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Abstract

Nonholonomic wheeled mobile robots are often required to implement algorithms designed for holonomic kinematic systems. This creates
a velocity tracking problem for the actual wheeled mobile robot. In this paper, we investigate the issue of tracking the desired velocity in
the least amount of time, for a differential drive nonholonomic wheeled mobile robot. If the desired velocity is a constant, the Pontryagin
Maximum Principle can be used to design a control. A control is designed for the cases when the wheel can be commanded speeds and
torques. When the desired velocity is smoothly time-varying, we propose a hybrid structure and study its properties.
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1 Introduction

Differential drive systems are a popular choice for mobile robot platforms. This can be attributed largely to their ability to turn
in place, which makes them ideal for navigation in cluttered environments. Another advantage is the simplicity of construction,
especially when compared to holonomic wheeled mobile robots. The control of nonholonomic wheeled mobile robots has a
long history [1–4], with the differential drive robot system being a common example. The most important controls problem
typically considered for this robot is the point stabilization problem [5] or the tracking of a reference trajectory [6–8]. The point
stablization problem is particularly interesting due to the impossibility of solving it using a smooth time-invariant feedback
law [1].

In recent years the field of multi-robot coordination has been an active area of research. Control methods such as consensus
algorithms and behaviour-based controls can achieve a wide variety of tasks. In general, these methods often consider single
integrator dynamics, and the commanded control for each robot is a velocity in the plane. Such control laws can be implemented
in an exact manner only on holonomic wheeled mobile robots. Further, consider a team of multiple differential drive robots
that are to be operated by a human using some input device. Typically, the human may command a motion towards a particular
direction. Depending on the headings of the robots, they may or may not be able to move in that direction instantaneously.

Thus, in this paper, we are concerned with controlling the planar velocity of the differential drive robot. The goal is to find
controls that change the current velocity of the robot to some desired velocity in the plane as fast as possible. The effect of
implementing such controls is to make the robots ‘appear’ to be holonomic, with as small a delay as possible in tracking of
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commanded velocities. Previous work on time-optimal control for the differential drive robot has focused on control of the
robot’s position [9–11].

The contribution of this paper lies in applying the Pontryagin Maximum Principle to the differential drive robot with bounded
torque inputs in order to derive time-optimal controls that drive the forward speed, heading angle and angular velocity to desired
values.

2 Preliminaries

In this section we describe the differential drive robot system and recount the Pontryagin Maximum Principle which will be
appplied to this system.

2.1 Differential Drive Robot

A sketch of a differential drive robot is shown in Figure 1. The desired velocity vd ∈ R2 is given by the blue vector, with
magnitude vd = ‖vd‖. However, the robot’s velocity lies along the green vector, with magnitude v ∈ R. The robot heading θ
must be controlled such that the robot velocity matches the desired one.

The kinematic equations of motion of the wheeled mobile robot are

(1)


ẋ

ẏ

θ̇

 =


cos (θ) 0

sin (θ) 0

0 1


[
v

ω

]

where (x, y) is the cartesian position of the centroid of the robot, v is the forward speed and ω is the angular velocity of the
robot. The non-holonomic nature of the equations is due to the fact that the equations 1 satisfy the contraint

(2)ẋ sin (θ)− ẏ cos (θ) = 0

We assume that the wheels do not slip. This corresponds to the two constraints

(3)ẋ cos (θ) + ẏ sin (θ) + bθ̇ = rφ̇R

(4)ẋ cos (θ) + ẏ sin (θ)− bθ̇ = rφ̇L

The linear speed v and angular velocity ω are then obtained from the right and left wheel velocities (φ̇R and φ̇L respectively)
as

(5a)v = φ̇R
r

2
+ φ̇L

r

2

(5b)ω =
φ̇Rr

2b
− φ̇Lr

2b

where r and 2b are the radii of the wheels and the distance between the wheels respectively.

Some commercially available differential drive robots, such as the iRobot Create, can only be commanded wheel speeds.
Further, the wheel speeds that can be obtained are bounded. That is, |φ̇R|≤ φ̇max and |φ̇L|≤ φ̇max for some φ̇max > 0.
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Fig. 1. The differential drive robot with with linear speed v, angular velocity ω and desired velocity vd.

A second possibility is when the motors are torque controlled. Let u1 and u2 be the net torques at the right and left wheels
respectively. We assume that these torques are bounded, that is, |u1|≤ um and |u2|≤ um for some um > 0. In this case, we
can derive

(6a)mv̇ =
r

2
u1 +

r

2
u2

(6b)Jrω̇ =
r

2b
u1 −

r

2b
u2

where m is the effective mass of the robot and Jr is the effective rotational inertia of the robot about the vertical axis through
the center of the wheel base. The parameters m and Jr are functions of the robot and wheel parameters ( see [12] for details).
Further, the right and left wheel speeds change according to the equations

(7)

[
c1 c2

c2 c1

][
φ̇R

φ̇L

]
=

[
u1

u2

]

where c1 and c2 are strictly positive constants which depend on the robot parameters ( See [12] for details). Note that c1 and
c2 cannot be equal since equality requires the robot to have no rotational inertia about the vertical axis . Also c2 = 0 ⇐⇒
mb2 = I ( see [12] for details).

We will use both models (5) and (6) separately to address the goals outlined in Section 3.

2.2 Time-optimal Control

Consider a dynamical system consisting of state q ∈ Rn. The dynamics are given by

(8)q̇ = f(q, u)

where u ∈ U ⊂ Rp is the control input and f : Rn × U → Rn is a vector field on Rn. Consider an initial state q0 ∈ Rn
and a target state qd ∈ Rn. Assume that there exists some control u(t) defined on [0, tf ] such that the corresponding trajectory
q(t) defined on [0, tf ] has the property that q(0) = q0 and q(tf ) = qd. The pair (q(t), u(t)), where t is defined on [0, tf ], is
called a controlled trajectory. Out of all controlled trajectories that achieve the desired change of state, the time-optimal control
problem consists of finding one for which the final time tf the least-possible.

The Pontryagin Maximum Principle [13–16] can be used as a tool to find these time-optimal controlled trajectories, by spec-
ifying necessary conditions that they must satisfy. Any controlled trajectory meeting the necessary conditions is called an
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extremal. The time-optimal controls are a subset of the extremals, hence application of the Pontryagin Maximum Principle is
a good first step to finding them. Further sufficiency conditions need to be applied in order to conclude that an extremal is
time-optimal.

We can introduce the adjoint state ψ ∈ Rn, and the Hamiltonian H given by

(9)H(q, µ, ψ, u) = −µ+ ψT f(q, u)

where µ ∈ {0, 1}.

The principle states that:

Theorem 1 Consider system (8) with U a compact subset of Rp. Let there exist an adjoint state ψ ∈ Rn, a Hamiltonian
function H given by (9), an extremal denoted by the triple (q∗(t), ψ∗(t), u∗(t)) and the extremal Hamiltonian H∗(t) =
H(q∗(t), µ, ψ∗(t), u∗(t)) defined on t ∈ I = [0, tf ]. Then the following are true

N1 For all t ∈ I , (µ, ψ∗(t)) 6= 0 holds.
N2 For almost all t ∈ I , the adjoint state satisfies

(10)ψ̇ = −∂H
∂q

(q∗(t), µ, ψ∗(t), u∗(t))

N3 For almost all t ∈ I , u∗(t) satisfies

(11)H∗(t) = max
u∈U

H(q∗(t), µ, ψ∗(t), u)

N4 For almost all t ∈ I , H∗(t) = 0 holds.

3 Problem Statement

The position of the centroid of the wheeled mobile robot at time t is denoted by (x(t), y(t)) ∈ R2. We are given a desired
velocity vd ∈ R2. The goal is to design control strategies such that the derivative of the position matches the desired velocity,
and that the convergence is achieved as fast as possible.

(12)

[
ẋ

ẏ

]
→ vd

Given the robot kinematics (5), this is equivalent to requiring that

(13)θ → θd, v → ‖vd‖

where θd is the angle that vd makes with the x-axis of the coordinate axis in which (x, y) is defined.

We want to solve the control problem for two types of inputs:

(1) The control inputs are the wheel (or motor) speeds
(2) The control input are the wheel (or motor) torques

and two types of reference signals
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(1) vd is constant
(2) vd is time-varying

In the rest of the paper, we address the case of wheel speed inputs for both types of reference signals, and torque inputs for the
case of constant reference signal vd.

4 Torque Control

The state is taken as q = (v, θ, ω)T ∈ R3, and its dynamics are given by (6). Note that θ is treated as a real number instead of
an element of S1. The input space U ⊂ R2 is [−um, um]× [−um, um]. We can write the dynamics in the form q̇ = f(q, u) as
shown:


v̇

θ̇

ω̇

 =


r
m (u1 + u2)

ω

2r
Jrb

(u1 − u2)



Which is a linear system 
v̇

θ̇

ω̇

 =


0 0 0

0 0 1

0 0 0

 q +


r
mJ

r
mJ

0 0

2r
Jrb
− 2r
Jrb


[
u1

u2

]
(14)

= Aq +Bu (15)

We first check whether time-optimal controls that change the state from any initial state to any target state exist. We can use
the Fillipov Existence Theorem [14, 17] to do this.

Theorem 2 (Filippov Existence Theorem) Consider state q ∈ Rn with dynamics q̇ = f(q, u), where u ∈ U ⊂ Rp and
U is compact. Time-optimal solutions exist if the control system is controllable, f(q, u) satisfies the linear growth condition
‖f(q, u)‖≤ c(1 + ‖x‖) for some constant c > 0 and all (q, u) ∈ Rn×U , and the velocity sets FU (q) := {f(q, u)|u ∈ U} are
convex for all q ∈ Rn.

We can now show that our system does possess time-optimal controlled trajectories between any two states:

Proposition 3 There exists time optimal trajectories between any two state for the dynamical system (15) with input space U .

PROOF. The system (15) is a controllable linear system, which is trivial to check. The set of allowable inputsU = [−um, um]×
[−um, um] is compact and convex. Thus,Bu is a convex subset of R3 and henceAq+Bu = f(q, u) is convex for each q ∈ Rn.
The norm of f(q, u) can be bounded as follows:

‖Aq +Bu‖ ≤ ‖Aq‖+‖Bu‖
≤ ‖q‖+‖c‖
≤ max({1, ‖c‖})(1 + ‖q‖)

where c =
[
2 r
m 0 4r

Jrb

]T
. Thus, f(q, u) satisfies a linear growth condition. The system (15) satisfies the conditions for

Theorem 2, and hence time optimal controls that change any initial state to any target state exist.

We can conclude that it makes sense to search for time-optimal controlled trajectories. We begin by constructing the extremals
through application of the Pontryagin Maximum Principle. We assume that the extremals are defined over some compact time
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interval I = [0, tf ]. Given an extremal (q∗(t), ψ∗(t), u∗(t)), we refer to q∗(t) as the extremal trajectory and u∗(t) as the
extremal control. The adjoint state dynamics are derived using N2. The partial derivative ∂H

∂q is computed as:

(16)∂H

∂q
=
∂

∂q

(
−µ+ ψT (Aq +Bu)

)
= AT

The adjoint state dynamics are thus ψ̇ = −ATψ:

(17)


ψ̇1

ψ̇2

ψ̇3

 =


0

0

−ψ2



The solution of this system given initial condition ψ(0) = (ψ1(0), ψ2(0), ψ3(0)) is simply

(18)ψ1(t) = ψ1(0), ψ2(t) = ψ2(0), ψ3(t) = ψ2(0)t+ ψ3(0)

The Hamiltonian function becomes

(19)
H = −µ+ ψT f(q, u) = −µ+ ψTAq + psiTBu

= −µ+ ψ1

( r
m

(u1 + u2)
)

+ ψ2(ω) + ψ3

(
2r

Jrb
(u1 − u2)

)
=

(
r

m
ψ1 +

2r

Jrb
ψ3

)
u1 +

(
r

m
ψ1 −

2r

Jrb
ψ3

)
u2 + ψ2ω

4.1 Classification of extremals

We are now in a position to determine extremals (q∗(t), ψ∗(t), u∗(t)). For any extremal, the function H∗ is maximized at each
time instant t (necessary condition N3), implying that

(20a)u1(t) = um sign

(
r

m
ψ1(t) +

2r

Jrb
ψ3(t)

)

(20b)u2(t) = um sign

(
r

m
ψ1(t)− 2r

Jrb
ψ3(t)

)

The initial condition ψ(0) determines ψ∗(t) according to (18) , which in turn determines u∗(t) according to (20) and hence
q∗(t), given q(0). The possible extremals are thus determined by the initial conditions ψ(0). Clearly, three possibilities exist:

(1) ψ(t) ≡ 0
(2) ψ(t) ≡ ψ(0) 6= 0
(3) ψ(t) 6= ψ(0) ∀t > 0

6



Table 1
Notation for four torque modes

u1 = um u1 = −um

u2 = um β+ α−

u2 = −um α+ β−

For convenience, we define the following switching functions:

(21a)σ1(t) =

(
r

m
ψ1(t) +

2r

Jrb
ψ3(t)

)

(21b)σ2(t) =

(
r

m
ψ1(t)− 2r

Jrb
ψ3(t)

)

Case 1: If ψ(t) ≡ 0 then H = −µ + ψ2ω and any control u∗(t) ∈ U ∀t ∈ I would satisfy N3. Such a case is known as the
doubly-singular control. However, such a control cannot be an extremal control. This is due to the fact that N1 and N4 cannot
simultaneously hold, and thus ψ(t) ≡ 0 cannot be part of a valid extremal.

Case 2: If ψ(t) ≡ ψ(0) 6= 0, which occurs when ψ2(0) = 0. Consider either of the two mutually exclusive possibilities:

S1 σ1(t) = σ1(0) = 0
S2 σ2(t) = σ2(0) = 0

When S1 ( S2 ) holds, the coefficient of u1 (u2) in (19) is zero, while the coefficient of u1 (u2) is a non-zero constant.
This implies that extremal controls may be of the form where one motor torque is ±um over the interval of definition of the
trajectory, while the other control is arbitrary.

Suppose ψ(t) ≡ ψ(0) 6= 0 however S1 and S2 do not hold. Then, according to (20) the motor torques are constant with
maximum possible magnitude.

Case 3: Finally, suppose that ψ2(0) 6= 0, implying that ψ(t) 6= ψ(0) ∀t > 0. Since ψ1(t) is constant and ψ3(t) is linear in time
t, σ1(t) ( or σ2(t)) either monotonically increases of monotonically decreases, with exactly one time instant where its value
is undefined. Since u1 = umsign(σ1) and u2 = umsign(σ2), this implies that the motor torques are piecewise constant (with
value ±um) with no more than one switch.

To summarize, the application of the Pontryagin Maximum Principle results in the conclusion that all extremal controls consist
of only two possible cases:

C1 At least one motor has a constant torque with value um or −um over I .
C2 Both motors have piecewise constant torques (with possible values in {−um,+um}) with exactly one switch for each

motor at a time instants t1 and t2 such that t1, t2 ∈ (0, tf ).

We know that a time-optimal control between any two states exists. We also know that such a control must necessarily be of
the form C1 or C2. Given a desired initial state q0 and target state qd, we attempt to find a control of the form C1 or C2
such that the control induces the desired change in state. This procedure generates an extremal (q∗(t), ψ∗(t), u∗(t)), defined
on t ∈ I = [0, tf ] such that q(0) = q0 and q(tf ) = qd.

We now introduce a notation for the four possible combinations when both motor torques are at their maximum values. We
name the combinations β+, β−, α+, and α− as described in Table 1. When u1 = um and u2 = −um, for example, we refer
to this situation as control being α+. For any interval of time where β+ or β− control is used, the robot’s linear speed changes
while the angular velocity remains constant. For any interval of time where α+ or α− control is used, the linear speed remains
the same, and the angular velocity changes. Let the rates of angular acceleration and linear acceleration be α = 4rum/(Jrb)

and β = 2rum/m respectively. Whenever the motors torques are equal to ±um, either θ̈ = ±α and v̇ = 0, or θ̈ = 0 and
v̇ = ±β.
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For a C2 control, since each motor will switch exactly once, any C2 extremal consists of at most two instants of switching,
and therefore at most three time intervals of time in which one of the four controls in Table 1 is used. We call each time interval
a phase of the extremal. We will refer to the controls used during any such interval using Table 1. If the control u1 = um,
u2 = −um is used during a phase, for example, we refer to that phase as a +α phase. The possible sequences of control phases
that are valid C2 extremal controls sequences are

(1) α±→ β±→ α∓

(2) α±→ α∓

(3) β±→ α±→ β∓

(4) β±→ β∓

where the arrow denotes a transition between one control phase (on the left of the arrow) to another control (on the right) at
some time instant. Since both motors must switch exactly once, the control in the last phase is always the reversal of the control
in the first phase.

Thus, we can introduce a further classification of the extremals, based on the possible combinations of motor torques listed
above. The first two sequences are classified as C2a controls. The last two are C2b controls. The classification is based on
whether the motor torques in the first phase have the same sign or not.

For any C1 extremal control, one motor torque is always +um or −um and never switches during the transition from initial
to goal state. The other motor torque can be an arbitrary function of time (bounded by um). Thus, extremal controls of the
form C1 include singular controls, where one motor torque is arbitrary. We want to identify a special subset of C1 controls
where the non-constant motor switches between ±um no more than twice. We will say that such controls are of type C1ns.
The possible C1ns extremal control sequences are

(1) β±→ α± → β±

(2) β±→ α±

(3) β±
(4) α±→ β±

(5) α±

The next two subsections deal with the construction of extremal controls given q0 and qd, under the assumption that the desired
angular velocity is zero.

4.2 Synthesis when ω(0) = 0

We are interested in target states where the robot has some desired velocity vd in the plane. This corresponds to a desired
forward speed vd = ‖vd‖ and orientation θd, with zero angular velocity. In this subsection, we will focus on initial states where
the robot angular velocity ω(0) is zero. Due to the fact that f(q, u) = f(q+ [v, θ, 0]T , u), we can change coordinates such that
the target state as (0, 0, 0). The initial state (v(0), θ(0), 0) becomes (v0, θ0, 0) in the new coordinates. Thus, we are interested
in transitioning from (v0, θ0, 0) to the origin (0, 0, 0), the latter corresponding to (vd, θd, 0) in the original coordinates. Clearly,
v0 = v(0)− vd and θ0 = θ(0)− θd.

Assume that θ0 = 0. In order to avoid the trivial case, we must have v0 6= 0. Clearly, all we need to do is change the forward
speed at the fastest possible rate to reach the origin. Thus, the extremal control is simply β+ or β− for t = |v|

β seconds. Note
that the extremal control is of the form C1a.

Suppose that θ0 6= 0. Since ω0 = 0, in order to change the robots heading from θ0, we must increase or decrease the angular
velocity. However, since we wish to end with zero angular velocity, we must also decelerate by applying the opposite torques.
This means that each motor switches exactly once, and hence we expect the extremal control that achieves the desired change
in state to be of the form C2a.

Since there are two switches, we can divide the interval [0, tf ] into three sub-intervals of length t1, t2 and t3, where the motors
switch at time instants t1 and t̄2 = t1 + t2 respectively. During the first and third interval, the control is of the form u1 = −u2.
This does not clarify what the motor torques are, but merely that they are opposite in sign (α− or α+). During the second the
control is of the form u1 = u2 (β+ or β−).
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The total duration of the trajectory is t̄3 = t1 + t2 + t3. We can compute the final state at t̄3 due to a C2a control through
straightforward integration of the equations of motion as follows:

(22a)θ(t̄3) =
s1αt

2
1

2
+ s1αt1t2 + s1αt1t3 −

s1αt
2
3

2
+ θ0

(22b)ω(t̄3) = s1αt1 − s1αt3

(22c)v(t̄3) = s2βt2 + v0

where s1 ∈ {1,−1} determines whether the first phase is α− (s1 = −1) or α+ (s1 = −1), and s2 ∈ {1,−1} determines
whether the second phase is β+ (s2 = 1) or β−(s2 = −1). We can set v(t̄3) = 0 in (22c), which results in the conclusion that

(23a)t2 =
|v0|
β

(23b)s2 = −sign(v0)

Similarily, setting ω(t̄3) = 0 in (22b) yields

(24)t3 = t1

We can substitute (23a) and (24) in (22a) along with the fact that we want θ(t̄3) = 0 to obtain

(25)s1αt
2
1 +

s1α|v0|
β

t1 + θ0 = 0

for which the solutions are

t1,i =
1

2α

(
−α|v0|

β
+ (−1)i

√
α2|v0|2
β2

− 4αθ0

s1

)
(26)

for i ∈ {1, 2}. A non-negative solution always exists (when choosing s1 = −sign(θ0)) which is given by

(27)t1 =
1

2α

√
α2|v0|2
β2

+ 4α|θ0| −
|v0|
2β

We can the compute the total time t̄3 = t1 + t2 + t3 as

(28)t̄3 =
1

2α

√
α2|v0|2
β2

+ 4α|θ0|

The switching times for the motors are t1 and t1 + t2 respectively. The phases of the motor torques are determined by the v0

and θ0, as described in Table 2.
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Table 2
Control phases of extremals when ω(0) = 0. A blank entry implies that that phase is non-existent.

θ0 v0 0 < t < t1 t1 < t < t̄2 t̄2 < t < t̄3

< 0 < 0 α+ β+ α−

< 0 > 0 α+ β− α−

< 0 = 0 α+ - α−

> 0 < 0 α− β+ α+

> 0 > 0 α− β− α+

> 0 = 0 α− - α+

= 0 < 0 - β+ -

= 0 > 0 - β− -

θ

v

ω

Fig. 2. Three optimal trajectories starting from the purple dots, marked by colored lines. The first trajectory consists of the green, blue and
red curves. The second trajectory corresponds to the orange curve, for which there is no desired change in linear speed. The third trajectory
corresponds to the case when θ0 = 0, and is represented by a cyan line. For the initial condition where θ0 < 0, the first phase of the trajectory
represented by the green line lies in the (vertical) green plane v = v0. The second phase of the trajectory represented by the blue line lies in
a (horizontal) blue plane ω = c, where c is some constant. The third phase of the trajectory represented by the red line lies in the (vertical)
red plane v = 0, as does the orange trajectory.

We can plot a sketch of these extremals in the R3, as done in Figure 2. Three extremals starting from the initial conditions
marked by the three purple dots are seen in this figure. All three initial conditions are such that ω(0) = 0. For the initial
condition where θ0 < 0 the target linear speed is different from the initial linear speed. The trajectory consists of a sequence
of phases α+, β+ (or β− ), and α−. These are indicated by the green, blue and red lines respectively. For the initial condition
where θ0 > 0 the target linear speed is identical to initial linear speed. As such, there are only two control phases: α− and α+

(equivalently, t2 = |v0|
β = 0). The case where only the linear speed needs to be changed is indicated by the cyan line.

These same trajectories are projected on to the θ−ω and θ−v planes in Figures 3 and 4 respectively for more clarity. In Figure
3, the dashed line corresponds to points where a single control phase α− or α+ would be sufficient to reach the origin. The
case when θ0 = 0 is plotted as a cyan dot at the origin in the θ−ω plane. Note for that case when v0 = 0, the problem reduces
to time-optimal trajectories for the double integrator, with the target state being the origin [13].

In summary, for the case when the robot must change from moving with one constant velocity in the plane to some other desired
velocity in the plane, the extremal control is of the form C2a unless the desired heading is the same as the initial heading, for
which case the extremal control is of the form C1ns. The switching times for the C2a control have been derived.

4.3 Synthesis for ω(0) 6= 0

In the previous subsection, we have found controls that satisfy the necessary conditions of the Pontryagin Maximum Principle
when the initial angular velocity is zero, and these controls result in v → vd, θ → θd. These trajectories can be found for any
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θ

ω

Fig. 3. Projection of the trajectories in Figure 2 on to the plane v = 0. The trajectory which corresponds to the case when θ0 = 0 gets
projected to a point at the origin, represented by the cyan dot. The dashed curve represents points (0, θ, ω) which would reach the origin if
only the control α− or α+ was used, for a suitable finite time period.

θ

v

Fig. 4. Projection of the trajectories in Figure 2 on to the plane ω = 0.

θ0 and v0. More precisely, we can specify the motor torques as functions of time that achieve the change in state in the least
possible time.

The case when ω(0) = 0 corresponds to the mobile robot moving with a constant heading in the plane. We would like to
accommodate the case when ω(0) 6= 0 for various reasons, listed below:

• The robot could have been following a circular trajectory when a new desired linear velocity is commanded
• Due to disturbances on the input or state, the robot may need to compute new switching times for an initial condition that

corresponds to ω(0) 6= 0
• We wish to develop a state-based feedback control law that is time-optimal.

In Section 4.2 we have found the time optimal control for initial conditions of the form (v0, θ0, 0). For each such initial
condition, there is a unique extremal (q∗(t), ψ∗(t), u∗(t)) defined on I = [0, tf ] such that the initial condition is q∗(0) and
q∗(tf ) = (0, 0, 0). Thus, this extremal trajectory is clearly the time-optimal one.

In this subsection, we will see that we can derive more than one extremal for some initial conditions, and hence we need to
establish which one is time-optimal when possible. Our strategy will be to determine sets of initial conditions where extremal
controls of type C1ns, C2a or C2b are such that the corresponding extremal trajectories start at the initial condition and end at
the origin.

Let the initial condition be q0 = (v, θ, ω). We can define the following subsets of R3:

(29)Ω1 =
{

(v, θ, ω) ∈ R3 : H1(v, θ, ω) < 0 and H2(v, θ, ω) < 0
}

11



(30)Ω2 =
{

(v, θ, ω) ∈ R3 : H1(v, θ, ω) > 0 and H2(v, θ, ω) > 0
}

(31)Ω3 =
{

(v, θ, ω) ∈ R3 : ωH1(θ, ω) < 0
}

Ω4 =
{

(v, θ, ω) ∈ R3 : H1(v, θ, ω)H2(v, θ, ω) < 0
}

(32)

(33)S5 =
{

(v, θ, ω) ∈ R3 : H1(v, θ, ω) = 0, H2(v, θ, ω) 6= 0
}

(34)S6 =
{

(v, θ, ω) ∈ R3 : H1(v, θ, ω) 6= 0, H2(v, θ, ω) = 0
}

(35)Lv =
{

(v, θ, ω) ∈ R3 : H1(v, θ, ω) = H2(v, θ, ω) = 0, v 6= 0
}

(36)Lω =
{

(v, θ, ω) ∈ R3 : H1(v, θ, ω) = H2(v, θ, ω) = 0, ω 6= 0
}

where

(37)H1(v, θ, ω) = 2αθ + ω|ω|

and

(38)H2(v, θ, ω) =
ω|ω|
2α

+ θ +
ω|v|
β

The surfaces H1(v, θ, ω) = 0 and H2(v, θ, ω) = 0 are plotted in Figures 5 and 6 respectively. For comparison, they are
superimposed in Figure 7

Lemma 4 Let q0 ∈ Ω1 ∪ Ω2. Then, an extremal (q∗(t), ψ∗(t), u∗(t)) defined on I = [0, tf ] exists such that q∗(0) = q0 and
q∗(tf ) = (0, 0, 0), and u∗(t) is of type C2a.

PROOF. Again, integration of the equations of motion for a general control of the form C2a yields

(39a)θ(t̄3) = θ + ωt1 +
s1αt

2
1

2
+ (ω + s1αt1)t2 + (ω + s1αt1)t3 −

s1αt
2
3

2

(39b)ω(t̄3) = s1αt1 − s1αt3 + ω

(39c)v(t̄3) = s2βt2 + v

12
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Fig. 7. The surfaces H1(v, θ, ω) = 0 and H2(v, θ, ω) = 0 for α = 0.5, β = 1.

which reduces to (22) when ω = 0. Again, t1 and t̄2 = t1 + t2 are the switching times of the motors, and t̄2 = t1 + t2 + t3 is
the total time. Also, s1 and s2 denote the unknown signs of the motor torques in the three phases.

The solutions for t2 and s2 remain unchanged from those in (23). Using (39b) and requiring that ω(t̄3) = 0 we can obtain

(40)t3 = t1 +
ω

s1α

13



and hence we obtain the following quadratic equation in t1:

(41)s1αt
2
1 +

(
2ω +

s1α|v|
β

)
t1 + θ +

ω|v|
β

+
ω2

2s1α
= 0

for which the solutions are

(42)t1,i =
1

2s1α

(
−2ω − s1α|v|

β
+ (−1)i

√
2ω2 +

α2|v|2
β2

− 4s1αθ

)

From (40) we can obtain

(43)t3,i =
1

2s1α

(
−s1α|v|

β
+ (−1)i

√
2ω2 +

α2|v|2
β2

− 4s1αθ

)

If a C2a extremal control is to exist such that it drives the state from q0 to the origin, we must have t1 > 0 and t3 > 0. Further,
we can always take the solution corresponding to i = 2, since t3,1 can never be real and positive.

Case 1: Consider the case when s1 = 1. We have

(44a)t1 =
1

2α

(
−2ω − α|v|

β
+

√
2ω2 +

α2|v|2
β2

− 4αθ

)

(44b)t3 =
1

2α

(
−α|v|

β
+

√
2ω2 +

α2|v|2
β2

− 4αθ

)

In order to obtain real solutions, we need the discriminant to be non-negative. This is achieved when

ω2 − 2αθ ≥ 0

In order for to ensure that t3 > 0, we further need

(45)ω2 − 2αθ > 0

When −2ω − α|v|
β > 0 this also implies that t1 > 0. When −2ω − α|v|

β < 0, we need a further condition to hold in order that
t1 > 0, given by

(46)αθ +
αω|v|
β

+
ω2

2
< 0

14



which is obtained from the fact that for a quadratic equation ax2 + bx + c = 0 where b > 0, then one of the roots is real and
positive if and only if ac < 0. We now show that the above conditions on (v, θ, ω) hold when H1 < 0 and H2 < 0. We will
consider three cases, which depend on the value of ω.

Case 1a: Let ω > 0. Then,

H2(v, θ, ω) < 0

=⇒ αH2(v, θ, ω) < 0

=⇒ αθ +
αω|v|
β

+
ω|ω|

2
< 0

=⇒ αθ +
αω|v|
β

+
ω2

2
< 0

and ω > −α|v|2β . Additionally,

αθ +
αω|v|
β

+
ω|ω|

2
< 0

=⇒ αθ < −αω|v|
β
− ω|ω|

2

=⇒ αθ < 0 <
ω2

2
=⇒ ω2 − 2αθ > 0

Case 1b: Let −α|v|2β < ω < 0. We have

H1 < 0

=⇒ ω|ω|+2αθ < 0

=⇒ − ω2 + 2αθ < 0

=⇒ ω2 − 2αθ > 0

Now, −2ω − α|v|
β < 0 which implies that 2ω2 + αω|v|

β < 0 since ω > 0. We can add this to the negative quantity −ω
2

2 + αθ

to obtain

2ω2 +
αω|v|
β
− ω2

2
+ αθ < 0

⇒ω2

2
+ αθ +

αω|v|
β

< −ω2 < 0

Case 1c: Let ω < −α|v|2β < 0. Once again H1 < 0 immediately implies that ω2 − 2αθ > 0. Thus, H1 < 0 and H2 < 0 implies
that a C2a control exists with first phase PN such that the controlled trajectory reaches the origin.

Case 2: Let s1 = −1, corresponding to the first phase being NP . The only valid solution to (41) is given by

(47a)t1 =
1

2α

(
2ω − α|v|

β
+

√
2ω2 +

α2|v|2
β2

+ 4αθ

)

(47b)t3 =
1

2α

(
−α|v|

β
+

√
2ω2 +

α2|v|2
β2

+ 4αθ

)

15
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Fig. 8. The shaded region corresponds to the set Ω1 ∪ Ω2 for some fixed value of v.

Clearly, for t3 > 0 we need

(48)ω2 + 2αθ > 0

Again, this condition is sufficient to ensure t1 > 0 when 2ω − α|v|
β < 0. If 2ω − α|v|

β > 0 then for t1 > 0 we must have that

(49)
ω2

2
− αθ − αω|v|

β
< 0

by a similar argument that yielded (46). Similar to case 1 above, we can show that that conditions (48) and (49) are satisfied
when H1 > 0 and H2 > 0. Therefore, a C2a control with first phase NP exists such that the state reaches (0, 0, 0) from q0,
when q0 ∈ Ω2. We have characterized the initial conditions for which C2a controls exist.

Remark 5 Ω1 ∩ Ω2 = ∅

Lemma 6 Let q0 ∈ Ω3. Then, an extremal (q∗(t), ψ∗(t), u∗(t)) defined on I = [0, tf ] exists such that q∗(0) = q0 and
q∗(tf ) = (0, 0, 0), and u∗(t) is of type C2b.

PROOF. We can derive the change in state due to a C2b control as

(50a)v(t̄3) = v + s3β(t1 − t3)

(50b)θ(t̄3) = θ + ωt1 + ωt2 +
1

2
s4αt

2
2 + (ω + s4αt2)t3

(50c)ω(t̄3) = ω + s4αt2

where s3 ∈ {1,−1} and t̄2 = t1 + t2, t̄3 = t1 + t2 + t3. If the second control phase is α+, then s4 = 1, otherwise s4 = −1.
If the first control phase is β+, then s3 = 1, otherwise s3 = −1.

Setting ω(t̄3) = 0, we can obtain

(51a)t2 =
|ω|
α

(51b)s4 = sign(−ω)
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Fig. 9. The shaded region corresponds to the set Ω3 for some fixed value of v.

Substituting (51a) and (51b) in (50b) and requiring that θ(t̄3) = 0 yields

(52)0 = θ + ωt1 + ω
|ω|
α

+−ω|ω|
2α

+ (0)t3

so that we can compute t1 to be

(53)t1 = −ω|ω|+2αθ

2αω

= −H1(ω, θ)

2αω

Note that for the control to be of typeC2b, t1 and t3 must be strictly positive. In order for t1 to be positive, we need ωH1(θ, ω) <
0.

(54)ωH1(θ, ω) < 0

Setting v(t̄3) = 0, we can obtain

(55)t3 =
v

s3β
+ t1

If |v|β < t1 then then we may pick s3 to be either +1 or −1 in order to ensure that t3 > 0. If not, then s3 = sign(v) yields
t3 > 0. The only condition that is required to ensure that an extremal of the form C2b exists is given in (54). These are exactly
the set of points q0 ∈ Ω3, proving the lemma.

We have already defined sets Ω1 and Ω2, and fortunately Ω1 ∩Ω2 = ∅. This means that for initial conditions in either of those
sets, we have a unique C2a control which results in a transition of the state to the origin. Unfortunately, Ω1 ∩ Ω3 6= ∅ and
Ω2 ∩ Ω3 6= ∅. This means that for (v, θ, ω) ∈ Ω1 ∩ Ω3 or (v, θ, ω) ∈ Ω1 ∩ Ω3, we must be able to decide whether the C2a
control or the C2b control is faster. We will now show that the C2a control is always faster.

Lemma 7 Let q0 ∈ (Ω1 ∪Ω2)∩Ω3. Let the duration of the C2a extremal corresponding to q0 be tC2a and the duration of the
C2b extremal be tC2b. Then

(56)tC2a < tC2b
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PROOF. We consider the case when (v, θ, ω) ∈ Ω1 ∩ Ω3. One can check that ω > 0 and θ < 0. The total time tC2a for the
extremal trajectory due to a C2a control is given by

(57)tC2a = −ω
α

+
1

α

(
2ω2 − 4αθ + α2 |v|2

β2

) 1
2

The total time tC2b for the extremal trajectory due to a C2b control is given by

(58)tC2b = −2θ

ω
+
|v|
β

Therefore, we can compute

(59)
tC2a − tC2b = −ω

α
+

1

α

(
2ω2 − 4αθ + α2 |v|2

β2

) 1
2

+
2θ

ω
− |v|

β

=

(
2(ω2 − 2αθ)

α2
+
|v|2

β2

) 1
2

−
(
ω

α
− 2θ

ω
+
|v|
β

)
=

(
2ε

α2
+
|v|2

β2

) 1
2

−
(

ε

αω
+
|v|
β

)

where ε = ω2 − 2αθ and ε > 0 since (v, θ, ω) ∈ Ω1. The expression above is negative, which we show by considering the
difference between the term under the square root and the square of the second term in (59). Note that both terms are positive.
Let the difference be δ, given by

(60)

δ =
2ε

α2
+
|v|2

β2
−
(

ε

αω
+
|v|
β

)2

=
2ε

α2
− ε2

α2ω2
− 2ε|v|
αωβ

=
2ε

α2ω2

(
ω2 − ε

2
− αω|v|

β

)
=

2ε

α2ω2

(
ω2

2
+ αθ − αω|v|

β

)

We have already established that ε > 0. Since (v, θ, ω) ∈ Ω1, this implies that

(61)ω2

2
+ αθ +

αω|v|
β

< 0

⇒ ω2

2
+ αθ − αω|v|

β
< 0

since ω > 0. This implies that δ < 0, which implies that tC2a−tC2b < 0. For the case of initial conditions (v, θ, ω) ∈ Ω2∩Ω3,
a similar argument can be applied, which is omitted here.
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We have determined initial conditions for which C2a or C2b controls exist such that the state transitions to (0, 0, 0). We now
determine initial conditions for which C1a controls exist. Recall that an extremal control is of the form C1ns if one of the
motor torques is always +um or −um for the duration of the trajectory, and the other motor switches no more than twice.

Lemma 8 Let q0 ∈ Ω4. Then, an extremal (q∗(t), ψ∗(t), u∗(t)) defined on I = [0, tf ] exists such that q∗(0) = q0 and
q∗(tf ) = (0, 0, 0), and u∗(t) is of the form β± → α± → β±.

PROOF. We first show that if (v, θ, ω) ∈ Ω4, then ωH1(v, θ, ω) < 0 and H2(v, θ, ω) > 0.
Let ω > 0. Then, H1(v, θ, ω) > 0 =⇒ H2(v, θ, ω) > 0. Let ω < 0. Then, H1(v, θ, ω) < 0 =⇒ H2(v, θ, ω) < 0. In other
words, when ωH1(v, θ, ω) > 0 then ωH2 < 0 cannot be true. Thus, (v, θ, ω) ∈ Ω4 =⇒ ωH1(v, θ, ω) < 0, ωH2(v, θ, ω) > 0.

Next, we show that these conditions are sufficient to ensure a C1ns control with three distinct phases exists such that an initial
condition (v, θ, ω) will reach the origin.

The equations are similar to (50), except for the change in sign of one term. However, this change is significant.

(62a)v(t̄3) = v + s3β(t1 + t3)

(62b)θ(t̄3) = θ + ωt1 + ωt2 +
1

2
s4αt

2
2 + (ω + s4αt2)t3

(62c)ω(t̄3) = ω + s4αt2

The solutions for t1 and t2 remain the same as in (53) and (51a) respectively. The value of s3 is different, which we obtain by
setting v(t̄3) = 0:

(63)0 = v + s3β(t1 + t3)

which implies that

(64)s3 = −sign(v)

Now,

(65)t3 = − v

s3β
− t1

=
|v|
β
− t1

In order for t3 > 0 we must have

−ω|ω|+2αθ

2αω
<
|v|
β

(66)

⇒ |ω|
2α

+
θ

ω
+
|v|
β
> 0 (67)

⇒ ωH2(v, θ, ω)

ω2
> 0 (68)

From (51) we know that if ωH1(v, θ, ω) < 0 then t1 > 0. Additionally, if ωH2(v, θ, ω) > 0 then t3 > 0. These conditions are
met when H1(v, θ, ω)H2(v, θ, ω) < 0. Therefore, q0 ∈ Ω4 implies that a C1ns control exists such that the resulting trajectory
reaches the origin.
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Case 2: For the first phase, u1 = −u2. The equations are similar to (39), again except for two changes in signs:

(69a)θ(t̄3) = θ + ωt1 +
s1αt

2
1

2
+ (ω + s1αt1)t2 + (ω + s1αt1)t3 +

s1αt
2
3

2

(69b)ω(t̄3) = s1αt1 + s1αt3 + ω

(69c)v(t̄3) = s2βt2 + v

In order for the intervals t2 and t3 to be positive, we see that

(70a)
s1 = −sign(ω)⇒ t3 =

|ω|
α
− t1

(70b)s2 = −sign(v)⇒ t2 =
|v|
β

Substituting for s1, t1 and t3 in (69a), we obtain

(71)α|v|
|ω|β

t1 =
|ω|
2α

+
θ

ω
+
|v|
β

=
H2(v, θ, ω)

ω

where the square terms have canceled each other out. We see that t1 > 0 is true when ωH2(v, θ, ω) > 0. For the case of t3,
consider

t3 =
|ω|
α
− t1 (72)

=⇒ α|v|
|ω|β

t3 =
|v|
β
− α|v|
|ω|β

t1 (73)

=⇒ α|v|
|ω|β

t3 = −
(
|ω|
2α

+
θ

ω

)
(74)

so that t3 > 0 is true when ωH1(v, θ, ω) < 0. Again, these conditions are met when q0 ∈ Ω4.

Lemma 9 Let q0 ∈ Ω4. Then, a unique extremal (q∗(t), u∗(t)) defined on I = [0, tf ] exists such that q∗(0) = q0 and
q∗(tf ) = (0, 0, 0), and u∗(t) is of the form α± → β± → α±.

PROOF. In the proof of Lemma 8, we have shown that if (v, θ, ω) ∈ Ω4, then ωH1(v, θ, ω) < 0 and H2(v, θ, ω) > 0.

The equations are similar to (39), again except for two changes in signs:
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(75a)θ(t̄3) = θ + ωt1 +
s1αt

2
1

2
+ (ω + s1αt1)t2 + (ω + s1αt1)t3 +

s1αt
2
3

2

(75b)ω(t̄3) = s1αt1 + s1αt3 + ω

(75c)v(t̄3) = s2βt2 + v

In order for the intervals t2 and t3 to be positive, we see that

(76a)
s1 = −sign(ω)⇒ t3 =

|ω|
α
− t1

(76b)s2 = −sign(v)⇒ t2 =
|v|
β

Substituting for s1, t1 and t3 in (75a), we obtain

(77)α|v|
|ω|β

t1 =
|ω|
2α

+
θ

ω
+
|v|
β

=
H2(v, θ, ω)

ω

where the square terms have canceled each other out. We see that t1 > 0 is true when ωH2(v, θ, ω) > 0. For the case of t3,
consider

t3 =
|ω|
α
− t1 (78)

=⇒ α|v|
|ω|β

t3 =
|v|
β
− α|v|
|ω|β

t1 (79)

=⇒ α|v|
|ω|β

t3 = −
(
|ω|
2α

+
θ

ω

)
(80)

so that t3 > 0 is true when ωH1(v, θ, ω) < 0. Again, these conditions are met when q0 ∈ Ω4.
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Lemma 10 Let q0 ∈ S5. Then, an extremal (q∗(t), ψ∗(t), u∗(t)) defined on I = [0, tf ] exists such that q∗(0) = q0 and
q∗(tf ) = (0, 0, 0), and u∗(t) is of the form α± → β±.

PROOF. Since H1 = 0 and H2 6= 0 then ωv 6= 0. Consider the equations (69) wherein t3 = 0. The solutions for t1 and t2 are
given by

(81a)t1 =
|ω|
α

(81b)t2 =
|v|
β

Clearly t1 and t2 are positive precisely when ωv 6= 0. Thus, q ∈ S5 implies that a control of the form above exists such that
the resulting trajectory reaches the origin.

Lemma 11 Let q0 ∈ S6. Then, an extremal (q∗(t), ψ∗(t), u∗(t)) defined on I = [0, tf ] exists such that q∗(0) = q0 and
q∗(tf ) = (0, 0, 0), and u∗(t) is of the form β± → α±.

PROOF. Since H2 = 0 and H1 6= 0 then again we can conclude that ωv 6= 0. The equations (62) wherein t3 = 0 have
solutions

(82a)t1 =
|v|
β

(82b)t2 =
|ω|
α

Again, t1 and t2 are positive precisely when ωv 6= 0.Thus, q ∈ S6 implies that a control of the form above exists such that the
trajectory reaches the origin.

Lemma 12 Let q0 ∈ Lv . Then, an extremal (q∗(t), ψ∗(t), u∗(t)) defined on I = [0, tf ] exists such that q∗(0) = q0 and
q∗(tf ) = (0, 0, 0), and u∗(t) is of the form β±.

PROOF. Since q0 ∈ Lv , ω = θ = 0 and v 6= 0. Substituting ω = θ = 0 in (62) we immediately see that t2 = t3 = 0 and
t1 = |v|

β . Thus a control of the form β± exists such that the trajectory from q0 reaches the origin.

Lemma 13 Let q0 ∈ Lω . Then, an extremal (q∗(t), ψ∗(t), u∗(t)) defined on I = [0, tf ] exists such that q∗(0) = q0 and
q∗(tf ) = (0, 0, 0), and u∗(t) is of the form α±.

PROOF. Since q0 ∈ Lω , H1(v, θ, ω) = H2(v, θ, ω) = v = 0. From (74) we see that t3 = 0 and from (70) we see and t2 = 0.
Further, t3 = 0 implies that t1 = |ω|

α , due to (70). Thus, a control of the form α± exists such that the trajectory from q0 reaches
the origin.

Lemma 14 Let q0 = (v0, θ0, ω0) ∈ R3. Let there exist an extremal (q∗(t), ψ∗(t), u∗(t)) defined on I = [0, tf ] such that
q∗(0) = q0 and q∗(tf ) = (0, 0, 0), such that u∗(t) is a singular control. Then there exists a C1ns control ū∗(t) and corre-
sponding extremal (q̄∗(t), ψ̄∗(t), ū∗(t)) defined on [0, t̄f ] such that q̄∗(0) = q0, q̄∗(t̄f ) = (0, 0, 0) and t̄f = tf .
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PROOF. Consider the quantities ωr and ωl given by

(83)

[
ωr

ωl

]
=

[
c1 c2

c2 c1

][
φ̇R

φ̇L

]

where c1 and c2 are the parameters in (7). The dynamics of these quatities are then simply

(84)

[
ω̇r

ω̇l

]
=

[
u1

u2

]

Note that c1 6= c2 implies that ωr = ωl = 0 ⇐⇒ φ̇R = φ̇L = 0. At the goal state, v = ω = 0 which implies that
ωr = ωl = 0. Since one motor never switches, the duration of any C1 extremal control is exactly the time taken to bring the
larger (in magnitude) of ωr and ωl to zero. Thus,

(85)tf =
max (|ωr(0)|, |ωl(0)|)

um

=
max

(
|c1φ̇R(0) + c2φ̇L(0)|, |c2φ̇R(0) + c1φ̇L(0)|

)
um

Any C1 extremal control with initial condition q0 must have this same duration. Let |ωr(0)|> |ωl(0)|. The right motor torque
u∗1(t) is given by

u∗1(t) = −sum

where s = sign(ωr(0)).

The singular control u∗(t) is such that v(tf ) = ω(tf ) = θ(tf ) = ωl(tf ) = ωr(tf ) = 0. We can compute ωl(tf ) as

ωl(tf ) = γ(u2(t)) = ωl(0) +

∫ t̄3

0

u2(τ)dτ

where γ is a functional with argument u2(t). We can compute θ(tf ) as

θ(tf ) = θ0 + ω0t̄3 +

∫ t̄3

0

∫ t

0

r

2b
(φ̈R(τ)− φ̈L(τ))dτ

= θ0 + ω0t̄3 +

∫ t̄3

0

∫ t

0

r

2b(c1 − c2)
(u1(τ)− u2(τ))dτ

= θ0 + ω0t̄3 − c3
sumt̄

2
3

2
− c3

∫ t̄3

0

∫ t

0

u2(τ)dτdt

= k(q0)− c3h(u2(t))
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where

(86a)c3 =
r

2b(c1 − c2)

(86b)k(q0) =

(
θ0 + ω0t̄3 − c3

sumt̄
2
3

2

)

(86c)h(u2(t)) =

∫ tf

0

∫ t

0

u2(τ)dτdt

Note that h(u2(t)) is also a functional. The control u∗(t) can be arbitrary, as long as γ∗(u2(t)) = 0 and h(u∗2(t)) = k(q0)/c3.
We claim that a control u2(t) exists such that u2(t) only switches twice and also satisfies these conditions. Consider the control
uns2 (t) defined as

(87)uns2 (t) =


−sum if t < t1
sum if t1 < t < t1 + t2
−sum if t1 + t2 < t < t̄3

Note that this means uns(t) is of the form β± → α± → β±, with three phases of duration t1, t2 and t3. If the goal state is the
origin, then t2 = |ω|

α and t1 + t3 = |v|
β . Thus, h(uns2 (t)) depends only on t1.

Consider the function g(t1) given by

(88)g(t1) = h(uns2 (t))

=
sum

2
(t22 − 2t1t2 − t21)− sum

2
(t̄3 − (t1 + t2))2 + sum(t2 − t1)(t̄3 − (t1 + t2))

where t1 ∈ [0, (t̄3 − t2)] is the only unknown. In order for uns2 (t) to be a valid control, we must have g(tns) = h(uns2 (t)) =
k(q0) = h(u∗2(t)) for some tns ∈ [0, (t̄3 − t2)].

We can compute the derivative of g with respect to t1 and obtain

(89)
d

dt
g(t1) = −2t2

which implies that g(t1) is a strictly decreasing function of t1. Since u∗2(t) is bounded and
∫ t̄3

0
u∗2(τ)dτ = −ωl(0), h(u∗2(t))

is bounded. One can show that g(t̄3 − t2) ≤ h(u∗2(t)) ≤ g(0). Thus, we can find tns ∈ [0, t̄3 − t2] such that g(tns) =
h(uns2 (t)) = k(q0)/c3. Due to the selection of t2, γ(uns2 (t)) = 0. Thus, uns2 (t) is a valid extremal control such that the state at
t = tf reaches the origin from q0, proving the result.

Remark 15 Lemma 14 implies that if we consider all possible C1ns trajectories from an initial state q0, then we do not need
to consider singular controls even if they exist, since one of the C1ns controls will result in the trajectory reaching the goal
state in the same time.

Lemma 16 Let q0 ∈ Ω3 ∩ (Ω4 ∪ S5 ∪ S6 ∪ Lv ∪ Lω) . Let the duration of the C2b extremal corresponding to q0 be tC2b and
the duration of the C1ns extremal be tC1ns. Then

(90)tC1ns ≤ tC2b
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PROOF. The duration tC1ns of any C1ns control and initial condition (v, θ, ω) is given by

(91)tC1ns = (t1 + t3) + t2

=
|v|
β

+
|ω|
α

which is independent of θ.

A C2b control from (v, ω, θ) has total duration

(92)tC2b = (t1 + t3) + t2

= 2t1 +
v

s3β
+
|ω|
α

where we used (50a) and (51a) with v(t̄3) = 0. If t1 ≤ |v|β then we must pick s3 = sign(v) (see the last paragraph of the proof
of Lemma 6) so that

(93)tC2b = 2t1 +
|v|
β

+
|ω|
α

>
|v|
β

+
|ω|
α

since t1 > 0. If t1 >
|v|
β then

(94)

tC2b = 2t1 +
v

s3β
+
|ω|
α

> 2t1 −
|v|
β

+
|ω|
α

> t1 + t1 −
|v|
β

+
|ω|
α

> t1 +
|ω|
α

>
|v|
β

+
|ω|
α

Thus, whenever both C1ns and C2b controls exist, the C1ns control is always faster.

5 Regular Synthesis

Given a point q ∈ R3, we can determine the form of the time-optimal control u∗q(t) defined on [0, tf ] which results in a
trajectory q∗(t) corresponding to a minimum-time transition from q to the origin. The trajectory q∗(t) is the solution to a
differential equation driven by the discontinuous input signal u∗q(t).

For each t ∈ [0, tf ], uq ∗ (t) ∈ {α−, α+, β+, β−}. One can immediately define a feedback control v∗(q) = u∗q(0). The
resulting closed-loop system under v∗(q) is now a differential equation with a discontinuous right-hand side. It is not necessary
that the solutions of this new dynamical system correspond to q∗(t).
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In order to prove that our feedback law results in time-optimal behaviour, we must construct an optimal regular synthesis [18]
and show that the solutions of the closed-loop dynamical system under the feedback law only produces the trajectories defined
by the optimal regular synthesis.

We begin by introducing appropriate definitions. Let the set of admissible controlled trajectories that result in a transition from
a state q to the origin be denoted by Π. Thus, elements of Π are pairs (γ, η) where η is an admissible control defined on some
interval [0, tf ] and γ is the resulting trajectory. Moreover, we denote the initial condition of γ as γ−.

Definition 17 A presynthesis for P is a subset Γ of Π such that

PS Whenever (γ1, η1) ∈ Γ, (γ2, η2) ∈ Γ and γ−1 = γ−2 , it follows that (γ1, η1) = (γ2, η2)

This definition merely stipulates that a presynthesis must assign a unique trajectory for each initial condition. The set
Dom(Γ) = {γ−: (γ, η) ∈ Γ} is called the domain of Γ. In other words, it is the set of initial conditions x ∈ R3 for which a
controlled trajectory exists in Γ which results in a transition from x to the origin. We say that Γ is a presynthesis on a set S if
Γ is a presynthesis and S = Dom(Γ).

Definition 18 If Γ is a presynthesis such that Dom(Γ) consists of all points that can be steered to the origin by means of a
pair belonging to Π, then we say that Γ is total.

Thus, a total presynthesis is one which does not leave out initial conditions x for which some admissible trajectory in Π could
have resulted in a transition from x to the origin. Given a presynthesis Γ and a point x ∈ Dom(Γ), we will always use (γx, ηx)
to denote the unique controlled trajectory (γ, η) ∈ Γ such that γ− = x.

Definition 19 A presynthesis on a set S is memoryless if whenever x ∈ S and t ∈ Dom(ηx) it follows that y = γx(t) belongs
to S and ηy is the restriction of ηx to the interval [t, tf ]. A synthesis is a memoryless presynthesis.

Definition 20 If each pair of a presynthesis Γ is optimal (resp., extremal), then we say that Γ is optimal (resp., extremal)

We can construct two different optimal regular syntheses Γ1 and Γ2. The difference between them is seen in the control for
points in the set Ω4.

Proposition 21 For every x ∈ (Ω1 ∪ Ω2), Ω4, S5, S6, Lv , or Lω , let (q∗x(t), u∗x(t)) be the unique extremal defined for x by
Lemma 4, 9, 10, 11, 12, or 13 respectively. Let Γ1 = ∪x∈R3(q∗x(t), u∗x(t)). Then, Γ1 defines an optimal regular synthesis for
the time-optimal control problem.

PROOF. The set (Ω1 ∪ Ω2) ∪ Ω4 ∪ S5 ∪ S6 ∪ Lv ∪ Lω ∪ {0} is equal to R3. For each x ∈ R3, the controlled trajectorys
(q∗x(t), u∗x(t)) is unique and extremal, as shown in the appropriate Lemma mentioned in the proposition. Thus, Γ1 forms a total
extremal presynthesis. It is straightforward to check that Γ1 is memoryless. Thus, Γ1 is a total extremal synthesis.

Next, we show that Γ1 is a regular synthesis (Definition 2.12, [18]). The conditions used to define a regular synthesis rely on
numerous other definitions. Any term appearing in the rest of this proof which has not been defined in this paper has been
defined in [18]. We refer the reader to [18] for these definitions.

To show that a synthesis is regular, we must show that a certain cost function satisfies weak continuity conditions (Definition
2.8, [18]) and that Γ1 is (f, L)-differentiable (Definition 2.9, [18]) at all points in Dom(Γ1) excluding a thin set (Definition
2.10, [18]).

The cost function VΓ:R3 → R is simply the time taken to transition from a given initial condition to the origin. The Function is
continuous in R3, which can be seen through the analytical expressions obtained. Thus, VΓ satisfies the conditions of Definition
2.8 in [18].

The property of (f, L)-differentiability is more complicated to show. The Lagrangian function L:R3 × U → R common in
optimal control problems reduces to the constant function L(q, u) = 1 in the case of time-optimal control for reaching a single
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goal state. The dynamics f(q, u) = Aq + Bu is linear. Define f̃(q, u) = [f(q, u)TL(q, u)]T . If a control η(t) is given, then
f̃η(q, t) = f̃(q, η(t)). Then,

(95)f̃η(q, t) =

[
Aq +Bη(t)

1

]

We define the function ρf̃ ,Γ1,v̄,tf
(v) as in [18], and compute it as

(96)

ρf̃ ,Γ1,v̄,tf
(v) = f̃ηx̄+v(γx̄(t), t)− f̃ηx̄(γx̄(t), t)

=

[
Aγx̄(t), t) +Bηx̄(t) +Bv −Aγx̄(t), t)−Bηx̄(t)

1− 1

]

=

[
Bv

0

]

The set Sthin = {q ∈ R3: q ∈ S5 ∪ S6 ∪ Lv ∪ Lω ∪ {0}} = R3\(Ω1 ∪Ω2 ∪Ω4) is a thin set based on definition 2.10 in [18],
where the only measure-zero set is the singleton containing the origin. Because the extremal controls are constant on each of
the sets Ω1, Ω2 and Ω4, we have that any extremal control is piece-wise constant, with no more than two points of discontinuity.
Thus,

(97)Df̃η(q, t) =

[
A 0

0 0

]
if q ∈ R3\Sthin

We compute the following norm for points y ∈ R3\Sthin

(98)

∥∥∥f̃ηx(y, t)− f̃ηx(γx̄(t), t)−Df̃x̄(γx̄(t), t)(y − γx̄(t))
∥∥∥

=

∥∥∥∥∥
[
Ay +Bηx(t)−Aγx̄(t)−Bηx(t)

1− 1

]
−Df̃x̄(γx̄(t), t)(y − γx̄(t))

∥∥∥∥∥
=

∥∥∥∥∥
[
A(y − γx̄(t))

0

]
−

[
A 0

0 0

]
(y − γx̄(t))

∥∥∥∥∥
= 0

where we have used (97). The right hand sides of (96) and (98) immediately show that the conditions DC1 and DC2 of
Definition 2.9 in [18] are satisfied by f and L, for points q ∈ R3\Sthin. Thus, Γ1 is (f, L)-differentable at a point x̄ ∈
R3\Sthin. Thus, based on Definition 2.12 in [18], Γ1 is regular, where the thin set is Sthin defined above.

We have established that Γ1 is a total extremal regular synthesis. Since we are concerned with the time-optimal control problem
with a single goal state, we have that VΓ1(0) = 0, and so condition (2.11) in [18] is satsified. By condition (b) of Theorem
2.13 in [18], we can conlude that Γ1 is an optimal regular synthesis.

Proposition 22 For every x ∈ (Ω1 ∪ Ω2), Ω4, S5, S6, Lv , or Lω , let (q∗x(t), u∗x(t)) be the unique extremal defined for x by
Lemma 4, 8, 10, 11, 12, or 13 respectively. Let Γ2 = ∪x∈R3(q∗x(t), u∗x(t)). Then, Γ2 defines an optimal regular synthesis for
the time-optimal control problem.
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PROOF. The arguments are similar to those in the proof of Proposition 21 and therefore the proof is omitted.

Lemmas 4-16 have been used to construct two distinct optimal regular synthesis. We now define two control laws, one corre-
sponding to each of these syntheses.

Consider the following (sub)sets:

Ωv+
4 = {q ∈ Ω4 : v > 0} (99)

Ωv−4 = {q ∈ Ω4 : v < 0} (100)
Ωω+

4 = {q ∈ Ω4 : ω > 0} (101)
Ωω−4 = {q ∈ Ω4 : ω < 0} (102)
Sω+

5 = {q ∈ S5 : ω > 0} (103)
Sω−5 = {q ∈ S5 : ω < 0} (104)
Sv+

6 = {q ∈ S6 : v > 0} (105)
Sv−6 = {q ∈ S6 : v < 0} (106)
L+
v = {q ∈ Lv : v > 0} (107)

L−v = {q ∈ Lv : v < 0} (108)
L+
ω = {q ∈ Lω : ω > 0} (109)

L−ω = {q ∈ Lω : ω < 0} (110)

The feedback law corresponding to Γ1 is

(111)ufb1(q) =



(+um,+um) if q ∈ Ωv−4 ∪ L−v ∪ Sv−6

(+um,−um) if q ∈ Ω2 ∪ L−ω ∪ Sω−5

(−um,+um) if q ∈ Ω1 ∪ L+
ω ∪ Sω+

5

(−um,−um) if q ∈ Ωv+
4 ∪ L+

v ∪ Sv+
6

(0, 0) if q = (0, 0, 0)

The feedback law corresponding to Γ2 is

(112)ufb2(q) =



(+um,+um) if q ∈ L−v ∪ Sv−6

(+um,−um) if q ∈ Ω2 ∪ Ωω−4 ∪ L−ω ∪ Sω−5

(−um,+um) if q ∈ Ω1 ∪ Ωω+
4 ∪ L+

ω ∪ Sω+
5

(−um,−um) if q ∈ L+
v ∪ Sv+

6

(0, 0) if q = (0, 0, 0)

Controls (111) and (112) differ when (v, θ, ω) ∈ Ω4. The first one is such that the resulting trajectory intersects the surface
H1(v, θ, ω) = 0 and the second one has a resulting trajectory which intersects the surface H2(v, θ, ω).

Note that the closed loop system can be viewed as a continuous system with a discontinuous control input. This results in a
right-hand side which is continuous except for a measure-zero set M . For such systems, one can define solutions in multiple
ways [19], including Filippov and Caratheodory solutions. In order to take advantage of a right-uniqueness theorem in [20],
we utilize definition a) in §4. We define the set-valued map F (t, q) for each t ∈ R and q ∈ R3 as the smallest convex closed
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set containing the limit values of the vector valued function f(t, q∗) for (t, q∗) /∈M , q∗ → q, and constant t. A solution of the
closed loop system is defined to be a solution of the differential inclusion

(113)q̇ ∈ F (t, q)

Furthermore, we are concerned with the notion of right-uniqueness of the solutions of the closed-loop system (see 1, §10
in [20]). For equation q̇ = f(t, q), right uniqueness holds at a point (t0, q0) if there exists t1 > t0 such that each two solutions
q(t) of this equation satsifying q(t0) = q0 coincide on the interval [t0, t1] or on the part of the interval on which both solutions
are defined.

Lemma 23 Consider the feedback law (111) for the system (8). For every initial condition q0 ∈ R3, the solutions of the
closed-loop system corresponds to the unique controlled trajectory in Γ1 corresponding to q0.

PROOF. The feedback system q̇ = f(q, u) is converted into the closed loop system

q̇ = g(q) (114)

by use of feedback (111). The vector field g is discontinuous on the surfaces H1(q) = 0 and H2(q) = 0. It is easy to show that
the unique extremal solution for any initial condition q0 ∈ R3 is a solution of the closed loop system q̇ = g(q) based on the
differential inclusion (113). If we show that the solutions of (114) are unique for any initial condition, then we have proved the
lemma.

The right uniqueness of the solutions of (114) can be determined based on Theorems 2 and 4, §10 in [20]. Theorem 2 provides
conditions which determine when the solutions to a system q̇ = f(t, q) defined on a domain G (where f is discontinouous on a
surface S of codimension 1) are (right) unique. Theorem 4 provides conditions which guarantee that solutions evolving along
the intersection of multiple such surfaces are unique.

In order to apply Theorem 4, §10 in [20], we must partition R3 appropriately (see Appendix B) and show that the vector fields
defined on these partitions meet certain conditions. Furthermore, the solutions of the discontinuous system must be, loosely
speaking, compatible with this partition. The partition is based on the surfaces H1(q) = 0 and H2(q) = 0 as follows. These
surfaces divide R3 into six regions, and intersect along the two lines Lv and Lω . In turn, these two lines intersect at the origin,
and divide the suraces into four regions.

First, consider the following subsets of S5:

S++
5 = {q ∈ R3:H1(q) = 0, ω > 0, v > 0} (115)
S+−

5 = {q ∈ R3:H1(q) = 0, ω > 0, v < 0} (116)
S−+

5 = {q ∈ R3:H1(q) = 0, ω < 0, v > 0} (117)
S−−5 = {q ∈ R3:H1(q) = 0, ω < 0, v < 0} (118)

and the following subsets of S6:

S++
6 = {q ∈ R3:H2(q) = 0, ω > 0, v > 0} (119)
S+−

6 = {q ∈ R3:H2(q) = 0, ω > 0, v < 0} (120)
S−+

6 = {q ∈ R3:H2(q) = 0, ω < 0, v > 0} (121)
S−−6 = {q ∈ R3:H2(q) = 0, ω < 0, v < 0} (122)

(123)

Condition 1) is satisfied immediately, since the solutions, which are extremals, have only two points of switching. Condition
2) is met based on applying Theorem 2, §10, [20] to the hypersurfaces . Condition 3) is satsifed by proper construction of the
hypersurfaces Ski .
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Fig. 11. Time-optimal trajectories for different initial conditions plotted in the θ − ω plane. For all simulations, v(0) = 1m/s. The initial
and final values of (θ, ω) are marked by circles and squares respectively. Trajectories corresponding to control phases β± are represented by
dashed-dotted lines and those for α± are represented by dashed or dotted lines.
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Fig. 12. Closed loop trajectories using (111) for initial conditions in Figure 11 (red circles) plotted in the θ − ω plane. All trajectories reach
the origin. These trajectories are identical to the open-loop time-optimal trajectories in Figure 11.

Lemma 24 Consider the feedback law (112) for the system (8). For every initial condition q0 ∈ R3, the solutions of the
closed-loop system corresponds to the unique controlled trajectory in Γ2 corresponding to q0.

Remark 25 The case when ωd 6= 0 is treated in the appendix. The total durations of all valid extremals resulting in a transition
from any q0 to any qd have been derived, along with the motor switching times. No feedback law is developed, unlike the case
when ωd = 0.

5.1 Simulations

For any initial condition, we can compute the time-optimal control using the method above, and simulate the open-loop im-
plementation of this control. The results for six initial conditions are plotted in the plane v = 0 in Figure 11. For all plotted
trajectories, v(0) = 1m/s. The circle indicates the initial values of θ and ω for each trajectory. The time-optimal control for
the for the initial condition (1m/s, 4rad,−2rad/s) is a C1ns control. The time-optimal controls for the remaining initial
conditions are C2 controls. The open-loop controls result in all trajectories reaching the origin, as can be seen in Figure 11.

For the same initial conditions, instead of implementing open loop controls expressed as functions of time, we can use the
state-based feedback controls (111) and (111). The results are plotted in Figures 12 and 13 respectively. We can see that
the closed loop trajectories plotted in Figure 12 are identical to the time-optimal trajectories plotted in Figure 11. The dif-
ference between the two feedback control laws can be seen in the resulting closed-loop trajectory for the initial condition
(1m/s, 4rad,−2rad/s). The first trajectory leaves the region Ω4 by reaching the surface H1(v, θ, ω) = 0 (see Figure 12)
while the second trajectory instead reaches the surface H2(v, θ, ω) = 0 upon leaving Ω4 (see Figure 13).

30



−6 −4 −2 0 2 4 6
−3

−2

−1

0

1

2

3

θ [rad]

ω
 [r

ad
/s

ec
]

 

 
initial
± α
± β
± α
final

Fig. 13. Closed loop trajectories using (112) for initial conditions in Figure 11 (red circles) plotted in the θ − ω plane. All trajectories reach
the origin.

6 Velocity Control through Wheel speeds

Suppose that the robot is such that the

(1) The control interface accepts commanded wheel speeds
(2) There is a maximum allowed commanded wheel speed
(3) The commanded wheel speeds are obtained practically instantly

As mentioned in Section 1, These assumptions are satisfied by platforms such as the iRobot Create. Since the commanded
wheel speeds can be achieved instantaneously, the state is simply θ whose dynamics are simply

(124)θ̇ = ω

and the forward speed v can change instantaneously.

The kinematics of the system are given by (5). The right and left wheel speeds ( φ̇R, φ̇L respectively) are bounded. Thus,
|φ̇R|≤ φ̇max and |φ̇L|≤ φ̇max for some φ̇max > 0. The maximum forward speed vmax and the maximum angular velocity
ωmax are given by

(125)vmax = rφ̇max, ωmax =
r

b
φ̇max

The robot may have a current heading θ and forward speed v. Our goal is to control the robot such that θ → θd and the forward
speed v equals the desired forward speed vd.

We first look at the case when the desired velocity has a constant heading.

6.1 Constant desired heading

A straightforward application of the the Pontryagin Maximum Principle shows that in order to change to a linear speed ‖vd‖
with heading θd in least amount of time, we can simply rotate in the required direction at maximum angular velocity until the
heading θ matches the desired value, and then change wheel speeds to achieve the desired forward speed vd.

To see this, notice that the dynamics (124) is of the form f(q, u) = 0, and thus the adjoint equation is given by ψ̇ = 0,where
ψ ∈ R. Thus, the adjoint state is always ψ(t) = ψ(0). The Hamiltonian is simply

(126)H = −µ+ ψω
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and since |ω|≤ ωmax, we can see that H is maximized by selecting

(127)
ω = ωmaxsign(ψ(t))

= ωmaxsign(ψ(0))

Thus, the extremal control consists of a constant angular velocity. Clearly, then, the time-optimal control to change the heading
θ and forward speed v is as mentioned above.

6.2 Time varying desired heading and desired forward speed

Suppose the desired velocity is time-varying. If the goal state vd cannot be predicted, the the Pontryagin Maximum Principle
cannot be applied to such a system. The problem of tracking a time-varying trajectory has been tackled in previous research
work []. Some results even achieve exponential tracking. However, these works often do not account for saturation, and are not
concerned with shortest-time paths.

An example of a continuous-time velocity tracking controller for a differential drive wheeled mobile robot is given by:

(128a)v = ‖vd‖cos(θ − θd)

(128b)ω = −kω(θ − θd)

and in the absence of saturations, v → vd and θ → θd. If these desired quantities are time varying, such that the rates of change
are bounded, then the error in tracking is also bounded. The bound can be reduced by increasing kω . We now investigate the
effect of saturated wheel speeds.

Due to the limits on the wheel speed, we can use (5) to determine that the achievable forward and angular velocities are
constrained to satisfy the relation

(129)
|v|
r

+
b|ω|
r
≤ φ̇max

which is represented as the shaded region in Figure 14.

Given the desired values of v and ω from (128), the desired wheel speeds may be computed as

[
φ̇R,d

φ̇L,d

]
=

2b

r2

[
− rb2 −

r
2

− rb2
r
2

][
v

ω

]

If these wheel speeds are commanded, then the actual wheel speeds obtained are

φ̇R = sat(φ̇R,d, φ̇max), φ̇L = sat(φ̇L,d, φ̇max)

where

(130)sat(x, α) =

{
x if |x|< α

sign(x)α otherwise
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Fig. 14. The shaded region represents the achievable forward and angular velocities of the differential drive wheeled mobile robot

The actual forward velocity vout and ωout achieved by the robot can be computed from these saturated wheel velocities using
(5). They must satisfy (129).

Thus, if ‖vd‖> vmax then the heading angle does not converge. Let ‖vd‖= vmax + ε, where ε > 0. If |ω|< 2ε
b then both

desired wheel speeds are still greater than φ̇max, implying that the actual forward and angular velocities due to the saturated
wheel speeds will be ±vmax and 0 respectively. Thus, when the error is non-zero yet small, the angular velocity remains zero,
and the heading will not converge.

One can immediately see that this situation can be remedied by saturating the magnitude of the desired velocity. That is:

(131a)v = sat(‖vd‖, vmax) cos(θ − θd)

(131b)ω = −k(θ − θd)

which allows the robot heading to converge, since ε = 0 and hence the angular velocity after saturation is never 0, unless the
desired angular velocity is zero.

Given that our goal is to re-orient the robot to match a desired heading and speed, the above method of computing v and ω can
be improved upon. The idea is to recognize that the achievable forward and angular velocities satisfy (129). Then, given v and
ω, we can compute v̄ and ω̄ as

(132)ω̄ =

{
sign(ωd)ωmax if |ωd|≥ ωmax
ωd if |ωd|< ωmax

and

(133)v̄ =

{
sign(v)max (0, vmax − b|ωd|) if |v|r + b|ω|

r > φ̇max
v otherwise

The effect is to always prioritize rotational motion when given v and ωd outside the shaded region in 14.

A further improvement may be obtained through a heuristic solution that can be viewed as a hybrid control. Suppose that the
desired heading is θd(t) and |θ̇d(t)|< ωmax. A bang-bang control can be used until θ(t) = θd(t). After this time, the modified
continuous tracking controller can be used. The benefit of this heuristic is that the lack of forward motion during the bang-bang
phase minimizes the drift in position.
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Fig. 15. Plot of θ versus time for different control strategies with a static desired velocity vd.
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Fig. 16. Plot of θ versus time for different control strategies with a time-varying desired velocity vd.

6.3 Simulations

Consider a robot with heading angle 0. Let r = 1m, b = 5m, and φ̇max = 0.5rad/sec. The robot is commanded to move
with a velocity of 5m/s in the positive y-axis direction. This implies that ‖vd‖> vmax, and θd = π

2 . The results for the
time-optimal control, the continuous control (without saturation of ‖vd‖), the continuous control (with saturation of ‖vd‖) and
our the modified continuous control is given in Figure 15.

Next, we command a time-varying velocity vd(t) = [1 (1 + t)]T . The results for the the continuous control, the modified
continuous control (with saturation on vd) and the hybrid control strategy is given in Figure 16. The modified and hybrid
continuous controls definitely have lesser error as when compared to the continuous control case.

7 Conclusion

We have derived time-optimal controls that enable a torque-controlled differential drive wheeled mobile robot to reach a desired
constant velocity in the plane in minimum time, for any initial velocity. These controls can be implemented as functions of
time (planning problem) or as a feedback control based on a state-based switching rules.
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A Extremals for goal states with non-zero angular velocity

We have presented a suitable feedback law that drives the differential drive robot from any initial forward speed v, angular
velocity ω and heading θ to a desired forward speed vd and heading θd, where the desired angular velocity is zero. The
feedback law was derived after analyzing the set of extremals from any initial conditions that reached the desired goal.

In what follows, given initial and goal states, we can determine whether a C1ns or C2 control exists that results in a transition
from the initial state to the goal state.

Consider an initial condition (v, θ, ω). We can apply a control consisting of a sequence of three control phases of duration t1,
t2 and t3 respectively. Note that any of t1, t2 and t3 may be zero. The first control phase consists of α+ or α−, with control α+

or α− in the third phase. The second phase consists of β+ or β− control.

We can solve the time evolution of the state due to such a control quite easily as follows.

(A.1a)v(t̄3) = v + s2βt2

(A.1b)θ(t̄3) = θ + ωt1 +
1

2
s1αt

2
1 + ω(t̄1)t2 + ω(t̄2)t3 +

1

2
s3αt

2
3

(A.1c)ω(t̄3) = ω + s1αt1 + s3αt3
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where s1, s2, s3 ∈ {1,−1} and t̄2 = t1 + t2, t̄3 = t1 + t2 + t3. If the first (third) control phase is α+, then s1 = 1 (s3 = 1) ,
otherwise s1 = −1 (s3 = −1). If the second control phase is β+, then s2 = 1, otherwise s2 = −1.

We wish to solve for t1, t2, t3 such that

t1 ≥ 0, t2 ≥ 0, t3 ≥ 0

v(t̄3) = 0, θ(t̄3) = 0, ω(t̄3) = ωd

We can immediately solve for t2 and s2:

(A.2)t2 =
−v
s2β

=
|v|
β

where s2 = sign(−v). We can then express t3 in terms of t1 as

(A.3)t3 = −s1

s3
t1 +

ωd − ω
s3α

Which we can substitute into the expression for θ(t̄3) as

(A.4)

θ(t̄3) = θ(t̄2) + ω(t̄2)t3 +
1

2
s3αt

2
3

= θ(t1) + ω(t1)t2 + ω(t̄2)t3 +
1

2
s3αt

2
3

= θ + ωt1 +
1

2
s1αt

2
1 + ω(t1)t2 + ω(t̄2)t3 +

1

2
s3αt

2
3

= θ + ωt1 +
1

2
s1αt

2
1 + (ω + s1αt1)

|v|
β

+ (ω + s1αt1)

(
−s1

s3
t1 +

ωd − ω
s3α

)
− 1

2
s1α

(
−s1

s3
t1 +

ωd − ω
s3α

)2

= s1αt
2
1 +

(
2ω +

s1α|v|
β

)
t1 +

(
θ +

ω|v|
β

)
+
ω2 − ω2

d

2s1α

Once we set the θ(t̄3) to be equal to the desired value of zero, we obtain

(A.5)
s1 − s3

2
αt21 +

(
ω

(s3 − s1)

s3
+
s1α|v|
β

)
t1 +

(
θ +

ω|v|
β

)
+
ω2
d − ω2

2s3α
= 0

If s1 = −s3 then the equation is quadratic with solutions
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Fig. A.1. Five extremals in the θ − ω plane for initial condition q0 = (3,−π, 2) (red square) and goal state qd = (0, 0, 2.4) (red circle).

(A.6a)t1 =
1

2s1α

(
−
(

2ω +
s1α|v|
β

)
±
√

∆

)

(A.6b)t3 =
1

2s1α

(
−
(

2ωd +
s1α|v|
β

)
±
√

∆

)

(A.6c)∆ = 2ω2 + 2ω2
d +

α2|v|2

β2
− 4s1αθ

Thus, there are four solutions for t1 and t3 (two for s1 = 1 and two for s1 = −1). Not all solutions may be such that both t1
and t3 are non-negative. The total time for any valid solution can be computed to be

(A.7)t̄3 = t1 + t2 + t3

= ±
√

∆− ωd + ω

s1α

Instead, if s1 = s3, then (A.5) reduces to a linear equation. The solution is

(A.8a)t1 =
β(ω2 − ω2

d)

2α2|v|
− θβ

s1α|v|
− ω

s1α

(A.8b)t3 =
β(ω2

d − ω2)

2α2|v|
+

θβ

s1α|v|
+

ωd
s1α

(A.8c)s1 = sign(ωd − ω)

for which there is only one possible solution. Thus, we have five possible solutions for (t1, t2, t3). We follow a similar procedure
when the first and third control phases consists of β+ or β− control, and the second phase consists of α+ or α− control. The
integrated equations are:

(A.9a)v(t̄3) = v + s4βt1 + s6βt3

(A.9b)θ(t̄3) = θ + ωt1 + ω(t1)t2 +
1

2
s5αt

2
2 + ω(t̄2)t3

(A.9c)ω(t̄3) = ω + s5αt2
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where s4, s5, s6 ∈ {1,−1} and t̄2 = t1 + t2, t̄3 = t1 + t2 + t3. If the second control phase is +α, then s5 = 1, otherwise
s5 = −1. If the first control phase is +β, then s4 = 1, otherwise s4 = −1. Similarly, if the third control phase is +β, then
s6 = 1, otherwise s6 = −1.

We can compute

(A.10)t2 =
ωd − ω
s5α

which implies that s5 = sign(ωd − ω).

Setting v(t̄3) = 0 and ω(t̄3) = ωd, we can obtain

(A.11a)t1 =

(
ω − s4

s6
ωd

)−1(
ωdv

s6β
+
ω2 − ω2

d

2s5α
− θ
)

(A.11b)t3 =

(
ωd −

s6

s4
ω

)−1(
ωv

s4β
+
ω2 − ω2

d

2s5α
− θ
)

The total time taken for such a solution is

(A.12)t̄3 =

{
− v
s4β

+ |ωd−ω|
α if s4s6 = 1

ω−ωd

ω+ωd

v
s4β
− 2θ

ω+ωd
if s4s6 = −1

Thus, given (v, θ, ω), we can compute (A.6) when s1 ∈ {1,−1}, (A.8) which has only one possible solution, and (A.11) for
four possible values of the pair (s4,s6). This results in nine values of the triplet (t1, t2, t3). The control corresponding to the
least value of t1 + t2 + t3, where all three durations are non-negative, is selected as the time-optimal control.

Consider the intial condition q0 = (3m/s,−πrad, 2rad/sec) and goal state qd = (0m/s, 0rad, 2.4rad/sec) when α = 2/3,
β = 2/3. There are five extremals that achieve the transition from q0 to qd, and only one is time-optimal. These extremals
are plotted in the θ − ω plane in Figure A.1. The initial condition q0 = (−1m/s,−πrad, 4rad/sec) with goal state qd =
(0m/s, 0rad, 4.4rad/sec) also has five extremal solutions, however two of them are time-optimal. A future goal is to propose
a feedback control law for the case when the goal angular velocity is non-zero, as was done for the case when it is zero.

B Theorem 4, §10, [20]

Condition 1:

Let a domain G ⊂ R3be separated by smooth hypersurfaces ski into domains Snj , j = 1, . . . , r. The superscript denotes the
dimension of the surface, the subscript denotes the index of the surface or domain. The boundary of each hypersurface does
not belong to the surface, and consists of a finite number of smooth hypersurfaces of smaller dimensions or points.

The vector valued function f(t, q) is continuous in t,q for a < t < b in each of the domains Snj upto the boundary, that is,
f(t, q) = fnj (t, q) for q ∈ Snj , and the function fnj is continuous in S̄nj . On sum or all of the hypersurfaces S̄kj , 0 ≤ k ≤ n− 1,
or on some of their closed subsets continuous vector valued functions fki (t, q) are given; the vector fki (t, q) lies in the k-
dimensional plane tangent to Ski at the point q.
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