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Abstract

In this paper, we study a mean-variance optimization problem in an infinite horizon discrete time discounted Markov decision
process (MDP). The objective is to minimize the variance of system rewards with the constraint of mean performance. Different
from most of works in the literature which require the mean performance already achieve optimum, we can let the mean
discounted performance equal any constant. The difficulty of this problem is caused by the quadratic form of the variance
function which makes the variance minimization problem not a standard MDP. By proving the decomposable structure of
the feasible policy space, we transform this constrained variance minimization problem to an equivalent unconstrained MDP
under a new discounted criterion and a new reward function. The difference of the variances of Markov chains under any two
feasible policies is quantified by a difference formula. Based on the variance difference formula, a policy iteration algorithm is
developed to find the optimal policy. We also prove the optimality of deterministic policy over the randomized policy generated
in the mean-constrained policy space. Numerical experiments demonstrate the effectiveness of our approach.
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1 Introduction

The mean-variance optimization is an important prob-
lem in stochastic optimization and its origin can go back
to the pioneering work by H. Markowitz, 1990 Nobel
Laureate in Economics, on themodern portfoliomanage-
ment [10]. In financial engineering, the mean indicates
the return of assets and the variance indicates the risk
of assets. The objective of the mean-variance optimiza-
tion is to find an optimal policy such that the mean and
the variance of system rewards are optimized in tradeoff
and the efficient frontier (a curve comprised of Pareto
optima) is obtained.

The mean-variance optimization is first proposed in a
static optimization form in Markowtiz’s original paper
[10], in which the decision variables are the investment
percentage of securities and the securities returns are de-
scribed as random variables with knownmeans and vari-
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ances. Then, the mean-variance optimization is further
studied in a dynamic optimization form and Markov de-
cision processes (MDPs) are widely used as an important
analytical model. The difficulty of this problem mainly
comes from the non-additiveness of the variance crite-
rion which makes the principle of consistent choice in
dynamic programming invalid [12,15]. Such invalidness
means that the optimal action selection during [t+1,∞)
may be not optimal for the action selection during [t,∞).
In the literature, there are different ways to study the
mean-variance optimization. Many works studied the
variance minimization of MDPs after the mean perfor-
mance is already maximized [6,7,8]. For such problem,
the variance minimization problem can be transformed
to another standard MDP under an equivalent average
or discounted criterion. There are also studies that use
the policy gradient approach to study the mean-variance
optimization when the policy is parameterized [11,14].

Sobel [12] gave an early study on the mean-variance op-
timization in a discrete time discounted Markov chain,
but no optimization algorithm was presented in that pa-
per. Chung and Sobel [4,13] studied the variance mini-
mization problem in a discrete time Markov chain with
the constraint that the long-run average performance is
larger than a given constant. This problem was trans-
formed to a sequence of linear programming problems,
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which may have concerns of computation efficiency since
the number of sequential problems may be large. Guo
et al. [5,9] studied the mean-variance optimization prob-
lem in a continuous time Markov chain with unbounded
transition rates and state-action dependent discount fac-
tors, where the performance is accumulated until a cer-
tain state is reached. There are certainly numerous other
excellent works about the mean-variance optimization
in the literature. However, most of the works in the liter-
ature either require a condition of optimal mean perfor-
mance or reformulate the problem as variations of math-
ematical programming. Although linear programming
may be used to study the mean-variance optimization in
some cases, it does not utilize the structure of Markov
systems and the efficiency is not satisfactory. Policy it-
eration is a classical approach in dynamic programming
and it usually has a high convergence efficiency. There
is little work to study the mean-variance optimization
using policy iteration, at the condition that the mean
performance equals a given value.

In this paper, we study a mean-variance optimization
problem in an infinite horizon discrete time discounted
Markov chain. The objective is to find the optimal pol-
icy with the minimal variance of rewards from the pol-
icy set in which the discounted performance equals a
given constant. The motivation of this problem can be
explained with a financial example. People may not al-
ways choose an asset portfolio with the maximal ex-
pected return, since a portfolio with big return usually
has big risk (quantified by variance). People always like
to seek a portfolio with minimal risk and acceptable re-
turn. The solution with minimal risk and fixed return
is called Pareto optimum. All the Pareto optimal solu-
tions compose a curve called Pareto frontier, or efficient
frontier in financial engineering.

The difficulty of such mean-variance optimization prob-
lem mainly comes from two aspects. The first one is the
difficulty caused by the non-additiveness of the variance
criterion, which makes the mean-variance optimization
not a standard MDP and policy iteration is not applica-
ble directly. Another difficulty comes from the fact that
the policy set with a fixed mean performance usually has
no satisfactory structure, such as that described later in
Theorem 1. For example, the policy set whose long-run
average performance equals a given constant may not be
decomposable as that in Theorem 1.Without such prop-
erty, dynamic programming and policy iteration cannot
be used for these problems.

In this paper, we use the sensitivity-based optimization
theory to study this nonstandardMDP problem. For the
policy set in which the discounted performance equals a
given constant, we prove that this policy set is decom-
posable on the action space and the action can be cho-
sen independently at every state. A difference formula
is derived to quantify the variance difference under any
two feasible policies. The original variance minimization

problem with constraints is transformed to a standard
unconstrained MDP under an equivalent discounted cri-
terion with a new discount factor β2 and a new reward
function, where β is the discount factor of the original
Markov chain. With this equivalent MDP, we prove the
existence of the optimal policy for this mean-variance
optimization problem. A policy iteration algorithm is
developed to find the optimal policy with the minimal
variance. The optimality of deterministic policy is also
proved, compared with randomized policies generated in
the mean-constrained policy space. Finally, we conduct
a numerical experiment to demonstrate the effectiveness
of our approach. The efficient frontier of this numerical
example is also analyzed.

This paper is a continued work compared with our pre-
vious papers [15,16], which aim to minimize the variance
of the long-run average performance of the Markov chain
without considering the constraint of mean performance.
The targeted models in these papers are different, so are
the main results. To the best of our knowledge, this is
the first paper that develops a policy iteration algorithm
to minimize the variance of a discrete time discounted
Markov chain at the condition of any given discounted
performance.

2 Problem Formulation

We consider a finite MDP in discrete time.Xt is denoted
as the system state at time t, t = 0, 1, · · · . The state
space is finite and denoted as S = {1, 2, · · · , S}, where
S is the size of the state space. We only consider the
deterministic and stationary policy dwhich is a mapping
from the state space to the action space. If the current
state is i, the policy d determines to choose an action
a from a finite action space A(i) and a system reward
r(i, a) is obtained. The system will transit to a new state
j with a transition probability p(j|i, a) at the next time
epoch, where i, j ∈ S and a ∈ A(i). Obviously, we have
∑

j∈S p(j|i, a) = 1. Since d is a mapping in the state

space, we have a = d(i) and d(i) ∈ A(i) for all i ∈
S. We define the policy space D as the family of all
deterministic stationary policies. For each d ∈ D,P (d) is
denoted as a transition probabilitymatrix and its (i, j)th
element is p(j|i, d(i)), and r(d) is denoted as a column
vector and its ith element is r(i, d(i)). We assume that
the Markov chain is ergodic for any policy in D. The
discount factor of the MDP is β, 0 < β < 1. For initial
state i, the mean discounted performance of the MDP
under policy d is defined as below.

J(d, i) := E
d
i

[

∞
∑

t=0

βtr(Xt, d(Xt))

]

, i ∈ S, (1)

whereEd
i is an expectation operator of the Markov chain

at the condition that the initial state is i and the policy
is d. J(d) is an S-dimensional column vector and its ith
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element is J(d, i). The variance of the discountedMarkov
chain is defined as below.

σ2(d, i) := E
d
i

[(

∞
∑

t=0

βtr(Xt, d(Xt))

)

− J(d, i)

]2

, i ∈ S.

(2)
We observe that σ2(d, i) quantifies the variance of the
limiting random variable

∑∞
t=0 β

tr(Xt, d(Xt)). σ
2(d) is

the variance vector of the discounted Markov chain and
its ith element is σ2(d, i).

Denote λ as a given mean reward function on S. That
is, λ is an S-dimensional column vector and its ith el-
ement is denoted as λ(i), i ∈ S. The set of all feasible
policies with which the mean discounted performance of
the Markov chain equals λ is defined as below.

Dλ := {all d ∈ D|J(d, i) = λ(i), for all i ∈ S}. (3)

Note that D is a deterministic stationary policy set, so
is Dλ. In this paper, we do not consider randomized sta-
tionary policies. The optimality of deterministic policies
will be studied in the next section, see Theorem 5. It is
easy to see that the policy set Dλ may be empty if the
value of λ is not chosen properly. In this paper, we as-
sume that Dλ is not empty, which is similar to the as-
sumption in Markowitz’s mean-variance portfolio prob-
lem [10,17]. For a given discounted performance vector
λ, Dλ may contain more than one policy. The objective
of our mean-variance optimization is to find an optimal
policy from Dλ such that the variance of the Markov
chain is minimized. The mathematical formulation is
written as below.

min
d∈Dλ

{

σ2(d, i)
}

, for all i ∈ S. (4)

That is, we aim to find an optimal policy among all
feasible policies whose mean discounted performance is
equal to a given constant vector λ, such that the vari-
ance of discounted rewards is minimized.We denote such
a mean-variance optimal policy as d∗

λ
. The existence of

the solution d∗
λ
to the problem (4) is not guaranteed be-

cause the minimization in (4) is over every state i ∈ S,
i.e., (4) can be viewed as a multi-objective optimiza-
tion problem. For a general multi-objective optimization
problem, it is possible that no solution can dominate all
the other solutions on the value of every dimension of
objective function. In the next section, we will discuss
the existence of such optimal policy d∗

λ
and develop an

optimization algorithm to find it. Moreover, we have the
following remarks about this mean-variance optimiza-
tion problem.

Remark 1. In the literature onmean-variance optimiza-
tion of MDPs, most of the works study the variance min-
imization at the constraint that the mean performance
is already maximized. As a comparison in our problem
(4), λ can be given as any feasible value.

Remark 2. If d∗
λ
exists for a given λ, then d∗

λ
is also

called an efficient policy for the mean-variance optimiza-
tion problem. (σ2(d∗

λ
),λ) is called an efficient point and

all the efficient points with different λ’s compose the ef-
ficient frontier of that problem.

3 Main Results

We use the sensitivity-based optimization theory to
study this mean-variance optimization problem. This
theory was proposed by Dr. X.-R. Cao and its key idea
is the difference formula that quantifies the performance
difference of Markov systems under any two policies [2].

Consider a policy d ∈ D. For simplicity, we omit d by
default in the following notations J , σ2, P , r. Consider
another arbitrary policy d′ ∈ D, and the corresponding

notations under policy d′ are written as J ′, σ2′, P ′, r′.
For the mean discounted performance defined in (1), we
can rewrite it in a recursive form as below.

J = r + βPJ . (5)

We further have

J = (I − βP )−1r, (6)

where I is an S-dimensional identity matrix. Note that
the matrix (I − βP ) is invertible and (I − βP )−1 is
always nonnegative based on the following observations

(I − βP )−1 =
∞
∑

n=0

βnP n, (7)

and P is a nonnegative matrix. We further observe that
if the Markov chain with P is ergodic, all the elements
of (I − βP )−1 are positive.

For a new policy d′ ∈ D, we similarly have

J ′ = r′ + βP ′J ′. (8)

Subtracting (5) from (8), we have

J ′ − J = r′ − r + β(P ′ − P )J + βP ′(J ′ − J). (9)

Therefore, we derive the following formula about the dif-
ference of the mean discounted performance of discrete
time Markov chains

J ′ − J = (I − βP ′)−1 [β(P ′ − P )J + r′ − r] . (10)

In the above formula, J in the right-hand side is also
called the performance potential (or value function) in
the sensitivity-based optimization theory [2]. For a dis-
counted Markov chain, the performance potential is the
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same as the mean discounted performance, but they are
different in other general cases.

Remark 3. We can derive a policy iteration algorithm
directly based on (10). With (7), we see that all the
elements of (I−βP ′)−1 are positive for ergodic Markov
chains. If we choose (P ′, r′) to make the vector βP ′J+r′

as large as possible, then we see J ′ − J ≥ 0 and the
policy is improved.

Based on the difference formula (10), we study the struc-
ture of the policy set Dλ in which the mean discounted
performance equals a given constant λ. The following
theorem describes the decomposable structure of Dλ.

Theorem 1 For any given constant λ, the policy set
Dλ in which the discounted performance equals λ is the
Cartesian product of feasible action space at every state,
i.e.,

Dλ = Aλ(1)×Aλ(2)× · · · × Aλ(S), (11)

where Aλ(i), i ∈ S, is defined as

Aλ(i) := {all a ∈ A(i)|r(i, a) + β
∑

j∈S

p(j|i, a)λ(j) = λ(i)}. (12)

Proof. Suppose d is an element of Dλ and the corre-
sponding transition probability matrix and reward func-
tion are denoted as P and r, respectively. With (5), we
have

λ = r + βPλ. (13)

Consider an arbitrary policy d′ ∈ D with P ′, r′, and the
corresponding discounted performance is denoted as J ′.

First, we want to prove that if d′ ∈ Aλ(1) × Aλ(2) ×
· · · × Aλ(S), then d′ ∈ Dλ. Since d

′ ∈ Aλ(1)×Aλ(2)×
· · · × Aλ(S), we have

r(i, d′(i)) + β
∑

j∈S

p(j|i, d′(i))λ(j) = λ(i), i ∈ S. (14)

That is, we have

r′ + βP ′λ = λ. (15)

Substituting (13) into the above equation, we have

r′ + βP ′λ = r + βPλ. (16)

With the difference formula (10), we directly have

J ′ − λ = (I − βP ′)−1 [β(P ′ − P )λ + r′ − r] . (17)

Substituting (16) into (17), we obtain

J ′ − λ = (I − βP ′)−10 = 0. (18)

Therefore, J ′ = λ and d′ ∈ Dλ.

Second, we want to prove that if d′ ∈ Dλ, then d′ ∈
Aλ(1) ×Aλ(2) × · · · × Aλ(S). Since d′ ∈ Dλ, we know
J ′ = λ. Therefore, the difference formula (17) becomes

β(P ′ − P )λ + r′ − r = (I − βP ′)(J ′ − λ) = 0. (19)

Substituting (13) into (19), we can directly derive (15)
and its componentwise form (14). Therefore, we obtain
d′ ∈ Aλ(1)×Aλ(2)× · · · × Aλ(S).

Combining the above two results, we haveDλ = Aλ(1)×
Aλ(2)× · · · × Aλ(S) and the theorem is proved. ✷

With Theorem 1, we know that Dλ is decomposable as
the product of all feasible action spaces Aλ(i), which
indicates that the action selections at different states
in the policy set Dλ are independent. This property is
important for us to develop a policy iteration algorithm
for the problem (4).

If the performance constraint is quantified under the
long-run average criterion, the decomposable structure
ofDλ may not hold, which makes the policy iteration in-
applicable to such problem. It is partly because the ana-
log of (12) is not valid for the long-run average case. If
the constraint is that the long-run average performance
equals the maximum, the structure of Dλ is still decom-
posable and the policy iteration is applicable to the vari-
ance criterion [6,7].

We further study how to minimize the variance of the
Markov chain. Consider a policy d ∈ D, the variance is
defined as (2). The symbol d is also omitted in the fol-
lowing notations for simplicity.We rewrite (2) as follows.

σ2(i) =Ei

[(

∞
∑

t=0

βtr(Xt)

)

− J(i)

]2

=Ei

[

∞
∑

t=0

βtr(Xt)

]2

− 2Ei

[

∞
∑

t=0

βtr(Xt)

]

J(i) + J2(i)

=Ei

[

r(X0) +

∞
∑

t=1

βtr(Xt)

]2

− J2(i)

= r2(i) + 2βr(i)
∑

j∈S

p(j|i)Ej

[

∞
∑

t=0

βtr(Xt)

]

+β2
∑

j∈S

p(j|i)Ej

[

∞
∑

t=0

βtr(Xt)

]2

− J2(i), (20)

where the last equality holds using the conditional ex-
pectation and the Markovian property. Recursively sub-
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stituting (1) and (2) into (20), we obtain

σ2(i) = r2(i) + 2βr(i)
∑

j∈S

p(j|i)J(j)

+β2
∑

j∈S

p(j|i)
[

σ2(j) + J2(j)
]

− J2(i)

= r2(i) + 2βr(i)
∑

j∈S

p(j|i)J(j) + β2
∑

j∈S

p(j|i)J2(j)

−J2(i) + β2
∑

j∈S

p(j|i)σ2(j). (21)

For the current policy d and state i, we define a new
reward function h(i) as below, i ∈ S.

h(i) = r
2(i)+2βr(i)

∑

j∈S

p(j|i)J(j)+β
2
∑

j∈S

p(j|i)J2(j)−J
2(i).

(22)
Substituting the above equation into (21), we obtain

σ2(i) = h(i) + β2
∑

j∈S

p(j|i)σ2(j), i ∈ S. (23)

We observe that the above equation has a recursive form
for σ2(i)’s. Comparing (23) with (5), we can see that
σ2(i) can be viewed the mean discounted performance
of the Markov chain with discount factor β2 and new
reward function h(i), i ∈ S. With (22), we further define
this new reward function in a vector form as below.

h := r2
⊙ + 2βr ⊙ (PJ) + β2PJ2

⊙ − J2
⊙, (24)

where ⊙ indicates the Hadamard product (component-
wisely), i.e.,

J2
⊙ := J ⊙ J := (J2(1), J2(2), · · · , J2(S))T . (25)

Based on the above analysis, we directly have the fol-
lowing theorem.

Theorem 2 The variance of a β-discounted Markov
chain is equivalent to the mean discounted performance
of the same Markov chain with discount factor β2 and
reward function h defined in (24). That is, we have

σ2 = h+ β2Pσ2. (26)

Note that the new reward function (22) can be further
rewritten as below.

h(i) :=
∑

j∈S

p(j|i)[r(i) + βJ(j)]2 − J2(i). (27)

We can further define a sample path version of the above
definition as below.

h(Xt)
E
= [r(Xt) + βJ(Xt+1)]

2 − J2(Xt), (28)

where
E
= means that the equality holds by expectation.

With Theorem 2 and the above definitions, we can fur-
ther rewrite the variance of the Markov chain as below.

σ2(i) = Ei

[

∞
∑

t=0

β2h(Xt)

]

, i ∈ S. (29)

Besides the above sample path version, the value of σ2

can also be computed in other ways that are described
by the following theorem.

Theorem 3

(a) With (24), we have

σ2 = (I − β2P )−1h. (30)

(b) With f := r2
⊙ + 2βr ⊙ (PJ), we have

σ2 = (I − β2P )−1f − J2
⊙. (31)

Proof. (a) Since the matrix (I−β2P ) is invertible, (30)
is directly derived from (26) in Theorem 2.

(b) Substituting h = f+β2PJ2
⊙−J

2
⊙ into (30), we have

σ2 = (I − β2P )−1(f + β2PJ2
⊙ − J2

⊙)

= (I − β2P )−1f +

∞
∑

n=0

(β2P )n(β2PJ2
⊙ − J2

⊙)

= (I − β2P )−1f − J2
⊙. (32)

The theorem is proved. ✷

Comparing (31) with (6), we observe thatσ2+J2
⊙ equals

the mean discounted performance of the same Markov
chain with discount factor β2 and reward function f .

Below, we study the variance difference formula of the
Markov chain under any two policies d, d′ ∈ D. With
Theorem 2, we can view the variance as a special form
of the discounted performance. Therefore, we directly
apply the difference formula (10) and obtain

σ2′ − σ2 = (I − β2P ′)−1
[

β2(P ′ − P )σ2 + h′ − h
]

,
(33)

where P ′ and h′ are the transition probability matrix
and the equivalent reward function (24) of the Markov
chain under the policy d′.

Remark 4. Different from Remark 3, we cannot do
the policy iteration based on (33) because the value of
h′ is unknown. We need to pre-compute J ′ before we
compute the value of h′ based on (24). The computation

5



σ2′ − σ2 = (I − β2P ′)−1
[

β2(P ′ − P )σ2 + r′2
⊙ + 2βr′ ⊙ (P ′λ) + β2P ′λ2

⊙ − r2
⊙ − 2βr ⊙ (Pλ)− β2Pλ2

⊙

]

= (I − β2P ′)−1
[

β2(P ′ − P )(σ2 + λ2
⊙) + r′2

⊙ + 2βr′ ⊙ (P ′λ)− r2
⊙ − 2βr ⊙ (Pλ)

]

. (34)

of J ′ under every possible policy d′ ∈ D is a brute-force
enumeration, which is unacceptable.

Fortunately, our original problem (4) is to find the op-
timal policy with the minimal variance from the pol-
icy set Dλ. For any d, d′ ∈ Dλ, their mean discounted
performances are equal to λ. That is, J = J ′ = λ,
∀ d, d′ ∈ Dλ. Applying this fact and (24) to (33), we de-
rive the variance difference formula (34) under any two
policies d, d′ ∈ Dλ. Note that (34) is placed on the top
of this page.

To obtain a concise form for (34), we further define the
following column vectors g and f with elements

g(i) = σ2(i) + λ2(i), i ∈ S, (35)

f(i) = r2(i) + 2βr(i)
∑

j∈S

p(j|i)λ(j), i ∈ S. (36)

We see that g can be viewed as the performance potential
of the equivalent Markov chain with discount factor β2

and cost function f , and (36) can be viewed as a special
case of f defined in Theorem 3(b) with J = λ.

Substituting (35) and (36) into (34), we obtain the vari-
ance difference formula of Markov chains under any two
policies d, d′ ∈ Dλ as follows.

σ2′−σ2 = (I−β2P ′)−1
[

β2(P ′ − P )g + f ′ − f
]

. (37)

Putting the symbol d back to (35) and (36), we have

g(d, i) = E
d
i

[

∞
∑

t=0

β
t
r(Xt, d(Xt))

]2

. (38)

f(i, d(i)) = r
2(i, d(i))+2βr(i, d(i))

∑

j∈S

p(j|i, d(i))λ(j). (39)

From the above equations, we can see that the value of f ′

(with element f(i, d′(i))) under every possible d′ ∈ Dλ is
known since r′ (with element r(i, d′(i))) and P ′ (with el-
ement p(j|i, d′(i))) are given values. The difficulty men-
tioned in Remark 4 is avoided. We can further develop
a policy iteration algorithm to solve this constrained
variance minimization problem (4). The details are de-
scribed in Algorithm 1.

In the first step of Algorithm 1, we have to compute
Aλ(i) by using (12). Since λ is given, we can enumerate
every action a ∈ A(i) to see if the equation in (12) can
hold. The total number of comparisons used in (12) is
∏

i∈S |A(i)|, which is affordable compared with the value

iteration or policy iteration. The derivation of (40) can
be intuitively understood as the policy improvement step
in a standard policy iteration where we aim to equiva-
lently minimize the discounted performance of the MDP
with discount factor β2 and cost function f , according
to the results of Theorem 2 and Theorem 3(b).

With the variance difference formula (34) or (37), we can
derive the following theorem about the existence of the
optimal policy and the convergence of Algorithm 1.

Theorem 4 The optimal policy d∗
λ
for the problem (4)

exists and Algorithm 1 can converge to d∗
λ
.

Proof. First, we prove the convergence of Algorithm 1.
We compare the variance difference ofMarkov chains un-
der two policies d(k) and d(k+1) generated in Algorithm 1.
Substituting the policy improvement (40) into (34), we
can see that all the elements of the column vector rep-
resented by the square bracket in the right-hand side of
(34) are nonpositive. If d(k+1)(i) 6= d(k)(i) at some state
i, then the ith element of that column vector is nega-
tive. On the other hand, we notice the fact that all the
elements in the matrix (I−β2P ′)−1 are always positive

for any ergodic P ′. With (34), we have σ2′ − σ2 < 0
and the variance is reduced strictly at each iteration.
From Theorem 1, we know that Dλ has a product form
of Aλ(i)’s and its size is finite. Therefore, Algorithm 1
can stop within a finite number of iterations.

Then, we prove the existence of the optimal policy d∗
λ

and the output of Algorithm 1 is exactly d∗
λ
when the

algorithm stops. We use the contradiction method to
prove it. Assume Algorithm 1 stops at the policy d and
d 6= d∗

λ
. Since d is not optimal, from the definition of

the problem (4), we see that there must exist a policy,

say d′ ∈ Dλ, such that σ2′(s) < σ2(s) at certain state

s ∈ S. Therefore, the sth element of the vector σ2′ −
σ2 is negative. Furthermore, in (37), since the element
of the matrix (I − β2P ′)−1 is always positive, we can
derive that some element of the vector represented by
the square bracket in the right-hand side of (37) must
be negative. Without loss of generality, we say the ith
element of the vector represented by the square bracket
in the right-hand side of (37) is negative. This indicates
that

β2P ′(i, :)g + f ′(i) < β2P (i, :)g + f(i).

Therefore, with (40), the above inequality indicates that
the policy d can be further improved by choosing action
d′(i) at state i while remaining the same choices as d(j)
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• For any given feasible constraint value λ, arbitrarily choose an initial policy d(0) ∈ Dλ and set k = 0, where Dλ

is determined by Dλ = Aλ(1)×Aλ(2)× · · · × Aλ(S) and Aλ(i) is determined by (12), i ∈ S.
• For the current policy d(k), compute the value of g(d(k)) using (35) or (38).
• Generate a new policy d(k+1) using the following policy improvement

d(k+1)(i) := argmin
a∈Aλ(i)







β2
∑

j∈S

p(j|i, a)g(d(k), j) + r2(i, a) + 2βr(i, a)
∑

j∈S

p(j|i, a)λ(j)







, i ∈ S, (40)

where we choose d(k+1)(i) = d(k)(i) if possible.
• If d(k+1) = d(k), stop and output d(k) as the optimal policy; otherwise, let k ← k + 1 and repeat step 2.

Algorithm 1. A policy iteration algorithm to solve the constrained variance minimization problem (4).

for j 6= i. This means that we can still do the policy
improvement (40) and Algorithm 1 cannot stop at the
current policy d, which contradicts the assumption that
Algorithm 1 stops at d. Therefore, the assumption can-
not hold. Since we have proved that Algorithm 1 stops
within a finite number of iterations, the output policy d
must be the optimal policy d∗λ. The theorem is proved.✷

Algorithm 1 can be viewed as a special case of the policy
iteration in the traditional MDP theory since we have
transformed the original problem (4) to a standard dis-
counted MDP, as stated in Theorem 2. Algorithm 1 will
also have similar advantages to those of classical pol-
icy iteration algorithms, such as the fast convergence
speed. Therefore, Algorithm 1 is an efficient approach to
solve the mean-constrained variance minimization prob-
lem (4).

Based on Theorem 3, we can further derive the following
optimality equation that the optimal σ2∗ should satisfy.

σ
2∗(i) = min

a∈Aλ(i)

{

h(i, a) + β
2
∑

j∈S

p(j|i, a)σ2∗(j)

}

, (41)

for every state i ∈ S. With this optimality equation, we
can also develop a value iteration algorithm to solve the
mean-constrained variance minimization problem. The
value iteration algorithm will converge to the optimal
value function σ2∗ which is exactly the solution to the
original problem (4). The algorithm is analog to that in
the classical MDP theory and we omit the details.

The main results of this paper have been obtained so
far. We return to study a fundamental problem about
the optimality of deterministic policy. All the above re-
sults are based on the problem formulation (4) in Sec-
tion 2, where we limit our optimization in the determin-
istic policy space Dλ. Below, we extend to study the re-
ward variance of randomized policies.

Here we consider a special category of randomized poli-
cies that are generated from policy space Dλ spanned

by Aλ(i)’s. That is, at each state i, we randomly choose
actions a from Aλ(i) according to a probability distri-
bution θi,a, i ∈ S and a ∈ Aλ(i). Obviously, we have
0 ≤ θi,a ≤ 1 and

∑

a∈Aλ(i)
θi,a = 1, ∀i ∈ S. We denote θ

as a vector composed of elements θi,a’s. Different θ corre-
sponds to different randomized policy and we denote the
randomized policy as dθ. Based on the sensitivity-based
optimization theory, we obtain Theorem 5 as follows.

Theorem 5 For any randomized policy dθ generated
from Dλ, we have J(dθ) = λ and σ2(dθ) ≥ σ2(d∗

λ
).

That is, we do not need to consider dθ’s for problem (4).

Proof. The transition probability matrix and the re-
ward function under the randomized policy dθ are writ-
ten as below, respectively.

pθ(j|i) :=
∑

a∈Aλ(i) θi,ap(j|i, a).

rθ(i) :=
∑

a∈Aλ(i) θi,ar(i, a).
(42)

From definition (1), we can derive the following equation
similar to (6).

J(dθ) = (I − βP θ)−1rθ, (43)

whereP θ and rθ are the corresponding quantities under
the randomized policy dθ.

First, we compare the mean performance between the
randomized policy dθ and any deterministic policy d ∈
Dλ. Similar to the difference formula (10), we can derive

J(dθ)−J = (I−βP θ)−1[β(P θ−P )J +rθ−r]. (44)

In the above equation, (I − βP θ)−1 is a positive matrix
and we discuss the element in the square bracket. The
square bracket in (44) is an S-dimensional column vector
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∑

a∈Aλ(i)

θi,a

{

∑

j∈S

[p(j|i, a)− p(j|i, d(i))]σ2(j) + r2(i, a)− r2(i, d(i)) + 2βr(i, a)
∑

j∈S

p(j|i, a)λ(j) − 2βr(i, d(i))
∑

j∈S

p(j|i, d(i))λ(j)

}

. (48)

and its ith element can be written as below.

β
∑

j∈S

(pθ(j|i)− p(j|i))J(j) + rθ(i)− r(i).

Substituting (42) into the above equation, we obtain

∑

a∈Aλ(i)

θi,a

[

∑

j∈S

β(p(j|i, a)−p(j|i, d(i)))J(j)+r(i, a)−r(i, d(i))

]

.

Since d(i) ∈ Aλ(i) and J(i) = λ(i) for all i ∈ S, with
(12) we can see that the above equation equals 0. There-
fore, we have J(dθ)− J = 0 and J(dθ) = λ.

Then, we compare the reward variance between policy
dθ and d ∈ Dλ. Similar to (21), we can also obtain the
variance σ2(dθ, i) under policy dθ as below.

σ2(dθ , i) =
∑

a∈Aλ(i)

θi,a

{

r2(i, a) + 2βr(i, a)
∑

j∈S

p(j|i, a)J(dθ, j)

+β2
∑

j∈S

p(j|i, a)[σ2(dθ, j) + J2(dθ, j)]− J2(dθ , i)

}

.

We denote hθ as a new reward function and its element
hθ(i), i ∈ S, is defined as below.

hθ(i) :=
∑

a∈Aλ(i)

θi,a

{

r2(i, a) + 2βr(i, a)
∑

j∈S

p(j|i, a)J(dθ, j)

}

+ β2
∑

j∈S

pθ(j|i)J2(dθ, j)− J2(dθ , i). (45)

Therefore, the result in Theorem 2 also holds for this
randomized policy dθ and we have

σ2(dθ) = (I − β2P θ)−1hθ. (46)

Similarly, we can derive the variance difference formula
between policy dθ and d as below.

σ2(dθ)−σ2 = (I − β2P θ)−1[β2(P θ −P )σ2 +hθ −h].
(47)

Since (I − β2P θ)−1 is a positive matrix, we study the
value of the element of the square bracket in the above
equation. Substituting (42) and (45) into (47), we can
derive (48) to represent the ith element of the square
bracket in (47), where we use the fact J(dθ) = J = λ.
Since the value of the large bracket in (48) has no rela-
tion to dθ, we can view it as a given value.With (47), it is

easy to verify that the optimal θ∗ with the minimal vari-
ance must satisfy a necessary condition: θ∗i,a ∈ {0, 1},

∀a ∈ Aλ(i), i ∈ S. That is, the optimal policy is a de-
terministic one and we have σ2(dθ) ≥ σ2(d∗

λ
). The the-

orem is proved. ✷

Remark 5. If we consider the randomized policy gen-
erated from the whole policy space D, the result in The-
orem 5 may not hold. Because of the quadratic form of
variance functions in this paper, we cannot convert this
mean-constrained variance minimization problem to a
linear programwith constraints, which is widely adopted
in the literature on constrained MDPs [1]. The optimal-
ity of deterministic policy and stationary policy is an
unsolved problem that needs further investigation.

4 Numerical Example

Consider a discrete time Markov chain with state space
S = {1, 2}. The action space is A(1) = {1, 2, 3} and
A(2) = {1, 2, 3, 4}. The transition probabilities are
p(2|1, a) = a/4, p(1|1, a) = 1 − a/4 for a ∈ A(1), and
p(1|2, a) = a/4, p(2|2, a) = 1 − a/4 for a ∈ A(2). The
rewards in state-action pairs are r(1, 1) = 1, r(1, 2) = 3

4 ,

r(1, 3) = 19
32 ; r(2, 1) = 5

2 , r(2, 2) = 2, r(2, 3) = 3,

r(2, 4) = 13
4 . The discount factor is β = 0.5. Obvi-

ously, the number of total policies in D is 12 and all the
possible policies are denoted as follows.

d1 = (1, 1), d2 = (1, 2), d3 = (1, 3), d4 = (1, 4),

d5 = (2, 1), d6 = (2, 2), d7 = (2, 3), d8 = (2, 4),

d9 = (3, 1), d10 = (3, 2), d11 = (3, 3), d12 = (3, 4).

Using (6) and (30), we can compute the value of J and
σ2 of the Markov chain under every possible policy. The
computation results are listed in Table 1.

FromTable 1, we see that there exist some policies under
which the discounted Markov chain has the same mean,
even the same variance.We let λ = (2.5, 4.5)T and verify
the main results derived in Section 3. From Table 1, we
see that Dλ = {d1, d3, d4, d5, d7, d8} in which the mean
discounted performance equalsλ. It is easy to verify that
Aλ(1) = {1, 2} and Aλ(2) = {1, 3, 4}. Therefore, we
have Dλ = Aλ(1)×Aλ(2) and the result of Theorem 1
is verified in this example. If we let λ = (2.125, 3.375)T ,
we can also verify that Dλ = Aλ(1) × Aλ(2), where
Dλ = {d6, d10}, Aλ(1) = {2, 3}, and Aλ(2) = {2}.

Below, we verify the policy iteration algorithm to
find the optimal policy for the problem (4) when
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Table 1
The mean and variance of the discounted Markov chain under every possible policy.

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

J

(

2.5

4.5

) (

2.2857

3.4286

) (

2.5

4.5

) (

2.5

4.5

) (

2.5

4.5

) (

2.125

3.375

) (

2.5

4.5

) (

2.5

4.5

) (

2.6172

4.5234

) (

2.125

3.375

) (

2.6312

4.5562

) (

2.6364

4.5682

)

σ2

(

0.25

0.25

) (

0.0834

0.1052

) (

0.25

0.25

) (

0.2353

0.0588

) (

0.3222

0.2556

) (

0.1302

0.1302

) (

0.3235

0.2647

) (

0.2963

0.0741

) (

0.2271

0.2271

) (

0.1034

0.1264

) (

0.2316

0.2316

) (

0.1964

0.0491

)

λ = (2.5, 4.5)T . We arbitrarily choose an initial pol-
icy from the policy set Dλ, say we choose d(0) = d5.
We compute g(d(0)) using (35) and obtain g(d(0)) =
(6.5722, 20.5056)T . Then we use the policy improvement
(40) to generate a new policy as follows: for state i = 1,
we have d(1)(1) = argmin

a∈{1,2}

{6.5139, 6.5722}= 1; for state

i = 2, we have d(1)(2) = argmin
a∈{1,3,4}

{20.5056, 20.5139,

20.3306} = 4. Therefore, d(1) = (1, 4) = d4. For d(1),
we repeat the above process and compute g(d(1)) =
(6.4853, 20.3088)T . Then we again use (40) to gener-
ate the next policy as follows: for state i = 1, we have
d(2)(1) = argmin

a∈{1,2}

{6.4853, 6.5368} = 1; for state i = 2,

we have d(2)(2) = argmin
a∈{1,3,4}

{20.4632, 20.4853, 20.3088}=

4. Therefore, d(2) = (1, 4) = d4. We have d(2) = d(1) and
the stopping criterion is satisfied. Algorithm 1 stops
and outputs d4 as the optimal policy with the minimal
variance among the policy set Dλ. From Table 1, we
find that d4 is truly the optimal policy with the minimal
variance σ2 = (0.2353, 0.0588)T among the policy set
Dλ = {d1, d3, d4, d5, d7, d8}. Therefore, the convergence
of Algorithm 1 is verified in this example and Algo-
rithm 1 converges to the optimal policy only through 1
iteration.

From Table 1, we observe another interesting fact that
the policies d1 and d3 have the same mean and variance.
To compare these two policies, we can further consider
other high order performance metrics, such as the nth-
order bias optimality [3]. Moreover, we can also inves-
tigate the Pareto optimality of policies from Table 1.
For the objective of maximizing the mean and mini-
mizing the variance, we can find: d2 dominates d10 and
d10 dominates d6, i.e., J(d2) > J(d10) > J(d6) and
σ2(d2) < σ2(d10) < σ2(d6); d4 dominates all the other
policies in Dλ = {d1, d3, d4, d5, d7, d8}; d12 dominates
d4, d9, and d11. Therefore, the mean and the variance of
policies {d2, d12} comprise the efficient frontier of this
example.

5 Conclusion

In this paper, we study the variance minimization prob-
lem of a discrete time discounted MDP where the mean
discounted performance is equal to a given constant.

By transforming this constrained variance minimization
problem to an unconstrained MDP with discount fac-
tor β2 and new reward function h, we develop a policy
iteration algorithm to efficiently solve such category of
optimization problems. The success of this approach de-
pends on the decomposable structure of the policy set
Dλ, as stated in Theorem 1. Such property may not hold
if we consider the long-run average criterion instead of
the discounted criterion. Therefore, the variance min-
imization problem of MDPs with a constraint on the
long-run average performance is a future research topic.
Another fundamental topic is to study the optimality of
stationary policy for this constrained varianceminimiza-
tion problem, which may be generally different from the
standard constrained MDPs in the literature. Moreover,
how to extend our results to more general cases, such as
continuous time continuous state Markov processes or fi-
nite horizon Markov chains, is another interesting topic
deserving further investigation.
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