ 0 if p̃k(sα) has a root at zero, and[
u(sα)(sα + 1)dk − e−shkµk(s)q̃k(sα)

×
∏

1≤j≤n,j 6=k

(
(sα)m0j

N∏
i=1

(sα − bi)mij
)(l)

= 0 (10)

for each non-zero unstable root of p̃k(sα), i.e. s = b
1/α
i

with mik 6= 0 for i = 1, . . . , N , where l = 0, . . . ,mik − 1.

PROOF. It is obvious that Nk(s), Mkk(s), Yk(s),
Xkk′(s) ∈ H∞. The two conditions (9) and (10) guar-
antee Xkk(s) ∈ H∞ for k = 1, . . . , n. We also see that
G(s) = N(s)M(s)−1 and the right Bézout identity
X(s)M(s) + Y (s)N(s) = I is verified.

To complete the proof, we prove the existence of µk(s)
satisfying the two conditions in Appendix B.

Here is a numerical example of the use of the proposition.

Example 2

G(s) =

[
e−s

sπ/2(sπ/4 − 1)2
,

e−3s

sπ/4 − 2

]
By applying Proposition 3 we obtain the r.c.f. as follows

N(s) =

[
e−s

(sπ/4 + 1)4
,

e−3s

sπ/4 + 1

]
,

M(s) =

 sπ/2(sπ/4−1)2
(sπ/4+1)4

0

0 sπ/4−2
sπ/4+1

 .
We choose u(sπ/4) = (sπ/4 +1)5, then Y (s) has the form

Y (s) =

[
µ1(s)(sπ/4 − 2)

(sπ/4 + 1)5
,

µ2(s)sπ/2(sπ/4 − 1)2

(sπ/4 + 1)5

]T
where µ1(s) = β01 + β(π/4)1s

π/4 + β11s+ β(π/2)1s
π/2 +

β(3π/4)1s
3π/4 and µ2(s) = β02.

The condition (9) is only applied for k = 1. We develop
the numerator of X11(s) around zero as follows

(sπ/4 + 1)9 − e−sµ1(s)(sπ/4 − 2)

= (1 + 2β01) + (9− β01 + 2β(π/4)1)sπ/4 + 2(β11 − β01)s

+O(sπ/2).

It turns out that all the terms with order smaller than
π/2 in the development have to be zero, thus giving β01 =
−1/2, β(π/4)1 = −19/4, and β11 = −1/2.

Other unknown coefficients are deduced from applying
the condition (10). We have

(sπ/4 + 1)9 − e−sµ1(s)(sπ/4 − 2) = 0,

[(sπ/4 + 1)9 − e−sµ1(s)(sπ/4 − 2)]′ = 0

5



at s = 1 and

(sπ/4 + 1)6 − e−3sµ2(s)sπ/2(sπ/4 − 1)2 = 0

at s = 24/π, and the unique solution of the above equa-
tions is β(π/2)1 = (25π + 2560eπ − 4 + 4096e)/(2π),
β(3π/4)1 = −(27π+7168eπ−8+8192e)/(4π), and β02 =

(729(e2
4/π

)3)/4.

Finally, X(s) =

[
X11(s) X12(s)

X21(s) X22(s)

]
where

X11(s) =
(sπ/4 + 1)9 − e−sµ1(s)(sπ/4 − 2)

sπ/2(sπ/4 − 1)2(sπ/4 + 1)5
,

X12(s) =
−e−3sµ1(s)

(sπ/4 + 1)5
, X21(s) =

−e−sµ2(s)

(sπ/4 + 1)5
,

X22(s) =
(sπ/4 + 1)6 − e−3sµ2(s)sπ/2(sπ/4 − 1)2

(sπ/4 − 2)(sπ/4 + 1)5
,

µ1(s) = − 1

2
− 19

4
sπ/4 − 1

2
s

+
25π + 2560eπ − 4 + 4096e

2π
sπ/2

− 27π + 7168eπ − 8 + 8192e

4π
s3π/4,

µ2(s) =
729(e2

4/π

)3

4
.

4.2 Identical unstable poles

In the case of identical unstable poles, the following
lemma characterizes the form of the matrix M(s).

Lemma 4 Let G(s) be given by (1). Suppose that there
exist k, k′ ∈ {1, . . . , n}, k 6= k′ such that p̃k(sα) and
p̃k′(s

α) have common unstable root(s). Then the factor
M(s) of an r.c.f. of G(s) cannot be a diagonal matrix.

PROOF. Let us prove the fact by contradiction. As-
sume thatM(s) is diagonal, thenGk(s) = Nk(s)/Mkk(s),
k = 1, . . . , n. Since Nk(s), Mkk(s) ∈ H∞, then
the unstable poles of Gk(s) are the unstable ze-
ros of Mkk(s). Now, from the right Bézout identity
X(s)M(s) + Y (s)N(s) = I we obtain for k, k′ ∈
{1, . . . , n} and k 6= k′

Xkk(s) =
1− Yk(s)Nk(s)

Mkk(s)
,

Xkk′(s) = − Yk(s)
Nk′(s)

Mk′k′(s)
.

Since Xkk′(s) ∈ H∞, then all unstable zeros of Mk′k′(s)
are zeros of Yk(s). Now, if Gk(s) and Gk′(s) have a com-
mon unstable pole s0, then s0 is a common zero ofMkk(s)

and Mk′k′(s). Also Yk(s0) = 0, and thus Xkk(s0) = ∞,
which contradicts the fact that Xkk(s) ∈ H∞.

In the following part, we derive r.c.f.’s and Bézout factors
for a particular system whose entries (which only have
one simple pole) may involve identical poles. To help
clarify the demonstration of those results, we will begin
with a lemma who derives the inverse of a particular
upper triangular matrix.

We consider sparse matrices with the following condi-
tion imposed on the entries above the main diagonal: if
any entry on the k-th column is non-zero, then all other
entries on the k-th column as well as those on the k-th
row must be zeros.

Lemma 5 Let M ∈ Rn×n be an upper triangular matrix
whose entries on the main diagonal are not equal to zero
and the entries above the main diagonal satisfy

(A) for k = 1, . . . , n, if there exists l′′ ∈ Z, l′′ ∈ [1, k)
such that Ml′′k 6= 0 then Mlk = 0 for l ∈ {1, . . . , k−
1}\{l′′} and Mkl′ = 0 for l′ ∈ {k + 1, . . . , n}.

Then its inverse is given by M−1 = M inv, where M inv

is an upper triangular matrix whose entries on and above
the main diagonal satisfy

M inv
kk =

1

Mkk
, (11)

M inv
kk′ = − Mkk′

MkkMk′k′
(12)

for k, k′ ∈ {1, . . . , n} and k < k′.

PROOF. It is obvious that the entries below the main
diagonal of the product MM inv are all zero, and the
entries on the main diagonal are all one.

Now we consider the entries above the main diagonal of
the product. For i < j,

(MM inv)ij =

n∑
k=1

MikM
inv
kj =

j∑
k=i

MikM
inv
kj .

Considering i < k < j, if Mik 6= 0, then Mkj = 0 under
the assumption (A), and thus M inv

kj = 0 due to (12).
Therefore,

(MM inv)ij = MiiM
inv
ij +MijM

inv
jj .

By replacing M inv
ij and M inv

jj with (12) and (11) respec-

tively, we obtain (MM inv)ij = 0.
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Example 3

M =



M11 0 M13 0 0

0 M22 0 M24 M25

0 0 M33 0 0

0 0 0 M44 0

0 0 0 0 M55


with Mii 6= 0, i = 1, . . . , 5, and M13, M24, M25 6= 0.
This matrix satisfies all the conditions in Lemma 5 and
thus its inverse is

M−1 =



1
M11

0 − M13

M11M33
0 0

0 1
M22

0 − M24

M22M44
− M25

M22M55

0 0 1
M33

0 0

0 0 0 1
M44

0

0 0 0 0 1
M55


.

In the following proposition, we consider G(s) with one
pole for each of its entries and some entries may have the
same pole. To simplify the presentation, we assume that
the delays are ordered. A discussion on how to apply the
next result to the case of unordered delays will follow
the proposition.

Proposition 6 Let G(s) be given by (1) with h1 ≤ . . . ≤
hn and

Rk(sα) =
ak

sα − σk
,

where ak, σk ∈ R for k = 1, . . . , n. We denote I1 := ∅ and
Ik := {j | j ∈ {1, . . . , k − 1}, σj = σk} for k = 2, . . . , n.
One r.c.f. and associated Bézout factors are given by

N(s) = [N1(s), . . . , Nn(s)], (13)

M(s) =


M11(s) · · · M1n(s)

...
. . .

...

0 · · · Mnn(s)

 , (14)

Y (s) = [Y1(s), . . . , Yn(s)]T ,

X(s) = M−1(s)− Y (s)G(s),

where for k, k′ ∈ {1, . . . , n} and k′ 6= k

Nk(s) =

{
0 if Ik 6= ∅,
ake
−shk

sα+1 otherwise,
(15)

Mkk(s) =

{
1 if Ik 6= ∅
sα−σk
sα+1 otherwise,

(16)

Mk′k(s) =

−ake
−s(hk−hk′ )

ak′
if k′ = min Ik,

0 otherwise,
(17)

Yk(s) =

{
0 if Ik 6= ∅,
βkp̂k(s

α)
u(sα) otherwise,

where u(sα) is a polynomial of degree d in sα that has no

unstable zeros; p̂k(sα) = p(sα)
sα−σk ; the coefficients βk, for

those k such that Ik = ∅ and σk ≥ 0, are given by

βk =
u(σk)(σk + 1)eσ

1/α

k
hk

akp̂k(σk)
, (18)

while βk for other k can be chosen arbitrarily, and
M−1(s) = M inv(s), where M inv(s) is an upper triangu-
lar matrix whose entries on and above the main diagonal
are given by

M inv
kk (s) =

1

Mkk(s)
,

M inv
kk′ (s) = − Mkk′(s)

Mkk(s)Mk′k′(s)

(19)

for k, k′ ∈ {1, . . . , n} and k < k′.

PROOF. Let us prove that M(s) given by (14), (16),
and (17) satisfies the assumptions in Lemma 5. Let k ∈
{1, . . . , n}, if Mk′k(s) 6= 0 then due to (17) k′ = min Ik,
and Mk′′k(s) = 0 for k′′ 6= k′. Also, since k′ = min Ik,
then k 6= min Ik′′ for k′′ > k, and thus Mkk′′(s) = 0.
Hence the assumption (A) in Lemma 5 is satisfied.

Consequently, due to Lemma 5, the inverse of M(s) is
M inv(s) whose entries are given by (19).

We now prove that N(s)M−1(s) = G(s).

For k ∈ {1, . . . , n}, we have

(N(s)M(s)−1)k =

n∑
l=1

Nl(s)M
inv
lk (s) =

k∑
l=1

Nl(s)M
inv
lk (s)

• If Ik = ∅, then M inv
lk (s) = 0 for l = 1, . . . , k − 1, and

(N(s)M(s)−1)k = Nk(s)M inv
kk (s) = e−shkRk(sα).

• If Ik 6= ∅, thenM inv
lk (s) = 0 for l ∈ {1, . . . , k−1}\{k′}

where k′ = min Ik and Nk(s) = 0. Therefore,

(N(s)M(s)−1)k = Nk′(s)M
inv
k′k (s)

= −Nk′(s)
Mk′k(s)

Mk′k′(s)Mkk(s)
.
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Note that Ik′ = ∅ since k′ = min Ik. By replacing
the above terms with appropriate expressions in (15),
(16) and (17) and by noting that σk′ = σk, we get
(N(s)M(s)−1)k = e−shkRk(sα).

It is obvious that Nk(s), Mkk(s), Mk′k(s), Yk(s) ∈ H∞.

Let us now prove that X(s) ∈M(H∞).

For k, k′ ∈ {1, . . . , n}, we have Xk′k(s) = M inv
k′k (s) −

Yk′(s)e
−shkRk(sα).

• If Ik′ 6= ∅, then Yk′(s) = 0, and thus Xk′k(s) =
M inv
k′k (s). Now, for k′ > k, M inv

k′k (s) = 0. For k′ = k,
M inv
k′k (s) = 1. For k′ < k, from the fact that Ik′ 6= ∅,

we deduce that k′ 6= min Ik, thus M inv
k′k (s) = 0.

• If Ik′ = ∅, then Yk′(s) involves p̂k′(s
α).

For k′ > k, the fact that Ik′ = ∅ leads to σk′ 6= σk.
Therefore,

Yk′(s)Rk(sα) =
akβk′p(s

α)

(sα − σk)(sα − σk′)u(sα)

belongs to H∞ since (sα−σk)(sα−σk′) is eliminated
by the same term in p(sα). It is also obvious that
M inv
k′k (s) = 0. Therefore, Xk′k(s) ∈ H∞.

For k′ = k, we have

Xk′k′(s) =
u(sα)(sα + 1)− βk′ p̂k′(sα)ak′e

−shk′

u(sα)(sα − σk′)
.

If σk′ < 0, then Xk′k′(s) ∈ H∞ for all βk′ . If σk′ ≥ 0,
since βk′ given by (18) makes the numerator of

Xk′k′(s) vanish at s = σ
1/α
k′ , then Xk′k′(s) ∈ H∞.

For k′ < k, suppose first that k′ 6= min Ik. From
this fact together with Ik′ = ∅ we deduce that
σk′ 6= σk, and thus Yk′(s)Rk(sα) ∈ H∞. We also have
M inv
k′k (s) = 0, leading to Xk′k(s) ∈ H∞. In the case

where k′ = min Ik, we have σk′ = σk and

Xk′k(s) = ake
−shk u(sα)(sα + 1)eshk′ − βk′ p̂k′(sα)ak′

u(sα)(sα − σk′)ak′
.

By the same argument as in the case where k′ = k,
we conclude that Xk′k(s) ∈ H∞.

The right Bézout identity X(s)M(s) + Y (s)N(s) = I is
clearly satisfied.

Remark 3 A transfer matrix G given by (1) with the
delays of its elements not in order can be transformed
to a transfer matrix G0 with ordered delays by multi-
plying G by an appropriate permutation matrix P . It is
well known that this matrix P is orthogonal and its in-
verse is PT . Assume that (M0, N0) is an r.c.f. over H∞
of G0 and X0, Y0 are the corresponding right Bézout
factors. We have then G = G0P

−1 = N0M
−1
0 P−1 =

N0(PM0)−1. It is obvious that PM0 ∈M(H∞). Further-
more, X0P

−1PM0 + Y0N0 = I and X0P
−1 ∈M(H∞).

Hence, (PM0, N0) is an r.c.f. of G and X0P
−1, Y0 are

the corresponding Bézout factors.

The next example illustrates the proposition.

Example 4

G(s) =

[
e−s√
s
,

e−s√
s− 1

,
e−3s√
s− 1

]
From (13), (14), (15), (16), and (17), we obtain

N(s) =

[
e−s√
s+ 1

,
e−s√
s+ 1

, 0

]
,

M(s) =


√
s√
s+1

0 0

0
√
s−1√
s+1
−e−2s

0 0 1

 .
The inverse of M(s) is

M−1(s) =


√
s+1√
s

0 0

0
√
s+1√
s−1

e−2s(
√
s+1)√

s−1

0 0 1

 .
The least common denominator of the entries of G(s)
is p(

√
s) =

√
s(
√
s − 1). Then p̂1(

√
s) =

√
s − 1, and

p̂2(
√
s) =

√
s. We choose u(

√
s) = (

√
s+ 1)2, which has

no unstable roots. We have then

Y (s) =

[
β1(
√
s− 1)

(
√
s+ 1)2

,
β2
√
s

(
√
s+ 1)2

, 0

]T
,

X(s) = M−1(s)− Y (s)G(s) =


X11(s) X12(s) X13(s)

X21(s) X22(s) X23(s)

0 0 1

 ,
where

X11(s) =
(
√
s+ 1)3 − β1(

√
s− 1)e−s√

s(
√
s+ 1)2

,

X12(s) = − β1e
−s

(
√
s+ 1)2

, X13(s) = − β1e
−3s

(
√
s+ 1)2

,

X21(s) = − β2e
−s

(
√
s+ 1)2

,

X22(s) =
(
√
s+ 1)3 − β2e−s

√
s

(
√
s− 1)(

√
s+ 1)2

,

X23(s) =
e−2s(

√
s+ 1)3 − β2e−3s

√
s

(
√
s− 1)(

√
s+ 1)2

.
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We see that X12(s), X13(s), X21(s) ∈ H∞. From (18),
we obtain β1 = −1 and β2 = 8e, which make X11(s),
X22(s), and X23(s) be in H∞ respectively.

5 Conclusion

In this paper, we have considered MISO fractional sys-
tems with input or output delays. Explicit expressions of
an l.c.f. over H∞ of the transfer matrices as well as the
corresponding Bézout factors are given. Right coprime
factorizations and right Bézout factors are also found for
systems with entries of the transfer matrix containing
different poles. In the case of identical poles, the right
factors are primarily found for some simple classes of sys-
tems. Hence, in conclusion, we can have Youla-Kučera
parametrization of stabilizing controllers for all systems
with distinct unstable poles and a class of systems with
identical unstable poles where each element of the trans-
fer matrix involves one pole since for these systems both
l.c.f.’s and r.c.f.’s and Bézout factors are available.

Even if similar techniques may in principle be used for
MIMO systems, the analysis appears to be much more
involved and requires a full separate study.

The proposed controllers in this paper given in terms
of proper transfer functions containing only standard
polynomials, fractional polynomials and delays are real-
izable. Their practical implementation is the objective
of a forthcoming work.
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A Proof of Proposition 2

First, we consider the condition (5) on the poles at zero.
If the system has no zero pole, then the condition is sat-
isfied. Otherwise, the condition imposes that all powers
of s whose order is smaller than m0α are eliminated in
the development of the numerator of X̃(s) around zero.
When s→ 0, we have

(sα + 1)du(sα) =
∑

λ∈L(m0,α)

aλs
λ +O(sm0α),

e−shkqk(sα) =
∑

λ∈L(m0,α)

γλks
λ +O(sm0α), (A.1)

µk(s) =
∑

λ∈L(m0,α)

βλks
λ +O(sm0α).
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Then the development of the numerator of X̃(s) around
zero can be represented in matrix form as follows

(sα + 1)du(sα)−
n∑
k=1

e−shkqk(sα)µk(s)

= [sλN′′−1 , sλN′′−2 , . . . , sλ0 ]

(
A−

n∑
k=1

ΓkBk

)
+O(sm0α),

where N ′′ = card(L(m0, α)) and 0 = λ0 < . . . <
λN ′′−1 ∈ L(m0, α), A = [aλN′′−1

, . . . , aλ0 ]T , Bk =

[βλN′′−1k, . . . , βλ0k]T , and Γk ∈ RN ′′×N ′′ are upper tri-
angular matrices which contain γλk and whose entries
on the main diagonal are all γλ0k. The condition (5)
is then equivalent to

∑n
k=1 ΓkBk = A. For k = k0

with k0 defined by (3), since qk0(sα) does not have
roots at zero, then (A.1) can be used and implies that
γλ0k0 6= 0. Hence det Γk0 6= 0 and thus Bk0 admits a
unique solution for any values of βλk with λ < m0α and
k ∈ {1, . . . , n}, k 6= k0.

Next, we analyze the condition (6) on non-zero poles.

We first examine the system of equations obtained by re-

placing s by a non-zero unstable pole b
1/α
i and study the

existence of µ
(l)
ki

(b
1/α
i ), where ki is defined by (4) and l =

0, . . . ,mi−1, satisfying the equations. The first equation

which corresponds to l = 0 contains qki(bi)µki(b
1/α
i ).

The second equation, i.e. l = 1, contains a linear sum

of qki(bi)µki(b
1/α
i ) and qki(bi)µ

′
ki

(b
1/α
i ). Generally, the

equation corresponding to the l-th derivative contains

a linear sum of qki(bi)µ
(l2)
ki

(b
1/α
i ) with l2 = 0, . . . , l − 1.

Since qki(bi) 6= 0, the system of mi equations can be

recursively solved for mi unknowns µ
(l)
ki

(b
1/α
i ) with l =

0, . . . ,mi − 1 for arbitrary values of µ
(l)
k (b

1/α
i ) for k =

1, . . . , n, k 6= ki and l = 0, . . . ,mi − 1 and admits a
unique solution.

Hence, for each k ∈ {1, . . . , n} and k 6= k0, the co-
efficients β(jα)k, j = 0, . . . , fk − 1 of µk(s) satisfy

µ
(l)
k (b

1/α
i ) = ak,i,l for i = 1, . . . , N such that ki = k

and l = 0, . . . ,mi − 1. This is the problem of Hermite
interpolation and there exists a unique solution.

For k = k0, the coefficients of µk0(s), i.e. βλk0 with
λ ∈ L(m0, α) and β(jα)k0 with j = m0, . . . ,m0 +fk0−1,

satisfy the equations µ
(l)
k0

(b
1/α
i ) = ak0,i,l for i =

1, . . . , N such that ki = k0 and l = 0, . . . ,mi −
1. We can write µk0(s) = νk0(s) + sm0αηk0(sα),
where νk0(s) =

∑
λ∈L(m0,α)

βλk0s
λ and ηk0(sα) =∑m0+fk0−1

j=m0
β(jα)k0s

(j−m0)α. For arbitrary values of the

coefficients βλk0 with λ ∈ L(m0, α), we can derive the

values of η
(l)
k0

(bi) for i = 1, . . . , N such that ki = k0 and
l = 0, . . . ,mi − 1. Note that the numbers of unknowns

and of equations are the same and are equal to fk0 . This
returns to the problem of Hermite interpolation and
there exists a unique solution.

B Proof of Proposition 3

First, we consider the condition (9) on zero pole. For
k ∈ {1, . . . , n} such that m0k > 0, we develop the terms
of the numerator of Xkk(s) around zero as follows

u(sα)(sα + 1)dk =
∑

λ∈L(m0k,α)

aλs
λ +O(sm0kα),

µk(s) =
∑

λ∈L(m0k,α)

βλks
λ +O(sm0kα),

e−shk q̃k(sα)
∏

1≤j≤n,j 6=k

(
N∏
i=1

(sα − bi)mij
)

=
∑

λ∈L(m0k,α)

γλks
λ +O(sm0kα).

(B.1)

Then the development of the numerator of Xkk(s) when
s→ 0 can be written as

u(sα)(sα + 1)dk − e−shkµk(s)q̃k(sα)

×
∏

1≤j≤n,j 6=k

(
N∏
i=1

(sα − bi)mij
)

= [s
λN′′

k
−1 , s

λN′′
k
−2 , . . . , sλ0 ](Ak − ΓkBk) +O(sm0kα),

where N ′′k = card(L(m0k, α)), λj ∈ L(m0k, α),
0 = λ0 < . . . < λN ′′

k
−1; Ak = [aN ′′

k
−1, . . . , a0]T ;

Bk = [βλN′′
k
−1k

, . . . , βλ0k]T ; and Γk is an upper trian-

gular matrix whose entries on the main diagonal are
all γλ0k. The condition (9) implies the elimination of
the powers of s with order smaller than m0kα in the
numerator, which leads to ΓkBk = Ak. From (B.1), we
see that γλ0k 6= 0, which implies Γk is invertible and Bk
admits a unique solution.

Now, we analyze the second condition (10) related
to non-zero unstable poles. We can write µk(s) =
νk(s) + sm0kαηk(sα), where νk(s) =

∑
λ∈L(m0k,α)

βλks
λ

and ηk(sα) =
∑m0k+

∑N

i=1
mik−1

j=m0k
β(jα)ks

(j−m0k)α. Then

for each k ∈ {1, . . . , n}, we can derive the values of

η
(l)
k (bi) for i ∈ {1, . . . , N} such that mik > 0 and
l = 0, . . . ,mik − 1. If we consider the coefficients β(jα)k,

j = m0k, . . . ,m0k +
∑N
i=1mik − 1 as unknowns, then

the number of unknowns is the same as the number of
equations and is equal to

∑N
i=1mik. This is the prob-

lem of Hermite interpolation and there exists a unique
solution.
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