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Abstract

We consider multi-sensor fusion estimation for clustered sensor networks. Both sequential measurement fusion and state
fusion estimation methods are presented. It is shown that the proposed sequential fusion estimation methods achieve the
same performance as the batch fusion one, but are more convenient to deal with asynchronous or delayed data since they
are able to handle the data that is available sequentially. Moreover, the sequential measurement fusion method has lower
computational complexity than the conventional sequential Kalman estimation and the measurement augmentation methods,
while the sequential state fusion method is shown to have lower computational complexity than the batch state fusion one.
Simulations of a target tracking system are presented to demonstrate the effectiveness of the proposed results.
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1 Introduction

Fusion estimation for sensor networks has attracted
much research interest during the last decade, and has
found applications in a variety of areas [1,2,3,4,5]. Com-
pared with the centralized structure, the distributed
structure is more preferable for sensor networks because
of its reliability, robustness and low requirement on net-
work bandwidth [4,6,7]. When the number of sensors is
large, it is wasteful to embed in each sensor an estima-
tor and the communication burden is high. Moreover,
for long-distance deployed sensors, it may not be possi-
ble to allocate communication channels for all sensors.
An improvement is to adopt the hierarchical structure
for distributed estimation [8], by which all the sensors
in the network are divided into several clusters and the
sensors within the same cluster are connected to a clus-
ter head (CH) which acts as a local estimator. Then, the
distributed estimation is carried out in two stages. In
the first stage, the local estimator in each cluster fuses
the measurements from its cluster to generate a local
estimate. Then, the local estimators exchange and fuse
local estimates to produce a fused estimate to eliminate
any disagreements among themselves.

Various results on multi-sensor fusion estimation for

Email addresses: wazhang@zjut.edu.cn (Wen-An
Zhang), eesling@ust.hk (Ling Shi).

sensor networks have been available in the litera-
ture, including centralized fusion and distributed fu-
sion, as well as measurement fusion and state fusion
[9,10,11,12,13,14,15,16,17,18]. However, most of the re-
sults are based on the idea of batch fusion, that is,
measurements or local estimates are fused all at a time
at the fusion instant until all of them are available at
the estimator, as illustrated in Fig.1(a). Such a batch
fusion estimation may induce long computation delay,
thus it is not appropriate for real-time applications. A
possible improvement is to adopt the idea of sequential
fusion, by which the measurements or local estimates
are fused one by one according to the time order of the
data arriving at the estimator, as illustrated in Fig.1(b).
In this way, the fusion and the state estimation could
be carried out over the entire estimation interval, which
help reduce computation burdens at the estimation
instant and ultimately reduce the computation delay.
Moreover, asynchronous or delayed data can be eas-
ily handled. Some relevant results on sequential fusion
estimation have been presented in [19] and [20]. The
idea in [19] is similar to the conventional sequential
Kalman filtering, where the state estimate is updated
several times by sequentially fusing the various mea-
surements, and both the procedures of state prediction
and measurement updating are involved over each step
of the estimate updating, which incurs significant much
computation cost. An alternative approach is to fuse
all the measurements first, and then generate the state
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Fig. 1. Examples of batch fusion estimation and sequential
fusion estimation.
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Fig. 2. A structure of hierarchical fusion estimation for clus-
tered sensor networks.

estimate based on the fused measurement. This is the
novel method introduced in this paper. In [20], the se-
quential covariance intersection (CI) fusion method was
presented for state fusion estimation. However, the CI
fusion is not optimal since the cross-covariances among
the various local estimates are ignored.

In this paper, both sequential measurement fusion
(SMF) estimation and state fusion estimation (SSF)
methods are developed for clustered sensor networks,
where the SMF is presented for local estimation, while
the SSF is presented for state fusion estimation among
all the local estimators. The main contributions of the
paper are summarized as follows:
1) We present a design method for the SMF estima-

tors. We show that the SMF estimator is equivalent
to the conventional sequential Kalman (SK) and the
batch measurement fusion (BMF) estimators, and is
equivalent to the one designed based on measurement
augmentation (MA). We also show that the SMF es-
timator has lower computational complexity than the
estimators based on SK and MA.
2) We present a design method for the SSF estimators

with matrix weights. We further show that the SSF
estimator is equivalent to the batch state fusion (BSF)
estimators with matrix weights but has much lower
computational complexity.

2 Problem Statement

Consider the hierarchical fusion estimation for clustered
sensor networks as shown in Fig.2, where the plant,
whose state is to be estimated, is described by the fol-
lowing discrete-time state-space model

x(k + 1) = A(k)x(k) +B(k)ω(k) (1)

where x(k) ∈ ℜnx is the system state, and ω(k) ∈ ℜnω

is a zero-mean white Gaussian noise with variance Qω.
A sensor network withm clusters is deployed to monitor
the state of system (1). The set of the clusters is denoted
by Φ = {1, . . . ,m}. Let Ns = {1, . . . , ns} denote the sth
cluster in the sensor network, where s ∈ Φ and ns is
the number of sensors in the cluster Ns. The ns sensors
are connected to a cluster head (CH) es serving as an
estimator. The measurement equation of each sensor is
given by

ys,i(k) = C(k)x(k) + υs,i(k), i ∈ Ns, s ∈ Φ (2)

where ys,i(k) ∈ ℜq, υs,i(k) is a zero-mean white Gaus-
sian noise with variance Rs,i, and υs,i(k) are mutually
uncorrelated and are uncorrelated with ω(k).

As shown in Fig.2, the fusion estimation is carried out in
two stages. At the first stage, each CH collects and fuses
measurements sequentially from its cluster, then gener-
ates a local estimate using the fused measurement. At
the second stage, each CH collects local estimates from
itself and the other CHs to produce a fused state esti-
mate using the SSF method to improve estimation per-
formance and eliminate any disagreements among the
estimators.

3 Design of the SMF Estimators

This section is devoted to the design of the SMF estima-
tors for each cluster. Consider cluster Ns, s ∈ Φ. For no-
tational convenience, the subscript s in the notations will
be dropped in the remaining of this section, for example,
ys,i is denoted as yi and ns is denoted as n. Denote ysf as

the fused measurement and Y (k) = {y1(k), . . . , yn(k)}
as the set of measurements for fusion. Then it can be seen
from Fig.1(b) that ysf is obtained by sequentially fus-
ing the nmeasurements. The fused measurement and its
noise variance of the jth fusion over the interval (k−1, k]
is denoted by y(j)(k) and R(j−1)(k), respectively, where
j ∈ {1, 2, . . . , n − 1}. Denote the measurement noise of
y(j)(k) as υ(j)(k), then y(j)(k) = C(k)x(k)+υ(j)(k), and
R(j−1)(k) = Cov{υ(j)(k)}. We now introduce the first
main result on SMF estimator.
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Theorem 1. For the measurements in Y (k), the SMF
estimator is given by the following equations

R(j)(k) =
[

R−1
(j−1)(k) +R−1

j+1(k)
]−1

(3)

y(j)(k) =R(j)(k)
[

R−1
(j−1)(k)y(j−1)(k)

+R−1
j+1(k)yj+1(k)

]
(4)

where j = 1, . . . , n−1, y(0)(k) = y1(k),R(0)(k) = R1(k),
and the fused measurement ysf (k) and its noise variance

Rs
f (k) are given by ysf (k) = y(n−1)(k) and Rs

f (k) =

R(n−1)(k), respectively. Moreover, one has R(j)(k) ≤
R(j−1)(k) and Rs

f (k) ≤ Ri(k), i ∈ {1, . . . , n}.

Proof. For brevity, the notation k will be dropped
in the following developments. Denote fm as the se-
quential measurement fusion operator, then y(j) =
fm{y(j−1), yj+1}. Augment y(j−1) and yj+1 to get

z(j) =

[

y(j−1)

yj+1

]

= eCx+ ῡ(j) (5)

where e = [I I]T and ῡ(j) = [υT
(j−1) υT

j+1]
T. Let

R̄(j) = Cov{ῡ(j)}. The term z(j) can be regarded as a
measurement ofCxwith the measurement noise ῡ(j) and
the measurement matrix e. Then by the weighted least
square (WLS) estimation method, a least norm estimate
of Cx is given by

ẑ(j) = [eTR̄−1
(j)e]

−1eTR̄−1
(j)z(j) (6)

Since υ(j−1) is related to {υ1, . . . , υj}, it is uncorrelated
with υj+1. Thus, one has

R̄(j) = diag{R(j−1), Rj+1} (7)

Substituting (5) and (7) into (6) yields

ẑ(j) = [R−1
(j−1) +R−1

j+1]
−1[R−1

(j−1)y(j−1) +R−1
j+1yj+1] (8)

It can be seen from (8) that ẑ(j) is a linear combination
of y(j−1) and yj+1, thus it can be regarded as the fused
measurement y(j), that is, y(j) = ẑ(j), which leads to
equation (4). Since y(j) is a WLS estimate of Cx, it can
be written as y(j) = Cx + υ(j), where υ(j) is the mea-
surement noise. Then one has

υ(j) = y(j) − Cx (9)

Substituting (5) into (6) and noting y(j) = ẑ(j), one has
by (9) that

υ(j) = [eTR̄−1
(j)e]

−1eTR̄−1
(j) ῡ(j) (10)

Since υ(j−1) is uncorrelated with υj+1, it follows from

(10) that R(j) = Cov{υ(j)} = [R−1
(j−1) +R−1

j+1]
−1, which

is just the equation (3). Moreover, it follows from the
equation R−1

(j) = R−1
(j−1) + R−1

j+1 that R(j) ≤ R(j−1) and

R(j) ≤ Rj+1, which leads to Rs
f (k) ≤ Ri(k), ∀ i ∈

{1, . . . , n}. The proof is thus completed.

When the fused measurement ysf(k) is available, the es-
timator is able to produce an optimal state estimate by
using ysf (k) and applying a standard Kalman filter. An
alternative approach to obtain the fused measurement is
to apply the BMF method, which has been presented in
[12]. In the BMF method, all the measurements in Y (k)
are fused all at a time and the fused measurement can
be obtained by the WLS method, and it is given by

Rb
f (k) = [Σn

i=1R
−1
i (k]−1 (11)

ybf (k) =Rb
f (k)[Σ

n
i=1R

−1
i (k)yi(k)] (12)

Remark 1. If the measurement equations in (2) have
different measurement matrices Cs,i(k), i ∈ Ns, s ∈
Φ, and Cs,i(k) can be decomposed as Cs,i = Ms,iC,
∀ i ∈ Ns, s ∈ Φ, where C ∈ ℜq×nx , Ms,i ∈ ℜq×q and
∑

i∈Ns

MT
s,iR

−1
i Ms,i is non-singular, then a similar SMF

rule as given in Theorem 1 can be obtained by following
some similar lines as in (5)-(10).

It has been shown in [12] that the BMF is optimal in the
sense that the noise variance of the fused measurement is
minimal among all the fusion rules with matrix weights.
The following theorem shows that the proposed SMF is
equivalent to the BMF.

Theorem 2. The SMF is equivalent to the BMF, i.e.,
ysf(k) = ybf (k) and Rs

f (k) = Rb
f (k).

Proof. For j = n− 1, one has by (3) and (4) that

Rs
f = R(n−1) = [R−1

(n−2) +R−1
n ]−1 (13)

ysf = y(n−1) = R−1
(n−1)[R

−1
(n−2)y(n−2) +R−1

n yn] (14)

Substituting the expressions of R(n−2) and y(n−2) into
(13) and (14) yields

R(n−1) = [R−1
(n−3) +R−1

n−1 +R−1
n ]−1 (15)

y(n−1) =R−1
(n−1)[R

−1
(n−3)y(n−3) +R−1

n−1yn−1

+R−1
n yn] (16)

Following the similar procedures as in (15) and (16) for
j = n− 3, n− 4, . . . , n, one finally obtains

Rs
f =

[
Σn

i=1R
−1
i

]−1
= Rb

f (17)

ysf = (Rs
f )

−1
[
Σn

i=1R
−1
i yi

]
= ybf (18)
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The proof is thus completed.

Remark 2. Conventional approaches for the local es-
timation with multiple measurements either use the
measurement augmentation (MA) or use the sequential
Kalman (SK) estimation. It can be seen from Theo-
rem 1 and equation (12) that the fused measurement
obtained by the SMF or BMF has the same dimen-
sion as each local measurement. Therefore, the SMF
and BMF methods are more computationally efficient
than the MA method. Moreover, in the SMF or BMF
method, the estimate is obtained using the fused mea-
surement and applying one step state update. How-
ever, in the SK estimation method, the estimate is
obtained by sequentially applying a set of updates.
Therefore, the SMF and BMF methods have lower
computation complexity than the SK method. Specif-
ically, Define the computational complexity of the es-
timation method as the number of multiplications and
divisions in the algorithm, and let δsm, δbm, δma, and
δsk denote the computational complexity of the SMF,
BMF, MA and SK methods, respectively. Then, one has
δsm = (n2

x +5nx +8n− 7)q2 + (4n2
x + nx)q+2n3

x + n2
x,

δbm = (n2
x +5nx + 3n+ 3)q2 + (4n2

x + nx)q+ 2n3
x + n2

x,
δma = (n2

x+5nx+8n−7)n2q2+(4n2
x+nx)nq+2n3

x+n2
x,

δsk = (n2
x+5nx+8n−7)nq2+(4n2

x+nx)nq+n(2n3
x+n2

x).
It can be seen that both δsm and δbm are of magnitude
O(nq2), while δma and δsk are of magnitudes O(n3q2)
and O(n2q2), respectively.

4 Design of the SSF Estimators

This section is devoted to the design of the state fu-
sion estimator for each cluster. Suppose that m local
estimates x̂i, i = 1, 2, . . . ,m are available for fusion at
the cluster Ns, s ∈ Φ over each estimation interval. To
fuse the m local estimates, one may apply some well de-
veloped batch state fusion (BSF) methods, such as the
optimal fusion rule with matrix weights given in [11].
However, in the BSF method, all the local estimates are
fused once at a time which usually involves computing
the inverse of a high dimensional matrix, and may not
be suitable for real-time applications. In what follows, a
SSF method with matrix weights will be developed.

Without loss of generality, suppose that the m local es-
timates arrive at the head of cluster Ns in time order
as x̂1, x̂2, . . ., x̂m. In the SSF method, the cluster head
fuses the local estimates one by one according to the time
order. Denote the jth fused estimate as x̂(j), then j ∈
{1, 2, . . . ,m− 1}, x̂(0) = x̂1 and x̂(j) = fs(x̂(j−1), x̂j+1),
where fs is the state fusion rule to be designed. The SSF
with matrix weights are presented in the following the-
orem.

Theorem 3. Let x̂i, i = 1, 2, . . . ,m be unbiased esti-
mates of the state of system (1) and Pi be the estima-

tion error variance matrix of x̂i. Then, the SSF estima-
tor with matrix weights is given by

x̂(j) =∆1,(j)x̂(j−1) +∆2,(j)x̂j+1 (19)

P(j) = [eTΩ−1
(j)e]

−1 (20)

where j = 1, 2, . . . ,m − 1, P(j) is the estimation error
variance matrix of x̂(j), x̂(0) = x̂1, P(0) = P1 and the
optimal matrix weights ∆1,(j) and ∆2,(j) are computed
as

[

∆1,(j)

∆2,(j)

]

= Ω−1
(j)e[e

TΩ−1
(j)e]

−1 (21)

Ω(j) =

[

P(j−1) P(j−1),j+1

∗ Pj+1

]

(22)

e = [I I]T (23)

where P(j−1),j+1 = E{x̃(j−1)x̃
T
j+1} is the cross covari-

ance matrix of x̂(j−1) and x̂j+1, and is computed as

P(j−1),j+1(k) =

j
∑

d=1

j−d+1
∏

l=1

∆1,(j−l)∆2,(d−1)Pd,j+1(k)(24)

Pj,d(k) = [I −Kj(k)C(k)][A(k − 1)Pj,d(k − 1)

×AT(k − 1) +B(k − 1)QωB
T(k − 1)]

× [I −Kd(k)C(k)]T (25)

where ∆1,(0) = ∆2,(0) = I and P(0),2 = P1,2. The fused
state estimate and its error variance are finally given by
x̂s
f = x̂(m−1) andP

s
f = P(m−1), and one has P

s
f ≤ Pi, i =

1, 2, . . . ,m, that is, the precision of the SSF estimator is
higher than each local estimator.

Proof. According to the SSF rule, x̂(j−1) and x̂j+1 are
fused in the jth fusion. Then, by applying the fusion rule
with matrix weights as presented in Theorem 1 of [11],
the optimal fusion in the linear minimum variance sense
is given by (19) and (20), where ∆1,(j) +∆2,(j) = I. In
what follows, it will be shown that the cross-covariance
P(j−1),j+1 satisfies the equation (24). Note that for j =
1, one has P(0),2 = P1,2. For j ≥ 2 and t ∈ {j − 1, j −
2, . . . , 1} one has

x̃(t) = x− x̂(t) (26)

x̂(t) = ∆1,(t)x̂(t−1) +∆2,(t)x̂t+1 (27)

Substituting (27) into (26) and taking the relation
∆1,(t) +∆2,(t) = I into consideration yields

x̃(t) = (∆1,(t) +∆2,(t))x−∆1,(t)x̂(t−1) −∆2,(t)x̂t+1

=∆1,(t)x̃(t−1) +∆2,(t)x̃t+1 (28)
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It follows from (28) that

P(t),j+1 =E{x̃(t)x̃
T
j+1}

=∆1,(t)P(t−1),j+1 +∆2,(t)Pt+1,j+1 (29)

Applying (29) recursively for t = j− 1, j− 2, . . . , 1 leads
to equation (24). Denote the fused measurement in the
jth cluster as ysf,j, then ysf,j can be written as

ysf,j = Cx+ υs
f,j , j ∈ Zs (30)

where υs
f,j is the fused measurement noise. Then, by (1),

(30) and the standard Kalman filter, one has

x̃j(k) = x(k) − x̂j(k)

= [I −Kj(k)C(k)][A(k − 1)x̃j(k − 1)

+B(k − 1)ω(k − 1)]−Kj(k)υ
s
f,j(k) (31)

By definition, the cross covariance is given by

Pj,d(k) = E{x̃j(k)x̃
T
d (k)}, j 6= d, j, d ∈ Zs (32)

Substituting (31) into (32) and taking into account the
relations x̃j(k − 1) ⊥ ω(k − 1), x̃j(k − 1) ⊥ υs

f,j(k),

ω(k − 1) ⊥ υs
f,j(k) and υs

f,j(k) ⊥ υs
f,d(k), one obtains

equation (25).

Moreover, by the fusion rule given in [11], one has

P(j) ≤ P(j−1), P(j) ≤ Pj+1 (33)

By applying (33) recursively for j = 1, 2, . . . ,m− 1, one
obtains P s

f = P(m−1) ≤ Pi, i ∈ Zs. The proof is thus
completed.

Remark 3. It can be seen from (22) that the matrix Ω(j)

has dimension 2nx× 2nx, while it has dimension mnx×
mnx in the BSF. Therefore, the SSF is much more com-
putational efficient than BSF. Specifically, let δbs and
δss denote the computational complexity of the BSF and
SSFmethods, respectively. Then, one has δbs = 5n2

xm
2+

(n3
x + n2

x)m and δss = (2n3
x + 22n2

x)m − 2n3
x − 22n2

x.
Therefore, the magnitudes of δbs and δss are O(m2) and
O(m), respectively.

The fused estimate x̂s
f given by Theorem 3 has the fol-

lowing property.

Theorem 4. The fused estimate x̂s
f is an unbiased esti-

mate of the system state, and satisfies

{

x̂s
f = ∆x̂

∆Io = I
(34)

where x̂ = [x̂T
1 · · · x̂T

m]T, Io = [I · · · I
︸ ︷︷ ︸

m

]T and

∆ =

[
m−1∏

l=1

∆1,(m−l)

m−2∏

l=1

∆1,(m−l)∆2,(1) · · ·

∆1,(m−1)∆2,(m−2) ∆2,(m−1)

]

Proof. Note that (19) is a recursive equation for com-
puting x̂(j) with respect to the variable j. Therefore,
substituting the expression of x̂(j−1) into that of x̂(j) for
j = 1, 2, . . . ,m − 1 yields x̂s

f = x̂(m−1) = ∆x̂. By the
definition of Io, one has

∆Io =

m∑

j=1

m−j
∏

l=1

∆1,(m−l)∆2,(j−1) (35)

Denote Dm−j+1 =
m−j∏

l=1

∆1,(m−l)∆2,(j−1), j = 1, . . . ,m.

Then, one has by (35) that

∆Io =

m∑

j=1

Dj (36)

Since ∆1,(j) +∆2,(j) = I, j = 1, 2, . . . ,m− 1, one has

D1 +D2 =∆1,(m−1)∆2,(m−2) +∆2,(m−1)

=∆1,(m−1)∆2,(m−2) + I −∆1,(m−1)

= I +∆1,(m−1)[∆2,(m−2) − I]

= I −∆1,(m−1)∆1,(m−2) (37)

Then, it follows from (37) that

D1 +D2 +D3

= I −∆1,(m−1)∆1,(m−2) +∆1,(m−1)∆1,(m−2)∆2,(m−3)

= I +∆1,(m−1)∆1,(m−2)[∆2,(m−3) − I]

= I −∆1,(m−1)∆1,(m−2)∆1,(m−3) (38)

Following the similar lines as in (37) and (38), one ob-
tains

m−1∑

j=1

Dj = I −
m−1∏

l=1

∆1,(m−l) (39)

Since ∆2,(0) = I, one has

Dm =

m−1∏

l=1

∆1,(m−l)∆2,(0) =

m−1∏

l=1

∆1,(m−l) (40)

5



Then, it follows from (36), (39) and (40) that

∆Io =

m∑

j=1

Dj =

m−1∑

j=1

Dj +Dm = I (41)

Since x̂i, i = 1, 2, . . . ,m are unbiased estimates of x, one
has by the fact ∆Io = I that E{x − x̂s

f} = E{∆Iox −
∆x̂} = ∆E{Iox − x̂} = 0, that is, E{x} = E{x̂s

f}.
Therefore, x̂s

f is an unbiased estimate of the state x. The
proof is thus completed.

Remark 4. It can be seen from Theorem 4 that the pro-
posed estimate x̂s

f is also a linear combination of all the
local estimates with matrix weights. Thus, the estimator
given in Theorem 4 can be regarded as another form of
BSF estimator. However, the weighting matrices in the
BSF estimator given in Theorem 4 have much lower di-
mensions than those in the BSF estimator as presented
in [11].

5 Simulations

Consider a maneuvering target tracking system, where
the target moves in one direction, and its position and
velocity evolve according to the state-space model (1)
with

A(k) =

[

1 h

0 1

]

, B(k) =

[

h2/2

h

]

(42)

where h is the sampling period. The state is x(k) =
[xT

p (k) xT
v (k)]

T, where xp(k) and xv(k) are the position
and velocity of the maneuvering target at time k, respec-
tively. The variance of the process noise ω(k) is q = 1.
The position is measured by the sensors, and the mea-
surement matrix is C = [1 0]. The initial state of system
(1) is x0 = [1 0.5]T, and we take h = 0.5s in the sim-
ulation. A group of sensors are deployed to monitor the
target, and the sensor network is divided into three clus-
ters, namely, N1 with 10 sensors,N2 with 8 sensors, and
N3 with 6 sensors. There is a CH in each cluster, and the
CH collects measurements from its cluster to generate a
local estimate of the system state. Monte Carlo simula-
tions will be carried out and the root mean-square error

RMSE =
√

1
L

∑L

i=1(x
i
p − x̂i

p)
2 is used to evaluate the es-

timation performance of the estimators, where L = 1000
is the number of Monte Carlo simulation runs. The es-
timate of the initial state is set as x̂0 = [2 1]T.

The local estimates in cluster N1 using the proposed
SMFmethod, the BMF, SK andMAmethods are shown
in Fig. 3. It can be seen from Fig. 3 that the SMF, BMF,
SK and MA methods provide the same estimation preci-
sion. Now, consider the state fusion in cluster N1. In the
state fusion stage, the CH in N1 collects local estimates
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Fig. 3. Equivalence of the BMF estimator and the SMF, SK
and MA estimator
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Fig. 4. Equivalence of the BSF estimator and the SSF esti-
mator

from the other two CHs and generates the fused state
estimates using the proposed BSF and SSF methods. It
can be seen from Fig. 4 that the estimation performance
is improved by fusing the local estimates, and the pro-
posed SSF method is equivalent to the BSF method in
achieving the same estimation precision.

6 Conclusions

Some sequential fusion estimators have been developed
in this paper for distributed estimation in clustered
sensor networks. It is shown that the sequential fu-
sion methods have the same estimation performance
as the batch fusion one but have lower computational
complexity than conventional approaches, such as the
batch fusion estimation, sequential Kalman estimation
and that based on measurement augmentation. There-
fore, the proposed methods are more appropriate for
real-time applications and are convenient to handle
asynchronous and delayed information.
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