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Abstract

This paper presents a hierarchical control scheme for interconnected linear systems. At the
higher layer of the control structure a robust centralized Model Predictive Control (MPC)
algorithm based on a reduced order dynamic model of the overall system optimizes a long-
term performance index penalizing the deviation of the state and the control input from
their nominal values. At the lower layer local MPC regulators, possibly working at dif-
ferent rates, are designed for the full order models of the subsystems to refine the control
action computed at the higher layer. A simulation experiment is presented to describe the
implementation aspects and the potentialities of the proposed approach.
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1 Introduction and main idea

Physical and cyber-physical systems are becoming more and more complex, large-
scale, and heterogeneous due to the growing opportunities provided by informa-
tion technology in terms of computing power, transmission of information, and
networking capabilities. As a consequence, also the management and control of
these systems represent a problem of increasing difficulty and require innovative
solutions. A classical approach consists of resorting to decentralized or distributed
control structures, see the fundamental book [36] and, in the context of Model Pre-
dictive Control (MPC) here considered, the recent review [34] on distributed MPC
(DMPC) or the book [28], where the most recent contributions to the design DMPC
methods are reported. According to [34], DMPC algorithms can be cooperative,
characterized by an intensive transmission load due to the multiple exchange of
information among the regulators within one sampling period, or non-cooperative,
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characterized conservativeness to compensate for the effects of neglected dynam-
ics.
With the aim of reducing the above limitations of DMPC algorithms, in this pa-
per we propose the novel two-layer control scheme shown in Figure 1. The sys-
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Fig. 1. Overall control scheme.

tem under control Σ is assumed to be composed by M interconnected subsystems
Σ1, ...,ΣM. A reduced order model Σ̄ is first computed and a centralized MPC regu-
lator RH working at a slow rate is designed to consider the long-term behavior of the
system and to compute the control variables ūi, i = 1, ...,M. Then, faster local reg-
ulators RLi, i = 1, ...,M, are designed for each subsystem Σi to compute the control
contributions δui compensating for the inaccuracies of the high layer design due to
the mismatch between Σ and Σ̄. Notably, the local regulators can be designed and
implemented at different rates to cope with subsystems operating at different time
scales, as it often happens in many important industrial fields, see the centralized
multirate MPC methods reported in [33,4,23,8,7,22,2], or the multirate implemen-
tations described in [32,16,38].
A similar control structure has been already proposed in [29] where however the
framework was different: only independent systems Σi with joint output constraints
were considered, no multirate implementations were allowed, and the problem was
to coordinate the Σ′is to guarantee an overall output request, so that different tech-
nical tools, with respect to the ones here considered, had to be adopted at the two
layers of the control structure.
The paper is organized as follows. Section 2 introduces the models considered at
the two layers. Section 3 describes the MPC algorithms adopted at the two layers,
while Section 4 presents the main feasibility and convergence results as well as a
summary of the main implementation aspects. Section 5 describes the simulation
example, while in Section 6 some conclusions are drawn. The proofs of the main
results are reported in the Appendix.
Notation: for a given set of variables zi ∈ Rqi , i = 1,2, . . . ,M, we define the vector
whose vector-components are zi in the following compact form: (z1,z2, · · · ,zM) =
[zT

1 zT
2 · · · zT

M ]T ∈ Rq, where q = ∑
M
i=1 qi. We use N+ to denote the set of positive

integer numbers. The symbols ⊕/	 denote the Minkowski sum/difference. We de-
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note by ‖ · ‖ the Euclidean norm. Finally, a ball with radius ρεi and centered at x̄ in
the Rdim space is defined as follows

Bρεi
(x̄) := {x ∈ Rdim : ||x− x̄|| ≤ ρεi}

2 Models for the two-layer control scheme

In this section we present the model of the overall system and the simplified one
used for high-level control.

2.1 Large-scale system model

In line with [25], we assume that the overall system Σ is composed by M discrete-
time, linear, interacting subsystems described by

Σi :


xi(h+1) = Aii

L xi(h)+Bii
L ui(h)+E i

Lsi(h)

yi(h) = Cii
L xi(h)

zi(h) = Czi
L xi(h),

(1)

i = 1,2, . . . ,M, where xi ⊆ Rni , ui ∈ Rmi , and yi ∈ Rpi are the state, input, and
output vectors, while h is the discrete-time index in the basic time scale according
to which the models are defined and the low level regulators will be designed. The
interconnections among the subsystems Σi are represented by the coupling input
and output vectors si ∈ Rpsi and zi ∈ Rpzi , respectively, where

si(h) =
M

∑
j=1

Li jz j(h) (2)

with Lii = 0, i = 1, ...,M.
From (1) and (2), the overall dynamical model Σ is

Σ :

 x(h+1) = ALx(h)+BLu(h)

y(h) = CLx(h)
(3)

where x = (x1, . . . ,xM) ∈ Rn, n = ∑
M
i=1 ni, u = (u1, . . . ,uM) ∈ Rm, m = ∑

M
i=1 mi, and

y = (y1, . . . ,yM) ∈ Rp, p = ∑
M
i=1 pi. The diagonal blocks of AL are state transition

matrices Aii
L , whereas the coupling terms among the Σ′is correspond to the non-

diagonal blocks of AL, i.e., Ai j
L = E i

LLi jC
z j
L , with j 6= i. The collective input and out-

put matrices are BL =diag(B11
L , ..., BMM

L ) and CL =diag(C11
L , ...,CMM

L ), respectively.
Concerning systems (1) and (3), the following standing assumption is introduced:
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Assumption 1

(1) The state xi is measurable, for each i = 1, . . . ,M;
(2) AL is Schur stable;

(3) m = p and the system matrix SΣ =

I−AL −BL

CL 0

 has full rank n+m;

(4) BL and CL are full-rank matrices;
(5) the pair (Aii

L , Bii
L) is reachable, for each i = 1, . . . ,M. �

2.2 Reduced order models

For each subsystem Σi, i= 1, ..., M, we define a reduced order model Σ̄i, i= 1, ..., M,
with state x̄i ∈ Rn̄i , n̄i ≤ ni, and input ūi ∈ Rmi . In a collective form, these systems
Σ̄i define the overall reduced order model

Σ̄ :

 x̄(h+1) = AHx̄(h)+BHū(h)

ȳ(h) = CHx̄(h)
(4)

where x̄ = (x̄1, . . . , x̄M) ∈ Rn̄, n̄ = ∑
M
i=1 n̄i, ū = (ū1, . . . , ūM) ∈ Rm, and ȳ ∈ Rp. The

reduced order models Σ̄i can be defined according to different criteria. First, it is
necessary that the stability properties of system Σ are inherited by Σ̄. Moreover,
we assume that for each subsystem i = 1, . . . ,M there exists a state projection βi :
Rni→Rn̄i , i= 1, ...,M, that allows to establish a connection between the states xi(h)
of the original models and the states of the reduced models x̄i(h). Collectively, we
define β = diag(β1, ...,βM). In principle, the ideal case would be to verify that,
if ū(h) = u(h), then x̄(h) = βx(h) and ȳ(h) = y(h) for all h ≥ 0 for suitable initial
conditions. However, due to model reduction approximations, this ideal assumption
must be relaxed; instead, we just ask that x̄ = βx and that ȳ = y in steady-state
conditions. We also require that, while matrix BH can be full, the output matrix CH

preserves the block-diagonal form of CL, i.e., that CH =diag(C11
H , . . . ,CMM

H ), where
Cii

H ∈ Rpi×n̄i for all i = 1, . . . ,M.
Overall, we require the following standing assumption to be satisfied to guarantee
the compatibility of the models used at the two layers.

Assumption 2

(1) AH is Schur stable;
(2) βi is full rank and is such that Cii

Hβi =Cii
L , for each i = 1, . . . ,M;

(3) letting ĜL(z) = β (zI − AL)
−1BL and GH(z) = (zI − AH)

−1BH, it holds that
GH(1) is full rank and ĜL(1) = GH(1). �

An algorithm to compute the projections βi and the matrices of Σ̄ is discussed in
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Appendix 7.1, along the lines of [29].

3 Design of the hierarchical control structure

In this section the regulators at the two layers of the hierarchical control structure
are designed for the solution to a tracking control problem, i.e., to drive the output
y(h) of the system Σ to the reference value yS, while respecting suitable input con-
straints.
Thanks to Assumption 1.(3), it is possible to compute the reference pair (xS,uS) cor-
responding to yS, i.e., such that xS = ALxS +BLuS and CLxS = yS. Correspondingly,
we define ūS = uS as the steady-state input reference for the reduced-order system
Σ̄, and the corresponding reference steady-state value as x̄S = GH(1)ūS = βxS by
Assumption 2.(3).
At the same time, we aim to enforce input constraints of type ui(h) ∈ ūS,i⊕US,i
for all i = 1, . . . ,M, where ūS,i is the i-th vector component of ūS and US,i, i =
1, . . . ,M, are closed and convex sets containing the origin in their interiors. Note
that, if the reference ūS,i changes, also the set US,i may vary to enforce absolute
input limitations or saturations. At a collective level, the required constraints are
u(h) ∈ ūS⊕US, where US = ∏

M
i=1 US,i is a closed and convex set containing the

origin in its interior.

3.1 Design of the high level regulator

The high level regulator, designed to work at a low frequency, is based on the
reduced order model (4) sampled with period NL under the assumption that, ∀k∈N,
the ū′is are held constant over the interval h ∈ [kNL,(k+ 1)NL− 1]. Therefore, the
sampling time of the high-level model is NL times larger than the basic sampling
time, used in the model (1). Denoting by ū[NL]

i (k) the constant values of ūi in the
long sampling period k and by ū[NL](k) the overall input vector, the reduced order
model in the slow timescale is

Σ̄
[NL] : x̄[NL](k+1) = ANL

H x̄[NL](k)+B[NL]
H ū[NL](k) (5)

where B[NL]
H = ∑

NL−1
j=0 A j

HBH. To enforce the input constraints specified above, we
will require that ū[NL](k) ∈ ūS⊕ ŪS, where ŪS = ∏

M
i=1 ŪS,i, ŪS,i ⊂ US,i for each

i = 1, . . . ,M, and where the properties of sets ŪS,i are specified later in the paper.
In order to feedback a value of x̄[NL] related to the real state x of the system, the
projected value βixi(kNL) is used, so that the reset

x̄[NL]
i (k) = βixi(kNL) (6)
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must be applied for all i = 1, . . . ,M. In collective form (6) becomes

x̄[NL](k) = βx(kNL) (7)

The reset (6) at time k may force x̄[NL](k + 1) to assume a value different from
the one computed based on the dynamics (5) and the applied input ū[NL](k). This
discrepancy, due to the model reduction error and to the actions of the low level
controllers, is accounted for by including in (5) an additive disturbance w̄(k), i.e.,

Σ̄
[NL]
w : x̄[NL](k+1) = ANL

H x̄[NL](k)+B[NL]
H ū[NL](k)+ w̄(k) (8)

The size of w̄(k) depends on the action of the low level regulators and its presence
requires to resort to a robust MPC method, which is here designed assuming that
w̄(k) ∈W , where W is a compact set containing the origin. The characteristics of
W will be defined in the following once the low level regulators have been specified
(see Section 4).
The robust MPC algorithm is based on the scheme proposed in [27]. To this end,
we first need to define the “unperturbed” prediction model

Σ̄
[NL],o
w : x̄[NL],o(k+1) = ANL

H x̄[NL],o(k)+B[NL]
H ū[NL],o(k) (9)

and the control gain matrix K̄H such that, at the same time

• FH = ANL
H +B[NL]

H K̄H is Schur stable.
• F [NL]

L = ANL
L +B[NL]

L K̄Hβ is Schur stable, where B[NL]
L = ∑

NL−1
j=0 A j

LBL.

We define ē(k) = x̄[NL](k)− x̄[NL],o(k) and we let Z be a robust positively invariant
(RPI) set - minimal, if possible - for the autonomous but perturbed system

Σ̄
[NL],e
w : ē(k+1) = FHē(k)+ w̄(k) (10)

The prediction horizon for the high-level MPC consists of NH slow time steps. De-

noting by
−−−→
ū[NL],o(t : t +NH−1) the sequence ū[NL],o(t), . . . , ū[NL],o(t +NH− 1), at

each slow time-step t the following optimization problem is solved:

min
x̄[NL],o(t),

−−−→
ū[NL],o(t:t+NH−1)

JH

(
x̄[NL],o(t),

−−−→
ū[NL],o(t : t +NH−1))

subject to:

• the unperturbed model dynamics (9)

• the initial constraint βx(tNL)− x̄[NL],o(t) ∈Z

• the terminal constraint x̄[NL],o(t +NH) ∈ x̄S⊕X̄F

• ū[NL],o(k) ∈ ūS⊕ ŪS	 K̄HZ , k = t, . . . , t +NH−1,

(11)
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where the input constrained set has been properly tightened in accordance with the
used tube-based control approach, and where

JH = ∑
t+NH−1
k=t ‖x̄[NL],o(k)− x̄S‖2

QH
+‖ū[NL],o(k)− ūS‖2

RH

+‖x̄[NL],o(t +NH)− x̄S‖2
PH

(12)

The set X̄F is a positively invariant terminal set for the unperturbed system (9) con-
trolled with the stabilizing control law ū[NL],o(k) = K̄Hx̄[NL],o(k), satisfying K̄HX̄F ⊆
ŪS	 K̄HZ . In view of this, x̄S⊕ X̄F results positively-invariant for (9) controlled
with the stabilizing auxiliary control law ū[NL],o(k) = ūS + K̄H(x̄[NL],o(k)− x̄S).
The positive definite and symmetric weighting matrices QH, RH are free design pa-
rameters, while PH is computed as the solution to the Lyapunov equation

FT
H PHFH−PH =−(QH + K̄T

H RHK̄H) (13)

Letting x̄[NL],o(t|t),
−−−→
ū[NL],o(t : t +NH−1|t) be the solution to the optimization prob-

lem (11), the control action, applied to system Σ̄
[NL]
w at time t, is

ū[NL](t) = ū[NL],o(t|t)+ K̄H(βx(tNL)− x̄[NL],o(t|t)) (14)

3.2 Design of the low level regulators

Recall that (see again Figure 1) the overall control action to be applied to the real
system Σ has components generated by both the high-level and the low-level con-
trollers, i.e.,

ui(h) = ū[NL]
i (bh/NLc)+δui(h) (15)

The low level regulators are in charge of computing the local control corrections
δui ∈US,i	 ŪS,i with the specific goal of compensating for the effect of the model
inaccuracies at the high level expressed by the term w̄(k) in (8). To this end, first
define the auxiliary system Σ̂i: for h = kNL, . . . ,(k+1)NL−1

Σ̂i :



x̂i(h+1) = Aii
L x̂i(h)+Bii

L ū[NL]
i (bh/NLc)+E i

Lŝi(h)

ŝi(h) = ∑
M
j=1 Li j ẑ j(h)

ẑi(h) = Czi
L x̂i(h)

x̂i(kNL) = xi(kNL)

(16)

and note that Σ̂i can be simulated in a centralized way in the time interval [kNL, (k+
1)NL) once the high level controller has computed ū[NL]

i (k) at the beginning of the
time interval.
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Also denote by ∆Σi the model given by the difference between systems (1) and (16),
with (2) and (15).

∆Σi :



δxi(h+1) = Aii
L δxi(h)+Bii

L δui(h)+E i
Lδ si(h)

δ si(h) = ∑
M
j=1 Li jδ z j(h)

δ zi(h) = Czi
L δxi(h)

δxi(kNL) = 0

(17)

where δxi(h) = xi(h)− x̂i(h) , δ zi(h) = zi(h)− ẑi(h) and δ si(h) = si(h)− ŝi(h).

The difference state δxi is available at each time instant h since xi is measurable and
x̂i can be computed with (16) from the available value ū[NL]

i (bh/NLc). However, the
difference dynamical system ∆Σi is not yet useful for decentralized prediction since
it depends upon the interconnection variables δ si(h) that, in turn, depend upon the
variables δx j(h), j 6= i, not known in advance in the future prediction horizon. For
this reason, we define a decentralized (approximated) dynamical system ∆ Σ̂i with
input δ ûi(h) and discarding all coupling inputs, i.e.,

∆ Σ̂i :

 δ x̂i(h+1) = Aii
L δ x̂i(h)+Bii

L δ ûi(h)

δ x̂i(kNL) = 0
(18)

The decentralized dynamical system ∆ Σ̂i is suitable for prediction, since it does
not depend on quantities related to other subsystems. However, the dynamics of the
subsystems can be very different from each other and resampling can be advisable
for the design of the low level regulators. To this end, for any subsystem Σi, define
a new sampling period ζi ∈N+ such that NL/ζi = Ni ∈N+ and a corresponding
time index li. For clarity, the relations among the time scales with indices h, li, and
k are shown in Figure 2 in a specific case.

8 16

h

0 1 2 3 4

1 2

0

0

il
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( 4, 2)i iN  

L( 8)N 

Fig. 2. Adopted time scales: k (high layer design), li = kNi (low layer design of the i-th
local regulator), h = ζili = kζiNi = kNL (basic time scale).
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In the time scale of li, define the dynamical system ∆Σ̂
[ζi]
i as

∆ Σ̂
[ζi]
i :

 δ x̂[ζi]
i (li +1) = (Aii

L)
ζiδ x̂[ζi]

i (li)+Bii
L
[ζi]

δ û[ζi]
i (li)

δ x̂[ζi]
i (kNi) = δ x̂i(kNL) = 0

(19)

where Bii
L
[ζi] = ∑

ζi−1
j=0 (A

ii
L)

jBii
L . In the short time scale, with time index h, the input

δ ûi(h) = δ û[ζi]
i (bh/ζic) is piecewise constant for h ∈ [liζi,(li + 1)ζi− 1]. Its value

will be computed as the result of a suitable optimization problem formulated for
system (19).
Given δ ûi(h), the evolution of δ x̂i(h) can be computed thanks to the dynamical
model (18), however δ x̂i(h) is in general different from δxi(h) due to the neglected
interconnections in systems (18) and (19). For this reason, and for all i = 1, . . . ,M,
the input δui(h) to the real model (17) is computed based on δ ûi(h), δxi(h), and
δ x̂i(h) using a standard state-feedback policy, i.e.,

δui(h) = δ ûi(h)+Ki(δxi(h)−δ x̂i(h)) (20)

where Ki is designed in such a way that the matrix FL = AL +BLK is Schur stable,
being K =diag(K1, . . . ,KM).
Assume now to be at time h = kNL and to have run the high level controller, so that
both ū[NL]

i (k) and the predicted value x̄[NL](k + 1|k) = ANL
H x̄[NL](k) +B[NL]

H ū[NL](k)
are available. Therefore, in order to remove the effect of the mismatch at the high
level represented by w̄(k) in (8), the low level controller working in the interval
h ∈ [kNL,(k+1)NL−1] should, if possible, aim to fulfill

βixi((k+1)NL) = x̄[NL]
i (k+1|k)

or equivalently,

βiδxi((k+1)NL) = x̄[NL]
i (k+1|k)−βix̂i((k+1)NL) (21)

Since the model used for low-level control design is the decentralized one (i.e.,
(18)), the constraint (21) can only be formulated in an approximated way with
reference to the state δ x̂i of system (18). In turn, if the resampling is used with
ζi 6= 1, the constraint on δ x̂i must be reformulated in terms of the state δ x̂[ζi]

i of
system (19), so that

βiδ x̂[ζi]
i ((k+1)Ni) = βiδ x̂i((k+1)NL) =

= x̄[NL]
i (k+1|k)−βix̂i((k+1)NL)

(22)

Note that the fulfillment of (22) does not imply that (21) is satisfied due to the
neglected interconnections in (18) and (19) which make the term w̄(k) in (5) not

9



identically equal to zero, although it contributes to its reduction.
All these considerations lead to the formulation of the following low-level MPC de-

signs. Letting
−−−→
δ û[ζi]

i (kNi : (k+1)Ni−1) = (δ û[ζi]
i (kNi), . . . ,δ û[ζi]

i ((k+1)Ni−1)) ∈
(Rmi)Ni , the low level control action is computed, at time instant h = kNL, based on
the solution to the following optimization problem:

min−−−→
δ û[ζi]

i (kNi:(k+1)Ni−1)
JL

(−−−→
δ û[ζi]

i (kNi : (k+1)Ni−1)
)

subject to:

• the dynamics (19)

• the terminal constraint (22)

• δ û[ζi]
i (kNi + li) ∈ ∆Ûi, li = 0, . . . ,Ni−1,

(23)

where JL is a positive definite function with arguments δ x̂[ζi]
i (kNi + li), δ û[ζi]

i (kNi +
li), li = 0, . . . ,Ni−1, e.g.,

JL =
Ni−1

∑
li=0
‖δ x̂[ζi]

i (kNi + li)‖2
Qi
+‖δ û[ζi]

i (kNi + li)‖2
Ri

(24)

and where a discussion on how to select the set ∆Ûi is deferred to Appendix 7.2.
Finally, for j = 0, . . . ,NL − 1, the control component at each (fast) time instant
δui(kNL + j) is given by

δui(kNL + j) = δ ûi(kNL + j|kNL)

+Ki(δxi(kNL + j)−δ x̂i(kNL + j|kNL))
(25)

where
δ ûi(kNL + j|kNL) = δ û[ζi]

i (kNi + b j/ζic|kNL) (26)

A further clarification is finally due. At the low level, the controller is designed
mostly to compensate for the effects of model inaccuracies during each long sam-
pling time (i.e., that of the high-level controller). Therefore, the prediction horizon
at low level coincides with one large sampling time of the slow high-level con-
troller, i.e., corresponding to NL fast sampling times. Due to resampling, the opti-
mization problem computed at the beginning of each slow sampling time, i.e., at
time h = kNL, has a prediction horizon of Ni steps of lenght ζi, where indeed Niζi =

NL. As a result of this optimization problem, the input sequence δ û[ζi]
i (kNi|kNL),

. . . , δ û[ζi]
i ((k+ 1)Ni− 1|kNL) is obtained, and at each fast sampling time kNL + j,

j = 0, . . . ,NL− 1, the real (low-level) input contribution (25) is used in (15). Note
that, in this way, δui(h) varies at each sampling time.
In summary, the on-line implementation of the hierarchical control scheme here
proposed consists of the following steps:
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• at any long sampling time k solve the centralized simplified slow time-scale MPC
problem (11) with cost (12) and obtain the value of ū[NL](k) using (14);
• for any system Σi, at the beginning of any long sampling time k solve the opti-

mization problem (23) with cost (24) and compute the full sequence δ û[ζi]
i (kNi|kNL),

. . . , δ û[ζi]
i ((k+1)Ni−1|kNL);

• for any system Σi, at any fast sampling time kNL + j j = 0, . . . ,NL−1, compute
the low-level contribution δui(kNL + j) using (25) and (26);
• for any system Σi, at any fast sampling time kNL + j the applied control value

is obtained as the sum of the low-level and of the high level contributions, as in
(15).

4 Properties and algorithm implementation

The main assumptions, the recursive feasibility and convergence properties of the
optimization problems stated at the high and low levels are established in this sec-
tion.

4.1 Main assumptions and remarks

Define
κ(NL) = ‖B(NL)‖ (27)

where

B(NL) =
NL

∑
j=1

ANL− j
H BH−β

NL

∑
j=1

ANL− j
L BL

Also, let Isi =
[
0n̄i×n̄1 · · · In̄i · · · 0n̄i×n̄M

]
, A (NL) =ANL

H β−βANL
L ∈Rn̄×n, R(NL) =[

BL ALBL · · · (AL)
NL−1BL

]
, ρu be such that US ⊆Bρu(0). We now introduce the

following assumption.

Assumption 3

(1) ‖ANL
L ‖< 1;

(2) letting Ri(Ni)=
[
Bii

L
[ζi] (Aii

L)
ζiBii

L
[ζi] · · · (Aii

L)
ζi(Ni−1)Bii

L
[ζi]
]

for each i= 1, ...,M,

be the reachability matrix in Ni steps associated to ((Aii
L)

ζi,Bii
L
[ζi]), matrix

Hi(Ni) = βiRi(Ni) ∈ Rn̄i×Nimi

is full-rank with minimum singular value σHi(Ni)
> 0;
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(3) letting ρū and ρδ ûi be such that Ū ⊆ Bρū(0) and ∆Ûi ⊇ Bρδ ûi
(0), respec-

tively, for any i = 1, ...,M it holds that

ρδ ûi >
κ(NL)ρū√
NiσHi(Ni)

(28)

(4) for each i = 1, . . . ,M

χi(kNL) =

√
NLρu‖R(NL)‖‖A (NL)‖

(1−‖ANL
L ‖)(

√
NiσHi(Ni)

ρδ ûi−κ(NL)ρū)
≤ 1 (29)

(5) Define ∆Ūi = ∆Ui(NL−1), and ∆Ui( j) = ∆Ûi⊕Bρ∆ui( j)(0) where ρ∆ui( j) =

∑
j
r=2 ‖KiIsiF

j−r
L (AL − AD

L )‖ρδ x̂(r− 1) for all j = 2, . . . ,NL, ρ∆ui( j) = 0 for

j = 0,1, and where AD
L =diag(A11

L , . . . ,AMM
L ) and ρδ x̂( j) =

√
∑

M
i=1 ρ2

δ x̂i
( j),

ρδ x̂i( j) = ρδ ûi

j

∑
r=1
‖(Aii

L)
j−rBii

L‖ (30)

We require that

ŪS⊕ (
M

∏
i=1

∆Ūi)⊆US (31)

�

Assumption 3 may be viewed, at a first glance, as a list of purely abstract and
technical requirements. However, on the one hand, it represents relevant inherent
properties of the system under control and, on the other hand, it implicitly includes
important design principles, that will be shortly discussed next.
First, note that Assumption 3.(1) can always be verified in the light of the Assump-
tion 1.(2) on stability of the transition matrix AL, and establishes a lower bound for
the parameter NL. On the other hand, in view of Assumption 2.(2), βi are full rank
and the full rank of matrix Ri(Ni) is guaranteed by the reachability of the local
submodels used at low level control guaranteed by Assumption 1.(5): therefore As-
sumption 3.(2) is fulfilled by taking Ni (and so NL) sufficiently large.
Secondly, Assumptions 3.(3)-3.(5) provide a tradeoff for the selection of parame-
ters ρδ ûi , i = 1, . . . ,M and ρū. In fact
- on the one hand, as required by Assumption 3.(5), and more specifically by equa-
tion (31), the input u(h) must be shared between the low-level controllers (with
local inputs δui, whose maximal amplitude is related to ρδ ûi) and centralized high-
level controller (with input ū, whose maximal amplitude is related to ρū);
- on the other hand, the amplitude of δui must be sufficiently large to compensate
for the model inaccuracies, as expressed by Assumptions 3.(3), 3.(4), and more
specifically by equations (28) and (29).
Importantly, note that the constraints (28) and (29) depend upon quantities that are
all functions of the number of steps NL, as clarified in the following.
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- In view of Assumptions 1.(2), 2.(3), and 2.(1), κ(NL) = ‖∑
NL−1
j=0 A j

HBH−GH(1)−
(β ∑

NL−1
j=0 A j

LBL− ĜL(1))‖ and GH(1) = ∑
+∞

j=0 A j
HBH, ĜL(1) = β ∑

+∞

j=0 A j
LBL. There-

fore κ(NL)≤‖∑
+∞

j=NL
A j

HBH‖+‖β ∑
+∞

j=NL
A j

LBL‖≤‖ANL
H ‖‖GH(1)‖+‖ANL

L ‖‖β‖‖GL(1)‖,
where GL(z) = (zI−AL)

−1BL. Therefore κ(NL)→ 0 exponentially as NL → +∞.
This shows that also Assumption 3.(3) can be fulfilled by taking NL sufficiently
large.
- Similarly to Proposition 2.3 in [29], for any i = 1, ...,M it can be proved that

lim
NL→+∞

‖ANL
L ‖= 0, lim

NL→+∞
χi(NL) = 0 (32)

This proves that also Assumption 3.(4) can be fulfilled - i.e., we can increase the
maximum amplitude of ū as much as possible - by taking a sufficiently large value
of parameter NL. This, as a byproduct, allows to minimize the conservativity of the
overall control scheme, as discussed in the next section.

4.2 Main results and conservativity of the scheme

The size of the uncertainty set W to be considered in the high level design is given
by

W = Bρw(0) (33)

where ρw = ∑
NL
j=2 ‖βFNL− j

L (AL−AD
L)‖ρδ x̂( j−1).

The main result can now be stated.

Theorem 1 Under Assumption 3, if x(0) is such that the problem (11) is feasible
at k = 0 and, for all i = 1, . . . ,M

‖x(0)− xS‖ ≤
(
√

NiσHi(Ni)
ρδ ûi−κ(NL)ρū)

‖A (NL)‖
:= λi(NL)

then
(i) w̄(k) ∈W and problems (11) and (23) are feasible for all k ≥ 0;
(ii) for all h≥ 0

u(h) ∈ ūS⊕US (34)

(iii) the state of the slow time-scale reduced model Σ̄[NL] enjoys robust convergence
properties, i.e.,

x̄[NL](k)→ x̄S⊕Z as k→+∞

(iv) the state of the large scale model Σ enjoys robust convergence properties, i.e.,
for a computable positive constant ρx

x(kNL)→ xS⊕
∞⊕

h=0

(F [NL]
L )hBρx(0)
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(v) we can define (see (67) in Appendix 7.3) a function σ(NL) of NL such that, if

σ(NL)< 1 (35)

then, as k→ ∞, x(kNL)→ xS. �

Theorem 1 establishes three important facts. First, it shows that, if the initial state
lies in a suitable set (and if Assumption 3 holds), the joint feasibility properties of
the two control layers can be guaranteed in a recursive fashion. Secondly, it ensures
robust convergence of the states of both the reduced-scale and the overall systems
to a neighborhood of the corresponding steady-state goals.
Finally, if a suitably-defined function σ(NL) is smaller than one, then convergence
of the state to the goal is ensured. The definition of σ(NL) is quite involved and for
this reason it is given in Appendix 7.3, in particular see equation (67). A general
remark, however, is due on parameter σ(NL): the more the subsystems are inter-
connected (in a wide sense, regarding both the existence of dependencies between
subsystems and their amplitude), the larger σ(NL). On the other hand, it is possible
to reduce arbitrarily this parameter by increasing the tuning knob NL. This depends
of the fact that, as NL→+∞, both ‖A (NL)‖→ 0 and ‖B(NL)‖→ 0.
A further remark is that, similarly to Proposition 2.3 in [29], for any i = 1, ...,M it
can be proved that limNL→+∞ λi(NL) = +∞, allowing to increase at will the feasi-
bility region of the low-level problem.
From the discussion in Section 4.1 it has finally become clear that, by tuning the
value of the low-level prediction horizon NL, one can reduce at will the values of
ρδ ûi , related to the maximum required amplitude of inputs δui. This, from (30) and
(33), allows to reduce arbitrarily the high-level disturbance set W . This, in turn,
allows to reduce at will the corresponding RPI set Z and to minimize the conser-
vativity of the present control scheme. We remark that, although a fine tuning of the
gain matrices Ki, i = 1, . . . ,M and K̄H can also be beneficial for the reduction of the
conservativity of the scheme, the most relevant tuning knob indeed results param-
eter NL, especially since the dependence upon all other design parameters results
rather straightforward and simple.

From the discussion above a further consideration is due. Although the case NL→
+∞ allows to verify all the requirements, to obtain the best dynamic performances
from the application of our control scheme, it would be beneficial to set NL to an
”average” value, such that the assumptions are verified, but at the same time that
guarantees to control the system in a dynamic fashion also at high level. It is nev-
ertheless important to remark that, when NL → +∞, the scheme can be regarded
as a two-layer algorithm that at high level consists of a static optimizer based on a
simplified system model and, at low level, consists of a dynamic, reactive, decen-
tralized, and multi-rate, optimization-based regulator.
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4.3 Design

The implementation of the multilayer algorithm described in the previous section
requires a number of off-line computations here listed for the reader’s convenience.

• design of AH, BH, and βi, i = 1, ...,M, such that Assumption 2 is satisfied;
• design of K̄H such that both FH = ANL

H +B[NL]
H K̄H and F [NL]

L = ANL
L +B[NL]

L K̄Hβ are
Schur stable;

• design of K = diag(K1, . . . ,KM) such that FL = AL +BLK is Schur stable;
• computation of ρδ ûi , ρūi (see the procedure proposed in Appendix 7.2) and of the

sets ŪS,i, ∆Ûi;
• computation of W according to (33) and (30);
• computation of X̄F, Z , see [31], and PH with (13).

5 Simulation example and implementation procedures

The hierarchical control algorithm described in the previous sections has been used
to control the model of the large-scale chemical plant described in [26], [35].

5.1 Description of the plant and linearized model

The system is composed of three reactors R1, R2, R3, three distillation columns
C1, C2, C3, two recycle streams and six chemical components: A,B,C,D,E,F . The
flow diagram of the system is reported in Figure 3, where D1, D2, D3 are the top
products of the columns, while B1, B2, B3 are their bottom products. The follow-
ing reactions occur inside the reactors R1 : A+B→ C+D, R2 : D+E → F +B,
and R3 : D+E→ F +B. The system has six control variables, namely the refluxes
(v1,v3,v5) and the vapour (v2,v4,v6) flow rates in the columns C1,C2,C3, respec-
tively, and six outputs: the liquid molar fraction (r1) of component A at the top
product of C1, the liquid molar fraction (r2) of component D at the bottom prod-
uct of C1, the liquid molar fraction (r3) of component C at the top product of C2,
the liquid molar fraction (r4) of component D at the bottom product of C2, the liq-
uid molar fraction (r5) of component B at the top product of C3, and the liquid
molar fraction (r6) of component F at the bottom product of C3. A detailed de-
scription of the model equations and of the model parameters is reported in [35].
The considered nominal operating point is characterized by the vector of inputs
vnominal = [330 410 283 385 141 282]

′
lbmol/h, to which it corresponds

the vector of outputs rnominal = [0.942 0.552 0.827 0.941 0.705 0.991]
′
.

The linearized model at this operating condition is of order n = 192, and shows
strong interactions among the control and controlled variables, see again [35].
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In order to apply the hierarchical control structure described in this paper, the sys-
tem and the corresponding linearized model have been partitioned into two subsys-
tems (i.e. M = 2). The first one includes reactors R1,R2 and columns C1,C2, while
the second one is made by R3 and C3. The continuous-time linearized models of the

R1

A+B      C+D

C1 C2

R2

D+E      F+B
R3

D+E      F+B

C3

B1

D1
D2

C

C+D

A+B

B2

D

B3

FA

21

E

B
D3

Fig. 3. Flow diagram of the chemical plant: for i = 1,2,3, Ri and Ci are the reactors and
distillation columns, while Di and Bi are the top and bottom products.

two subsystems have been discretized with the algorithm described in [15] and ba-
sic sampling time T = 0.05 h and a standard model order reduction procedure has
been used to remove the unreachable states of the two linear subsystems. Denoting
with δvi and δ ri the deviations of the inputs vi and the outputs ri, respectively, with
respect to their nominal values, the first resulting linear reduced order model is of
order n1 = 25, with m1 = 4 inputs, i.e., u1 = (δv1, · · · ,δv4), p1 = 4 outputs, i.e.,
y1 =(δ r1, · · · ,δ r4), and pz1 = 3 coupling outputs, while the second one has n2 = 16
states, m2 = 2 inputs, i.e., u2 = (δv5,δv6), p2 = 2 outputs, i.e., y2 = (δ r5,δ r6), and
pz2 = 2 coupling outputs. These two linear subsystems have been used as the linear
models described in (1) for the implementation of the hierarchical control structure.
The control variables are limited by

‖ui−uS,i‖∞ ≤ 100, (36)

for i = 1,2, where uS,i is the steady state value corresponding to the output set-point
values given by yS = 10−3 · (9.4, 5.5, 8.3, 9.4, 7.0, 9.9).

5.2 Design and implementation procedures

The procedures used to implement the hierarchical control structure previously de-
scribed and the computational details are now listed.
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5.2.1 Tuning the hierarchical control scheme with NL = 28, NH = 3

5.2.1.1 Devising the high-level simplified model and the low-level submodels

• The procedure described in Appendix 7.1 has been used to compute the matri-
ces β1 and β2, and the reduced order model (4) with order n̄ = 6. The dynamic
matrix AH = diag(0.972, 0.984, 0.969, 0.969, 0.874, 0.869) has been computed;
its parameters have been selected as the maximum singular values of the reach-
ability matrix of each subsystem previously discretized. The matrix BH has been
computed as described in Appendix 7.1. The resulting model has been resampled
with NL = 28 to obtain the model (5) to be used at the high level in the slow time
scale.
• The models (18) have been re-sampled with ζ1 = 4 and ζ2 = 1 to obtain the

models (19) to be used at the low level in the fast time scale.

5.2.1.2 Off-line design of the low-level regulators

• The low level finite-horizon optimization algorithms described in (23) and (24)
have been implemented with state and input penalties Q1 = 103 · β T

1 β1, Q2 =
104 ·β T

2 β2, R1 = Im1 and R2 = Im2 .
• The decentralized feedback gains K1 and K2 guaranteeing that FL is Schur stable

can in principle be computed according to the algorithm described in [6] and
based on the solution of LMI problems. However, in our case, we simply solved
two independent LQ problems and we checked that the resulting FL is Schur
stable.
• The parameters ρδ û1 , ρδ û2 , ρū1 and ρū2 have been computed according to (41) in

Appendix 7.2. Specifically we used the cost function Jρ = γ111×M
−→
ρ δ û− (−→ρ ū−

γ2
−→
ρ u)

′
(−→ρ ū− γ2

−→
ρ u), where γ1, γ2 are positive constants selected as γ1 = 1 and

γ2 = 0.3. Note that the choice of γ1,γ2 allows one to modify the feasibility region
of the high level optimization problem (11) and (12); typically setting γ1 = 1,
the feasibility properties of (11) grow with γ2. The computed values are ρδ û1 =
145.2, ρδ û2 = 115.7, ρū1 = 49.3, ρū2 = 25.2. The input vectors of each subsys-
tem, namely ūi, δ ûi, i = 1,2, have been limited as follows: −ρūi/

√
mi1mi×1 ≤

ūi− ūS,i ≤ ρūi/
√

mi1mi×1, −ρδ ûi/
√

mi1mi×1 ≤ δ ûi ≤ ρδ ûi/
√

mi1mi×1; and the
corresponding sets ŪS,i, ∆ÛS,i, i = 1,2 have been obtained.

Note that ρū1/
√

m1 +ρδ û1/
√

m1 = 97.3 and ρū2/
√

m2 +ρδ û2/
√

m2 = 99.6 and we
can write ŪS,1⊕∆ÛS,1 = {ū1+δ û1|−97.3 ·1m1×1≤ ū1+δ û1− ūS,1≤ 97.3 ·1m1×1}
and ŪS,2⊕∆ÛS,2 = {ū2 + δ û2| − 99.6 · 1m2×1 ≤ ū1 + δ û2− ūS,2 ≤ 99.6 · 1m2×1}.
These results show that the size of both the sets ŪS,1 ⊕ ∆ÛS,1 and ŪS,2 ⊕ ∆ÛS,2

is close to that of the real input constraint in (36). In addition, the radius of the
sets Bρ∆ui(NL−1)(0), i = 1,2, resulting from the feedback policy in (20) for compen-
sating the couplings terms between subsystems have been computed according to
Assumption 3.(5) with ρ∆u1(NL−1) = 4.0 and ρ∆u2(NL−1) = 0.37. Therefore, we can
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also write ŪS,1⊕∆US,1 = {ū1+δu1|−99.3 ·1m1×1≤ ū1+δu1− ūS,1≤ 99.3 ·1m1×1}
and ŪS,2⊕∆US,2 = {ū2 +δu2|−99.9 ·1m2×1 ≤ ū1 +δu2− ūS,2 ≤ 99.9 ·1m2×1}. In
view of this, the conservativeness of the algorithm related to the computation of the
input constraint sets described in Appendix 7.2 is small, especially for the second
subsystem.

5.2.1.3 Off-line design of the high-level regulator

• The high-level tube-based robust MPC has been designed according to the algo-
rithm described in [27] with state and input penalties QH = In̄ and RH = 0.1Im.
• The gain matrix K̄H guaranteeing that both FH and F [NL]

L are Schur stable can be
computed according to the algorithm described in [6] and based on the solution
of LMI problems. However, in our case, we simply solved a LQ problem and we
checked that the resulting FH and F [NL]

L were Schur stable.
• The disturbance set has been obtained according to (33) and (30) with ρw = 1.25,

and the RPI set has been computed with the algorithms described at pp. 231-233
of [30], i.e., Z = {z| − (2.66,3.61,1.93,2.64,1.30,1.30) ≤ z ≤
(2.66,3.61,1.93,2.64,1.30,1.30)} and K̄HZ = {K̄Hz| − (1.64,1.63,1.02,1.02,
0.10,0.10)≤ K̄Hz≤ (1.64,1.63,1.02,1.02,0.10,0.10)}. The terminal penalty PH

is computed with (13), and the terminal set is calculated under nominal input
constraints in (11), i.e.,X̄F = {x̄[NL],o|(x̄[NL],o− x̄S)

T PH(x̄[NL],o− x̄S)≤ 0.997}, see
[18].

The values taken by ρw, Z and K̄HZ reveal that the feasibility region of high-level
regulator might be slightly reduced compared to the one of stabilizing MPC due
to the use of tightened input constraint set, i.e., ūS⊕ ŪS	 K̄HZ in optimization
problem (11) and the computation formulas of the disturbance set in (33) and (30),
but can be enlarged by increasing the tuning knobs ρū1 and ρū2 .

5.2.2 Tuning the hierarchical control scheme with NL = 84, NH = 1

Along the same line with the previous Section 5.2.1, the computational results cor-
responding to tuning knob NL = 84 and NH = 1 are also listed here.

• The following parameters ρδ û1 , ρδ û2 , ρū1 and ρū2 have been computed: ρδ û1 =
125.6, ρδ û2 = 98.3, ρū1 = 59.5, ρū2 = 41.9. The amplitude of both ρδ û1 and ρδ û2
(ρū1 and ρū2) is smaller (larger) than that with tuning knob NL = 28, NH = 3.
• The sets ŪS,1 ⊕ ∆ÛS,1 = {ū1 + δ û1| − 92.6 · 1m1×1 ≤ ū1 + δ û1 − ūS,1 ≤ 92.6 ·
1m1×1} and ŪS,2⊕∆ÛS,2 = {ū2 + δ û2|−99.1 ·1m2×1 ≤ ū1 + δ û2− ūS,2 ≤ 99.1 ·
1m2×1}. These results show that the size of both the sets ŪS,1⊕∆ÛS,1 and ŪS,2⊕
∆ÛS,2 has been reduced slightly compared to that with tuning knob NL = 28,
NH = 3, however, is still close to that of the real input constraint in (36). In ad-
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dition, the radius of the sets Bρ∆ui(NL−1)(0), i = 1,2, have been computed with
ρ∆u1(NL−1) = 11.3 and ρ∆u2(NL−1) = 0.91. Therefore, we can also write ŪS,1⊕
∆US,1 = {ū1 + δu1|−98.2 ·1m1×1 ≤ ū1 + δu1− ūS,1 ≤ 98.2 ·1m1×1} and ŪS,2⊕
∆US,2 = {ū2 +δu2|−99.8 ·1m2×1 ≤ ū1 +δu2− ūS,2 ≤ 99.8 ·1m2×1}. In view of
this, the conservativity of the algorithm related to the computation of the input
constraint sets described in Appendix 7.2 is still small, especially for the second
subsystem.

• The disturbance set has been obtained with ρw = 1.56, and the RPI set has been
computed i.e., Z = {z| − (1.83,2.11,1.69,1.82,1.58,1.58) ≤ z ≤
(1.83,2.11,1.69,1.82,1.58,1.58)} and K̄HZ = {K̄Hz| − (0.37,0.29,0.17,0.18,
0.01,0.01)≤ K̄Hz≤ (0.37,0.29,0.17,0.18,0.01,0.01)}. The terminal penalty PH

is computed with (13), and the terminal set is calculated under nominal input
constraints in (11), i.e.,X̄F = {x̄[NL],o|(x̄[NL],o− x̄S)

T PH(x̄[NL],o− x̄S)≤ 0.98}.

Note that, the size of both the sets Z and K̄HZ is smaller than that with the tuning
NL = 28, NH = 3. The amplitude of ρū1 and ρū2 has been enlarged and the feasibility
region of the high-level regulator can be increased significantly.

5.2.3 On-line implementation

The on-line implementation proceduce is depicted in Algorithm 1.

Algorithm 1 On-line implementation
initialization
while for any integer k ≥ 0 do

(1) set x̄[NL](k) = βx(kNL), x̂(kNL) = x(kNL), δ x̂(kNL) = 0 and δx(kNL) = 0
(2) compute the high-level input ū[NL],o(k|k) by solving the high-level optimiza-
tion problem (11) and (12), and compute ū[NL](k) by equation (14)
(3) update x̄[NL](k+1|k) and x̄[NL],o(k+1|k)
(4) generate x̂i(h) of system (16) in an open-loop fashion for NL fast time steps
with high-level control action ū[NL](bh/NLc), for all h ∈ [kNL,kNL +NL)
(5) compute terminal constraints (22) for low-level regulators

(6) compute
−−−→
δ û[ζi]

i (kNi : (k+ 1)Ni− 1|kNL) by solving the finite-horizon opti-
mization problem (23) and (24) for i = 1,2
(7) generate δ ûi(h) in (26) with δ û[ζi]

i (bh/ζic|kNL) and compute δ x̂i(h) in (18)
with δ ûi(h) for i = 1,2 and for all h ∈ [kNL,kNL +NL)
for h← kNL to kNL +NL−1 do

(f1) compute δui(h) with (25) and compute ui(h) = ū[NL]
i (bh/NLc)+δui(h)

for i = 1,2
(f2) update δx(h+1) and x(h+1)

end 8
k←k+1

end
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Table 1
On-line computation time comparison

Approach Optimization activated at Computation time (s)

Proposed one with NL = 28

HL regulator h = kNL 1.1

LL regulator
1st one h = kNL 0.94

2nd one h = kNL 0.45

Proposed one with NL = 84

HL regulator h = kNL 1.07

LL regulator
1st one h = kNL 2.16

2nd one h = kNL 3.64

Centralized stabilizing MPC each fast time instant h 21.9

5.3 Simulation results: application to the linearized model

The overall control actions computed by the high and low level controllers have
been applied to the linear system at each fast sampling time. The output refer-
ence values for the linear system have been initially maintained at the nominal
setpoints yS = 10−3 · (9.4, 5.5, 8.3, 9.4, 7.0, 9.9); then, at time t = 25.2 h, they
have been set equal to 10−2 ·(2.43,−1.01,−0.43, 0.15,−0.70, 0.41). For compar-
ison, a centralized state-feedback stabilizing MPC has been designed with an aux-
iliary state-feedback control law computed with LQ control, state penalty matrix
Q = diag(Q1, Q2), input penalty R = Im and prediction horizon N = NH ·NL = 84.
The terminal set has been chosen as XF = {x|(x−xS)

T P(x−xS)≤ 1}where the ter-
minal penalty P has been taken as the steady state solution of the Riccati equation
according to the infinite horizon control problem with Q, R. All the simulation tests
have been implemented within MATLAB Yalmip and MPT toolbox, see [24] and
[17], in a PC with Intel Core i5-4200U 2.30 GHz and with Windows 10 operating
system. The SDPT3 solver has been used for the implementation of the centralized
MPC and of the high-level regulator of the proposed approach, while the Matlab
QUADPROG solver has been used for the low-level optimization problems. The
detailed on-line computational time required for each controller is reported in Table
1. This table shows that the on-line computational time of the proposed hierarchi-
cal approach for each interval [kNL, kNL +NL) with NL = 28 and NH = 3 (NL = 84
and NH = 1), i.e., 2.49 s (6.87 s), is reduced dramatically compared to that of the
centralized MPC, i.e., 21.9 ·NL s.
The evolution of the output and control variables of the controlled linear system is
reported in Figures 4-5 which show that, after an initial transient, inputs and out-
puts return to their nominal values until the change of the reference occurs, when
both the centralized and the two-layer control systems properly react to bring the
controlled variables to their reference values, and the performance of the proposed
two-layer approach with both tuning cases NL = 28, NH = 3 and NL = 84, NH = 1 is
close to that of centralized stabilizing MPC.
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Fig. 4. Control variables of the controlled linear system: black + markers (blue · markers)
are the values of the inputs computed at the high level by the two-layer scheme with NL = 84
and NH = 1 (with NL = 28 and NH = 3), black continuous lines (blue dot-dashed lines) are
the values of the overall control actions computed by the two-layer scheme with NL = 84
and NH = 1 (with NL = 28 and NH = 3), while red dashed lines are the values of the control
variables computed by the centralized scheme.
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Fig. 5. Outputs of the controlled linear system: black continuous lines (blue dot-dashed
lines) are the values of the outputs computed by the two-layer scheme with NL = 84 and
NH = 1 (with NL = 28 and NH = 3), while red dashed lines are the values of the outputs
computed by the centralized scheme.
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5.4 Simulation results: application to the nonlinear system

The two-layer control structure has also been applied to the nonlinear chemical
plant with NL = 84 and NH = 1. Since in a realistic scenario the state is unmeasur-
able, the distributed Kalman filter described in [14] has been used. The covariances
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of the noises acting on the states have been set equal to Q̂1 = 0.1In1 , Q̂2 = 0.1In2 ,
while the covariances of the output noises have been chosen as R̂1 = 0.01Ip1 ,
R̂2 = 0.01Ip2 . Finally, the covariances of the initial state estimates have been se-
lected as P1(0) = 0.01In1 , P2(0) = 0.01In2 .
Starting from the nominal operating conditions, the overall control actions com-
puted by high and low level controllers have been applied to the original nonlin-
ear system at each fast time instant. The output reference values for the nonlinear
system have been initially maintained at the nominal point rnominal; then, at time
t = 25.2 h, they have been set equal to [0.866, 0.558, 0.791, 0.903, 0.704, 0.948].
The evolution of the output and control variables of the controlled nonlinear system
are reported in Figure 6-7. These figures show that, after an initial transient due to
the state filter, inputs and outputs return to their nominal values until the change
of the reference occurs, when the two-layer control system properly reacts to bring
the controlled variables to their reference values.

6 Extensions and conclusions

In this paper a two-layer control scheme for systems made by interconnected sub-
systems has been presented. The algorithm is based on the solution, at the two lay-
ers, of MPC problems of reduced size and allows for a multirate implementation,
suitable to deal with systems characterized by significantly different dynamics. Its
main properties of recursive feasibility and convergence have been established and
its performances have been tested in a nontrivial simulation example.
The main rationale of the proposed control architecture is grounded on the use, at
the high level, of a reduced and slow-timescale model for centralized control. At the
low-level, each subsystem is endowed of a local controller and is in charge of both
compensating for the model inaccuracies introduced at the high level and dealing
with the distributed nature of the system.
At high level, in this paper we use a tracking control algorithm based on robust
tube-based MPC. This choice, however, is somehow arbitrary, since many alterna-
tive (robust) control solutions can be used instead, e.g., the offset-free robust MPC
scheme proposed in [5].
The reference signals are here assumed to be previously computed, for instance by
an additional Real Time Optimization layer (RTO), e.g., based on the current and
predicted external conditions, such as prices of energy or costs of row materials,
see [9,19,1,20,21,13,10,37]. It is important to remark that RTO-based structures
must be properly designed to guarantee the compatibility of the models used at the
two layers, see [10,37,13]. Also, dynamic RTO structures may be prone to stability
issues, as noted in [12].
To overcome problems related to the use of RTO to generate reference signals, a
robust economic MPC approach can be used, see [3], for the design of a high level
regulator which, at the same time, computes the optimal reference values for the
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controlled outputs. This, in our opinion, would not entail significant differences in
the algorithm implementation and in the theoretical results. Future work will be
devoted to this extension.

7 Appendix

7.1 Construction of βi and of the reduced order model

A constructive procedure for the computation of the matrices βi, i = 1, . . . , M, and
the reduced order model satisfying Assumption 2 is listed here following the same
line as in [29]. Note however that in [29] the case of dynamically decoupled sub-
systems was considered, and full system reduction actually could be carried out
subsystem-by-subsystem. On the contrary, in this case, system reduction must be
performed at a full system level and structural additional constraints must be sat-
isfied, i.e. the block-diagonality of matrix β . In view of the presence of these con-
straints, the sufficient and necessary condition given in Proposition 1 in [29] for
guaranteeing the fulfillment of Assumption 2 (i.e., that n̄≥ p+dim(ImGx

L∩KerCL))
is, in our case, only necessary.
Here we now describe a (possibly conservative) procedure:

a find a subspace Kerβi of dimension ni− n̄i so that Kerβi ⊆ KerCii
L and Zii ∩

Kerβi = {0}, where Zii = Im G̃ii
L(1)∩KerCii

L , and G̃ii
L(z) = (zI−Aii

L)
−1
[
Bii

L Ei

]
;

b let {κ1, . . . ,κni−n̄i} be a set of independent vectors in Kβ ,i =Kerβi and complete
this set to a basis Bi = {v1, . . . ,vn̄i,κ1, . . . ,κni−n̄i} of the whole space Rni;

c let {r1, . . . ,rn̄i} be a basis of Rn̄i , define

β̂i =
[

r1 | · · · |rn̄i |0 | · · · |0
]

and TL be the matrix whose columns are the vectors in Bi, then βi = β̂iT−1
L ;

d define collective matrix β = diag(β1, . . . , βM);
e choose matrix AH being Schur stable, and let

BH = (I−AH)ĜL(1)

where the suitable choices for AH are those modeling the dominant dynamics of
the low-level collective model.

Steps a-c imply that Assumption 2.(2) is fulfilled, while step e guarantees that As-
sumption 2.(1) and 2.3 are satisfied.
Note that a less conservative choice can be taken, i.e., defining, in step a, G̃ii

L(z) =
(zI−Aii

L)
−1Bii

L . However this choice does not guarantee a-priori that the property
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Z ∩Kβ = {0}, where Z =ImGx
L∩KerCL, Gx

L = (I−AL)
−1BL, and Kβ =∏

M
i=1 K i

β
.

This must be verified after the reduction phase has been carried out.

7.2 Computation of the input constraint sets

In the scheme proposed in this paper, the dimensions of the input constraint sets ŪS,i

and ∆Ûi are key tuning knobs, which must be selected in order to satisfy, at the same
time, the inequalities (28), for all i= 1, . . . ,M, and (31). To address the design issue,
in this appendix we propose a simple and lightweight algorithm based on a linear
program. As a simplifying assumption, we set ∆Ûi =Bρδ ûi

(0) and ŪS,i =Bρūi
(0).

Under this assumption, the tuning knobs are the vectors −→ρ δ û = (ρδ û1, . . . ,ρδ ûM)
and −→ρ ū = (ρū1, . . . ,ρūM). Note that, in case of need, such assumption can be re-
laxed, at the price of a slightly different definition of the inequalities below.

First consider inequality (28), to be verified for all i = 1, . . . ,M. Here the constant
ρū appears, defined in such a way that ŪS =∏

M
i=1 Bρūi

(0)⊆Bρū(0). We can define,

for example, ρū =
√

∑
M
i=1 ρ2

ūi
≤ ∑

M
i=1 ρūi . Therefore, to fulfill (28) it is sufficient to

verify the following matrix inequality

−→
ρ δ û > κ(NL)diag(

1√
N1σH1(N1)

, . . . ,
1√

NMσHM(NM)

)1M×M
−→
ρ ū (37)

where 1M×M is the M×M matrix whose entries are all equal to 1. The second main
inclusion to be fulfilled is (31), which is verified if, for all i = 1, . . . ,M,

∆Ūi⊕ ŪS,i ⊆US,i (38)

By definition, ∆Ūi = ∆Ûi⊕Bρ∆ui(NL−1)(0), where

ρ∆ui(NL−1) =

= ∑
NL−1
r=2 ‖KiIsiF

NL−r−1
L (AL−AD

L)‖
√

∑
M
j=1 ρ2

δ x̂ j
(r−1)

≤ ∑
NL−1
r=2 ‖KiIsiF

NL−r−1
L (AL−AD

L)‖∑
M
j=1 ρδ x̂ j(r−1)

= ∑
NL−1
r=2 ‖KiIsiF

NL−r−1
L (AL−AD

L)‖∑
M
j=1 ∑

r−1
k=1 ‖(A

j j
L )r−1−kB j j

L ‖ρδ û j

= ∑
M
j=1 λi jρδ û j

(39)

where λi j = ∑
NL−1
r=2 ‖KiIsiF

NL−r−1
L (AL − AD

L)‖∑
r−1
k=1 ‖(A

j j
L )r−1−kB j j

L ‖. This implies
that ∆Ūi ⊆B

ρδ ûi
+∑

M
j=1 λi jρδ û j

(0). Therefore, to verify (38) it is sufficient to enforce

the constraint
(Λ+ I)−→ρ δ û +

−→
ρ ū ≤−→ρ u (40)
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where Λ is the M×M matrix whose entries are λi j, i, j = 1, . . . ,M, while −→ρ u =
(ρu1, . . . ,ρuM), where Bρi(0) ⊆ US,i for all i = 1, . . . ,M. Eventually, a suitable
choice of −→ρ δ û and −→ρ ū is obtained as the solution to the following problem:

max Jρ

−→
ρ δ û,

−→
ρ ū

subject to constraint (37) and (40)

(41)

where Jρ is a suitable (linear or quadratic, if possible) cost function that allows to
maximize the size of the constraint set.

7.3 Proof of Theorem 1

The proof of Theorem 1 lies on the intermediary results stated below.

Proposition 1
A) Under Assumption 3 and if x̄[NL](k) = βx(kNL), then for any initial condition
x̂(kNL) = x(kNL) such that, for all i = 1, . . . ,M

‖x(kNL)− xS‖ ≤ λi(NL) (42)

and for any ū[NL] ∈ ūS ⊕ ŪS there exists a feasible sequence−−−→
δ û[ζi]

i (kNi : (k+1)Ni−1|kNL)∈ ∆Ûi
Ni such that the terminal constraint (22) is sat-

isfied.
B) if x(kNL) satisfies condition (42), ‖ANL

L ‖ < 1, and, for all i = 1, . . . ,M, (29) is
verified, then recursive feasibility of the terminal constraint (22) is guaranteed.

Proof of Proposition 1

A) Note that, since δ x̂[ζi]
i (kNi) = δ x̂i(kNL) = 0,

βiδ x̂i((k+1)NL) = βiδ x̂[ζi]
i ((k+1)Ni) =

= Hi(Ni)
−−−→
δ û[ζi]

i (kNi : (k+1)Ni−1|kNL)
(43)

Moreover, in view of (5)

x̄[NL](k+1) = ANL
H βx(kNL)+

NL

∑
j=1

ANL− j
H BHū[NL](k) (44a)

x̄S = ANL
H βxS +

NL

∑
j=1

ANL− j
H BHūS (44b)
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Analogously, from (16) written in collective form

β x̂(kNL +NL) = βANL
L x(kNL)+β

NL

∑
j=1

ANL− j
L BLū[NL](k) (45a)

βxS = βANL
L xS +β

NL

∑
j=1

ANL− j
L BLūS (45b)

Therefore, in view of (43), (44a), (45a), and the definition A (NL), B(NL), Isi, the
constraint (22) can be written as

Hi(Ni)
−−−→
δ û[ζi]

i (kNi : (k+1)Ni−1|kNL) =

= Isi[A (NL)(x(kNL)− xS)+B(NL)(ū[NL](k)− ūS)]
(46)

From this expression, the definitions of σHi(Ni)
, ρū, ρδ ûi , and in view of (27), it

can be concluded that a feasible sequence
−−−→
δ û[ζi]

i (kNi : (k+1)Ni−1|kNL) can be
computed provided that

√
NiσHi(Ni)

ρδ ûi ≥ ‖A (NL)‖‖x(kNL)− xS‖+κ(NL)ρū (47)

from which the result follows.

B) From (3) it holds that

x((k+1)NL)− xS = ANL
L (x(kNL)− xS)

+R(NL)(
−→u (kNL : kNL +NL−1|kNL)−1NL×1⊗ ūS)

(48)

where ⊗ is the Kronecker product. Therefore

‖x((k+1)NL)− xS‖ ≤ ‖ANL
L ‖‖x(kNL)− xS‖+

√
NL‖R(NL)‖ρu (49)

and, in view of (42)

‖x((k+1)NL)− xS‖ ≤

≤ ‖ANL
L ‖

(
√

NiσHi(Ni)
ρδ ûi
−κ(NL)ρū)

‖A (NL)‖ +
√

NL‖R(NL)‖ρu

(50)

for all i = 1, . . . ,M. From this expression and Assumption 3.(4)

‖x((k+1)NL)− xS‖ ≤
(
√

NiσHi(Ni)
ρδ ûi−κ(NL)ρū)

‖A (NL)‖
= λi(NL) (51)

for all i = 1,2, . . . ,M and the result follows. �
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Proposition 2 If Problem (23) is feasible at time h = kNL, then

‖w̄(k)‖ ≤ ρw (52)
δui(kNL + j) ∈ ∆Ui( j) (53)

Also it holds that
∆Ūi ⊇ ∆Ui( j) (54)

for all j = 0, . . . ,NL−1. �

Proof of Proposition 2

Defining the collective vectors x̂ = (x̂1, . . . , x̂M), δx = (δx1, . . . ,δxM),
δ x̂ = (δ x̂1, . . . ,δ x̂M), and ε(kNL + j|kNL) = δx(kNL + j|kNL)− δ x̂(kNL + j|kNL),
we have that w̄(k) = βx(kNL +NL)− x̄[NL](k+ 1|k) = β x̂(kNL +NL)+βδx(kNL +
NL)− x̄[NL](k+1|k) = (β x̂(kNL+NL)+βδ x̂(kNL+NL)− x̄[NL](k+1|k))+βε(kNL+
j|kNL) = βε(kNL + j|kNL). The latter equality holds in view of the fact that Prob-
lem (23) is feasible, and therefore equality (22) is verified. From (17), (18), (20),
we collectively have that

ε(kNL + j+1|kNL) = FLε(kNL + j|kNL)

+(AL−AD
L)δ x̂(kNL + j|kNL)

(55)

In view of the fact that ε(kNL|kNL) = δ x̂(kNL|kNL) = 0, then w̄(k) =

β ∑
NL
j=2 FNL− j

L (AL−AD
L)δ x̂(kNL + j−1|kNL). From this it follows that

‖w̄(k)‖ ≤
NL

∑
j=2
‖βFNL− j

L (AL−AD
L)‖‖δ x̂(kNL + j−1|kNL)‖ (56)

Since δ ûi are bounded for all i = 1, . . . ,M, i.e., scalar ρδ ûi are defined such that
δ ûi ∈ Bρδ ûi

(0). In view of this, we compute that ‖δ x̂(kNL + j|kNL)‖ ≤ ρδ x̂( j),
where ρδ x̂i( j) is defined in (30). Therefore, δ x̂(kNL + j|kNL) are bounded, for all
j = 1, . . . ,NL − 1 and more specifically we get that ‖δ x̂(kNL + j|kNL)‖ ≤√

∑
M
i=1 ρ2

δ x̂i
( j). Therefore one has (52) for all k ≥ 0.

From (55) we have that ε(kNL + j|kNL) = ∑
j
r=2 F j−r

L (AL−AD
L)δ x̂(kNL + r−1|kNL)

and therefore δui(kNL + j) − δ ûi(kNL + j|kNL) = Kiεi(kNL + j|kNL) =

KiIsi ∑
j
r=2 F j−r

L (AL−AD
L)δ x̂(kNL + r− 1|kNL). From this it follows that δui(kNL +

j) ∈ δ ûi(kNL + j|kNL)⊕Bρ∆ui( j)(0) and therefore δui(kNL + j) ∈ ∆Ui( j). In view
of the monotonicity property ρ∆ui( j + 1) ≥ ρ∆ui( j) for all j, it holds that
Bρ∆ui( j+1)(0)⊇Bρ∆ui( j)(0), which implies (54). �
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Proof of Theorem 1

(i) If ‖x(0)− xS‖ ≤ λi(NL) and recalling that Assumption 3 holds, from Proposi-
tion 1, recursive feasibility of the optimization problems (23) is guaranteed, i.e.,

that there exists, for all k ≥ 0, a feasible sequence
−−−→
δ û[ζi]

i (kNi : (k+1)Ni−1|kNL) ∈
∆Ûi

Ni such that the terminal constraint (22) is satisfied.
Also, from Proposition 2, it follows that w̄(k) ∈ W for all k ≥ 0, which allows to
apply the recursive feasibility arguments of [27], proving that also (11) enjoys re-
cursive feasibility properties.
(ii) It is now possible to conclude that, in view of the feasibility of (11), ū[NL](k) ∈
ūS⊕ ŪS; also, from Proposition 2 it follows that δui(kNL + j) ∈ ∆Ūi for all k ≥ 0,
j = 0, . . . ,NL− 1, and i = 1, . . . ,M. From this, under (31), the inclusion (34) can
also be proved.
(iii) We apply the results in [27], which guarantee robust convergence properties.
In other words, it holds that x̄[NL],o(k)→ x̄S as k→+∞, and that x̄[NL](k) is asymp-
totically driven to lie in the robust positively invariant set x̄S⊕Z .
(iv) To show robust convergence of the global system state, from (3) we obtain that

x((k+1)NL) = ANL
L x(kNL)+B[NL]

L ū[NL](k)

+
NL−1

∑
h=0

Ah
LBLδu((k+1)NL−h−1) (57)

Denoting BC
L,NL

=
[
ANL−1

L BL . . . BL

]
, we obtain that

NL−1

∑
h=0

Ah
LBLδu((k+1)NL−h−1) = BC

L,NL

−→
δu(kNL : kNL +NL−1)

Also, recall that
−→
δu(kNL : kNL +NL−1) =

−→
δ û(kNL : kNL + NL − 1) +

diag(K, . . . ,K)
−→
ε (kNL : kNL +NL−1) and that, by defining

FNL =



0 0 · · · 0 0 0

I 0 · · · 0 0 0

FL I · · · 0 0 0
...

... . . . ...
...

...

FNL−2
L FNL−3

L · · · I 0 0


,

then
−→
ε (kNL : kNL +NL−1) =

= FNLdiag(AC
L, · · · ,AC

L)BL

−→
δ û(kNL : kNL +NL−1)
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where AC
L = AL−AD

L and

BL =


0 · · · 0
... . . . ...

(AD
L)

NL−1BL · · · BL


Recalling that x̄[NL](k) = βx(kNL) and that

ū[NL](k) = ū[NL],o(k)+ K̄H(x̄[NL](k)− x̄[NL],o(k)) (58)

we can rewrite (57) as

x((k+1)NL) = (ANL
L +B[NL]

L K̄Hβ )x(kNL)

+B[NL]
L (ū[NL],o(k)− K̄Hx̄[NL],o(k))+BC

L,NL

−→
δu(kNL : kNL +NL−1) (59)

Recall that x̄[NL],o(k)→ x̄S, ū[NL],o(k)→ ūS as k→+∞. Also, we compute that

−→
δu(kNL : kNL +NL−1) = (I +diag(Ki, . . . ,Ki)FNL

·diag(AC
L, . . . ,A

C
L)BL)

−→
δ û(kNL : kNL +NL−1)

(60)

Based on this, we define κδu = ‖BC
L,NL

(I +diag(Ki, . . . ,Ki)
FNLdiag(AC

L, . . . ,A
C
L)BL)‖ and we write (59) as

x((k+1)NL) = (ANL
L +B[NL]

L K̄Hβ )x(kNL) (61)

+B[NL]
L (ū[NL],o(k)− K̄Hx̄[NL],o(k))+wL(k)

where ‖wL(k)‖ ≤ κδu
√

NL maxh∈{kNL,...,(k+1)NL−1} ‖δ û(h)‖ ≤ κδu
√

NL

√
∑

M
i=1 ρ2

δ ûi
.

Since xS = ANL
L xS +B[NL]

L ūS and B[NL]
L K̄Hx̄S = B[NL]

L K̄HβxS, we can rewrite (61) as

x((k+1)NL)− xS = (ANL
L +B[NL]

L K̄Hβ )(x(kNL)− xS)+wL(k)

+B[NL]
L

(
(ū[NL],o(k)− ūS)− K̄H(x̄[NL],o(k)− x̄S)

)
Eventually, since F [NL]

L = ANL
L +B[NL]

L K̄Hβ is Schur stable, then the asymptotic result
follows, where ρx = κδu

√
NL

√
∑

M
i=1 ρ2

δ ûi
.

(v) We can reformulate problem (23) as

min ‖
−→
δ û(kNL : kNL +NL−1)‖2

Q

subject to: βRD(NL)
−→
δ û(kNL : kNL +NL−1) = δ x̄end

Ain
−→
δ û(kNL : kNL +NL−1)≤ bin,

(62)
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where Q =diag(R, . . . ,R)+BT
L diag(Q, . . . ,Q)BL, R =diag

(R1, . . . ,RM), Q =diag(Q1, . . . ,QM), δ x̄end = x̄[NL](k + 1|k)− β x̂(kNL + NL) and
RD(NL) =

[
(AD

L)
NL−1BL . . . BL

]
. Recalling that bin > 0 elementwise, in view of

continuity arguments, there exists a ball Bρend(0) for δ x̄end such that the solution

to problem (62) satisfies Ain
−→
δ û(kNL : kNL +NL−1)≤ bin. If δ x̄end ∈Bρend(0), then

−→
δ û(kNL : kNL +NL−1)

=
[
I 0
] 2Q (βRD(NL))

T

βRD(NL) 0

−10

I

δ x̄end

Also, it holds that the optimal constrained solution fulfills

‖
−→
δ û(kNL : kNL +NL−1)‖2

Q ≤ max
Ain
−→
δ û≤bin

‖
−→
δ û‖2

Q = Jmax
L

and therefore ‖
−→
δ û(kNL : kNL +NL−1)‖ ≤

√
Jmax

L
λmin(Q) ; in view of this, for ‖δ x̄end‖ 6∈

Bρend(0), then ‖
−→
δ û(kNL : kNL +NL− 1)‖ ≤

√
Jmax

L
λmin(Q)

1
ρend
‖δ x̄end‖. Defining now

κ̄ = max{

∥∥∥∥∥∥∥
[
I 0
] 2Q (βRD(NL))

T

βRD(NL) 0

−10

I


∥∥∥∥∥∥∥ ,
√

Jmax
L

λmin(Q)
1

ρend
} then we con-

clude that
‖
−→
δ û(kNL : kNL +NL−1)‖ ≤ κ̄‖δ x̄end‖ (63)

Therefore, from (60) and (63), we have that

‖
−→
δu(kNL : kNL +NL−1)‖ ≤ κu‖

−→
δ û(kNL : kNL +NL−1)‖

≤ κuκ̄‖A (NL)(x(kNL)− xS)+B(NL)(ū[NL](k)− ūS)‖ (64)

where
κu = ‖I +diag(Ki, . . . ,Ki)FNLdiag(AC

L, . . . ,A
C
L)BL‖

In view of this, we can rewrite (59) as

x((k+1)NL)− xS = F [NL]
L (x(kNL)− xS)+wx(k)+wo(k) (65)

where ‖wx(k)‖ ≤ κx(NL)‖x(kNL)− xS‖, κx(NL) = κuκ̄‖BC
L,NL
‖

‖A (NL)+B(NL)K̄Hβ‖, ‖wo(k)‖ ≤ κo
u‖ū[NL],o(k)− ūS‖+κo

x ‖x̄[NL],o(k)− x̄S‖, κo
u =

‖B[NL]
L ‖+κuκ̄‖BC

L,NL
‖‖B(NL)‖, and

κ
o
x = ‖B[NL]

L K̄H‖+κuκ̄‖BC
L,NL
‖‖B(NL)K̄H‖

To derive a stability condition, we recast (65) as the following redundant dynamic
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system

δx+1 = F [NL]
L δx1 +wδx2 +wo

δx+2 = F [NL]
L δx2 +wδx1 +wo

(66)

where the initial conditions for δx1 and δx2 coincide and are equal to x(0)−xS, and
where ‖wδxi‖ ≤ κx(NL)‖δxi‖, i = 1,2. Recall also that, as already discussed, wo is
an asymptotically vanishing input.
The stability of the system (66) can be studied using the (ISS) small gain theorem
in [11], according to which the interconnected system above enjoys asymptotic
stability properties if the matrix

Γ =

 0 σ(NL)

σ(NL) 0


is Schur stable, where

σ(NL) = κx(NL)
+∞

∑
k=0
‖(F [NL]

L )k‖ (67)

Also, Γ is Schur stable if and only if the inequality (35) is verified. Then, under the
latter condition, x(kNL)→ xS as k→+∞. �
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