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Abstract

Nonholonomic wheeled mobile robots are often required to implement algorithms designed for holonomic kinematic systems. This creates
a velocity tracking problem for the actual wheeled mobile robot. In this paper, we investigate the issue of tracking the desired velocity in
the least amount of time, for a differential drive nonholonomic wheeled mobile robot. If the desired velocity is a constant, the Pontryagin
Maximum Principle can be used to design a control. A control is designed for the cases when the wheel can be commanded speeds and
torques. When the desired velocity is smoothly time-varying, we propose a hybrid structure and study its properties.
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1 Introduction

Differential drive systems are a popular choice for mobile robot platforms. This can be attributed largely to their ability to turn
in place, which makes them ideal for navigation in cluttered environments. Another advantage is the simplicity of construction,
especially when compared to holonomic wheeled mobile robots. The control of nonholonomic wheeled mobile robots has a
long history [1-4], with the differential drive robot system being a common example. The most important controls problem
typically considered for this robot is the point stabilization problem [5] or the tracking of a reference trajectory [6—8]. The point
stablization problem is particularly interesting due to the impossibility of solving it using a smooth time-invariant feedback
law [1].

In recent years the field of multi-robot coordination has been an active area of research. Control methods such as consensus
algorithms and behaviour-based controls can achieve a wide variety of tasks. In general, these methods often consider single
integrator dynamics, and the commanded control for each robot is a velocity in the plane. Such control laws can be implemented
in an exact manner only on holonomic wheeled mobile robots. Further, consider a team of multiple differential drive robots
that are to be operated by a human using some input device. Typically, the human may command a motion towards a particular
direction. Depending on the headings of the robots, they may or may not be able to move in that direction instantaneously.

Thus, in this paper, we are concerned with controlling the planar velocity of the differential drive robot. The goal is to find
controls that change the current velocity of the robot to some desired velocity in the plane as fast as possible. The effect of
implementing such controls is to make the robots ‘appear’ to be holonomic, with as small a delay as possible in tracking of
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commanded velocities. Previous work on time-optimal control for the differential drive robot has focused on control of the
robot’s position [9-11].

The contribution of this paper lies in applying the Pontryagin Maximum Principle to the differential drive robot with bounded
torque inputs in order to derive time-optimal controls that drive the forward speed, heading angle and angular velocity to desired
values.

2 Preliminaries

In this section we describe the differential drive robot system and recount the Pontryagin Maximum Principle which will be
appplied to this system.

2.1 Differential Drive Robot

A sketch of a differential drive robot is shown in Figure 1. The desired velocity vq4 € R? is given by the blue vector, with
magnitude vg = ||v4||. However, the robot’s velocity lies along the green vector, with magnitude v € R. The robot heading 6
must be controlled such that the robot velocity matches the desired one.

The kinematic equations of motion of the wheeled mobile robot are

= |sin(0) 0 H 0

where (z,y) is the cartesian position of the centroid of the robot, v is the forward speed and w is the angular velocity of the
robot. The non-holonomic nature of the equations is due to the fact that the equations 1 satisfy the contraint

&sin (0) — gcos () =0 (2)
We assume that the wheels do not slip. This corresponds to the two constraints

i cos (0) + gsin (0) + b0 = rop 3)
i cos (A) + gsin (0) — b0 = roy, “4)

The linear speed v and angular velocity w are then obtained from the right and left wheel velocities (gﬁ r and gb 1, respectively)
as

vza'ngng (5a)

G =

where r and 20 are the radii of the wheels and the distance between the wheels respectively.

Some commercially available differential drive robots, such as the i.Robot' Create, can only be commandqd wheel speeds.
Further, the wheel speeds that can be obtained are bounded. That is, |¢r|< dmaz and |¢1,|< Gpaz for some ¢ppaq > 0.
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Fig. 1. The differential drive robot with with linear speed v, angular velocity w and desired velocity v4.

A second possibility is when the motors are torque controlled. Let uw; and us be the net torques at the right and left wheels
respectively. We assume that these torques are bounded, that is, |u1|< wu,, and |us|< w,, for some u,, > 0. In this case, we
can derive

.o r

mo = §u1 + §u2 (6a)
. r r

Jpw = Q—bul — Q—buQ (6b)

where m is the effective mass of the robot and J,. is the effective rotational inertia of the robot about the vertical axis through
the center of the wheel base. The parameters m and J, are functions of the robot and wheel parameters ( see [12] for details).
Further, the right and left wheel speeds change according to the equations

-
Ca Cq QZ.SL U2

where ¢ and ¢, are strictly positive constants which depend on the robot parameters ( See [12] for details). Note that ¢; and
co cannot be equal since equality requires the robot to have no rotational inertia about the vertical axis . Also c; = 0 <=
mb? = I (see [12] for details).

We will use both models (5) and (6) separately to address the goals outlined in Section 3.
2.2 Time-optimal Control

Consider a dynamical system consisting of state ¢ € R™. The dynamics are given by
q=flq,u) ®)

where © € U C RP is the control input and f : R™ x U — R™ is a vector field on R™. Consider an initial state ¢ € R"
and a target state g4 € R™. Assume that there exists some control «(¢) defined on [0, ¢ 7] such that the corresponding trajectory
q(t) defined on [0, ¢ ;] has the property that ¢(0) = go and g(t;) = gq. The pair (q(¢), u(t)), where ¢ is defined on [0, ], is
called a controlled trajectory. Out of all controlled trajectories that achieve the desired change of state, the time-optimal control
problem consists of finding one for which the final time ¢ the least-possible.

The Pontryagin Maximum Principle [13—16] can be used as a tool to find these time-optimal controlled trajectories, by spec-
ifying necessary conditions that they must satisfy. Any controlled trajectory meeting the necessary conditions is called an



extremal. The time-optimal controls are a subset of the extremals, hence application of the Pontryagin Maximum Principle is
a good first step to finding them. Further sufficiency conditions need to be applied in order to conclude that an extremal is
time-optimal.

We can introduce the adjoint state ¢ € R™, and the Hamiltonian H given by

H(qa L, 1/’7 u) = + quf(qa U) (9)

where 1 € {0, 1}.

The principle states that:

Theorem 1 Consider system (8) with U a compact subset of RP. Let there exist an adjoint state ¢ € R", a Hamiltonian
Sfunction H given by (9), an extremal denoted by the triple (q*(t),v*(t),u*(t)) and the extremal Hamiltonian H*(t) =
H(gq*(t), u, v*(t),u*(t)) defined on t € I = [0,ts]. Then the following are true

NI Forallt € I, (u,¢*(t)) # 0 holds.
N2 For almost allt € I, the adjoint state satisfies

: OH
s MO ORI 0) (10)
q
N3 Foralmost all t € I, u*(t) satisfies

N4 For almost all t € I, H*(t) = 0 holds.

3 Problem Statement

The position of the centroid of the wheeled mobile robot at time ¢ is denoted by (x(t),y(t)) € R?. We are given a desired
velocity vq € R2. The goal is to design control strategies such that the derivative of the position matches the desired velocity,
and that the convergence is achieved as fast as possible.

i
H — vy (12)
Y

Given the robot kinematics (5), this is equivalent to requiring that
0 —>9d, v — HVdH (13)

where 6, is the angle that v, makes with the z-axis of the coordinate axis in which (z, y) is defined.
We want to solve the control problem for two types of inputs:

(1) The control inputs are the wheel (or motor) speeds
(2) The control input are the wheel (or motor) torques

and two types of reference signals



(1) vq is constant
(2) vg is time-varying

In the rest of the paper, we address the case of wheel speed inputs for both types of reference signals, and torque inputs for the
case of constant reference signal v.

4 Torque Control

The state is taken as ¢ = (v,0,w)” € R3, and its dynamics are given by (6). Note that @ is treated as a real number instead of
an element of S*. The input space U C R? is [~y U] X [~ , Um]. We can write the dynamics in the form ¢ = f(q, u) as
shown:

v %(Ul + ’LLQ)
0| = w
w .]2:"1) (u1 — ’LLQ)
Which is a linear system
0 000 wF T w
gl =1001jq+| 0 O (14)
2r 2r U2
w 000 75 T
= Aq+ Bu (15)

We first check whether time-optimal controls that change the state from any initial state to any target state exist. We can use
the Fillipov Existence Theorem [14, 17] to do this.

Theorem 2 (Filippov Existence Theorem) Consider state ¢ € R™ with dynamics ¢ = f(q,u), where uw € U C R? and
U is compact. Time-optimal solutions exist if the control system is controllable, f(q,u) satisfies the linear growth condition
I f (g, w)||< (14 ||z||) for some constant ¢ > 0 and all (q,u) € R™ x U, and the velocity sets Fi;(q) := {f(q,u)|u € U} are
convex for all ¢ € R™.

We can now show that our system does possess time-optimal controlled trajectories between any two states:

Proposition 3 There exists time optimal trajectories between any two state for the dynamical system (15) with input space U.

PROOF. The system (15) is a controllable linear system, which is trivial to check. The set of allowable inputs U = [~ tm] ¥
[~ U] is compact and convex. Thus, Bu is a convex subset of R? and hence Ag+ Bu = f(q,u) is convex for each ¢ € R™.

The norm of f(g,u) can be bounded as follows:

[Ag + Bul| < || Aq[|+|| Bull
< gl +lel
< max({1, [[¢[ })(1 + [lql})

T
where ¢ = [2% 0 %} . Thus, f(q,u) satisfies a linear growth condition. The system (15) satisfies the conditions for
Theorem 2, and hence time optimal controls that change any initial state to any target state exist.

We can conclude that it makes sense to search for time-optimal controlled trajectories. We begin by constructing the extremals
through application of the Pontryagin Maximum Principle. We assume that the extremals are defined over some compact time



interval I = [0,¢s]. Given an extremal (¢*(t),¢*(t),u*(t)), we refer to ¢*(t) as the extremal trajectory and u*(t) as the
oH

extremal control. The adjoint state dynamics are derived using N 2. The partial derivative B is computed as:
OH . (16)
— =— (- Ag+ B
50 = 90 (—n+ " (Ag + Bu))
=AT
The adjoint state dynamics are thus w = —ATy:
U 0
da| = | 0 (17
s )
The solution of this system given initial condition ¥(0) = (11 (0), 12(0), ¥5(0)) is simply
Y1(t) = 11(0), ¥a2(t) = 12(0), 3 (t) = 12(0)t + ¢3(0) (18)
The Hamiltonian function becomes
H =—p+¢" f(q,u) = —p+ 9" Aq+ psi” Bu
e (Lt ) o)+ s () )
=—u 1 mu1 U 2 (W 3 Jb Uy — U2

T 2r T 2r
= (mwl + M%) uy + (mwl - M%bs) U + Yow

4.1 Classification of extremals

We are now in a position to determine extremals (¢*(t), ¥*(t), u*(t)). For any extremal, the function H* is maximized at each
time instant ¢ (necessary condition /N3), implying that

wi(t) = um sign (;Wt) T j:"bws(t)> (20a)
us(t) = um sign (;wl(t) - j”bwg(t)> (20b)

The initial condition v(0) determines )*(¢) according to (18) , which in turn determines u*(¢) according to (20) and hence
q*(t), given ¢(0). The possible extremals are thus determined by the initial conditions )(0). Clearly, three possibilities exist:

(D) () =0
(2) ¥(t) =(0) #0
(3) ¥(t) # ¢(0) vt >0



Table 1
Notation for four torque modes

U = Um B+ a”

U = —Um at B~

For convenience, we define the following switching functions:

) = ((Lnle) + 75000 Q1)

alt) = ( Lale) — Tva(0) @)

Case 1: If 1(t) = 0 then H = —p + 1pow and any control u*(t) € U V¥t € I would satisfy N3. Such a case is known as the
doubly-singular control. However, such a control cannot be an extremal control. This is due to the fact that N1 and N4 cannot
simultaneously hold, and thus v (¢) = 0 cannot be part of a valid extremal.

Case 2: If ¢ (t) = 1(0) # 0, which occurs when 15(0) = 0. Consider either of the two mutually exclusive possibilities:

S1 Ul(t) = 01(0) =0
S2 O'Q(t) = 0'2(0) =0

When S1 ( S2 ) holds, the coefficient of w1 (us) in (19) is zero, while the coefficient of u; (us) is a non-zero constant.
This implies that extremal controls may be of the form where one motor torque is u,, over the interval of definition of the
trajectory, while the other control is arbitrary.

Suppose ¥(t) = ¥(0) # 0 however S1 and S2 do not hold. Then, according to (20) the motor torques are constant with
maximum possible magnitude.

Case 3: Finally, suppose that 93(0) # 0, implying that 1 (t) # ¢(0) ¥t > 0. Since 1)1 (¢) is constant and 3(?) is linear in time
t, o1(t) (or oa(t)) either monotonically increases of monotonically decreases, with exactly one time instant where its value
is undefined. Since u; = w,,sign(oy) and ug = u,,sign(os), this implies that the motor torques are piecewise constant (with
value +u,,) with no more than one switch.

To summarize, the application of the Pontryagin Maximum Principle results in the conclusion that all extremal controls consist
of only two possible cases:

C1 At least one motor has a constant torque with value u,,, or —u,, over I.
C2 Both motors have piecewise constant torques (with possible values in {—u,, +u, }) with exactly one switch for each
motor at a time instants ¢1 and ¢, such that ¢y, t5 € (0, tf).

We know that a time-optimal control between any two states exists. We also know that such a control must necessarily be of
the form C1 or C2. Given a desired initial state ¢y and target state ¢4, we attempt to find a control of the form C'1 or C2
such that the control induces the desired change in state. This procedure generates an extremal (¢* (), v¥* (¢), u*(t)), defined
ont € I =10,¢s] such that ¢(0) = go and q(ty) = ¢q.

We now introduce a notation for the four possible combinations when both motor torques are at their maximum values. We
name the combinations 57, 57, a, and o~ as described in Table 1. When u; = u,, and ug = —u,,, for example, we refer
to this situation as control being a*. For any interval of time where 37 or 3~ control is used, the robot’s linear speed changes
while the angular velocity remains constant. For any interval of time where ot or o~ control is used, the linear speed remains
the same, and the angular velocity changes. Let the rates of angular acceleration and linear acceleration be o = 4rum /(J,.b)

and S = 2ru,,/m respectively. Whenever the motors torques are equal to +u,,, either  =+aand® = 0, 0or§ = 0 and
v = +p.



For a C?2 control, since each motor will switch exactly once, any C'2 extremal consists of at most two instants of switching,
and therefore at most three time intervals of time in which one of the four controls in Table 1 is used. We call each time interval
a phase of the extremal. We will refer to the controls used during any such interval using Table 1. If the control u; = wuyy,
U2 = —Uy, is used during a phase, for example, we refer to that phase as a +« phase. The possible sequences of control phases
that are valid C'2 extremal controls sequences are

(1) ot = p* 5 af
) oF > aF
(3) fE —a* - p7F

@ B* — p*

where the arrow denotes a transition between one control phase (on the left of the arrow) to another control (on the right) at
some time instant. Since both motors must switch exactly once, the control in the last phase is always the reversal of the control
in the first phase.

Thus, we can introduce a further classification of the extremals, based on the possible combinations of motor torques listed
above. The first two sequences are classified as C'2a controls. The last two are C2b controls. The classification is based on
whether the motor torques in the first phase have the same sign or not.

For any C'1 extremal control, one motor torque is always +u,, or —u,, and never switches during the transition from initial
to goal state. The other motor torque can be an arbitrary function of time (bounded by u,,). Thus, extremal controls of the
form C1 include singular controls, where one motor torque is arbitrary. We want to identify a special subset of C'1 controls
where the non-constant motor switches between +u,,, no more than twice. We will say that such controls are of type C'l,5.
The possible C'1,,; extremal control sequences are

(1) B —a* — p*
(2) B*—a*

3) g*

@) ot - p*

) ot

The next two subsections deal with the construction of extremal controls given gg and g4, under the assumption that the desired
angular velocity is zero.

4.2 Synthesis when w(0) = 0

We are interested in target states where the robot has some desired velocity v, in the plane. This corresponds to a desired
forward speed vq = ||v4|| and orientation 6, with zero angular velocity. In this subsection, we will focus on initial states where
the robot angular velocity w(0) is zero. Due to the fact that f(q,u) = f(q+ [v, 8, 0], u), we can change coordinates such that
the target state as (0, 0, 0). The initial state (v(0),6(0),0) becomes (vg, g, 0) in the new coordinates. Thus, we are interested
in transitioning from (v0, 8y, 0) to the origin (0, 0, 0), the latter corresponding to (vg, 64, 0) in the original coordinates. Clearly,
Vg = ’U(O) — V4 and 90 = 6‘(0) — 9d.

Assume that §p = 0. In order to avoid the trivial case, we must have vy # 0. Clearly, all we need to do is change the forward
speed at the fastest possible rate to reach the origin. Thus, the extremal control is simply 37 or 3~ for ¢ = % seconds. Note
that the extremal control is of the form C'la.

Suppose that 8y # 0. Since wg = 0, in order to change the robots heading from 6y, we must increase or decrease the angular
velocity. However, since we wish to end with zero angular velocity, we must also decelerate by applying the opposite torques.
This means that each motor switches exactly once, and hence we expect the extremal control that achieves the desired change
in state to be of the form C2a.

Since there are two switches, we can divide the interval [0, ¢ f] into three sub-intervals of length 1, ¢2 and 3, where the motors
switch at time instants ¢; and to = t; + to respectively. During the first and third interval, the control is of the form u; = —us.
This does not clarify what the motor torques are, but merely that they are opposite in sign (¢~ or a™). During the second the
control is of the form u; = uy (37 or B7).



The total duration of the trajectory is t3 = 1 + to + t3. We can compute the final state at 3 due to a C'2a control through
straightforward integration of the equations of motion as follows:

_ t3 t3

9(t3) = 2 + s1adits + sjatits — 519%5 + 6o (22a)
w(t},) = slatl — 810&t3 (22b)
1)({3) = Sgﬂtg —+ vg (22C)
where s; € {1,—1} determines whether the first phase is o™ (s; = —1) or at (s; = —1), and sy € {1,—1} determines
whether the second phase is 31 (s = 1) or 7 (s = —1). We can set v(f3) = 0 in (22c), which results in the conclusion that

|vo
to = — (23a)

B
s9 = —sign(vp) (23b)

Similarily, setting w(#3) = 0 in (22b) yields

t3 =11 24)

We can substitute (23a) and (24) in (22a) along with the fact that we want 6(f3) = 0 to obtain

s1a|vg|

spatt + 3 t1+600=0 (25)
for which the solutions are
1 alvg| o (a2 4daby
t1i=—|— —1)* — 26
" 20 < g * ( ) 52 S1 (26)
fori € {1,2}. A non-negative solution always exists (when choosing s; = —sign(fy)) which is given by

1 [a?|ul? vl
ty = — 4alby| — — 27
L= 50 7 + 4afo| 25 (27
We can the compute the total time ¢3 = t1 + to + 3 as
_ 1 [a2|vgl?
By = — [vo] + 4o (28)

~ 24 32

The switching times for the motors are ¢; and ¢; + 5 respectively. The phases of the motor torques are determined by the v
and 6, as described in Table 2.



Table 2
Control phases of extremals when w(0) = 0. A blank entry implies that that phase is non-existent.

6o Vo O0<t<ti t1<t<tly to<t<ts
<0 <0 at BT -

(0%
<0 >0 a’ B8 a”
<0 =0 at - a
>0 <0 a BT at
>0 >0 a” 8- o
>0 =0 a” - at
=0 <0 - BT -
=0 >0 - B~ -

Fig. 2. Three optimal trajectories starting from the purple dots, marked by colored lines. The first trajectory consists of the green, blue and
red curves. The second trajectory corresponds to the orange curve, for which there is no desired change in linear speed. The third trajectory
corresponds to the case when 6y = 0, and is represented by a cyan line. For the initial condition where 6y < 0, the first phase of the trajectory
represented by the green line lies in the (vertical) green plane v = vg. The second phase of the trajectory represented by the blue line lies in
a (horizontal) blue plane w = ¢, where c is some constant. The third phase of the trajectory represented by the red line lies in the (vertical)
red plane v = 0, as does the orange trajectory.

We can plot a sketch of these extremals in the R?, as done in Figure 2. Three extremals starting from the initial conditions
marked by the three purple dots are seen in this figure. All three initial conditions are such that w(0) = 0. For the initial
condition where 6y < 0 the target linear speed is different from the initial linear speed. The trajectory consists of a sequence
of phases o™, 87 (or 37 ), and o~ These are indicated by the green, blue and red lines respectively. For the initial condition
where 6y > 0 the target linear speed is identical to initial linear speed. As such, there are only two control phases: o~ and o+

(equivalently, t5 = % = 0). The case where only the linear speed needs to be changed is indicated by the cyan line.

These same trajectories are projected on to the 6 —w and 6 — v planes in Figures 3 and 4 respectively for more clarity. In Figure
3, the dashed line corresponds to points where a single control phase o~ or ™ would be sufficient to reach the origin. The
case when 6y = 0 is plotted as a cyan dot at the origin in the § — w plane. Note for that case when vy = 0, the problem reduces
to time-optimal trajectories for the double integrator, with the target state being the origin [13].

In summary, for the case when the robot must change from moving with one constant velocity in the plane to some other desired

velocity in the plane, the extremal control is of the form C2a unless the desired heading is the same as the initial heading, for
which case the extremal control is of the form C'1,,5. The switching times for the C2a control have been derived.

4.3 Synthesis for w(0) # 0
In the previous subsection, we have found controls that satisfy the necessary conditions of the Pontryagin Maximum Principle

when the initial angular velocity is zero, and these controls result in v — vg4, 0 — 64. These trajectories can be found for any

10



Fig. 3. Projection of the trajectories in Figure 2 on to the plane v = 0. The trajectory which corresponds to the case when 6y = 0 gets
projected to a point at the origin, represented by the cyan dot. The dashed curve represents points (0, ¢, w) which would reach the origin if
only the control oo~ or a™ was used, for a suitable finite time period.

v

Fig. 4. Projection of the trajectories in Figure 2 on to the plane w = 0.

0o and vg. More precisely, we can specify the motor torques as functions of time that achieve the change in state in the least
possible time.

The case when w(0) = 0 corresponds to the mobile robot moving with a constant heading in the plane. We would like to
accommodate the case when w(0) # 0 for various reasons, listed below:

e The robot could have been following a circular trajectory when a new desired linear velocity is commanded

e Due to disturbances on the input or state, the robot may need to compute new switching times for an initial condition that
corresponds to w(0) # 0

e We wish to develop a state-based feedback control law that is time-optimal.

In Section 4.2 we have found the time optimal control for initial conditions of the form (v, 6p,0). For each such initial
condition, there is a unique extremal (¢*(t),¢*(t),u*(t)) defined on I = [0,t;] such that the initial condition is ¢*(0) and
q*(ty) = (0,0,0). Thus, this extremal trajectory is clearly the time-optimal one.

In this subsection, we will see that we can derive more than one extremal for some initial conditions, and hence we need to
establish which one is time-optimal when possible. Our strategy will be to determine sets of initial conditions where extremal
controls of type C'l,,5, C2a or C'2b are such that the corresponding extremal trajectories start at the initial condition and end at

the origin.

Let the initial condition be gy = (v, 6, w). We can define the following subsets of R3:

Q1 = {(v,0,w) € R® : Hy(v,0,w) < 0and Hy(v,0,w) <0} (29)

11



Qo = {(v,@,w) €R?: Hy(v,0,w) > 0and Hy(v,0,w) > 0} (30)

Q3 = {(v,0,w) € R® : wH; (§,w) < 0} (31)
Q= {(v,6,w) € R? : Hy(v,0,w)Hs(v,0,w) < 0} (32)
55 = {('U,Q,OJ) € RS : Hl(U,H,(JJ) = OaH2(U707w) 7& O} (33)
Se = {(v,0,w) € R®: Hy(v,0,w) # 0, Hy(v,0,w) = 0} (34)
L, = {(vﬁ,w) eR3: Hy(v,0,w) = Ha(v,0,w) =0,v # O} (35)
L, ={(v,0,w) € R®: Hy(v,0,w) = Ha(v,0,w) =0,w # 0} (36)

where
Hi(v,0,w) =200 + w|w| (37)

and
_ Wl wlvl

HQ(U,Q,LU) = 2% +9+ ﬁ (38)

The surfaces Hi(v,0,w) = 0 and Hy(v,0,w) = 0 are plotted in Figures 5 and 6 respectively. For comparison, they are
superimposed in Figure 7

Lemma 4 Let gy € Q1 U Q. Then, an extremal (¢*(t),¥* (t), u*(t)) defined on I = [0,t] exists such that ¢*(0) = qo and
q*(ty) = (0,0,0), and u*(t) is of type C2a.
PROOF. Again, integration of the equations of motion for a general control of the form C2a yields

siat] syat3

9(1?3) =40 + wtl + + (w + 81041f1)t2 + (w + Slatl)tg — B (398.)
w(fg) = sjat; — s1ats +w (39b)
’0(1?3) = Sgﬂtg +v (39C)

12
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Fig. 7. The surfaces H1(v,6,w) = 0 and Ha(v,0,w) = 0fora = 0.5, = 1.

which reduces to (22) when w = 0. Again, t; and t, = t; + t5 are the switching times of the motors, and t, = t; + t5 + t3 is
the total time. Also, s; and s2 denote the unknown signs of the motor torques in the three phases.

The solutions for ¢ and so remain unchanged from those in (23). Using (39b) and requiring that w(f3) = 0 we can obtain

w
P (40)
S1¢
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and hence we obtain the following quadratic equation in ¢;:

s1alv] wlv| w?
2+ (2 t+0+ —— =0 41
51a1—|—<w+ B >1+ i B +2$1oz “D
for which the solutions are
1 s1alv] ; a?|v|?
ti; = 2w — ——— + (=1)"4/2w? —4s1a6 42
L w( GT T TR T e )
From (40) we can obtain
1 s1av| i a?lv|?
tg; = — —1)% [ 2w? —4s1a0 43
g zsla< CR T )

If a C'2a extremal control is to exist such that it drives the state from gq to the origin, we must have ¢t; > 0 and ¢3 > 0. Further,
we can always take the solution corresponding to ¢ = 2, since t3 ; can never be real and positive.

Case 1: Consider the case when s; = 1. We have

t = i <2w - % + \/2w2 + a;'ZP - 4a9> (44a)
t3 = i <aﬁv| + \/2w2 + a;'f - 4a9> (44b)
In order to obtain real solutions, we need the discriminant to be non-negative. This is achieved when
w2 —2a6 >0
In order for to ensure that ¢35 > 0, we further need
w? —2a60 >0 (45)

When —2w — % > ( this also implies that t; > 0. When —2w — % < 0, we need a further condition to hold in order that
t1 > 0, given by

awlv|  w?

af + +2 <0 (46)
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which is obtained from the fact that for a quadratic equation ax? + bx + ¢ = 0 where b > 0, then one of the roots is real and
positive if and only if ac < 0. We now show that the above conditions on (v, 8, w) hold when H; < 0 and Hy < 0. We will
consider three cases, which depend on the value of w.

Case la: Let w > 0. Then,

Hy(v,0,w) <0
= aH3(v,0,w) <0
== af + awll + wl]

B 2
awlv]  w?

+?<0

<0

— af +

and w > — %l Additionally,

awlv]  wlw]
— <0
B2
awlv]  wlw]
B 2
2

:>a9<0<%

= w?—2a0 >0

af +

— af <

Case 1b: Let f%;;l < w < 0. We have

Hi <0
= wlw|+2a8 < 0
— —w? 4200 <0
= w? —2a6 >0

Now, —2w — % < 0 which implies that 2w? + WTM < 0 since w > 0. We can add this to the negative quantity —%2 + af
to obtain

awly]  w?

202 + 3 —7+a9<0
2
:>w2+a9+awﬂlvl < -w?<0

Case Ic: Letw < _%gl < 0. Once again H; < 0 immediately implies that w? — 2a# > 0. Thus, H; < 0 and H, < 0 implies
that a C'2a control exists with first phase PN such that the controlled trajectory reaches the origin.

Case 2: Let s; = —1, corresponding to the first phase being N P. The only valid solution to (41) is given by

1 a|v| ao?|v|?
t1_2a<2w6+\/2w2+ﬁ2+4a9 (472)

1 alvl ) a?|v|?
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Fig. 8. The shaded region corresponds to the set €21 U 22 for some fixed value of v.

Clearly, for t3 > 0 we need

w? 4+ 2a6 >0 (48)

Again, this condition is sufficient to ensure ¢; > 0 when 2w — %”—' <0.If 2w — %L > 0 then for £; > 0 we must have that

2

w aw|v|
i
5 @

B

<0 (49)

by a similar argument that yielded (46). Similar to case 1 above, we can show that that conditions (48) and (49) are satisfied
when H; > 0 and Hy > 0. Therefore, a C2a control with first phase N P exists such that the state reaches (0, 0,0) from g,
when gy € (2. We have characterized the initial conditions for which C2a controls exist.

Remark5 Q; Ny =10

Lemma 6 Let gy € Q3. Then, an extremal (q*(t),¥*(t),u*(t)) defined on I = [0,ty] exists such that ¢*(0) = qo and
q*(ty) = (0,0,0), and u*(t) is of type C2b.

PROOF. We can derive the change in state due to a C'2b control as

v(ts) = v+ s3f(t1 — t3) (50a)
_ 1 9
9(t3) =0+ wt] + wts + 58404152 + (w + S40lt2)t3 (50b)
w(ts) = w + sqats (50¢)
where s3 € {1,—1} and &3 = t; + to, t3 = t1 + t2 + t3. If the second control phase is o™, then s, = 1, otherwise s, = —1.
If the first control phase is 87, then s3 = 1, otherwise s3 = —1.
Setting w(f3) = 0, we can obtain
ty = M (51a)
«@
s4 = sign(—w) (51b)
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Fig. 9. The shaded region corresponds to the set {23 for some fixed value of v.

Substituting (51a) and (51b) in (50b) and requiring that 0(f3) = 0 yields

wl | wlwl

0=0+wt; +w— + + (0)ts (52)
o 2a
so that we can compute ¢; to be
4 =  wlw[+2a0 (53)
2aw
_ Hl (w, 9)
N 20w

Note that for the control to be of type C'2b, ¢, and t3 must be strictly positive. In order for ¢; to be positive, we need wH; (0, w) <
0.

wH;(0,w) <0 (54)
Setting v(f3) = 0, we can obtain
v
ts = — +1t 55
37 5B +h (535

If %‘ < t1 then then we may pick s3 to be either +1 or —1 in order to ensure that ¢35 > 0. If not, then s3 = sign(v) yields

t3 > 0. The only condition that is required to ensure that an extremal of the form C2b exists is given in (54). These are exactly
the set of points gg € {23, proving the lemma.

We have already defined sets 21 and 25, and fortunately 1 N Q5 = (). This means that for initial conditions in either of those
sets, we have a unique C2a control which results in a transition of the state to the origin. Unfortunately, Q1 N Q3 # @ and
Qs N Q3 # (. This means that for (v,0,w) € Q1 N Q3 or (v,0,w) € Q1 N Q3, we must be able to decide whether the C2a
control or the C'2b control is faster. We will now show that the C'2a control is always faster.

Lemma 7 Let go € (Qq UQ2) N Q3. Let the duration of the C2a extremal corresponding to qqg be tca, and the duration of the
C2b extremal be toay. Then

te2a < tozw (