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Abstract

In this paper we investigate system identification for general quantum linear systems. We consider the situation where the input
field is prepared as stationary (squeezed) quantum noise. In this regime the output field is characterised by the power spectrum,
which encodes covariance of the output state. We address the following two questions: (1) Which parameters can be identified from
the power spectrum? (2) How to construct a system realisation from the power spectrum? The power spectrum depends on the
system parameters via the transfer function. We show that the transfer function can be uniquely recovered from the power spectrum,
so that equivalent systems are related by a symplectic transformation.
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1. Introduction
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Figure 1: a) System identification problem: find parameters (A,C) of a linear
input-output system by measuring output. b) Stationary scenario: power spec-
trum describes output covariance in frequency domain.

System identification theory Ljung (1987); Pintelon and
Schoukens (2012); Guţă and Kiukas (2015, 2016) lies at the
interface between control theory and statistical inference, and
deals with the estimation of unknown parameters of dynamical
systems and processes from input-output data. The integration
of control and identification techniques plays an important role
e.g. in adaptive control Astrom and Wittenmark (2008).

In this paper we consider system identification for quantum
linear systems (QLSs). QLSs are a class of models used in
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quantum optics, opto-mechanical systems, electro-dynamical
systems, cavity QED systems and elsewhere Koga and Ya-
mamoto (2012); Walls and Milburn (2007); Tian (2012); Gar-
diner and Zoller (2004); Stockton, van Handel, and Mabuchi
(2004); Doherty and Jacobs (1999). They have many ap-
plications, such as quantum memories, entanglement genera-
tion, quantum information processing and quantum control Ya-
mamoto (2014); Nurdin and Gough (2014); James, Nurdin, and
Petersen (2008); Nurdin, James, and Petersen (2009b); Wise-
man and Milburn (2009); Bouten (2004); Dong and Petersen
(2010). The framework required to describe these is the cele-
brated quantum stochastic calculus Hudson and Parthasarathy
(1984).

Quantum linear systems are examples of input-output mod-
els (see Figure 1). Typically, one has access to the field and
is able to prepare a time-dependent input. After the coupling,
the parameters of the system (black-box) are imprinted on the
output. In a nutshell, the system identification problem is to
estimate dynamical parameters from the output data, obtained
by performing measurements on the output fields. The identifi-
cation of linear systems is by now a well developed subject in
‘classical’ systems theory Glover and Willems (1974); Kalman
(1963); Ljung (1987); HO and Kalman (1966); Anderson, New-
comb, Kalman, and Youla (1966); Youla (1961); Zhou, Doyle,
Glover, et al. (1996); Pintelon and Schoukens (2012); Davis
(1963), but has not been fully explored in the quantum domain
Guţă and Yamamoto (2013, 2016). We distinguish two con-
trasting approaches to the identification of QLSs

In the first approach, one probes the system with a known
time-dependent input signal (e.g. coherent state), then uses the
output measurement data to compute an estimator of the dy-
namical parameter(s). In this setting the transfer function en-
tirely encapsulates the systems input-output behaviour. There-
fore, the basic identifiability problem is to find the class of sys-
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tems with the same transfer function. This problem has been
addressed, firstly for the special class of passive QLSs in Guţă
and Yamamoto (2013) and then for general QLSs in Levitt and
Guţă (2016). In particular, it was seen that minimal systems
with the same transfer function are related by symplectic trans-
formations on the space of system modes.

The second approach and the one we consider here is to probe
the systems with time-stationary pure gaussian states with inde-
pendent increments (see Figure 1), i.e., squeezed vacuum noise.
If the system is minimal and Hurwitz stable, the dynamics ex-
hibits an initial transience period after which it reaches station-
arity and the output is in a stationary Gaussian state, whose
covariance in the frequency domain is given by the power spec-
trum. The power spectrum depends quadratically on the trans-
fer function, so the parameters which are identifiable in the sta-
tionary scenario will also be identifiable in the time-dependent
one. Our goal is to understand to what extent the converse is
also true. This problem is of the type: ‘for a square rational
matrix V(s), where s ∈ C find rational matrix W(s) such that

V(s) = W(s)W(−s)†

for all s ∈ C, which in the classical literature is called the spec-
tral factorisation problem Anderson et al. (1966). Note that our
previous work Levitt and Guţă (2016) looked at this problem
for a generic class of single input single output (SISO) QLSs.
Now, for a given minimal system there may exist lower dimen-
sional systems with the same power spectrum. To understand
this, consider the system’s stationary state and note that it can be
uniquely written as a tensor product between a pure and a mixed
Gaussian state (cf. the symplectic decomposition Wolf (2008).
It is known Levitt and Guţă (2016) that by restricting the system
to the mixed component leaves the power spectrum unchanged.
Conversely, if the stationary state is fully mixed, there exists
no smaller dimensional system with the same power spectrum.
Such systems will be called globally minimal, and can be seen
as the analogue of minimal systems for the stationary setting.

The main result here is to show that under global minimal-
ity the power spectrum determines the transfer function, and
therefore the equivalence classes are the same as those in the
transfer function. It is interesting to note that this equivalence
is a consequence of the unitarity and purity of the input state,
and does not hold for a generic classical linear system Ander-
son et al. (1966); Glover and Willems (1974). The key to our
proof is in reducing the power spectrum identifiability problem
to an equivalent transfer function identifiability problem.

This paper is organised as follows: In Section 2 we review the
setup of input-output QLS, and their associated transfer func-
tion. In Section 3 we outline the power spectrum identifiability
problem. We introduce the notion of global minimality for sys-
tems with minimal dimension for a given power spectrum and
review recent important results. Our main identifiability result
is presented in Section 4, cf., Theorem 4. Finally, we outline a
method to construct a globally minimal system realisation from
the power spectrum.

1.1. Preliminaries and notation
We use the following notations: For a matrix X = (Xi j) the

following symbols: X = (X∗i j), XT = (X ji), X† = (X∗ji) rep-
resent the complex conjugation, transpose and adjoint matrix
respectively, where ‘*’ indicates complex conjugation. We also

use the ‘doubled-up notation’ X̆ :=
[
XT , X

T
]T

and ∆(A, B) :=[
A, B; B, A

]
. For a matrix Z ∈ R2n×2m define Z[ = JmZ†Jn,

where Jn = [1n, 0; 0,−1]. A similar notation is used for ma-
trices of operators. We use ‘1’ to represent the identity matrix
or operator. δ jk is Kronecker delta and δ(t) is Dirac delta. The
commutator is denoted by [·, ·].

Definition 1. A matrix S ∈ C2m×2m is said to be [-unitary if it
is invertible and satisfies

S [S = S S [ = 12m.

If additionally, S is of the form S = ∆(S −, S +) for some
S −, S + ∈ Cm×m then we say that it is symplectic.

2. Quantum Linear Systems

In this section we briefly review the QLS theory, highlighting
along the way results that will be relevant for this paper. We re-
fer to Gardiner and Zoller (2004) for a more detailed discussion
on the input-output formalism, and to the review papers Pe-
tersen (2016); Parthasarathy (2012); Hudson and Parthasarathy
(1984); Nurdin, James, and Doherty (2009a) for the theory of
linear systems.

2.1. Time-domain representation
A linear input-output quantum system is defined as a con-

tinuous variables (cv) system coupled to a Bosonic environ-
ment, such that their joint evolution is linear in all canonical
variables. The system is described by the column vector of
annihilation operators, a := [a1, a2, . . . , an]T , representing the
n cv modes. Together with their respective creation operators
a∗ := [a∗1, a

∗
2, . . . , a

∗
n]T they satisfy the canonical commutation

relations (CCR)
[
ai, a∗j

]
= δi j1. We denote byH := L2(Rn) the

Hilbert space of the system carrying the standard representation
of the n modes. The environment is modelled by m bosonic
fields, called input channels, whose fundamental variables are
the fields B(t) := [B1(t),B2(t), . . . ,Bm(t)]T , where t ∈ R repre-
sents time. The fields satisfy the CCR[

Bi(t),B∗j(s)
]

= min{t, s}δi j1. (1)

Equivalently, this can be written as
[
bi(t),b∗j(s)

]
= δ(t − s)δi j1,

where bi(t) are the infinitesimal (white noise) annihilation op-
erators formally defined as bi(t) := dBi(t)/dt Petersen (2016).
The operators can be defined in a standard fashion on the Fock
space F = F (L2(R) ⊗ Cm) Bouten, Van Handel, and James
(2007). We consider the scenario where the input is prepared
in a pure, stationary in time, mean-zero, Gaussian state with
independent increments characterised by the covariance matrix〈

dB(t)dB(t)† dB(t)dB(t)T

dB∗(t)dB(t)† dB∗(t)dB(t)T

〉
=

(
NT +1 M

M† N

)
dt := V(N,M)dt, (2)
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where the brackets denote a quantum expectation. Note that
N = N†, M = MT and V ≥ 0, which ensures that the state does
not violate the uncertainty principle. In particular, N = M =

0 corresponds to the vacuum state, while pure squeezed states
satisfy M(N + 1)−1M = N Gough, James, and Nurdin (2010).

The dynamics of a general input-output system is determined
by the system’s Hamiltonian and its coupling to the environ-
ment. In the Markov approximation, the joint unitary evolution
of system and environment is described by the (interaction pic-
ture) unitary U(t) on the joint space H ⊗ F , which is the solu-
tion of the quantum stochastic differential equation Bouten et al.
(2007); Dong and Petersen (2010); Gardiner and Zoller (2004);
Parthasarathy (2012); Hudson and Parthasarathy (1984)

dU(t) := U(t + dt) − U(t) (3)

=

(
− (K + iH) dt + LdB† − L†dB −

1
2

L†Ldt
)

U(t),

where K = 1
2

(
L†(1 + NT )L + LT NL − L†ML − LT ML

)
Nur-

din (2014) and initial condition U(0) = I. Here, H and L
are system operators describing the system’s Hamiltonian and
the coupling to the fields; dBi(t), dB∗i (t), are increments of fun-
damental quantum stochastic processes describing the creation
and annihilation operators in the input channels.

For the special case of linear systems, the coupling and
Hamiltonian operators are of the form

L = C−a + C+a∗,

H = a†Ω−a +
1
2

aT Ω
†
+a +

1
2

a†Ω+a∗,

for m × n matrices C−,C+ and n × n matrices Ω−,Ω+ satisfying
Ω− = Ω

†
− and Ω+ = ΩT

+ . As shown below, this insures that all
canonical variables evolve linearly in time. Indeed, let a(t) and
Bout(t) be the Heisenberg evolved system and output variables

a(t) := U(t)†aU(t), Bout(t) := U(t)†B(t)U(t). (4)

By using the QSDE (3) and the Ito rules (2) one can obtain the
following Ito-form quantum stochastic differential equation of
the QLS in the doubled-up notation

dă(t) = Aă(t)dt −C[dB̆(t), (5)
dB̆out(t) = Că(t)dt + dB̆(t), (6)

where ă := (aT , a∗T )T , C := ∆ (C−,C+) and A := ∆ (A−, A+) =

− 1
2C[C − iJnΩ with Ω = ∆ (Ω−,Ω+) and

A∓ := −
1
2

(
C†−C∓ −CT

+C±
)
− iΩ∓.

To be explicit, the behaviour of the linear system is completely
characterised by the dynamical parameters (C, A) (or equiva-
lently (C,Ω)). Note that not all choices of A and C may be phys-
ically realisable as open quantum systems James et al. (2008).

A special case of linear systems is that of passive quantum
linear systems (PQLSs) Guţă and Yamamoto (2013) for which
C+ = 0 and Ω+ = 0.

2.2. Controllability and observability
By taking the expectation with respect to the initial joint sys-

tem state of Equations (5) we obtain the following classical lin-
ear system

d 〈ă(t)〉 = A 〈ă(t)〉 dt −C[d
〈
B̆(t)

〉
, (7)

d
〈
B̆out(t)

〉
= C 〈ă(t)〉 dt + d

〈
B̆(t)

〉
. (8)

Definition 2. The quantum linear system (5) is said to be Hur-
witz stable (respectively controllable, observable) if the corre-
sponding classical system (7) is Hurwitz stable (respectively
controllable, observable).

In general, for a quantum linear system observability and
controllability are equivalent Gough and Zhang (2015). A
system possessing one (and hence both) of these properties
is called minimal. However, although the statement [Hurwitz
=⇒ minimal] is true Koga and Yamamoto (2012), the converse
statement ([minimal =⇒ Hurwitz]) is not necessarily so Levitt
and Guţă (2016). We therefore assume that all systems consid-
ered here are Hurwitz (hence minimal).

2.3. Frequency-domain representation
For linear systems it is often useful to switch from the time

domain dynamics described above, to the frequency domain
picture. Recall that the Laplace transform of a generic process
x(t) is defined by

x(s) := L[x](s) =

∫ ∞

−∞

e−stx(t)dt, (9)

where s ∈ C. In the Laplace domain the input and output fields
are related as follows Yanagisawa and Kimura (2003):

b̆out(s) = Ξ(s)b̆(s), (10)

where Ξ(s) is transfer function matrix of the system

Ξ(s) =
{
1m −C(s1n − A)−1C[

}
=

(
Ξ−(s) Ξ+(s)
Ξ+(s) Ξ−(s)

)
. (11)

In particular, the frequency domain input-output relation is
b̆out(−iω) = Ξ(−iω)b̆(−iω). The corresponding commutation
relations are [b(−iω),b(−iω′)∗] = iδ(ω − ω′)1, and similarly
for the output modes1. As a consequence, the transfer matrix
Ξ(−iω) is symplectic for all frequencies ω.

We do not consider static squeezing or scattering processes
on the field in this paper (see e.g. Gough et al. (2010)).

2.4. Transfer function identifiability
The input-output relation (10) shows that the experimenter

can at most identify the transfer function Ξ(s) of the system
with any measurement of the field. The following result from
Levitt and Guţă (2016) tells us which dynamical parameters of
a QLS can be identified by observing the output fields for ap-
propriately chosen input states.

1Note that the position of the conjugation sign is important here because in
general b(−iω′)∗ and b∗(−iω′) are not the same, cf. equation (9).
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Theorem 1. Let (A,C) and (A′,C′) be two minimal, and stable
QLSs. Then they have the same transfer function if and only if
there exists a symplectic matrix T such that

A′ = T AT [, C′ = CT [. (12)

Therefore, without any additional information, we can at
most identify the symplectic equivalence class of systems here.

3. Power spectrum identification; problem formulation

We consider a setting where the input fields are stationary
‘squeezed quantum noise’, i.e. a zero-mean, pure Gaussian
state with time-independent increments, which is completely
characterised by its covariance matrix V , cf. equation (2). In the
frequency domain the state can be seen as a continuous tensor
product over frequency modes of squeezed states with covari-
ance V . Since we deal with a linear system, the input-output
map consists of applying a (frequency dependent) unitary Bo-
golubov transformation whose linear symplectic action on the
frequency modes is given by the transfer function

b̆out(−iω) = Ξ(−iω)b̆(−iω).

Consequently, the output state is a Gaussian state consisting of
independent frequency modes with covariance matrix〈

b̆out(−iω)b̆out(−iω′)†
〉

= ΨV (−iω)δ(ω − ω′)

where ΨV (−iω) is the restriction to the imaginary axis of the
power spectral density (or power spectrum) defined in the
Laplace domain by

ΨV (s) = Ξ(s)VΞ(−s)†. (13)

Our goal is to find which system parameters are identifiable
from the field, where the quantum input has a given covariance
matrix V . Since in this case the output is uniquely defined by
its power spectrum ΨV (s) this reduces to identifying the equiva-
lence class of systems with a given power spectrum. Moreover,
since the latter depends on the system parameters via the trans-
fer function, it is clear that one can identify ‘at most as much as’
the transfer function discussed in Section 2.4. In other words
the corresponding equivalence classes are at least as large as
those described by symplectic transformations (12).

In the analogous classical problem, the power spectrum can
also be computed from the output correlations. The spectral
factorisation problem Youla (1961) is tasked with finding a
transfer function from the power spectrum. There are known
algorithms Youla (1961); Davis (1963) to do this. One then
finds a system realisation (i.e. matrices governing the system
dynamics) for the given transfer function Ljung (1987). The
problem is that the map from power spectrum to transfer func-
tions is non-unique, and each factorisation could lead to system
realisations of differing dimension. For this reason, the concept
of global minimality was introduced in Kalman (1963) to se-
lect the transfer function with smallest system dimension. This
raises the following question: is global minimality sufficient

to uniquely identify the transfer function from the power spec-
trum? The answer is in general negative 2 (see Anderson et al.
(1966); Glover and Willems (1974); Hayden et al. (2014)). Our
aim is to address these questions in the quantum case. Note
that these questions have been answered for a generic class of
SISO systems in Levitt and Guţă (2016) by using a brute force
argument to identify the poles and zeros of the transfer function
from those of the power spectrum.

We conclude this section by formally introducing global min-
imality and describing two results that will be useful later.

Definition 3. A system (A,C) is said to be globally minimal for
(pure) input covariance V if there exists no lower dimensional
system with the same power spectrum, ΨV .

For example, if the input is the vacuum and the system is
passive, then the power spectrum will be vacuum, which is the
same as that of a zero-dimensional system.

Observe that as the input is pure, we may write it as V =

S VvacS † for some symplectic matrix S , where Vvac =
(

1 0
0 0

)
.

Specifically,

S = ∆

(
(NT + 1)1/2,M

(
N† + 1

)−1/2
)
. (14)

Now, since input is known (i.e the choice of the experimenter)
we instead consider the modified system with coupling and
hamiltonian operators C̃ := CS [ and Ω̃ = Ω, which has power

spectrum Ψ̃(s) = S [Ψ(s)
(
S †

)[
. In this basis the field is in vac-

uum. In light of this we will assume that the input is vacuum.
The following theorem from Levitt and Guţă (2016) links

global minimality with the purity of the stationary state.

Theorem 2. Let G := (S ,C,Ω) be a QLS with input Vvac.
1. The system is globally minimal if and only if the (Gaus-

sian) stationary state of the system with covariance P satisfying
the Lyapunov equation

AP + PA† + C[Vvac

(
C[

)†
= 0 (15)

is fully mixed.
2. A non-globally minimal system is the series product of its

restriction to the pure component and the mixed component.
3. The reduction to the mixed component is globally minimal

and has the same power spectrum as the original system.

Lemma 1. Suppose that we have a QLS (C,Ω) with input Vvac,
then the following are equivalent:

1. The system is globally minimal
2.

(
A,C[Vvac

)
is controllable.

3.
(
VvacC, A[

)
is observable.

Proof. For the equivalence between (1) and (2): Using Theo-
rem 2, global minimality is equivalent to a fully mixed station-
ary state, which is in turn equivalent to P > 0 in (15). Further-
more, by Theorem 3.1 in Zhou et al. (1996) P > 0 in (15) is
equivalent to

(
A,C[Vvac

)
being controllable.

2However, under the assumption of outer transfer functions this identifica-
tion is unique (see Hayden, Yuan, and Gonçalves (2014)).
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It remains to show equivalence between (2) and (3). Firstly,
by the duality condition in (Zhou et al., 1996, Theorem 3.3)(
A,C[Vvac

)
controllable is equivalent to

(
Vvac

(
C[

)†
, A†

)
observ-

able. It therefore remains to show equivalence between the ob-

servability of
(
Vvac

(
C[

)†
, A†

)
and

(
VvacC, A[

)
.

Suppose that
(
Vvac

(
C[

)†
, A†

)
is observable. To show observ-

ability of
(
VvacC, A[

)
we need to show that for all eigenvec-

tors and eigenvalues of A[, i.e. A[y = λy, then VvacCy , 0
Zhou et al. (1996). To this end suppose that A[y = λy, then

A† (Jy) = λ (Jy), which by the observability of
(
Vvac

(
C[

)†
, A†

)
implies that Vvac

(
C[

)†
(Jy) , 0. Therefore, VvacCy , 0 and we

are done. The reverse implication follows similarly.

4. Power spectrum identifiability

In this section we show that two globally minimal systems
have the same power spectrum iff they have the same transfer
function. We show this by treating the power spectrum of the
quantum system as a transfer function of a cascade of two clas-
sical systems (with the combined system having twice as many
modes). We then solve the equivalent minimal transfer function
problem, which is much simpler than the original problem.

4.1. Description of power spectrum as a cascade of systems
Using (13), write the power spectrum as a transfer function

of the following two cascaded Zhou et al. (1996) systems:

• The first system is
(
−A[,−C[,−VvacC,Vvac

)
• The second system is

(
A,−C[Vvac,C,Vvac

)
.

It should be understood that the first system is fed into the sec-
ond (see Fig 2). Note that the first system is unstable, whereas
the second is stable. A representation for the resultant cascaded
system with transfer function Ψ(s)J is Zhou et al. (1996)(

Ã, B̃, C̃, D̃
)

:=
((

−A[ 0
C[VvacC A

)
,
(
−C[

−C[Vvac

)
, ( −VvacC C ) ,Vvac

)
. (16)

Now, in in the form (16) notice that Ã has 4n eigenvalues. It is
also lower block triangular (LBT) with the following properties:

1) It has 2n right-(generalised3)-eigenvectors of the form( 0
y(i)

2

)
with (possibly non-distinct) eigenvalues λ(i), which

3A matrix is diagonalisable iff it has a full basis of eigenvectors. Gener-
alised eigenvectors are a next best thing to eigenvectors enabling one to ‘almost
diagonalise’ a matrix. More specifically, a vector x is a generalised eigenvector
of rank m with corresponding eigenvalue λ if

(A − λ1)m x = 0

(but (A − λ1)m−1 x , 0). For every matrix A there exists an invertible matrix M,
whose columns consist of the generalised eigenvectors, such that J = M−1AM
where J is a matrix called the Jordan normal matrix and is given by

J = diag(J1, J2, ..., Jr) where Ji =


λi 1
λi 1

. . . 1
λi

 .

satisfy Re(λ(i)) < 0. Note that y(i)
2 and λ(i) are right-

(generalised) eigenvectors and eigenvalues of A.

2) It has 2n left-(generalised) eigenvectors of the form ( x(i)
1 , 0 )

with (possibly non-distinct) eigenvalues µ(i), which satisfy
Re(µ(i)) > 0. Note that x(i)

1 and µ(i) are left-eigenvectors
and eigenvalues of −A[.

Definition 4. A matrix A is called proper ordered lower block
triangular (proper LBT) if it is it LBT and satisfies 1) and 2).

⌅(s)Vvac

Combined transfer function:

System 1 System 2

⌅(s)Vvac⌅(�s)† =  (s)

Vvac⌅(�s)†

Figure 2: The setup in Section 4.1 where the power spectrum is treated as two
systems connected in series.

Lemma 2. If two proper LBT matrices, Ã and Ã′, are related
via Ã′ = T ÃT−1, where T is invertible, then T is LBT.

The proof is in Appendix A. The final result of this subsec-
tion will be key to our identifiability result later.

Theorem 3. The quantum system (C,Ω) is globally minimal if
and only if the system (16) is minimal.

Proof. The reverse implication here is trivial. For the ‘if’ state-
ment we need to prove controllability and observability.

Firstly, the observability of
(
C̃, Ã

)
. Suppose that(

−A[ 0
C[VvacC A

) ( y1
y2

)
=

(
λy1
λy2

)
, (17)

then in order to show observability we require that
( −VvacC C )

( y1
y2

)
, 0. There are two cases; either y1 = 0 or y1 , 0.

• If y1 = 0 then (17) reduces to Ay2 = λy2 and so the observ-
ability of A tells us that Cy2 , 0. Hence ( −VvacC C )

(
0
y2

)
,

0.

• For y1 , 0, the proof is a little trickier. Suppose to the
contrary that the system is not observable. That is, there
exists a vector

( y1
y2

)
satisfying (17) such that

VvacCy1 = Cy2 (18)

Firstly, from (17) it is clear that −A[y1 = λy1, hence
VvacCy1 , 0 by global minimality (Lemma 1). We also
have C[VvacCy1 +Ay2 = λy2 from (17), hence −A[y2 = λy2
using (18). On the other hand, letting y2 =

( u1
u2

)
, where

u1, u2 are n dimensional complex vectors, then by the
doubled-up properties of A[ it follows that

(
u2
u1

)
is also

an eigenvector of −A[ (with eigenvalue λ). Therefore,
VvacC

(
u2
u1

)
, 0 by global minimality (Lemma 1). Finally,

this condition implies that C−u2 + C+u1 , 0, which is a
contradiction to (18). Hence the system is observable.
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Showing controllability of
(
Ã, B̃

)
can be achieved by sim-

ilar means. Alternatively, we can use the dual properties of
observability and controllability to show this. To this end, in
order to show that

(
Ã, B̃

)
is controllable it is enough to show

that
(
B̃†, Ã†

)
is observable Zhou et al. (1996). In light of this,

suppose that Ã†
( z1

z2

)
= λ

( z1
z2

)
, which, by using the definition of

Ã, is equivalent to

−JAJz1 + C†VvacCJz2 = λz1 and A†z2 = λz2.

These equations can be written in matrix form as

Ã
(

Jz2
−Jz1

)
= −λ

(
Jz2
−Jz1

)
.

Now, because
(
C̃, Ã

)
is observable, it follows that

−C (Jz1) − VvacC (Jz2) , 0.

This condition is equivalent to B̃†
( z1

z2

)
, 0.

4.2. Main result
Theorem 4. Let (C1,Ω1) and (C2,Ω2) be two globally minimal
and stable QLSs for input Vvac, then

Ψ1(s) = Ψ2(s) f or all s ⇔ Ξ1(s) = Ξ2(s) f or all s

Proof. Firstly, by Theorem 3 the system (16) is minimal.
Therefore, from the classical literature transfer function equiv-
alent systems are related via

Ã′ = T ÃT−1, B̃′ = T B̃, C̃′ = C̃T−1, D̃′ = D̃. (19)

Moreover, its observability and controllability matrices, O and
C, will have full rank. Additionally, by Lemma 2 such a simi-
larity transformation must be lower block triangular.

Now writing T as (
T1 0
T3 T4

)
,

to complete the proof it remains to show that (a) T3 = 0, (b)
T1 = T4, (b) T [

1T1 = 1 and (d) T1 is doubled up. This is suffi-
cient because it tells us that the equivalence classes of the power
spectrum are related via symplectic similarity transformations
(and they are the same gauge transformations as those obtained
from the transfer function Levitt and Guţă (2016)). The outline
of how we show (a)-(d) is given in the following three steps.
The complete proof can be found in Appendix B.

1) Firstly, using the pattern in the Ã, B̃ and C̃ matrices defined
above, we show that the following holds:

O = O

(
T [

4 0
−T [

3 T [
1

)
T.

And so because O has full rank, we have(
T [

4 0
−T [

3 T [
1

)
T = 1.

2) We will then show that:

O

(
T [

4−T [
1

−T [
3

)
= 0.

This implies that T3 = 0 and T1 = T4.

3) Combing Steps 1) and 2) it is clear that T must be of the
form

T =
(

T1 0
0 T1

)
with T [

1T1 = 1. Finally we show that T1 is doubled-up.

4.3. Identification method
Suppose that we have constructed the power spectrum from

the input-output data, for instance by treating it as a transfer
function and using one of the techniques of Ljung (1987). Here
we outline a method to construct a globally minimal system
realisation from the power spectrum.The realisation is obtained
indirectly by first finding a non-physical realisation and then
constructing a physical one from this by applying a criterion
developed in Zhou et al. (1996). The construction is similar to
the one used in Levitt and Guţă (2016) for the transfer function
realisation problem.

We have already seen many times that the power spectrum
may be treated as if it were a transfer function. Therefore, let(
Ã0, B̃0, C̃0,Vvac

)
constitute a minimal realisation of Ψ(s), i.e.,

Ψ(s)J = Vvac + C̃0

(
s − Ã0

)−1
B̃0.

Further, let us assume that Ã0, B̃0, C̃0 are of the form

Ã0 =
(
−A[0 0

0 A0

)
B̃0 =

(
B1
B2

)
C̃0 =

(
C1
C2

)
,

with, A0, B1 and C2 doubled up and A0 is stable. For example, in
Appendix C such a realisation is found for an n-mode globally
minimal system, with matrices (A,C), possessing 2n distinct
poles each with non-zero imaginary part

Now, by minimality, any other realisation of the transfer
function can be generated by the similarity transformation

Ã = T Ã0T−1 B̃ = T B̃0 C̃ = C̃0T−1. (20)

The problem here is that in general these matrices may not de-
scribe a genuine quantum system in the sense that from a given(
Ã, B̃, C̃

)
one cannot reconstruct the pair (Ω,C) describing the

power spectrum. Our goal is to find a special transformation T
mapping (Ã0, B̃0, C̃0) to a triple (Ã, B̃, C̃) that is physical.

Firstly, as Ã0 and the physical Ã we seek are both proper
LBT, then by Lemma 2 we may restrict T to be of the form

T =
(

T1 0
T2 T3

)
, T−1 =

(
T−1

1 0
−T−1

3 T2T−1
1 T−1

3

)
.

Using this together with (20) and (Ã, B̃, C̃) in (16) gives:

A[ = T1A[
0T−1

1 (21)

C[VvacC = −T2A[
0T−1

1 − T3A0T−1
3 T2T−1

1 (22)

A = T3A0T−1
3 (23)

−C[ = T1B1 (24)

−C[Vvac = T2B1 + T3B2 (25)

−VvacC = C1T−1
1 −C2T−1

3 T2T−1
1 (26)

C = C2T−1
3 . (27)
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For (A,C) to correspond to a quantum system it must satisfy
the physical realisability conditions: A + A[ + C[C = 0 Gough
and Zhang (2015). Applying this condition to (23) and (27) and
then again to (21) and (24) leads to the following equations:(

T [
3T3

)
A0 + A[

0

(
T [

3T3

)
+ C[

2C2 = 0 (28)

A[
0

(
T [

1T1

)−1
+

(
T [

1T1

)−1
A0 + B1B[1 = 0. (29)

Next, as quantum system is stable A0 must be Hurwitz (because
it is similar to A), therefore (28) and (29) have unique solutions(
T [

3T3

)
and

(
T [

1T1

)−1
respectively (see Levitt and Guţă (2016)

for the explicit form of these). Moreover, these solutions will
necessarily be of doubled-up form due to the fact A0, B1 and C2
were. Therefore, using Lemma 1 in Levitt and Guţă (2016) we
can find doubled-up T1 and T3 from these uniquely (up to the
non-identifiable symplectic equivalence class in Theorem 4).

The upshot of these results is that we may ultimately write
down a realisation of the system (A,C) using (28) or alterna-
tively from (29). By Theorem 4 both solutions are guaranteed
to coincide (bar any unidentifiable symplectic matrix) and give
a unique (up to such a symplectic transformation) realisation of
the power spectrum, hence we are done.

For completeness we may write down the unique solution T2
given the solutions T1 and T3 so to obtain the full realisation
(16) of the power spectrum. To this end, suppose that the solu-
tions T1 and T2 from (28) and (29) lead to (physical) realisations
(A,C) and (Â, Ĉ) that differ by an (unidentifiable) symplectic.
That is, A = S ÂS [ and C = ĈS [. Then from (22) we have

S Ĉ[VvacĈ +
(
T2T−1

1 S
)

Â[ + Â
(
T2T−1

1 S
)

= 0,

which has been obtained by substituting (21) and (23) into (22).
This solution

(
T2T−1

1 S
)

can be found uniquely, hence T2 can be
found uniquely from this. Note that T2 will not be of doubled-
up type, which is to be expected.

5. Outlook

Our main result is that under global minimal and pure station-
ary inputs the power spectrum contains as much information as
the transfer function, i.e., their classes of equivalent systems are
the same in both functions. Therefore, no information is lost
by utilising stationary inputs rather than time-dependent inputs.
As a corollary to these results it is not too difficult to prove a
similar statement for the subset of passive systems.

It would be interesting to understand whether these results
would hold for mixed input states. However, clearly the equiv-
alence between global minimality and mixedness of the station-
ary state from Levitt and Guţă (2016) will not hold. Therefore,
understanding whether or not a system is globally minimal for
a mixed input requires further theory. Also, we could ask the
same identifiability questions for the case of unknown inputs or
allow for static scattering or squeezing in the field. We intend
to address these extensions in future works.

Given that we now understand what is identifiable, the next
step is to understand how well parameters can be estimated. In

the time-dependent approach this has been done for passive sys-
tems in Guţă and Yamamoto (2013) but no such work exists for
active systems or in the stationary approach at all. As a side
note, it should be possible to find the gauge transformations
in the power spectrum that we found here as the directions in
phase space along which the quantum Fisher information4 van-
ishes. Lastly, it would be interesting to consider these identifi-
ability problems in the more realistic scenario of noisy QLSs.
In a QLS noise may be modelled by the inclusion of additional
channels that cannot be monitored. Understanding what can be
identified here will likely be more challenging.

Appendix A. Proof of Lemma 2

Proof. Firstly define {e1, ..., e4n} as the canonical basis of C4n.
By property (4.1) of proper LBT matrices it is clear that y(i) :=( 0

y(i)
2

)
∈ Span{e2n+1, ..., e4n}. Further, as there are 2n of them

they must form a basis of Span{e2n+1, ..., e4n}. Suppose y(i) has
generalised eigenvector rank mi, then as as Ã′ = T ÃT−1 we
have (

Ã′ − λ(i)
)mi

Ty(i) =
(
T ÃT−1 − λ(i)

)mi
Ty(i)

= T
(
Ã − λ(i)

)mi
y(i)

= 0.

Therefore, Ty(i) are generalised eigenvectors of Ã′ associated
to λ(i). Hence, because Ã′ is also assumed to be proper LBT, it
follows that Span{Ty(i)} ⊂ Span{e2n+1, ..., e4n}. Finally,

TSpan{e2n+1, ..., e4n} = TSpan{y(i)}

= Span{Ty(i)}

⊂ Span{e2n+1, ..., e4n}.

The invertibility of T has been used in getting from the first to
the second line. This implies that T is LBT, as required.

Appendix B. Proof of Theorem 4

As outlined in the proof sketch, we need to show 1-3.

Appendix B.1. Step 1:
Firstly, the condition B̃′ = T B̃ is equivalent to(

−C′†Vvac

C′†

)
= KΣTΣK

(
−C†Vvac

C†

)
,

where
K =

(
J 0
0 −J

)
and Σ =

(
0 1
1 0

)
.

Hence
( −VvacC̃′ C̃′ ) = ( −VvacC̃ C̃ ) KΣT †ΣK.

Therefore, combining this the condition C̃′ = C̃T−1 we have

C̃ = C̃KΣT †ΣKT. (B.1)

4Recall that the Q.F.I gives a measure of the optimal estimation precision
using the best measurement and estimator.
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Now,

Ã′ = −KΣÃ′†ΣK

= −KΣ
(
T †

)−1
Ã†T †ΣK

= KΣ
(
T †

)−1
ΣKÃKΣT †ΣK, (B.2)

where Ã′ = T ÃT−1 has been used to obtain the second line.
And so

C̃ÃT−1 = C̃′Ã′

= C̃′KΣ
(
T †

)−1
ΣKÃKΣT †ΣK

=

(
C̃T−1KΣ

(
T †

)−1
ΣK

)
ÃKΣT †ΣK

= C̃ÃKΣT †ΣK,

where (B.1) has been used to obtain the fourth line. Thus

C̃Ã =
(
C̃Ã

)
KΣT †ΣKT. (B.3)

Claim 1.
C̃Ãk =

(
C̃Ãk

)
KΣT †ΣKT. (B.4)

for all k ≥ 0.

Proof. We prove this by induction. Note that we already know
it to be true for k = 0 and k = 1 (see (B.1) and (B.3)). To this
end, suppose that it is true for k − 1. Therefore,

C̃′Ã′k = C̃′
(
Ã′

)k−1
Ã′

= C̃′
(
Ã′

)k−1
KΣ

(
T †

)−1
ΣKÃKΣT †ΣK

=

(
C̃Ãk−1T−1KΣ

(
T †

)−1
ΣK

)
ÃKΣT †ΣK

= C̃ÃkKΣT †ΣK.

by using a combination of (B.2) and (19). Finally, using the
observation C̃′Ã′k = C̃ÃkT−1 completes the proof.

Finally, following this claim we have:

O = OKΣT †ΣKT

= O

(
T [

4 0
−T [

3 T [
1

)
T.

Appendix B.2. Step 2:
For this step it is sufficient to prove the following claim.

Claim 2.
C̃Ãk

(
T [

4−T [
1

−T [
3

)
= 0

for all k = 0, 1, 2, ....

Proof. Using the results of Appendix B.1 we know that equiv-
alent systems are related via

C̃′Ã′k = C̃Ãk
(

T [
4 0
−T [

3 T [
1

)
. (B.5)

Also note that the condition C′A′k = CAkT b
1 holds.

We first see this result for k = 0. Equation (B.5) for k = 0
reads

( −VvacC′,C′ ) = ( −VvacCT [
4−CT [

3 ,CT [
1 ) .

Therefore, adding the first entry to Vvac times the second entry:

0 = −VvacC
(
T [

4 − T [
1

)
+ C

(
−T [

3

)
,

which shows the result for k = 0.
The result for k ∈ N goes along the same lines, but is a little

more involved. Firstly, observe that Ãk may be written as

Ãk =

(
(−A[)k 0

ek Ak

)
,

where ek = A0C[VvacC
(
−A[

)k−1
+ ...+ Ak−1C[VvacC

(
−A[

)0
(and

similarly for the primed matrices). Now, from (B.5) we have(
−VvacC′(−A′[)k

+C′A′k−1C′[VvacC′−C′e′k−1A′[, C′A′k
)

=
(
− VvacC(−A[)k

T b
4 +CAk−1C[VvacCT [

4−Cek−1A[T [
4−CAkT [

3 , CAkT [
1

)
. (B.6)

Again adding the first block to Vvac times the second block gives

H′ = C̃Ãk
(

T [
4−T [

1

−T [
3

)
+ HT b

1 , (B.7)

where

H : = −VvacC
(
−A[

)k
+ CAk−1C[VvacC −Cek−1A[ + VvacCAk

H′ : = −VvacC′
(
−A′[

)k
+ C′A′k−1C′[VvacC′ −C′e′k−1A′[ + VvacC′A′k

Now, observe that

H′ = VvacC′A′k +

(
VvacC′

(
−A′[

)k−1
−C′e′k−1

)
A′[ + C′A′k−1C′[VvacC′

= VvacC′A′k +

(
VvacC′

(
−A′[

)k−1
−C′e′k−1

) (
−A′ −C′[C′

)
+ C′A′k−1C′[VvacC′

= VvacC′A′k +

(
−VvacC′

(
−A′[

)k−1
+ C′e′k−1

)
A′

+

(
−VvacC′

(
−A′[

)k−1
C′[ + C′e′k−1C′[ + C′A′k−1C′[Vvac

)
C′

= VvacC′A′k + G′k−1A′ − C̃′
(
Ã′

)k−1
B̃′C′, (B.8)

where G′k := −VvacC′
(
−A′[

)k
+ C′e′k. Here we have used the

realisability condition A + A[ + C[C = 0 on the second line and
then rearranged.

Now, let us obtain a recursive expression for Gk. Firstly, us-
ing the definition of ek and the substitution A′+ A′[+C′[C′ = 0:

G′k = −VvacC′
(
−A′[

)k
+

k−1∑
j=0

C′A′k−1− jC′[VvacC′
(
−A′[

) j

= −VvacC′
(
−A′[

)k−1 (
A′ + C′[C′

)
+

k−1∑
j=1

C′A′k−1− jC′[VvacC′
(
−A′[

) j−1 (
A′ + C′[C′

)
+ C′A′k−1C′[VvacC′

(
−A′[

)0
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Rearranging this and using the definition of ek again we obtain

G′k =

(
−VvacC′

(
−A′[

)k−1
C′[ + C′A′k−1C′[Vvac

+C′
 k−2∑

j=0

A′k−2− jC′[VvacC′
(
−A′[

) j
C′[

C′

+

−VvacC′
(
−A′[

)k−1
+ C′

k−2∑
j=0

A′k−2− jC′[VvacC′
(
−A′[

) j
 A′

=

(
−VvacC′

(
−A′[

)k−1
C′[ + C′A′k−1C′[Vvac + C′e′k−1C′[

)
C′

+

(
−VvacC′

(
−A′[

)k−1
+ C′e′k−1

)
A′

= −C̃′Ã′k−1B̃′C′ + Gk−1A′.

Also note that

G1 = VvacC′A′[ + C′C′[VvacC′

= −VvacC′A′ +
(
−VvacC′C′[ + C′C′[Vvac

)
C′

= −VvacC′A′ − C̃′B̃′C′.

Using our recursive expression for Gk, and continuing on
from (B.8) we have

H′ =VvacC′A′k − C̃′Ã′k−1B̃′C′ + G′k−1A′

= VvacC′A′k − C̃′Ã′k−1B̃′C′ − C̃′Ã′k−2B̃′C′A′ + Gk−2Ã′2

...
...

...
...

= VvacC′A′k −
k−1∑
j=1

C̃′Ã′ jB̃′C′A′k−1− j + G1A′k−1

= VvacC′A′k −
k−1∑
j=0

C̃′Ã′ jB̃′C′A′k−1− j − VvacC′A′k

= −

k−1∑
j=0

C̃′Ã′ jB̃′C′A′k−1− j. (B.9)

Furthermore, as C̃′Ã′k−1B̃′ = C̃Ãk−1B̃ for all k and C′A′k =

CAkT b
1 , then we may conclude that

H′ = −

 k−1∑
j=0

C̃′Ã′ jB̃′C′A′k−1− j

 T [
1. (B.10)

On the other hand, by using an identical argument to above,

H = −

k−1∑
j=0

C̃Ã jB̃CAk−1− j. (B.11)

Therefore, using (B.10) and (B.11) in (B.7) completes the
proof.

Appendix B.3. Step 3

To show that the system is doubled-up we use the observabil-
ity of the quantum system. Observe that C1Ak

1, C2Ak
2 must be of

the of this doubled up form for k ∈ {0, 1, 2, ...}. Writing C1Ak
1,

C2Ak
2 and T1 as

(
P(k) Q(k)

Q(k) P(k)

)
,
(

P′(k) Q′(k)

Q
′

(k) P
′

(k)

)
and T1 =

(
S 1 S 2
S 3 S 4

)
, and using

the result, C1Ak
1 = C2Ak

2T [
1, it follows that

P(k)(S
†

1 − S T
4 ) + Q(k)(S T

3 − S †2) = 0

Q(k)(S
†

1 − S T
4 ) + P(k)(S T

3 − S †2) = 0.

Hence
O

[
S †1−S T

4

S T
3 −S †2

]
= 0

and by using the fact that O is full rank implies that

T1 =
( S 1 S 2

S 2 S 1

)
.

Appendix C. Finding a classical realisation of the power
spectrum for Section 4.3

We assume that the matrix A for the n-mode minimal sys-
tem, (A,C), possesses 2n distinct eigenvalues each with non-
zero imaginary part. This requirement can be seen to be generic
in the space of all quantum systems Nurdin, Grivopoulos, and
Petersen (2016).

Firstly, observe that if λi is a complex eigenvalue of A with
right eigenvector

(
Ri
S i

)
and left eigenvector (Ui,Vi), then λi also

an eigenvalue with right eigenvector
(

S i

Ri

)
= Σ

(
Ri
S i

)
and left

eigenvector
(
V i,U i

)
= (Ui,Vi)Σn, where Ri, S i ∈ C1×n, Ui,Vi ∈

Cn×1 and Σn :=
(

0n 1n
1n 0n

)
. This property follows from the fact that

A has the doubled-up form A := ∆ (A−, A+). Furthermore, from
the system (16) Ã may be diagonalised as Ã = PÃ0P−1 where

Ã0 =
(
−A[0 0

0 A0

)
and A0 is diagonal and doubled-up. Here P and P−1 are lower
block triangular (Lemma 2) written as

P =
(

P1 0
P2 P3

)
and P−1 =

(
P−1

1 0
−P−1

3 P2P−1
1 P−1

3

)
,

where

P3 =
( R1 ... Rn S 1 ... S n

S 1 ... S n R1 ... Rn

)
and P−1

1 =



U1 V1

...
...

Un Vn

V1 U1

...
...

Vn Un


.

Hence, the power spectrum, Ψ(s)J, of (16) may be written

Vvac − (−VvacCP1 + CP2,CP3)
(

s+A[0 0
0 s−A0

) ( P−1
1 C[

−P−1
3 P2P−1

1 C[+P−1
3 C[Vvac

)
.

(C.1)

We can construct a minimal realisation called Gilbert’s re-
alisation Zhou et al. (1996) by expanding as partial fractions:

Ψ(s)J = Vvac +

n∑
i=1

Ii

(s + λi)
+

Ki

(s + λi)
+

Ti

(s − λi)
+

Wi

(s − λi)
,

(C.2)
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with Re(λi) < 0. The matrices Ii,Ki,Ti,Wi are necessarily rank-
one. Therefore there exist matrices B1,i, B2,i, B′1,i, B

′
2,i ∈ C1×2m

and C1,i,C2,i,C′1,i,C
′
2,i ∈ C

2m×1 such that

C1,iB1,i = Ii,C′1,iB
′
1,i = Ki and C2,iB2,i = Ti, C′2,iB

′
2,i = Wi

and are each uniquely determined from Ii,Ki,Ti,Wi up to a con-
stant5. The Gilbert realisation Ã0, B̃0, C̃0 is

Ã0 := diag
(
−λ1, ...,−λn,−λ1, ...,−λn, λ1, ..., λn, λ1, ..., λn

)
,

B̃0 :=
[

B1
B2

]
, C̃0 := [C1,C2]

where

B1 :=



B1,1

...
B1,n
B′1,1
...

B′1,n


B2 :=



B2,1

...
B2,n
B′1,1
...

B′1,n


,

C1 := [ C1,1 ... C1,n C′1,1 ... C′1,n ] ,
C2 := [ C2,1 ... C2,n C′2,1 ... C′2,n ] .

At the moment this Gilbert realisation doesn’t satisfy the prop-
erties required by Section 4.3, i.e., B1 and C2 are not doubled-
up. We can take care of this in the following way. Firstly, in
this realisation Ii is equal to the ith column of (−VvacCP1 + CP2)
multiplied by the ith row of P−1

1 C[ and Ki is equal to the (n + i)th

column of (−VvacCP1 + CP2) multiplied by the (n + i)th row of
P−1

1 C[ (see (C.1)). Therefore, the ith row of B1 differs from the
ith row of the doubled-up matrix P−1

1 C[ by an (unknown) multi-
plicative constant. Finally, by multiplying the rows of B1 in our
Gilbert realisation by suitable constants (and hence multiplying
the corresponding columns of C1 by the inverse of these con-
stants so that the power spectrum remains unchanged) we can
obtain a doubled-up B1. A similar technique may be used to ob-
tain a doubled-up C2 by using the fact that CP3 is doubled-up.
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