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Abstract

We study distributed optimization in a cooperative multi-agent setting, where agents have to agree on the usage of shared
resources and can communicate via a time-varying network to this purpose. Each agent has its own decision variables that
should be set so as to minimize its individual objective function subject to local constraints. Resource sharing is modeled
via coupling constraints that involve the non-positivity of the sum of agents’ individual functions, each one depending on the
decision variables of one single agent. We propose a novel distributed algorithm to minimize the sum of the agents’ objective
functions subject to both local and coupling constraints, where dual decomposition and proximal minimization are combined
in an iterative scheme. Notably, privacy of information is guaranteed since only the dual optimization variables associated
with the coupling constraints are exchanged by the agents. Under convexity assumptions, jointly with suitable connectivity
properties of the communication network, we are able to prove that agents reach consensus to some optimal solution of the
centralized dual problem counterpart, while primal variables converge to the set of optimizers of the centralized primal problem.
The efficacy of the proposed approach is demonstrated on a plug-in electric vehicles charging problem.

Key words: Distributed optimization, consensus, dual decomposition, proximal minimization.

1 Introduction

This paper addresses optimization in multi-agent net-
works where each agent aims at optimizing a local per-
formance criterion possibly subject to local constraints,
but yet needs to agree with the other agents in the net-
work on the value of some decision variables that refer
to the usage of some shared resources.

Cooperative multi-agent decision making problems
have been studied recently by many researchers, mainly
within the control and operational research communi-
ties, and are found in various application domains such
as power systems [6,29], wireless and social networks
[15,1], robotics [14], to name a few.

A possible approach to cooperative multi-agent opti-

⋆ Research was supported by the European Commission un-
der the project UnCoVerCPS, grant number 643921.

Email addresses:
alessandro.falsone@polimi.it (Alessandro Falsone),
kostas.margellos@eng.ox.ac.uk (Kostas Margellos),
simone.garatti@polimi.it (Simone Garatti),
maria.prandini@polimi.it (Maria Prandini).

mization consists in formulating and solving a math-
ematical program involving the decision variables, ob-
jective functions, and constraints of the entire network.
Though this centralized perspective appears sensible, it
may end up being impractical for large scale systems for
which the computational effort involved in the program
solution can be prohibitive. Also, privacy of information
is not preserved since agents are required either to share
among them or to provide to a central entity their per-
formance criteria and constraints.

Distributed optimization represents a valid alternative
to centralized optimization and, in particular, it over-
comes the above limitations by allowing agents to keep
their information private, while distributing the compu-
tational effort. Typically, an iterative procedure is con-
ceived, where at each iteration agents perform some lo-
cal computation based on their own information and on
the outcome of the local computations of their neighbor-
ing agents at the previous iteration, till convergence to
some solution, possibly an optimal one for the central-
ized optimization problem counterpart.

Effective distributed optimization algorithms have been
proposed in the literature for a general class of convex
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problems over time-varying, multi-agent networks. In
particular, consensus-based optimization algorithms are
formulated in [18,19,21,12] and in our recent paper [13]
for problems where agents have their own objective func-
tions and constraints but decision variables are common.

In this paper, we address a specific class of convex op-
timization problems over time-varying, multi-agent net-
works, which we refer to as inequality-coupled problems
for short-hand notation. In this class of problems, each
agent has its own decision vector, objective function, and
constraint set, and is coupled to the others via a con-
straint expressed as the non-positivity of the sum of con-
vex functions, each function corresponding to one agent.

We propose a novel distributed iterative scheme based
on a combination of dual decomposition and proximal
minimization to deal with inequality-coupled problems.
Under convexity assumptions and suitable connectivity
properties of the communication network, agents reach
consensuswith respect to the dual variables, without dis-
closing information about their optimal decision, local
objective and constraint functions, nor about the func-
tion encoding their contribution to the coupling con-
straint. The proposed algorithm converges to some op-
timal dual solution of the centralized problem counter-
part, while for the primal variables, we show convergence
to the set of optimal primal solutions.

The contributions of our paper versus the existing liter-
ature are summarized in the following.

Our scheme can be seen as an extension of dual decompo-
sition based algorithms to a distributed setting, account-
ing for time-varying network connectivity. As a matter of
fact, if the communication networks were time-invariant
and connected, then, dual decomposition techniques (see
[28], and references therein) as well as approaches based
on the alternating direction method of multipliers [7,22]
could be applied to the set-up of this paper, since, af-
ter dualizing the coupling constraint, the problem as-
sumes a separable structure. However, in [28] and [7] a
central update step involving communication among all
agents that are coupled via the constraints is required
for the dual variables, and this prevents their usage in
the distributed with time-varying connectivity set-up of
this paper. In [22] no central update step is needed but
the constraints appearing in the dual problem cannot be
handled. An interesting distributed dual decomposition
based algorithm which overcomes the need for a central
node and which is more in line with our scheme has been
proposed in [23]. The main differences between [23] and
our algorithm are as follows:

a. the algorithm of [23] requires that the communication
network is time invariant, while our algorithm admits
time-variability;

b. in [23] a constant step-size is employed, while our al-
gorithm uses a vanishing step-size. The constant step-

size has the advantage of enhancing a faster conver-
gence rate, but, at the same time, convergence to a
neighborhood of the optimal is guaranteed only. Our
algorithm instead is guaranteed to converge to the op-
timal solution of the original problem;

c. the algorithm of [23] requires that a Slater point exists
and is known to all agents, while existence only is re-
quired in our algorithm. This relaxation of the condi-
tions for the applicability of the approach can be cru-
cial in those cases where a Slater point is not a-priori
available since the reconstruction of a Slater point in
a distributed set-up seems to be as challenging as the
original problem and requires extra synchronization
among agents.

From another perspective, which is better explained
later on in the paper, our approach can be also inter-
preted as a subgradient based algorithm for the reso-
lution of the dual problem, equipped with an auxiliary
sequences that allows one to recover the solution of the
primal problem we are interested in. In this respect re-
lated contributions are [16,3,2], where some incremental
gradient/subgradient algorithms that can be adopted
as an alternative to dual decomposition are proposed.
These algorithms, however, require that agents perform
updates sequentially, in a cyclic or randomized order,
and do not really fit the distributed set-up of this paper.
The recent contributions [30] and [9] instead present
primal-dual subgradient based consensus algorithms
that fit our set-up and are comparable to our approach.
The main differences are:

d. in [30] a global knowledge by all agents of the coupling
constraint in the primal is required and in both [30]
and [9] information related to the primal problem is
exchanged among agents while the algorithm is run-
ning. In the separable set-up of this paper, the agents
local information on the primal problem (namely, the
value of the local optimization variables, the local ob-
jective function, the local constraints, and the contri-
bution of the agent to the coupling constraint) can be
regarded as sensitive data and their exchange as in
[30] and [9] may raise privacy issues. In our algorithm,
only the local estimates of the dual variables are ex-
changed, and this secures maximum privacy among
agents;

e. the algorithms of [30] and [9] require that a Slater
point exists and is known to all agents, while exis-
tence only is required in our algorithm. As commented
before, requiring the knowledge of a Slater point by
the agents can hamper the usability of the algorithm.
Moreover, the convergence to the optimal solution in
[9] is guaranteed only when each agents objective func-
tion is differentiable;

f. to apply the algorithm of [30] to our set-up, each agent
has to generate local copies of the optimization vari-
ables of all the other agents, which then are optimized
and exchanged. This often results in an unnecessary
increase of the computational and communication ef-
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[13] [30] [9] [23] Algorithm 1

Convergence to optimal solution X X X ✗ X

Exchange of info related to P P+D P+D D D

Required technical assumptions CC CC+SP CC+SP+DF CC+SP CC

Type of coupling constraints ≤ ≤ ≤ ≤ ≤ + =

Network topology V V V F V

Number of decision variables in the local problem
∑

i ni

∑

i ni ni ni ni

Number of variables that need to be stored locally
∑

i ni

∑

i ni + p 3(ni + p) 2ni + p 2ni + p

Number of variables that are exchanged within any
communicating agents pair

∑

i ni

∑

i ni + p 2p p p

Table 1
Comparison against other approaches. Legend: + means “and”, P stands for primal, D stands for dual, CC stands for convexity
and compactness, SP stands for knowledge of a Slater point by agents, DF stands for differentiability of the objective function,
≤ stands for inequality constraints, = stands for equality constraints, V stands for time-varying, F stands for fixed, ni is the
number of decision variables of agent i, and p is the number of coupling constraints/Lagrange multipliers.

forts, which indeed scale as the number of agents in
the network. In our approach instead agents need to
optimize the local variables only and exchange the es-
timate of the dual variables, which are as many as
the number of coupling constraints. The required lo-
cal computational effort is thus much smaller. As for
the communication effort, our approach is particularly
appealing when the number of coupling constraints is
low compared to the overall dimensionality of primal
decision variables.

Finally, note that the approaches to distributed opti-
mization in [18,19,21,12,13], which do not resort to any
dual problem, can be applied to inequality-coupled prob-
lems by introducing a common decision vector collect-
ing all local decision variables. This, however, immedi-
ately leads to the drawback of an increased computa-
tional and communication effort as discussed in point f
above. Moreover, these approaches requires an exchange
of information related to the primal, which leads to the
privacy issues outlined in point d above.

Table 1 summarizes the comparison between the pro-
posed methodology and the most significant approaches
that apply to the same set-up. In the table, algorithms
are assessed each against the others based on several in-
dices related to points a-f above. Perhaps, it is worth
mentioning that, since in [13] and [30] local copies of the
optimization variables of all agents are required, a fur-
ther issue arises for these two algorithms. As matter of
fact, since agent i has no constraints for the variables of
the other agents, the assumption, which is common to
all algorithms, of compactness of the overall optimiza-
tion domain is no longer verified. This issue can be pre-
vented e.g. by forcing xj to belong to an outer box to the
constraints set Xj for each j 6= i, but in doing so some
information about the local Xi is exchanged, leading to

further privacy issues.

A preliminary version of this work is given in [10]. The
present paper significantly extends that contribution
from a theoretical viewpoint, in that it contains the
proofs of all the results stated in the conference version
and a preliminary study on the convergence rate. Fur-
thermore, a thorough comparison with the literature
has been added and an assessment of the performance
of the proposed approach has been carried out through
a concrete problem on plug-in electric vehicles charg-
ing, where also guidelines on how to speed up numerical
convergence are provided.

The rest of the paper is organized as follows. A formal
statement of the problem, along with the proposed algo-
rithm is given in Section 2. Convergence and optimality
of our algorithm are studied in Section 3. A numerical
example along with a suggestion on how to speed up
numerical convergence is presented in Section 4, while
some final remarks are drawn in Section 5.

2 Distributed constrained optimization

2.1 Problem statement and proposed solution

Consider the following optimization program

P : min
{xi∈Xi}

m
i=1

m
∑

i=1

fi(xi)

subject to:

m
∑

i=1

gi(xi) ≤ 0,

(1)

involving m agents that communicate over a time-
varying network. Each agent i, i = 1, 2, . . . ,m, has
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its own vector xi ∈ R
ni of ni decision variables, its

local constraint set Xi ⊆ R
ni and objective func-

tion fi(·) : R
ni → R, and it is contributing to the

coupling constraint
∑m

i=1 gi(xi) ≤ 0 via function
gi(·) : R

ni → R
p. Note that equality linear coupling

constraints can be also dealt with by means of P , by
means of double-sided inequalities.

Problem P could be solved, in principle, in a centralized
fashion. However, if the number m of agents is large,
this may turn out to be computationally prohibitive.
In addition, each agent would be required to share its
own information (coded via fi(·), Xi, and gi(·)) either
with the other agents or with a central unit collecting all
information, which may be undesirable in some cases,
due to privacy issues.

We next formulate a distributed strategy that overcomes
both the privacy and computational issues outlined
above by resorting to the dual of (1).

Let us consider the Lagrangian function L(x, λ) : Rn ×
R

p
+ → R given by

L(x, λ) =

m
∑

i=1

Li(xi, λ) =

m
∑

i=1

{

fi(xi) + λ⊤gi(xi)
}

,

where x = [x1
⊤ · · · xm⊤]⊤∈ X = X1 × · · · ×Xm ⊆ R

n,
with n =

∑m

i=1 ni, whereas λ ∈ R
p
+ is the vector of

Lagrange multipliers (Rp
+ denotes the p-th dimensional

non-negative orthant; in the sequel we shall sometimes
write λ ≥ 0 in place of λ ∈ R

p
+).

Correspondingly, we can define the dual function as

ϕ(λ) = min
x∈X

L(x, λ), (2)

which, due to the separable structure of objective and
constraint functions in problem P (see (1)), can be ex-
pressed as

ϕ(λ) =
m
∑

i=1

ϕi(λ) =
m
∑

i=1

min
xi∈Xi

Li(xi, λ), (3)

where each ϕi(·) is a concave function representing the
dual function of agent i.

Given these definitions, the dual of problem P in (1) can
be expressed as:

D : max
λ≥0

min
x∈X

L(x, λ),

Algorithm 1 Distributed algorithm

1: Initialization

2: k = 0.
3: Consider x̂i(0) ∈ Xi, for all i = 1, . . . ,m.
4: Consider λi(0) ∈ R

p
+, for all i = 1, . . . ,m.

5: For i = 1, . . . ,m repeat until convergence

6: ℓi(k) =
∑m

j=1 a
i
j(k)λj(k).

7: xi(k + 1) ∈ argminxi∈Xi
fi(xi) + ℓi(k)

⊤gi(xi).
8: λi(k + 1) = argmaxλi≥0

{

gi(xi(k + 1))⊤λi

− 1
2c(k)‖λi − ℓi(k)‖2

}

9: x̂i(k+1) = x̂i(k) +
c(k)

∑

k

r=0
c(r)

(xi(k+1)− x̂i(k)).
10: k ← k + 1.

or, equivalently, as

D : max
λ≥0

m
∑

i=1

ϕi(λ). (4)

The coupling between agents is given in (4) by the fact
that λ is a common decision vector and the agents should
agree on its value.

Algorithm 1 is a distributed iterative scheme that aims
at reconstructing the solution to both the dual problem
(4) and the primal problem (1) by exchanging a mini-
mal amount of information among agents. Its steps are
explained hereafter.

Each agent i, i = 1, . . . ,m, initializes the estimate of its
local decision vector with x̂i(0) ∈ Xi (step 3 of Algo-
rithm 1), and the estimate of the common dual variables
vector with a λi(0) ∈ R

p
+ that is feasible for problem

D (step 4 of Algorithm 1). A sensible choice is to set
x̂i(0) ∈ argminxi∈Xi

fi(xi), and λi(0) = 0, i = 1, . . . ,m,
which corresponds to the solution of problem (1) when
coupling constraints are neglected.

At every iteration k, k ≥ 1, each agent i computes a
weighted average ℓi(k) of the dual variables vector based
on the estimates λj(k), j = 1, . . . ,m, of the other agents
and its own estimate (step 6). The weight aij(k) that
agent i attributes to the estimate of agent j at iteration
k is set equal to zero if agent i does not communicate
with agent j at iteration k.

Then, Algorithm 1 alternates between a primal and a
dual update step (step 7 and step 8, respectively). In
particular, step 7 performs an update of the local primal
vector xi(k+1) by minimizing Li evaluated at λ = ℓi(k)
as in dual decomposition, whereas, differently from dual
decomposition, which would consists of the maximiza-
tion of Li evaluated at xi = xi(k + 1), the update
of the dual vector in step 8 involves also the proximal
term − 1

2c(k)‖λi− ℓi(k)‖2 to foster consensus among the
agents.
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Steps 7 and 8 can be thought of as an approximation of
the following proximal maximization step

λi(k + 1) = argmax
λi≥0

min
xi∈Xi

{

Li(xi, λi) (5)

− 1

2c(k)
‖λi − ℓi(k)‖2

}

,

which would implement the distributed algorithm of [13]
for the dual problem (4). Steps 7 and 8 are however pre-
ferred to (5) since the resolution of the max−min pro-
gram in (4) is very hard in general. Moreover, it is per-
haps worth mentioning at the outset that step 8 in Algo-
rithm 1 is equivalent to a projected subgradient step. In-
deed the constrained maximization of a quadratic func-
tion in step 8 can be explicitly solved, leading to

λi(k + 1) = [ℓi(k) + c(k)gi(xi(k + 1))]+, (6)

where [ · ]+ denotes the projection of its argument onto
R

p
+. Then, it can be shown that gi(xi(k + 1)) is a sub-

gradient of the dual function ϕi(·) evaluated at ℓi(k)
(see the proof of Theorem 1 for more details), while c(k)
can be thought of as the subgradient step-size. Hence,
steps 7 and 8 can be also seen as an application of the dis-
tributed subgradient algorithm of [19], which was origi-
nally developed for primal problems though, to the dual
problem (4).

Unfortunately, the local primal vector xi(k) does not
converge to the optimal solution x∗i to (1) in general.
Therefore, the auxiliary primal iterates x̂i(k+1), defined
as the weighted running average of {xi(r + 1)}kr=0

x̂i(k + 1) =

∑k

r=0 c(r)xi(r + 1)
∑k

r=0 c(r)
, (7)

is computed in step 9 of Algorithm 1 in a recursive fash-
ion. Such an auxiliary variable shows better convergence
properties as compared to xi(k), and is often constructed
in the so-called primal recovery procedure of dual de-
composition methods, [17,9,30].

Note that in Algorithm 1 no local information related to
the primal is exchanged between the agents (as a matter
of fact only the estimates of the dual vector are commu-
nicated) so that our algorithm is well suited to account
for privacy requirements.

2.2 Structural and communication assumptions

The proposed distributed algorithm shows properties of
convergence and optimality, which hold under the follow-
ing assumptions on the structure of the problem and on
the communication features of the time-varying multi-
agent network.

Assumption 1 [Convexity] For each i = 1, . . . ,m, the
function fi(·) : Rni → R and each component of gi(·) :
R

ni → R
p are convex; for each i = 1, . . . ,m the set

Xi ⊆ R
ni is convex.

Assumption 2 [Compactness] For each i = 1, . . . ,m,
the set Xi ⊆ R

ni is compact.

Note that, under Assumptions 1 and 2, ‖gi(xi)‖ is finite
for any xi ∈ Xi: ‖gi(xi)‖ ≤ G, ∀xi ∈ Xi, where G =
maxi=1,...,m maxxi∈Xi

‖gi(xi)‖.

Assumption 3 [Slater’s condition] There exists x̃ =
[x̃1 · · · x̃m]⊤ ∈ relint(X), where relint(X) is the relative
interior of the setX, such that

∑m

i=1 gi(x̃i) ≤ 0 for those
components of

∑m

i=1 gi(xi) that are linear in x, if any,
while

∑m

i=1 gi(x̃i) < 0 for all other components.

As a consequence of Assumptions 1-3, we have that
strong duality holds and an optimal primal-dual pair
(x⋆, λ⋆) exists, where x⋆ = [x⋆1 · · · x⋆m]⊤. Moreover, the
Saddle-Point Theorem holds, [8], i.e., given an optimal
pair (x⋆, λ⋆), we have that

L(x⋆, λ) ≤ L(x⋆, λ⋆) ≤ L(x, λ⋆), λ ∈ R
p
+, x ∈ X. (8)

The reader should note that, differently from other ap-
proaches, we require a Slater point to exists, but we do
not need the agents to actually compute it, which, as
discussed in the introduction, might be impractical in a
distributed set-up.

In the following we will denote byX⋆ the set of all primal
minimizers, and by Λ⋆ the set of all dual maximizers.

As for the time-varying coefficient c(k), we impose
the following assumptions that are similar to those in
[19,30,13].

Assumption 4 [Coefficient c(k)] {c(k)}k≥0 is a non-
increasing sequence of positive reals such that c(k) ≤ c(r)
for all k ≥ r, with r ≥ 0. Moreover,

(1)
∑∞

k=0 c(k) =∞,
(2)

∑∞
k=0 c(k)

2 <∞.

One possible choice for {c(k)}k≥0 satisfying Assump-
tion 4 is c(k) = β/(k + 1) for some β > 0.

As in [24,25,20], the communication network is required
to satisfy the following connectivity conditions.

Assumption 5 [Weight coefficients] There exists η ∈
(0, 1) such that for all i, j ∈ {1, . . . ,m} and all k ≥ 0,
aij(k) ∈ [0, 1), aii(k) ≥ η, and aij(k) > 0 implies that

aij(k) ≥ η. Moreover, for all k ≥ 0,
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(1)
∑m

j=1 a
i
j(k) = 1 for all i = 1, . . . ,m,

(2)
∑m

i=1 a
i
j(k) = 1 for all j = 1, . . . ,m.

Note that, if we fix k ≥ 0, the information exchange
between the m agents can be coded via a directed graph
(V,Ek), where nodes in V = {1, . . . ,m} represent the
agents, and the set Ek of directed edges is defined as

Ek =
{

(j, i) : aij(k) > 0
}

, (9)

i.e., at time k the link (j, i) is present if agent j commu-
nicates with agent i and agent i weights the information
received from agent j with aij(k). If the communication

link is not active, then aij(k) = 0; if aij(k) > 0 then agent
j is said to be neighbor of agent i at time k.

Let E∞ =
{

(j, i) : (j, i) ∈ Ek for infinitely many k
}

denote the set of edges (j, i) representing pairs of agents
that communicate directly infinitely often. We then im-
pose the following connectivity and communication as-
sumption.

Assumption 6 [Connectivity and communication]
Graph (V,E∞) is strongly connected, i.e., for any two
nodes there exists a path of directed edges that connects
them. Moreover, there exists T ≥ 1 such that for ev-
ery (j, i) ∈ E∞, agent i receives information from a
neighboring agent j at least once every consecutive T
iterations.

Details on the interpretation of Assumptions 5 and 6 can
be found in [18,13,19].

2.3 Statement of the main results

If Assumptions 1-6 are satisfied, then Algorithm 1 con-
verges and agents agree to a common vector of Lagrange
multipliers. Specifically, their local estimates λi(k) con-
verge to some optimal vector of Lagrange multipliers,
while the vector x̂(k) = [x̂1(k)

⊤ · · · x̂m(k)⊤]⊤ approaches
X⋆, the set of minimizers of the primal problem.

These results are formally stated in the following theo-
rems.

Theorem 1 [Dual Optimality] Under Assumptions 1-6,
there exists a λ⋆ ∈ Λ⋆ such that

lim
k→∞

‖λi(k)− λ⋆‖ = 0, for all i = 1, . . . ,m. (10)

Theorem 2 [Primal Optimality] Under Assumptions 1-
6, we have that

lim
k→∞

dist(x̂(k), X⋆) = 0, (11)

where dist(y, Z) denotes the distance between y and the
set Z, i.e., dist(y, Z) = minz∈Z ‖y − z‖.

3 Convergence and Optimality Analysis

This section is devoted to the convergence and optimal-
ity analysis of Algorithm 1. We will first prove Theo-
rem 1 employing the convergence result of the primal
algorithm proposed in [19] applied to (4). We will then
provide some preliminary results which are instrumen-
tal for the proof of Theorem 2, and finally we will give
the proof of Theorem 2.

3.1 Proof of Theorem 1

The structure of problem (4) fits the framework consid-
ered in [19], and as already noted below equation (6),
the part of Algorithm 1 that pertains to the update of
the dual vector (namely, steps 6 and 7 and step 8 which
is equivalent to (6)) is an implementation of the sub-
gradient algorithm of [19] for the dual problem (4). In
particular, referring to (6), the fact that gi(xi(k + 1)),
with xi(k + 1) computed as in step 7, is a subgradi-
ent of ϕi(λ) = minxi∈Xi

{fi(xi) +λ⊤gi(xi)} evaluated at
λ = ℓi(k) is a well-known consequence of the Danskin’s
theorem (see Proposition B.25 in [5]). Moreover, since fi
are convex over the whole domain R

ni by Assumption 1
and since xi(k+1) ∈ Xi, which is compact by Assump-
tion 2, it holds that the subgradients of each agent objec-
tive function evaluated at xi(k+1) are always bounded.
This latter observation along with Assumptions 1-6 al-
lows one to conclude that all requirements for Proposi-
tion 4 in [19] to hold are verified, and then the result (10)
of Theorem 1 follows by a direct application of Proposi-
tion 4 in [19]. This concludes the proof. ✷

By Theorem 1, for all i = 1, . . . ,m, the sequence
{λi(k)}k≥0 is converging to some λ⋆ ∈ Λ⋆. There-
fore, {λi(k)}k≥0 is also a bounded sequence, that is
‖λi(k)‖ ≤ D, with D = maxi supk≥0 ‖λi(k)‖ <∞.

3.2 Error relations

In this subsection we prove some preliminary relations
that link the dual variables local estimate λi(k) of agent
i, i = 1, . . . ,m, with their arithmetic average

v(k) =
1

m

m
∑

i=1

λi(k), for all k ≥ 0. (12)

These relations are then used in Section 3.3 for the proof
of Theorem 2.

To start with, the following lemma establishes a link
between ‖λi(k + 1) − v(k + 1)‖ and ‖ei(k + 1)‖, i =
1, . . . ,m, where

ei(k + 1) = λi(k + 1)− ℓi(k) (13)

is the consensus error for agent i.
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Lemma 1 Consider Assumptions 4-6. Fix any α1 ∈
R+ \ {0}. We then have that for any N ∈ N+ \ {0},

2

N
∑

k=1

c(k)

m
∑

i=1

‖λi(k + 1)− v(k + 1)‖

< α1

N
∑

k=1

m
∑

i=1

‖ei(k + 1)‖2 + α2

N
∑

k=1

c(k)2 + α3, (14)

where

α2 =
2m

α1

(

m2ψ2

(1− q)2 + 4

)

,

α3 =
α1

2

m
∑

i=1

‖ei(1)‖2

+
2m3ψ2

α1(1− q)2
c(0)2

+
2mψq

1− q c(1)
m
∑

i=1

‖λi(0)‖, (15)

and

ψ = 2
(

1 + η−(m−1)T
)

/
(

1− η(m−1)T
)

∈ R+ \ {0}
q =

(

1− η(m−1)T
)

1
(m−1)T ∈ (0, 1).

Proof. See the proof of Lemma 3 in [13]. ✷

It should be noted that for all i = 1, . . . ,m, ‖λi(0)‖
is finite as λi(0) is the initialization of the algorithm,
ℓi(0) is finite since it is the convex combination of finite
values, and xi(1) is finite thanks to Assumption 2. By
(13), and thanks to the fact that λi(k + 1) = [ℓi(k) +
c(k)gi(xi(k + 1))]+ (equation (6)) and to the fact that
the projection operator is non-expansive, we have that
‖ei(1)‖ ≤ ‖c(0)gi(xi(1))‖, i.e. ‖ei(1)‖2 is finite too.

We then have the following lemma, which is fundamental
for the analysis of Section 3.3.

Lemma 2 Consider Assumptions 1-3 and Assumption
5. Fix any α1 ∈ R+ \ {0}. For any k ∈ N+, and for any
x ∈ X and λ ∈ R

p
+ we have,

m
∑

i=1

‖λi(k + 1)− λ‖2 ≤
m
∑

i=1

‖λi(k)− λ‖2

− (1− α1)

m
∑

i=1

‖ei(k + 1)‖2

+
4G2m

α1
c(k)2

+ 2Gc(k)

m
∑

i=1

‖λi(k + 1)− v(k + 1)‖

+ 2c(k)
(

L(x, v(k + 1))− L(x(k + 1), λ)
)

. (16)

Proof. Consider the quantity ‖ℓi(k)− λ‖2. Adding and
subtracting λi(k+1) inside the norm and then expand-
ing the square, we have that

‖ℓi(k)− λ‖2 = ‖ℓi(k)− λi(k + 1)‖2 + ‖λi(k + 1)− λ‖2

+ 2(ℓi(k)− λi(k + 1))⊤(λi(k + 1)− λ)
= ‖ℓi(k)− λi(k + 1)‖2 + ‖λi(k + 1)− λ‖2
+ 2(ℓi(k) + c(k)gi(xi(k + 1))

− λi(k + 1))⊤(λi(k + 1)− λ)
− 2c(k)gi(xi(k + 1))⊤(λi(k + 1)− λ),

(17)

where the second equality is obtained by adding and
subtracting 2c(k)gi(xi(k+1))⊤(λi(k+1)−λ). Consider
now step 8 of Algorithm 1. By the optimality condition
(Proposition 3.1 in [4, Chapter 3]), we have that, for any
λ ∈ R

p
+,

2(ℓi(k) + c(k)gi(xi(k + 1))− λi(k + 1))⊤

× (λi(k + 1)− λ) ≥ 0,
(18)

where the first term in the inner product above consti-
tutes the gradient of the objective function that appears
at step 8 of Algorithm 1 (it is quadratic, hence differen-
tiable), multiplied by 2c(k). Using (18), we can rewrite
(17) as an inequality

‖ℓi(k)− λ‖2 ≥ ‖ℓi(k)− λi(k + 1)‖2 + ‖λi(k + 1)− λ‖2

− 2c(k)gi(xi(k + 1))⊤(λi(k + 1)− λ).
(19)

Now, recalling the definition of ei(k + 1), and after re-
arranging some terms, we have that

‖λi(k + 1)− λ‖2 ≤ ‖ℓi(k)− λ‖2 − ‖ei(k + 1)‖2

+ 2c(k)(λi(k + 1)− λ)⊤gi(xi(k + 1)), (20)

for anyλ ∈ R
p
+. By adding and subtracting 2c(k)(fi(xi(k+

1)) + ℓi(k)
⊤gi(xi(k + 1))) in the right-hand side of the

inequality above we obtain

‖λi(k + 1)− λ‖2 ≤ ‖ℓi(k)− λ‖2 − ‖ei(k + 1)‖2

+ 2c(k)
(

(λi(k + 1)− ℓi(k))⊤gi(xi(k + 1))

+ fi(xi(k + 1)) + ℓi(k)
⊤gi(xi(k + 1))

− fi(xi(k + 1))− λ⊤gi(xi(k + 1))
)

, (21)
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for any λ ∈ R
p
+.

Consider now step 7 of Algorithm 1. By the optimality
of xi(k + 1) we have that

fi(xi(k + 1)) + ℓi(k)
⊤gi(xi(k + 1))

≤ fi(xi) + ℓi(k)
⊤gi(xi), (22)

for any xi ∈ Xi. Combining the previous statement with
(21), and by adding and subtracting 2c(k)v(k+1)⊤gi(xi)
and 2c(k)λi(k + 1)⊤gi(xi), we have that

‖λi(k + 1)− λ‖2 ≤ ‖ℓi(k)− λ‖2 − ‖ei(k + 1)‖2

+ 2c(k)
(

(λi(k + 1)− ℓi(k))⊤gi(xi(k + 1))

+ (ℓi(k)− λi(k + 1))⊤gi(xi)

+ (λi(k + 1)− v(k + 1))⊤gi(xi)

+ fi(xi) + v(k + 1)⊤gi(xi)

− fi(xi(k + 1))− λ⊤gi(xi(k + 1))
)

, (23)

for any λ ∈ R
p
+ and any xi ∈ Xi. By summing (23) across

i, i = 1, . . . ,m, rearranging some terms, and recalling
the definition of the Lagrangian function and of ei(k+1),
we obtain

m
∑

i=1

‖λi(k + 1)− λ‖2

≤
m
∑

i=1

‖ℓi(k)− λ‖2 −
m
∑

i=1

‖ei(k + 1)‖2

+ 2c(k)

m
∑

i=1

ei(k + 1)⊤(gi(xi(k + 1))− gi(xi))

+ 2c(k)
m
∑

i=1

(λi(k + 1)− v(k + 1))⊤gi(xi)

+ 2c(k)
(

L(x, v(k + 1))− L(x(k + 1), λ)
)

, (24)

for any λ ∈ R
p
+ and for any x ∈ X .

By the definition of ℓi(k) (step 6 of Algorithm 1), by
the fact that, under Assumption 5, ‖∑m

j=1 a
i
j(k)λj(k)−

λ‖2 = ‖∑m

j=1 a
i
j(k)(λj(k) − λ)‖2, and by convexity of

‖ · ‖2, we have that

m
∑

i=1

‖ℓi(k)− λ‖2 ≤
m
∑

i=1

‖λi(k)− λ‖2. (25)

Now, from inequality 2a⊤b ≤ ‖a‖2 + ‖b‖2, where we
set a =

√
α1ei(k + 1) and b = c(k)(gi(xi(k + 1)) −

gi(xi))/
√
α1, we obtain

2c(k)

m
∑

i=1

ei(k + 1)⊤(gi(xi(k + 1))− gi(xi))

≤
m
∑

i=1

α1‖ei(k + 1)‖2

+

m
∑

i=1

‖gi(xi(k + 1))− gi(xi)‖2
α1

c(k)2

≤
m
∑

i=1

α1‖ei(k + 1)‖2 +
m
∑

i=1

4G2

α1
c(k)2

= α1

m
∑

i=1

‖ei(k + 1)‖2 + 4G2m

α1
c(k)2, (26)

where the second inequality is given by the fact that
‖gi(xi(k + 1)) − gi(xi)‖ ≤ 2G. By the Cauchy-Schwarz
inequality we have that

2c(k)

m
∑

i=1

(λi(k + 1)− v(k + 1))⊤gi(xi)

≤ 2Gc(k)

m
∑

i=1

‖λi(k + 1)− v(k + 1)‖. (27)

Finally, by using (25), (26), (27) together with (24), in-
equality (16) follows, thus concluding the proof. ✷

The relations established in Lemmas 1 and 2 can be
exploited to prove the following proposition.

Proposition 3 Consider Assumptions 1-6. We have
that

(1)
∑∞

k=1

∑m

i=1 ‖ei(k)‖2 <∞,

(2) limk→∞ ‖ei(k)‖ = 0, for all i = 1, . . . ,m,

(3)
∑∞

k=1 c(k)
∑m

i=1 ‖λi(k + 1)− v(k + 1)‖ <∞.

Proof. Consider (16) with λ = λ⋆ and x = x⋆, where
(x⋆, λ⋆) is an optimal primal-dual pair. By (8) we have
that L(x⋆, v(k + 1)) − L(x(k + 1), λ⋆) ≤ 0, and hence
we can drop this term from the right-hand side of (16).
Fixing N ∈ N+ and summing across k, k = 1, . . . , N , we
have that

N
∑

k=1

m
∑

i=1

‖λi(k + 1)− λ⋆‖2 ≤
N
∑

k=1

m
∑

i=1

‖λi(k)− λ⋆‖2

− (1− α1)

N
∑

k=1

m
∑

i=1

‖ei(k + 1)‖2
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+
4G2m

α1

N
∑

k=1

c(k)2

+ 2G

N
∑

k=1

c(k)

m
∑

i=1

‖λi(k + 1)− v(k + 1)‖.

(28)

By Lemma 1, after some cancellations, and after neglect-
ing some negative terms on the right-hand side, we ob-
tain

(1− α1(1 +G))
N
∑

k=1

m
∑

i=1

‖ei(k + 1)‖2

≤
m
∑

i=1

‖λi(1)− λ⋆‖2

+

(

4G2m

α1
+ α2G

) N
∑

k=1

c(k)2 + α3G. (29)

Since (29) holds for anyα1 > 0, one can always chooseα1

such that (1−α1(1+G)) > 0. Let thenN →∞. By point
(2) of Assumption 4, and since ‖λi(1)− λ⋆‖2 is finite as
an effect of λi(1) and λ

⋆ being finite (see discussion after
the proof of Theorem 1), the right-hand side of (29) is
finite, leading to point (1) of the proposition. Point (2)
then follows directly, while point (3) follows from point
(1) together with Lemma 1 by letting N → ∞ in (14).
This concludes the proof. ✷

Interestingly, based on the previous results, we can also
prove (see Appendix A) that

∞
∑

k=1

c(k)

m
∑

i=1

|ϕi(ℓi(k))− ϕi(v(k))| <∞. (30)

Although this result is not necessary to proveTheorem 2,
it is of interest on its own since it allows one to find a
lower bound to the rate of convergence to consensus for
the dual objective value. As a matter of fact, since

(

min
k=0,...,r

m
∑

i=1

|ϕi(ℓi(k))− ϕi(v(k))|
)

r
∑

k=0

c(k)

≤
r
∑

k=1

c(k)

m
∑

i=1

|ϕi(ℓi(k))− ϕi(v(k))|, (31)

taking the limit for r →∞ we have that

lim
r→∞

(

min
k=0,...,r

m
∑

i=1

|ϕi(ℓi(k))− ϕi(v(k))|
)

r
∑

k=0

c(k) <∞,

(32)

which implies that the convergence rate of

min
k=0,...,r

m
∑

i=1

|ϕi(ℓi(k))− ϕi(v(k))| (33)

to zero cannot be slower than that of 1
∑

r

k=0
c(k)

as r→∞.

3.3 Proof of Theorem 2

The proof of Theorem 2 below is inspired by [17], where
the convergence of a running average sequence similar
to {x̂i(k)}k≥0 is studied in a non-distributed setting,
though.

Note that x̂i(k+1) is a convex combination of past values
of xi(k+1), therefore, for all k ∈ N+ we have that x̂i(k+
1) ∈ Xi. Consider the quantity

∑m

i=1 gi(x̂i(k + 1)). By
(7), under the convexity requirement of Assumption 1,
we have

m
∑

i=1

gi(x̂i(k + 1)) ≤
m
∑

i=1

∑k

r=0 c(r)gi(xi(r + 1))
∑k

r=0 c(r)

=

∑k

r=0

∑m

i=1 c(r)gi(xi(r + 1))
∑k

r=0 c(r)
,

(34)

where the inequality (as well as the subsequent ones)
is to be interpreted component-wise. Step 8 of Algo-
rithm 1 can be equivalently written as λi(k + 1) =
[ℓi(k)+ c(k)gi(xi(k+1))]+, where [ · ]+ denotes the pro-
jection of its argument on R

p
+. (see also discussion at the

end of Section 2.1). Therefore,

λi(k + 1) ≥ ℓi(k) + c(k)gi(xi(k + 1)). (35)

Summing (35) with respect to agents and steps, and then
substituting in (34) gives

m
∑

i=1

gi(x̂i(k + 1))

≤
∑k

r=0

∑m

i=1(λi(r + 1)− ℓi(r))
∑k

r=0 c(r)

=

∑k

r=0

∑m

i=1(λi(r + 1)−∑m

j=1 a
i
j(k)λj(r))

∑k

r=0 c(r)

=

∑k

r=0

(

∑m

i=1 λi(r + 1)−∑m

j=1

∑m

i=1 a
i
j(k)λj(r)

)

∑k

r=0 c(r)

=

∑k

r=0

(

∑m

i=1 λi(r + 1)−∑m

j=1 λj(r)
)

∑k

r=0 c(r)
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=

∑m

i=1(λi(k + 1)− λi(0))
∑k

r=0 c(r)
, (36)

where the first equality follows from the definition of
ℓi(r), the second inequality involves an exchange on the
summation order, the third equality is due to Assump-
tion 5, and the last one is obtained after some term can-
cellations. Since {λi(k)}k≥0 is a bounded sequence (see
the discussion after the proof of Theorem 1), and due to
the fact that

∑∞
r=0 c(r) = ∞, taking the limit superior

in (36) we obtain that

lim sup
k→∞

m
∑

i=1

gi(x̂i(k + 1)) ≤ 0. (37)

Consider now the quantity 2
∑m

i=1 Li(x̂i(k + 1), λ⋆) for
any λ⋆ ∈ Λ⋆. By (7), under Assumption 1, we have that

2

m
∑

i=1

Li(x̂i(k + 1), λ⋆) ≤ 2

m
∑

i=1

∑k

r=0 c(r)Li(xi(r + 1), λ⋆)
∑k

r=0 c(r)

=

∑k

r=0 2c(r)L(x(r + 1), λ⋆)
∑k

r=0 c(r)
.

(38)

By (16) in Lemma 2 with x = x⋆ and λ = λ⋆, for any
(x⋆, λ⋆) ∈ X⋆ × Λ⋆, with r in place of k, and after ne-
glecting the negative term −(1−α1)

∑m

i=1 ‖ei(k+1)‖2,
we have that

2c(r)L(x(r + 1), λ⋆)

≤ 2c(r)L(x⋆, v(r + 1))

+

m
∑

i=1

‖λi(r)− λ⋆‖2 −
m
∑

i=1

‖λi(r + 1)− λ⋆‖2

+
4G2m

α1
c(r)2

+ 2Gc(r)

m
∑

i=1

‖λi(r + 1)− v(r + 1)‖

≤ 2c(r)L(x⋆, λ⋆)

+
m
∑

i=1

‖λi(r)− λ⋆‖2 −
m
∑

i=1

‖λi(r + 1)− λ⋆‖2

+
4G2m

α1
c(r)2

+ 2Gc(r)

m
∑

i=1

‖λi(r + 1)− v(r + 1)‖, (39)

where the second inequality follows from the fact that
L(x⋆, v(r+1)) ≤ L(x⋆, λ⋆) due to (8). Substituting (39)

in (38) we have that

2L(x̂(k + 1), λ⋆)

≤
∑k

r=0 2c(r)L(x
⋆, λ⋆)

∑k

r=0 c(r)

+
1

∑k

r=0 c(r)

(

4G2m

α1

k
∑

r=0

c(r)2

+

m
∑

i=1

‖λi(0)− λ⋆‖2 −
m
∑

i=1

‖λi(k + 1)− λ⋆‖2

+ 2G

k
∑

r=0

c(r)

m
∑

i=1

‖λi(r + 1)− v(r + 1)‖
)

. (40)

Using Assumption 4 point (2), the boundedness of
{λi(k)}k≥0, and Proposition 3 part (3), we know that
all terms inside the parentheses are finite as k → ∞.
Therefore,

lim sup
k→∞

L(x̂(k + 1), λ⋆) ≤ L(x⋆, λ⋆). (41)

However, by (8) we have that L(x̂(k + 1), λ⋆) ≥
L(x⋆, λ⋆), hence

lim
k→∞

L(x̂(k + 1), λ⋆) = L(x⋆, λ⋆). (42)

By (37) and (42), and due to the fact that L(·, λ⋆) is con-
tinuous as an effect of fi(·) and gi(·) being convex under
Assumption 1, we have that all limit points of {x̂(k)}k≥0

are feasible and achieve the optimal value. This implies
that they are optimal for the primal problem, thus con-
cluding the proof. ✷

4 Numerical Example

In this section we demonstrate the efficacy of the pro-
posed approach on amodified version of the Plug-inElec-
tric Vehicles (PEVs) charging problem described in [27].
This problem consists in finding an optimal overnight
charging schedule for a fleet of m vehicles, which has to
be compatible with local requirements and limitations
(e.g., desired final state of charge andmaximum charging
power for each vehicle), and must satisfy some network-
wide constraints (e.g., maximum power that the network
can deliver).

Specifically, we hereby consider a slight modification of
the “only charging” problem in [27], in that we allow for
the optimization of the vehicles charging rate at each
time slot, instead of deciding whether to charge or not to
charge the vehicle at some fixed charging rate. The over-
all charging problem can be formalized as the following
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optimization program

min
{xi∈Xi}

m
i=1

m
∑

i=1

ci
⊤xi

subject to:
m
∑

i=1

(

Aixi −
b

m

)

≤ 0

(43)

which is a linear program (Xi are indeed bounded con-
vex polytopic sets) having the same structure of (1) and
satisfying Assumptions 1-3. In (43) the components of
the optimization vector xi represent the charging rate
for vehicle i in given time slots, vector ci gives the costs
for charging vehicle i with unitary charging rate, Xi ex-
presses local requirements and limitations for vehicle i
such as desired final state of charge and battery rated ca-
pacity, while

∑m

i=1 (Aixi − b/m) ≤ 0 encodes network-
wide power constraints. We refer the reader to [27] for
the precise formulation of all quantities in (43).

In our simulation we considered a fleet of m = 100 ve-
hicles. According to the “only charging” set-up in [27],
each vehicles has ni = 24 decision variables and a lo-
cal constraint set defined by 197 inequalities. There are
p = 48 coupling inequalities, and therefore we have 48
Lagrange multipliers to optimize for the dual problem.

The communication network is depicted in Figure 1 and
corresponds to a connected graph, whose edges are di-
vided into two groups: the blue and the red ones, which
are activated alternatively; this way Assumption 6 is sat-
isfied with a period of T = 2. For each set of edges we
created a doubly stochastic matrix so as to satisfy As-
sumption 5. Finally, we selected c(k) = 1

k+1 .

We ran Algorithm 1 for 1000 iterations. Figure 2 shows
the evolution of the agents’ estimates λi(k), i = 1, . . . ,m
across iterations. As expected, all agents gradually
reach consensus on the optimal Lagrange multipliers of

Figure 1. Network of m = 100 agents.

Iteration
0 200 400 600 800 1000

×10 -3

0

0.5

1

1.5

2

Figure 2. Evolution of the agents’ estimates λi(k),
i = 1, . . . ,m. Red triangles represent the optimal dual solu-
tion.

(43) (red triangles). Note that, for the problem at hand,
only 3 multipliers are positive, while all the remaining
45 are equal to zero (in the figure, there are 45 red
triangles in 0 each one on top of the other). Figure 3 in-
stead shows the evolution of the primal objective value
∑m

i=1 ci
⊤xi (upper plot), and constraint violation in

terms of max{∑m

i=1(Aixi− b/m), 0} (lower plot), where
xi is replaced by two different sequences: x̂i(k) (dashed
lines), and x̃i(k) (solid lines), x̃i(k) being defined as

x̃i(k + 1) =











x̂i(k + 1) k < ks,i
∑k

r=ks,i
c(r)xi(r + 1)

∑k

r=ks,i
c(r)

k ≥ ks,i
(44)

where ks,i ∈ N+ is the iteration index related to a spe-
cific event, namely, the “practical” convergence of the
Lagrangemultipliers, as detected by agent i. Specifically,
in the proposed example ks,i is the first iteration step at
which the quantity ‖λi(k+1)− ℓi(k)‖2 has kept below a
certain threshold (10−5 in our simulation) for m = 100
consecutive iterations. Being x̃i(k) a refresh of x̂i(k), it
is easy to show via the same argument used for x̂i(k)
that Theorem 2 holds also for {x̃i(k)}k≥0, i = 1, . . . ,m.

As can be seen from Figure 3, the rate of convergence
of the cost and the constraints violation computed with
the {x̂i(k)}k≥0 sequence appears to be slow. In com-
parison with the rate of O(1/k) in [23], a lower bound
for our auxiliary sequence to converge is in fact given
by 1/

∑∞
i=0 c(k) ∼ O(1/ log(k)) (see the discussion be-

low (30)). We therefore believe that the difference in the
convergence rate between Algorithm 1 and [23] might
be primarily due to the constant vs. vanishing step-size.
Having a vanishing step-size, however, allows us to pro-
vide optimality guarantees, while, as discussed in the in-
troduction, in [23] only convergence to a neighborhood
of the optimal solution is guaranteed. The motivation
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Figure 3. Evolution of primal objective
∑

m

i=1
ci
⊤xi (upper

plot) and constraint violation max{
∑

m

i=1
(Aixi − b/m), 0}

(lower plot) as a function of x̂i(k) (dashed lines), and x̃i(k)
(solid lines).

for introducing the modified auxiliary sequence (which
has the same asymptotic convergence rate of the original
one) is mainly to counteract the fact that the conver-
gence of x̂i(k) is also adversely affected by the bad esti-
mates of the Lagrange multipliers obtained at the early
stages of the algorithm. By the re-initialization mecha-
nism, x̃i(k) for k ≥ ks,i depends only on estimates of the
Lagrange multipliers that are very close to λ⋆ and, as
such, it presents a much better numerical behavior than
x̂i(k).

5 Concluding remarks

In this paper we proposed a novel distributed algorithm
for a certain class of convex optimization programs, over
time-varyingmulti-agent networks.More precisely, an it-
erative scheme combining dual decomposition and prox-
imal minimization was conceived, which converges to
some optimal dual solution of the centralized problem
counterpart, while primal iterates generated by the al-
gorithm converge to the set of primal minimizers. A re-
alistic example on electric vehicles charging over a net-
work was also provided to better illustrate the features
of the proposed methodology.

Future work will focus on the analysis of the convergence
rate, and on the relaxation of the convexity assumption
by extending the results of [27,26] to a distributed set-
up and quantifying the duality gap incurred in case of
mixed-integer programs.

From an application point of view, our goal is to apply
the proposed algorithm to the problem of optimal energy
management of a building network [11].

A Appendix

Proof of (30). ByTheorem1, {‖λi(k)‖}k≥0 is bounded
(see the discussion after the proof of Theorem 1),
whereas by the definition of ℓi(k) (step 6 of Algo-
rithm 1) and v(k) in (12), it follows that {‖v(k)‖}k≥0

and {‖ℓi(k)‖}k≥0 are also bounded, for all i = 1, . . . ,m.
Let D̄ ∈ R+ denote a uniform upper bound for these se-
quences. Due to compactness of Xi, i = 1, . . . ,m, ϕi(λ̄)
is finite for any λ̄ ∈ D, with D = {λ ∈ R

p
+ : ‖λ‖ ≤ D̄}.

Therefore, ϕi(·) is concave (being a dual function) on
the compact set D, hence it will also be Lipschitz con-
tinuous on D with Lipschitz constant Ci ∈ R+, i.e.,

|ϕi(λ1)− ϕi(λ2)| ≤ Ci‖λ1 − λ2‖, ∀λ1, λ2 ∈ D (A.1)

By the definition of D̄ we have that ℓi(k), v(k) ∈ D, for
all k ∈ N+, for all i = 1, . . . ,m, hence

m
∑

i=1

|ϕi(ℓi(k))−ϕi(v(k))| ≤ C
m
∑

i=1

‖ℓi(k)−v(k)‖, (A.2)

where C = maxi=1,...,m Ci. Multiplying both sides
by 2c(k), fixing N ∈ N+ and summing across k,
k = 1, . . . , N , we have that

2

N
∑

k=1

c(k)

m
∑

i=1

|ϕi(ℓi(k))− ϕi(v(k))|

≤ 2C

N
∑

k=1

c(k)

m
∑

i=1

‖ℓi(k)− v(k)‖

≤ 2C
N
∑

k=1

c(k)
m
∑

i=1

‖λi(k)− v(k)‖, (A.3)

where the second inequality follows from

m
∑

i=1

‖ℓi(k)− v(k)‖ =
m
∑

i=1

∥

∥

∥

∥

∥

∥

m
∑

j=1

aij(k)(λj(k)− v(k))

∥

∥

∥

∥

∥

∥

≤
m
∑

i=1

m
∑

j=1

aij(k)‖λj(k)− v(k)‖

=

m
∑

j=1

‖λj(k)− v(k)‖, (A.4)

where the first equality is obtained by the definition of
ℓi(k) (step 6 of Algorithm 1) and by Assumption 5, the
inequality is due to the triangle inequality for ‖ · ‖, and
the last equality is obtained exchanging the two summa-
tions and using Assumption 5. Letting N →∞ in (A.3),
and due to Proposition 3 part 3, (30) follows, thus con-
cluding the proof. ✷
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