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SUMMARY

In this paper, we study state-feedback control of Markov jump linear systems with partial information. In
particular, we assume that the controller can only access the mode signals according to a hidden-Markov
observation process. Our formulation generalizes various relevant cases previously studied in the literature
on Markov jump linear systems, such as the cases with perfect information, no information, and cluster
observations of the mode signals. In this context, we propose a Linear Matrix Inequalities (LMI) formulation
to design feedback control laws for (stochastic) stabilization, H2, and H∞ control of discrete-time Markov
jump linear systems under hidden-Markovian observations of the mode signals. We conclude by illustrating
our results with some numerical examples. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Markov jump linear systems [1] are an important class of switched systems in which the mode
signal, responsible for controlling the switch among dynamic modes, is modeled by a time-
homogeneous Markov process. This type of systems has been widely used in multiple applications,
such as robotics [2, 3], economics [4], networked control [5], and epidemiology [6]. Solutions to
standard controller synthesis problems for Markov jump linear systems, such as state-feedback
stabilization, quadratic optimal control, H2 optimal control, and H∞ optimal control (see, e.g., the
monograph [1]), can be found in the literature. These works, however, are based on the unrealistic
assumption that the controller has full knowledge about the mode signal at any time instant.

To overcome this limitation, several papers investigate the effect of limited and/or uncertain
knowledge about the mode signal. For example, the authors in [7] studied H2 control of discrete-
time Markov jump linear systems when the state space of the mode signal is partitioned into subsets,
called clusters, and the controller only knows in which cluster the mode signal is at a given time.
Similar studies in the context of H∞ control can be found in [8, 9]. In the extreme case of having a
single mode cluster (in other words, when one cannot observe the mode), the authors in [10, 11]
investigated quadratic optimal control problems. Most of the above works can be studied in a
framework based on random and uncertain mode observations (see [12] for the description of this
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framework in the context of H2 control). In a complementary line of work, we find some papers
assuming that the mode signal can only be observed at particular sampling times, instead of at any
time instant. In this direction, we find in the literature a variety of random sampling strategies of
the mode signal. The authors in [13] designed almost-surely stabilizing state-feedback gains when
the sampling times follow a renewal process. Similarly, the authors in [14, 15] derived stabilizing
state-feedback gains using Lyapunov-like functions under periodic observations.

In this paper, we propose a framework to design state-feedback controllers for discrete-time
Markov jump linear systems assuming that the mode signal can only be observed when a Markov
chain (different than the one describing the mode signal) visits a particular subset of its state
space. We call this observation process hidden-Markov, due to its similitude with hidden-Markov
processes [16]. We show how hidden-Markov observation processes generalize many relevant cases
previously studied in the literature, such as those in [7, 8, 12–15]. In this context, we propose
a Linear Matrix Inequalities (LMI) formulation to design feedback control laws for (stochastic)
stabilization, H2, and H∞ control of discrete-time Markov jump linear systems under hidden-
Markov observations of the mode signal. It is important to remark that, since the observation process
is hidden-Markovian, existing control synthesis methods for Markov jump linear systems, such as
those in [1, 7, 8], do not apply to our case.

The paper is organized as follows. In Section 2, we formulate the state-feedback control problem
for Markov jump linear systems with hidden-Markovian observations of the mode signal. We show
in Section 3 that the resulting closed-loop system can be reduced to a standard Markov jump linear
system by embedding the (possibly non-Markovian) stochastic processes relevant to the controller
into an extended Markov chain. In Section 4, we derive an LMI formulation to design state-feedback
gains for stabilization, H2, and H∞ control problems. Finally, in Section 5, we illustrate our results
with some numerical examples.

Notation

The notation used in this paper is standard. Let N denote the set of nonnegative integers. Let Rn
and Rn×m denote the vector spaces of real n-vectors and n×m matrices, respectively. By ‖·‖,
we denote the Euclidean norm on Rn. Pr(·) will be used to denote the probability of an event.
The probability of an event conditional on another event A is denoted by Pr(· | A). Expectations
are denoted by E[·]. For a positive integer N , we define the set [N ] = {1, . . . , N}. For a positive
integer T and an integer k, define bkcT as the unique integer in {0, . . . , T − 1} such that k − bkcT
is an integer multiple of T . When a real symmetric matrix A is positive (resp., negative) definite, we
write A > 0 (resp., A < 0). The notations A ≥ 0 and A ≤ 0 are then understood in the obvious way.
For sets of matrices A = {Aλ}λ∈Λ ⊂ Rn×m and B = {Bλ}λ∈Λ ⊂ Rm×` sharing the same index
set Λ, we define another set of matrices AB = {AλBλ}λ∈Λ ⊂ Rn×`. The symbol ? will be used
to denote the symmetric blocks of partitioned symmetric matrices. Finally, indicator functions are
denoted by 1(·).

2. PROBLEM FORMULATION

In this section, we formulate the problems under study. Let n, m, q, `, and N be positive integers.
For each i ∈ [N ], let Ai ∈ Rn×n, Bi ∈ Rm×n, Ci ∈ R`×n, Di ∈ R`×m, and Ei ∈ Rn×q. Also,
let r = {r(k)}∞k=0 be the time-homogeneous Markov chain taking values in [N ] and having the
transition probability matrix P ∈ RN×N . Consider the Markov jump linear system [1]:

Σ :

{
x(k + 1) = Ar(k)x(k) +Br(k)u(k) + Er(k)w(k),

z(k) = Cr(k)x(k) +Dr(k)u(k).

We call x and r the state and the mode of Σ, respectively. The signal w represents an exogenous
disturbance, u is the control input, and z is the measured signal. The initial conditions are denoted
by x(0) = x0 and r(0) = r0. We will assume that x0 and r0 are either deterministic constants or
random variables, depending on the particular control problems considered.
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STATE FEEDBACK CONTROL WITH HIDDEN-MARKOV MODE OBSERVATION 3

2.1. State-feedback control with hidden-mode observation

In this paper, we consider the situation where the controller cannot measure the mode signal at
every time instant. To study this case, we model the times at which the controller can observe the
mode by the stochastic process t = {ti}∞i=0 taking values in N ∪ {∞}. We call t the observation
process and each ti an observation time. For each i, we assume either ti < ti+1 or ti = ti+1 =∞.
It is understood that, if ti < ti+1 =∞, then no observation will be performed after time ti.

In this paper, we focus on the following class of observation processes:

Definition 2.1
We say that an observation process t is hidden-Markov† if there exist an M ∈ N, a Markov chain
s = {s(k)}k≥0 taking values in [M ] (independent of the mode r), and a function f : [M ]→ {0, 1}
such that

t0 = min{k ≥ 0 : f(s(k)) = 1}

and, for every i ≥ 0,
ti+1 = min{k > ti : f(s(k)) = 1},

where the minimum of the empty set is understood to be∞.

For example, if the image of f equals the set {1}, then the controller observes the mode at all
time instants. On the other hand, if f maps into {0}, then the controller never observes the mode
signal. In fact, the class of hidden-Markov observation processes contains many other interesting
examples as will be seen below. Throughout the paper, we denote the transition probability matrix
of s by Q ∈ RM×M . In what follows, we provide three particular examples that can be formulated
as hidden-Markovian observation processes:

Example 2.2 (Gilbert-Elliot channel)
Consider the case where the controller observes the mode through a Gilbert-Elliot channel [17]. This
channel has two possible states: the good (G) and bad (B) states. When the channel is at the G state,
it transmits the mode signal to the controller; in contrast, when it is at state B, it does not transmit.
This channel switches its state according to a Markov chain, defined as follows. Let p, q ∈ [0, 1] be
the transition probabilities from G to B and B to G, respectively. We can formulate this channel as a
hidden-Markovian observation process (Definition 2.1) using the following parameters:

M = 2, Q =

[
1− p p
q 1− q

]
, f(λ) =

{
1, if λ = 1,

0, if λ = 2.

Our second example is closely related to the observation processes investigated in [12]:

Example 2.3 (Observations with independent and identically distributed failures)
Assume that, at each time instant, the controller attempts to observe the mode signal but it fails with
probability pf ∈ [0, 1], independently from the observations at other time instants. This observation
process can be implemented as a hidden-Markovian observation process using the following
parameters:

M = 2, Q =

[
1− pf pf
1− pf pf

]
, f(λ) =

{
1, if λ = 1,

0, if λ = 2.

We remark that, under a similar problem setting, the authors in [12] propose a framework for
stochastic stabilization and H2 control of Markov jump linear systems.

Our last example is concerned with periodic observation with failures:

†We adopt the terminology “hidden-Markov” because the process {f(s(k))}k≥0 characterizing the observation process t
is a hidden-Markov process [16].
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Example 2.4 (Periodic observation with failures)
Let ` be a positive integer and p ∈ [0, 1]. Define

M = `+ 1, Q =


1
1

. . .
1

p 1− p

 , f(λ) =

{
1, if λ = 1,

0, otherwise.

Then, we can see that ti+1 − ti is a positive integer multiple of ` with probability one and, also,
Pr(ti+1 − ti = k`) = (1− p)k−1p for all i ≥ 0 and k ≥ 1. The corresponding observation process
describes the situation where the controller tries to observe the mode signal every ` time units with a
probability of success p for each observation. In particular, for p = 1, this observation process gives
the periodic case considered in [14, 15].

In order to specify the behavior of the controller between two consecutive observation times,
we introduce the following processes. Given an observation process t, we define the stochastic
process τ = {τ(k)}∞k=0 by

τ(k) =

{
max{ti : ti ≤ k, i ≥ 0}, if k ≥ t0,
τ0, otherwise,

where τ0 is an integer satisfying {
τ0 = 0, if t0 = 0,

τ0 < 0, otherwise.
(1)

For each time k, the above defined τ(k) represents the most recent time the controller observed
the mode. We, in particular, have τ(ti) = ti for every i ≥ 0. Notice that, for k < t0, we augment
the process τ with a negative integer τ0. This is because, before time k = t0, no observation is
performed by the controller yet. This augmentation is not needed if t0 = 0, in which case we set
τ0 = 0 as in (1).

We also define the stochastic process σ = {σ(k)}∞k=0 taking values in [N ] by

σ(k) =

{
r(τ(k)), if k ≥ t0,
σ0, otherwise,

where σ0 is an element in [N ] satisfying

[t0 = 0]⇒ [σ0 = r0]. (2)

For each k, the random variable σ(k) represents the most-updated information about the mode
signal kept by the controller at time k. We again notice that, by the same reason indicated above, σ
is augmented by an arbitrary σ0 before the time instant k = t0 (i.e., before the first observation is
performed). As is the case for τ0, if t0 = 0, then this augmentation is not needed and thus we set
σ0 = r0 as in (2). See Figure 1 for an illustration of the stochastic processes described so far.

In what follows, we present the state-feedback control scheme studied in this paper. We assume
that the controller has an access to the following pieces of information at each time k ≥ 0:
(i) the state variable x(k), (ii) the most recent observation σ(k) of the mode r, and (iii) the
quantity k − τ(k), which is the time elapsed since the last observation. Specifically, the state-
feedback controller under consideration takes the form

u(k) = Kσ(k),bk−τ(k)cT+1x(k), (3)

where Kγ,δ ∈ Rm×n for each γ ∈ [N ] and δ ∈ [T ]. The first subindex of K in (3), i.e., σ(k), allows
the gain to be reset whenever the controller observes the mode. The second subindex‡ of K in (3)

‡Notice that we add 1 to bk − τ(k)cT in the second subindex of K in (3) to make the index δ of Kγ,δ start from 1,
instead of 0.
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STATE FEEDBACK CONTROL WITH HIDDEN-MARKOV MODE OBSERVATION 5

Figure 1. An observation of the mode r. The observation times t0, t1, t2, . . . are determined by the Markov
chain s and the function f : [3]→ {0, 1} given by f(s) = 1 if s ∈ Λ = {2} and f(s) = 0 otherwise. Until

the first observation time t0 = 2, the most recent observation σ is temporarily set to σ0 = 2.

allows the controller to change its feedback gain between two consecutive observation times with
period T as in [15], rather than keeping them to be constant. We will later see in Section 5 that, as
the period T increases, the performance of the controller can in fact improve. Throughout the paper,
we will use the notation

ρ(k) = bk − τ(k)cT + 1.

Notice that the initial condition of ρ is given by ρ(0) = ρ0 = b−τ0cT + 1.

2.2. Performance measures

We now introduce several performance measures used to evaluate the state-feedback control law (3).
The feedback control law (3) applied to Σ yields the following closed-loop system

ΣK :

{
x(k + 1) =

(
Ar(k) +Br(k)Kσ(k),ρ(k)

)
x(k) + Er(k)w(k),

z(k) =
(
Cr(k) +Dr(k)Kσ(k),ρ(k)

)
x(k).

Let us introduce the compact notation

r̄(k) = (r(k), s(k), σ(k), ρ(k)). (4)

Also, define X as the set of quadruples (α, β, γ, δ) ∈ [N ]× [M ]× [N ]× [T ] such that, if f(β) = 1,
then α = γ and δ = 1. The set X contains all possible values that can be taken by the stochastic
process r̄. We denote the initial condition for r̄ as r̄(0) = r̄0. We sometimes denote the trajectories x
and z of ΣK by x(·;x0, r̄0, w) and z(·;x0, r̄0, w), respectively, whenever we need to clarify the initial
conditions as well as the disturbance w. We finally remark that, by the conditions in (1) and (2), r̄0

is determined by r0, s0, σ0, and ρ0 as

r̄0 =

{
(r0, s0, r0, 1), if f(s0) = 1,

(r0, s0, σ0, ρ0), otherwise.
(5)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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The first performance measure under consideration is mean square stability:

Definition 2.5 (Mean square stability)
We say that ΣK is mean square stable if there exist C > 0 and λ ∈ [0, 1) such that E[‖x(k)‖2] ≤
Cλk‖x0‖2 for all x0, r̄0, and k ≥ 0, provided w ≡ 0.

In order to define the second performance under consideration, we first need to introduce the
space of square summable stochastic processes, as follows. Let Θk be the σ-algebra generated by the
random variables {r(k), s(k), . . . , r(0), s(0)}. Define `2(Rn) (`2 for short) as the space of Rn-valued
stochastic processes f = {f(k)}k≥0 such that f(k) is an Rn-valued and Θk-measurable random
variable each k ≥ 0 and, moreover,

∑∞
k=0E[‖f(k)‖2] is finite. For f ∈ `2, define its `2-norm ‖f‖2

by ‖f‖22 =
∑∞

k=0E[‖f(k)‖2]. Then, we extend the definition of the H2 norm of a Markov jump
linear system introduced in [7], as follows:

Definition 2.6 (H2 norm)
Assume that r̄0 follows the probability distribution µ̄. Define the H2 norm of ΣK by

‖ΣK‖2 =

√√√√ q∑
i=1

∑
χ∈X

µ̄(χ)‖z(·; 0, χ, eiφ)‖22,

where ei denotes the ith standard unit vector in Rq and φ is the function defined on N by φ(0) = 1
and φ(k) = 0 for k ≥ 1.

Our third and last performance measure is the H∞ norm. In our context, we use the following
definition, which is an extension of the one for standard Markov jump linear systems [18]:

Definition 2.7 (H∞ norm)
Assume that ΣK is mean square stable and x0 = 0. Define the H∞ norm of ΣK by

‖ΣK‖∞ = sup
r̄0∈X

sup
w∈`2(Rq)\{0}

‖z‖2
‖w‖2

.

Having introduced these three performance measures, we can now formulate the problems under
consideration. The first problem is concerned with stochastic stabilization, which is stated as
follows:

Problem 2.8 (Stabilization)
Find a set of matrices {Kγ,δ}γ∈[N ],δ∈[T ] ⊂ Rm×n such that ΣK is mean square stable.

The second problem is concerned with the stabilization of the closed-loop system with an upper-
bound on the H2 norm. In this problem, we assume that the distributions of r0 and s0 are given.
Thus, the parameters to be designed are feedback gains K and the distribution ν of the pair (σ0, ρ0):

Problem 2.9 (H2 control)
Assume that the distributions of r0 and s0 are known. For a given γ > 0, find a set of matrices
{Kγ,δ}γ∈[N ],δ∈[T ] ⊂ Rm×n and a distribution ν such that ΣK is mean square stable and ‖ΣK‖2 < γ.

Remark 2.10
Given the distribution µr (resp., µs) of r0 (resp., s0), using (5) we can find µ̄ as

µ̄(χ) =

{
µr(α)µs(β) if f(β) = 1,

µr(α)µs(β)ν(γ, δ) otherwise,
(6)

for every χ = (α, β, γ, δ) ∈ X.

The last problem is the stabilization of the closed-loop system with an upper-bound on the H∞
norm:

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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STATE FEEDBACK CONTROL WITH HIDDEN-MARKOV MODE OBSERVATION 7

Problem 2.11 (H∞ control)
For a given γ > 0, find a set of matrices {Kγ,δ}γ∈[N ],δ∈[T ] ⊂ Rm×n such that ΣK is mean square
stable and ‖ΣK‖∞ < γ.

We remark that ΣK is no longer a standard Markov jump linear system, due to the nature of
the processes σ and ρ. Therefore, we cannot use any of the techniques in the literature [1, 7, 8] to
synthesize a control law. In fact, we cannot use existing techniques even to analyze the performance
of ΣK . Moreover, due to the generality of hidden-Markov observation processes, we cannot use any
of the results in [12, 13, 15], recently proposed to design state-feedback control laws for Markov
jump linear systems with partial mode observation.

3. ANALYSIS OF CLOSED-LOOP SYSTEM

In this section, we show how to analyze the closed-loop system ΣK . In this direction, we reduce
ΣK to a standard Markov jump linear system by embedding stochastic processes appearing in the
closed-loop system (which are not necessarily Markovian) into an extended Markov chain with a
larger state space. Let us begin with the following observation:

Lemma 3.1
The stochastic process r̄ defined by (4) is a time-homogeneous Markov chain. Moreover, its
transition probabilities are given by

Pr(r̄(k + 1) = χ′ | r̄(k) = χ) =

{
1(α′ = γ ′, δ′ = 1)pαα′qββ′ , if f(β′) = 1,

1(γ ′ = γ, bδ′ − δ − 1cT = 0)pαα′qββ′ , otherwise,
(7)

for all χ = (α, β, γ, δ) and χ′ = (α′, β′, γ ′, δ′) in X.

Proof
Let k0 ∈ N, k ≥ k0, and χi = (αi, βi, γi, δi) ∈ X̄ (i = k0, . . . , k + 1) be arbitrary. For each i, define
the events Ai and Bi as Ai = {r̄(i) = χi, . . . , r̄(k0) = χk0} and Bi = {r̄(i) = χi}. Under the
assumption that Ak is not the null set, we need to evaluate the conditional probability

Pr(r̄(k + 1) = χk+1 | Ak) = Pr(Ak+1)/Pr(Ak). (8)

Remark that, since Ai 6= ∅, we have

σ(k) = γ k, ρ(k) = δk. (9)

First, assume that f(βk+1) = 1. Then, by Definition 2.1, an observation occurs at time k + 1, i.e.,
we have τ(k + 1) = k + 1 and σ(k + 1) = r(k + 1). This implies that

Bk+1 = {r(k + 1) = αk+1, s(k + 1) = βk+1, αk+1 = γ k+1, 1 = δk+1}.

Therefore, since Ak+1 = Ak ∩ Bk+1,

Ak+1 = {αk+1 = γ k+1, δk+1 = 1} ∩ {r(k + 1) = αk+1, s(k + 1) = βk+1} ∩ Ak (10)

and hence

Pr(Ak+1) = 1(αk+1 = γ k+1, δk+1 = 1) Pr({r(k + 1) = αk+1, s(k + 1) = βk+1} ∩ Ak). (11)

The probability appearing in the last term of this equation can be computed as

Pr({r(k + 1) = αk+1, s(k + 1) = βk+1} ∩ Ak)

= Pr(Ak) Pr(r(k + 1) = αk+1, s(k + 1) = βk+1 | Ak)

= Pr(Ak) Pr(r(k + 1) = αk+1, s(k + 1) = βk+1 | r(k) = αk, s(k) = βk)

= Pr(Ak)pαkαk+1
qβkβk+1

,

(12)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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where we have used the fact that both r and s are time-homogeneous Markov chains. Thus, from
equations (8), (11), and (12), we conclude that for the case of f(βk+1) = 1,

Pr(r̄(k + 1) = χk+1 | Ak) = 1(αk+1 = γ k+1, δk+1 = 1)pαkαk+1
qβkβk+1

. (13)

Second, consider the case where f(βk+1) = 0. In this case, the Markov mode r is not observed at
time k + 1, hence, we have τ(k + 1) = τ(k) and σ(k + 1) = σ(k). Therefore, using equations (9),
in the same way as we derived (10), we can show that

Ak+1 = {γ k+1 = γ k, bδk+1 − δk − 1cT = 0} ∩ {r(k + 1) = αk+1, s(k + 1) = βk+1} ∩ Ak (14)

and hence

Pr(Ak+1) = 1(γ k+1 = γ k, bδk+1−δk − 1cT = 0) Pr({r(k + 1) = αk+1, s(k + 1) = βk+1} ∩ Ak).

Therefore, from equations (8), (12), and (14), we show that, if f(βk+1) = 0, then

Pr(r̄(k + 1) = χk+1 | Ak) = 1(γ k = γ k+1, bδk+1 − δk − 1cT = 0)pαkαk+1
qβkβk+1

. (15)

Since the probabilities (13) and (15) do not depend on k0, letting k0 = k and k0 = 0 in (13) and
(15), we obtain

Pr(r̄(k + 1) = χk+1 | r̄(k) = χk, . . . , r̄(k0) = χk0) = Pr(r̄(k + 1) = χk+1 | r̄(k) = χk)

for every k ≥ 0. This shows that r̄ is a Markov chain since χk0 , . . . , χk+1 ∈ X are arbitrary.
Moreover, since the probabilities (13) and (15) do not depend on k, we conclude that the Markov
chain r̄ is time-homogeneous and its transition probabilities are given by (7).

Lemma 3.1 states that the closed-loop ΣK can be represented as a Markov jump linear system
with its mode being the extended Markov chain r̄. This observation leads us to the following
definitions. For χ, χ′ ∈ X, we denote the transition probabilities of the Markov chain r̄ (eq. (7) in
Lemma 3.1) by p̄χχ′ = Pr(r̄(k + 1) = χ′ | r̄(k) = χ). Then, we introduce the Markov jump linear
system

Σ̄K :

{
x̄(k + 1) = AK,θ(k)x̄(k) + EK,θ(k)w̄(k),

z̄(k) = CK,θ(k)x̄(k),

where θ is the time-homogeneous Markov chain taking values in X whose transition probabilities
are Pr(θ(k + 1) = χ′ | θ(k) = χ) = p̄χχ′ , and the matrices AK,χ, CK,χ, and EK,χ are defined by

AK,χ = Aα +BαKγ,δ, CK,χ = Cα +DαKγ,δ, EK,χ = Eα, (16)

for each χ = (α, β, γ, δ) ∈ X. We sometimes denote x̄ and z̄ by x̄(·; x̄0, θ0, w̄) and z̄(·; x̄0, θ0, w̄)
whenever we need to clarify initial conditions and disturbances w̄.

The next corollary of Lemma 3.1 plays the key role in this paper.

Corollary 3.2
Assume that x0 = x̄0, w and w̄ have the same probability distribution, and r̄0 and θ0 have
the same probability distribution. Then, the stochastic processes x(·;x0, r̄0, w) and x̄(·; x̄0, θ0, w̄)
have the same probability distribution. Also, under the same assumption, the stochastic
processes z(·;x0, r̄0, w) and z̄(·; x̄0, θ0, w̄) have the same probability distribution.

Proof
By the assumption, the Markov chains r̄ and θ have the same initial distribution. The chains also
have the same transition probabilities from Lemma 3.1 and the definition of θ. Therefore, r̄ and θ
have the same probability distribution. Also, we notice that, by the definition of the matrices in (16),
the system ΣK admits the following representation:

x(k + 1) = AK,r̄(k)x(k) + Er̄(k)w(k),

z(k) = CK,r̄(k)x(k).

Therefore, ΣK has the same dynamics as Σ̄K . In conclusion, the claim holds true under the
assumptions stated in the corollary.
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Using Corollary 3.2, we can characterize the performance measures of the closed-loop
system ΣK . The next proposition provides a characterization for mean square stability:

Proposition 3.3
For R = {Rχ}χ∈X ⊂ Rn×n and χ ∈ X, define D̄χ(R) =

∑
χ′∈X p̄χ′χRχ′ ∈ Rn×n. Then, the

following statements are equivalent:

1. ΣK is mean square stable;
2. Σ̄K is mean square stable;
3. There exist positive-definite matrices Qχ ∈ Rn×n for every χ ∈ X, such that Qχ −
D̄χ(AKQA

>
K) > 0.

Proof
The equivalence [2 ⇔ 3] immediately follows from the standard theory of Markov jump
linear systems (see, e.g., [1]). Let us prove [2 ⇒ 1]. Assume that Σ̄K is mean square
stable. In order to show that ΣK is mean square stable, let us take arbitrary x0 ∈ Rn
and r̄0 ∈ X. Then, by Corollary 3.2 and the mean square stability of Σ̄K , we can show
E[‖x(k;x0, r̄0, 0)‖2] = E[‖x̄(k;x0, r̄0, 0)‖2] ≤ Cλk‖x0‖2 for some C > 0 and λ ∈ [0, 1), which
implies mean square stability of ΣK . We can prove [1⇒ 2] in the same way.

The following proposition characterizes the H2 norm of ΣK :

Proposition 3.4
Let γ > 0 be arbitrary. Assume that r̄0 and θ0 follow the same distribution µ̄. Then, the following
statements are equivalent:

1. ΣK is mean square stable and ‖ΣK‖22 < γ;
2. Σ̄K is mean square stable and ‖Σ̄K‖22 < γ;
3. There exist a family of positive-definite matrices Qχ ∈ Rn×n for every χ ∈ X, such that∑

χ∈X tr(CK,χQχC
>
K,χ) < γ and D̄χ(AKQA

>
K + µ̄EKE

>
K) < Qχ, where the set µ̄EKE>K ⊂

Rn×n indexed by X is defined as (µ̄EKE
>
K)χ = µ̄(χ)EK,χE

>
K,χ.

Proof
The proof of the equivalence [1 ⇔ 2] immediately follows from Corollary 3.2. Also, the
equivalence [2 ⇔ 3] is a direct consequence of a standard result [7, Proposition 4] in the theory
of Markov jump linear systems. The details are omitted.

Finally, the following proposition characterizes the H∞ norm:

Proposition 3.5
For matrices Z = {Zχ,χ′}χ,χ′∈X ⊂ Rn×n, define F̄χ(Z) =

∑
χ′∈X p̄χχ′Zχ,χ′ ∈ Rn×n. Let γ > 0

be arbitrary. Consider the following statements:

1. ΣK is mean square stable and ‖ΣK‖2∞ < γ;
2. Σ̄K is mean square stable and ‖Σ̄K‖2∞ < γ;
3. There exist matrices Gχ ∈ Rn×n, Hχ ∈ Rn×n, Xχ ∈ Rn×n, and Zχ,χ′ ∈ Rn×n (χ, χ′ ∈ X)

such that
Gχ +G>χ −Xχ ? ? ?

O γI ? ?
AK,χGχ EK,χ Hχ +H>χ − F̄χ(Z) ?
CK,χGχ O O I

 > 0,

[
Zχ,χ′ ?
Hχ Xχ′

]
> 0,

for all χ, χ′ ∈ X.

Then, 1 and 2 are equivalent. Moreover, 3 implies 1 and 2.
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Proof
The implication [3 ⇒ 2] is a direct consequence of [8, Theorem 1]. Let us prove [1 ⇔ 2]. It
is sufficient to show ‖ΣK‖∞ = ‖Σ̄K‖∞. Let Θ̄k denote the σ-algebra generated by the random
variables {θ(k), . . . , θ(0)}. Define ¯̀2 as the space of stochastic processes f̄ = {f̄(k)}∞k=0 such that∑∞

k=0E[‖f̄(k)‖2] is finite and, for each k ≥ 0, f̄(k) is an Rn-valued and Θ̄k-measurable random
variable. Define the norm of f̄ ∈ ¯̀2 by ‖f̄‖22 =

∑∞
k=0E[‖f̄(k)‖2]. Then, the H∞ norm of Σ̄K is

given by

‖Σ̄K‖∞ = sup
θ0∈X

sup
w̄∈¯̀2\{0}

‖z̄(·; 0, θ0, w̄)‖2
‖w̄‖2

.

To show that this norm equals ‖ΣK‖∞, it is sufficient to show that, if r̄0 = θ0, then

sup
w∈`2\{0}

‖z(·; 0, r̄0, w)‖2
‖w‖2

= sup
w̄∈¯̀2\{0}

‖z̄(·; 0, θ0, w̄)‖2
‖w̄‖2

. (17)

By Corollary 3.2, the only difference between both sides of the equality (17) is the spaces `2 and ¯̀2.
In other words, to complete the proof, it is sufficient to show that Θk, the σ-algebra generated by the
random variables {r(k), s(k), . . . , r(0), s(0)}, coincides with the one generated by {r̄(k), . . . , r̄(0)}.
This is obvious because σ(k) and ρ(k) are images of (r(k), s(k), r(k − 1), s(k − 1), . . . , r(0), s(0))
under measurable functions.

4. DESIGN OF FEEDBACK GAINS VIA LINEAR MATRIX INEQUALITIES

Based on the performance characterizations presented in the previous section, we now propose
a formulation based on Linear Matrix Inequalities (LMI) to design feedback control laws for
stabilization, H2, and H∞ control of discrete-time Markov jump linear systems under hidden-
Markovian observations of the mode signals.

The next theorem provides an LMI formulation to solve the stabilization problem stated in
Problem 2.8:

Theorem 4.1
Assume that the matrices Rχ ∈ Rn×n, Gγ,δ ∈ Rn×n, and Fγ,δ ∈ Rm×n (χ = (α, β, γ, δ) ∈ X)
satisfy the linear matrix inequality[

Rχ AαGγ,δ +BαFγ,δ
? Gγ,δ +G>γ,δ −Dχ(R)

]
> 0 (18)

for every χ = (α, β, γ, δ) ∈ X. For each γ ∈ [N ] and δ ∈ [T ], define

Kγ,δ = Fγ,δG
−1
γ,δ. (19)

Then, the resulting closed-loop system ΣK is mean square stable.

Proof
Assume that Rχ ∈ Rn×n, Gγ,δ ∈ Rn×n, and Fγ,δ ∈ Rm×n satisfy (18), and define K by (19). Our
proof is based on an argument proposed in [7]. Since X is a finite set, there exists an ε > 0 such that
Qχ = Dχ(R) + εI satisfies [

Rχ AK,χGγ,δ
? Gγ,δ +G>γ,δ −Qχ

]
> 0, (20)

where we have used AαGγ,δ +BαFγ,δ = AK,χGγ,δ. Since this inequality implies Rχ > 0, we
have Qχ ≥ εI > 0. We here recall that, for a positive definite matrix A ∈ Rn×n and another
matrix B ∈ Rn×n, it holds that (see, e.g., [7]) BA−1B> ≥ B +B> −A. Using this fact in (20),
we obtain [

Rχ AK,χGγ,δ
? G>γ,δQ

−1
χ Gγ,δ

]
> 0. (21)
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Also, from (20), we see that Gγ,δ +G>γ,δ > 0 and therefore Gγ,δ is invertible. Hence, we
can take the Schur complement of the positive-definite matrix in (21) with respect to Rχ
to obtain Rχ −AK,χQχA>K,χ > 0. Applying to this inequality the operator D̄χ, we obtain
Qχ − D̄χ(AKQA

>
K) > εI > 0. Therefore, by Proposition 3.3, ΣK is mean square stable.

Secondly, the next theorem provides an LMI formulation to solve the H2 control problem stated
in Problem 2.9:

Theorem 4.2
Let γ > 0 be arbitrary. Assume that Wχ ∈ R`×`, Rχ ∈ Rn×n, Fγ,δ ∈ Rm×n, Gγ,δ ∈ Rn×n, and
ν(γ, δ) ≥ 0 (χ = (α, β, γ, δ) ∈ X) satisfy the following linear matrix inequalities[

Rχ − µ̄(χ)EαE
>
α AαGγ,δ +BαFγ,δ

? Gγ,δ +G>γ,δ − D̄χ(R)

]
> 0, (22)[

Wχ CαGγ,δ +DαFγ,δ
? Gγ,δ +G>γ,δ − D̄χ(R)

]
> 0, (23)∑

χ∈X

tr(Wχ) < γ, (24)

N∑
γ=1

T∑
δ=1

ν(γ, δ) = 1, (25)

for every χ = (α, β, γ, δ) ∈ X. Define the feedback matrix K by (19). Then, the closed-loop system
ΣK is mean square stable and satisfies ‖ΣK‖22 < γ.

We remark that the (in)equalities in Theorem 4.2 are indeed linear with respect to the design
variables. The linearity with respect to the matrix variables Wχ, Rχ, Fγ,δ, and Gγ,δ is obvious.
The linearity with respect to ν follows from (6). We also remark that the constraint (25) makes ν a
probability measure.

Let us prove Theorem 4.2.

Proof of Theorem 4.2
Assume that γ > 0, Wχ ∈ R`×`, Rχ ∈ Rn×n, Fγ,δ ∈ Rm×n, Gγ,δ ∈ Rn×n, and ν(γ, δ) satisfy
(22)–(25), and let us define K by (19). In the same way as in the proof of Theorem 4.1, there
exists an ε > 0 such that Qχ = D̄χ(R) + εI satisfies[

Rχ − µ̄(χ)EK,χE
>
K,χ AK,χGγ,δ

? G>γ,δQ
−1
χ Gγ,δ

]
> 0, (26)[

Wχ CK,χGγ,δ
? G>γ,δQ

−1
χ Gγ,δ

]
> 0. (27)

Applying Schur complement to the matrix in the left hand side of (26), we obtain
Rχ − µ̄(χ)EK,χEK,χ −AK,χQχA>K,χ > 0. Applying the operator D̄χ to this inequality
yields D̄χ(AKQA

>
K + µ̄EKE

>
K) < D̄χ(R) < Qχ. In addition, from (27) it follows that

Wχ > CK,χQχC
>
K,χ. Hence, we have

∑
χ∈X tr(CK,χQχC

>
K,χ) <

∑
χ∈X tr(Wχ) < γ by (24).

Therefore, by Proposition 3.4, ΣK is mean square stable and satisfies ‖ΣK‖22 < γ.

Finally, the next theorem provides an LMI formulation to solve the H∞ control problem stated in
Problem 2.11:

Theorem 4.3
Assume that γ > 0, Hχ ∈ Rn×n, Xχ ∈ Rn×n, Zχ,χ′ ∈ Rn×n, Gγ,δ ∈ Rn×n, and Fγ,δ ∈ Rm×n
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(χ = (α, β, γ, δ) and χ′ in X) satisfy the linear matrix inequalities
Gγ,δ +G>γ,δ −Xχ ? ? ?

O γI ? ?
AαGγ,δ +BαFγ,δ Eα Hχ +H>χ − F̄χ(Z) ?
CαGγ,δ +DαFγ,δ O O I

 > 0, (28)

[
Zχ,χ′ ?
Hχ Xχ′

]
> 0, (29)

for all χ = (α, β, γ, δ) and χ′ in X. Define the feedback matrix K by (19). Then, the closed-loop
system ΣK is mean square stable and satisfies ‖ΣK‖2∞ < γ.

Proof
Assume that the inequalities (28) and (29) are satisfied by the matrices Hχ ∈ Rn×n, Xχ ∈ Rn×n,
Zχ,χ′ ∈ Rn×n, Gγ,δ ∈ Rn×n, and Fγ,δ ∈ Rm×n. Define K by (19). Then, (28) implies

Gγ,δ +G>γ,δ −Xχ ? ? ?

O γI ? ?
AK,χGγ,δ EK,χ Hχ +H>χ − F̄χ(Z) ?
CK,χGγ,δ O O I

 > 0.

By this inequality and (29), Proposition 3.5 immediately shows that ΣK is mean square stable and
satisfies ‖ΣK‖2∞ < γ, as desired.

5. NUMERICAL EXAMPLES

The objective of this section is to illustrate Theorems 4.2 and 4.3 by numerical examples. We will
also demonstrate how the periodicity of the feedback gain can be used to improve the performance
of the closed-loop system ΣK .

Example 5.1
In this example, we consider the Markov jump linear system studied in [12, Example 1]. The system
has two modes and its parameters are given by

A1 =

 0.7017 −1.227 0.3931 −0.6368
−0.4876 −0.6699 −1.7073 −1.0026
1.8625 1.3409 0.2279 −0.1856
1.1069 0.3881 0.6856 −1.0540

, A2 =

−0.0715 −0.5420 0.6716 0.6250
0.2792 1.6342 −0.5081 −1.0473
1.3733 0.8252 0.8564 1.5357
0.1798 0.2308 0.2685 0.4344

,
B1 = B2 =

[
I2

O2×2

]
, C1 = C2 =

[
I4

O2×4

]
, D1 = D2 =

[
O4×2

I2

]
, E1 = E2 = I4,

P =

[
0.6942 0.3058
0.6942 0.3058

]
, µr =

[
0.6942 0.3058

]
,

where In and On×m denote the n× n identity matrix and the n×m zero matrix, respectively.
Notice that the mode signal r is a sequence of independently and identically distributed random
variables.

We assume that the controller observes the mode through a Gilbert-Elliot channel, described in
Example 2.2. For simplicity in our presentation, we let p = q. Notice that, whatever value p takes, the
limiting distribution of s is the uniform distribution on the set {1, 2}; in other words, the asymptotic
frequency of the controller observing the mode signal r is 1/2. In addition, the expected duration of
the chain s staying at either Good or Bad state depends on p, and is equal to 1/p. We assume that
the initial distribution µs of s is the uniform distribution.

We can use Theorem 4.2 to design stabilizing feedback gains and the initial distribution ν in order
to achieve a small H2 norm of the closed-loop system ΣK by solving the following optimization
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Figure 2. The H2 norm of the closed-loop system ΣK versus the expected duration 1/p

problem:
minimize

Wχ, Rχ, Fγ,δ, Gγ,δ,ν(γ,δ)
γ,

subject to (22)–(25).

Figure 2 shows theH2 norms of the optimized closed-loop systems. As expected, the larger the value
of the period T , the smaller the attained H2 norm. We can also see that the H2 norm of the closed-
loop system increases as the expected duration 1/p increases, although the stationary distribution
of s does not depend on p. We remark that this feature arising from the Markov property of s
cannot be captured by the framework in [12], where mode observations at different time instants are
assumed to be independent events with identical probabilities.

Example 5.2
Consider the Markov jump linear system Σ with the following parameters:

A1 =

[
−0.6 −0.4
−0.6 −0.4

]
, A2 =

[
−0.8 0.4
0.8 0.2

]
, B1 =

[
−0.3
−0.2

]
, B2 =

[
−0.2
−0.3

]
,

C1 =
[
0.4 0.2

]
, C2 =

[
0.1 0.5

]
, D1 = 0.1, D2 = −0.3,

E1 =

[
−0.3
−0.3

]
, E2 =

[
−0.2
−0.1

]
, P =

[
0.1 0.9
0.7 0.3

]
.

From the standard theory of Markov jump linear systems [1], one can check that Σ is not mean
square stable when u ≡ 0. We use the observation process with independent and identically
distributed failures (described in Example 2.3). In order to design stabilizing feedback gains
achieving a small H∞ norm of ΣK , we solve the following optimization problem based on
Theorem 4.3:

minimize
Hχ, Xχ, Zχχ′ , Gγ,δ, Fγ,δ

γ,

subject to (28) and (29).

Figure 3 shows the H∞ norms of the resulting closed-loop systems for various values of period T
and failure probability pf . As we increase the period T , the H∞ norm tends to decrease. However,
notice that when pf is around 0.1, theH∞ norm attained by the controllers with T = 3 are better than
those with T = 5. This phenomenon can happen because 5 is not an integer-multiple of 3. Remark
that, for T = 6 instead of T = 5, such a phenomenon will not happen because the H∞ performance
obtained by the feedback gains K(3) = {K(3)

γ,δ}γ∈[2],δ∈[3] with period T = 3 is attained by the

feedback gains K(6) with period T = 6 given as K(6)
γ,` = K

(6)
γ,`+3 = K

(3)
γ,` for every ` = 1, 2, 3. We

also remark that, by the same reason, the performance of the resulting closed-loop system for any
integer T is never worse than the performance for T = 1 (since 1 divides T ).
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Figure 3. The H∞ norm of the closed-loop system ΣK versus the failure probability pf
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Figure 4. Sample averages of ‖z(k)‖2

Finally, Figure 4 shows the sample averages of ‖z(k)‖2 of the closed-loop systems for T = 1
and T = 5. For the computation of the sample averages, we fix x0 = [1 2]>, r0 = 1, s0 = 1, and
pf = 0.5. The disturbance signal is chosen as w(k) = 2 cos(k/2). We generate 300 sample paths
of r and s. Using the sample paths, we then generate 300 sample paths of z for T = 1 and T = 5,
respectively. We can see that the closed-loop system with T = 5 attenuates the disturbance signal
better than that with T = 1.

6. CONCLUSION

In this paper, we have studied state-feedback control of Markov jump linear systems with hidden-
Markovian observations of the mode signals. This observation model generalizes various relevant
cases previously studied in the literature on Markov jump linear systems, such as the cases with
perfect information, no information and cluster observations of the mode signal. We have then
developed an optimization framework, based on Linear Matrix Inequalities, to design feedback gains
for stabilization, H2 and H∞ control problems. Finally, we have illustrated the effectiveness of this
optimization framework with several numerical examples.
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