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Abstract

This paper studies the optimal state estimation problem for networked control systems with control and observation packet
losses but without packet acknowledgment (ACK). The packet ACK is a signal sent by the actuator to inform the estimator
whether control packets are lost or not. Systems with packet ACK are usually called transmission control protocol (TCP)-like
systems, and those without ACK are named user datagram protocol (UDP)-like systems. For UDP-like systems, the optimal
estimator is derived and it is consisted of an exponentially increasing number of terms. By developing an auxiliary estimator,
it is shown that there exists a critical observation packet arrival rate determining the stability of the expected EC (EEC), and
it is identical to its counterpart for TCP-like systems. It is revealed that whether there is packet ACK or not has no effect on
the stability of the EEC. Furthermore, under some conditions the EEC converges exponentially.
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1 Introduction

Recently, significant attention has been paid to net-
worked control systems (NCSs) as they bring numerous
benefits, such as lower installation and maintenance
costs, reduced network wiring, increased system flexi-
bility, etc. However, the insertion of networks may make
NCSs prone to network attacks [21] and cause some
network-induced constraints, such as limited commu-
nication [3], signal quantization [4], and transmission
packet losses [35]. There are two fundamental protocols
in network communication for systems subject to pack-
et losses. They are the transmission control protocol
(TCP) and the user datagram protocol (UDP). For the
TCP, the sending node retransmits lost data until it re-
ceives acknowledgment (ACK) from the receiving node.
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Such retransmission mechanism guarantees the success
of data transmission, but for NCSs with unreliable net-
work communication, it would be difficult to implement
the TCP, as the packet ACK cannot be transmitted
without delay and random loss [7, 32, 16]. For the UDP,
the ACK scheme is not used and thus no retransmission
of lost data is required. The UDP, with a less transmis-
sion reliability, is able to provide more timely commu-
nication, and thus turns out to be a favorable choice for
real-time NCSs [26]. The NCS without the packet ACK
transmitted from the actuator to notice the estimator
the status of control packet loss is usually called a UDP-
like system, and the one with such packet ACK is called
a TCP-like system (see Fig. 1). For the convenience
of formulation, we denote by Su

UDP a UDP-like system
with only control packet losses, and by Suy

UDP a UDP-like
system with control and observation packet losses, i.e.,
dual packet losses. In this paper, we study the optimal
estimator and its stability for the Suy

UDP system.

For TCP-like systems, the optimal estimator is a time-
varying Kalman filter, and the stability of the expected
error covariance (EEC) has been studied in [31], in which
it is pointed out that for an unstable system there exist-
s a critical observation packet arrival rate, determining
the boundedness of the EEC. NCSs with multiple packet
losses were investigated in [14, 34]. Thereafter, the crit-
ical value and its upper/lower bound have been investi-
gated in [23, 25]. For Markovian packet loss cases, sig-
nificant results and techniques can be found in [2, 9, 36],
and references therein.

For UDP-like systems, the literature on sub-optimal es-
timators is first reviewed as follows. For these systems,
the linear minimum mean square error (MMSE) estima-
tor was derived in [28], and other linear/non-linear es-
timators can be found in [15, 24, 32, 20]. The UDP-like
system can also be viewed as a Markovian jump system
(MJS) with unknown jump modes [18, 19]. Various com-
putationally efficient estimators designed for MJSs with
unknown jump modes, such as the interacting multiple
model (IMM) estimator [13] and the probability hypoth-
esis density (PHD) filter [5] also apply to UDP-like sys-
tems. However, these estimators are in fact sub-optimal.
Analytic characterization on the stability and perfor-
mance of these estimators is usually unavailable, and nu-
merical approaches such as the Monte Carlo method are
often used [13].

For the optimal estimator, it is shown in [19] that for the
Su
UDP system, it contains exponentially increasing terms,

and the EEC is bounded under bounded control inputs
if the Su

UDP system is detectable. However, the condition
for the stability of the optimal estimator for the Suy

UDP
system, to our best knowledge, is still unknown, due to
some challenging issues: 1) A random variable γk, not
presented in the Su

UDP system, occurs not only in the
Riccati equation (2e) but also in the power term (15b).
As a result, equations for EC are more complicated than

that in [19], and the summation part with exponentially
increasing terms in (17d) will become unbounded, mak-
ing analysis of the stability difficult. 2) Existing methods
are not applicable to the Suy

UDP system. The sequential
Monte Carlo method, a simulation method, has known
to be a practical tool to evaluate the EEC [6]. The hy-
brid approach developed in [13] is an efficient off-line al-
gorithm for approximately computing EEC with finite
mixing terms. The techniques proposed in [29, 5] to an-
alyze the stability of the IMM and the PHD estimators,
the good approximations for the optimal estimator, can
be employed to approximately study the stability of the
optimal estimator for UDP-like systems. However, these
aforementioned methods merely render the stability and
convergence results in an experimental or approximate
way, and cannot determine the stability of EEC in the
desired theoretical view. In [19], an auxiliary estimator
method was developed to study stability of EECs for the
Su
UDP system. However, all the observations {y1, . . . , yk}

are required in constructing this auxiliary estimator, and
thus this method is not applicable due to random losses
of observations in the Suy

UDP system. In [18], another type
of auxiliary estimator was constructed for the Su

UDP sys-
tem, but the relationship between the optimal and the
auxiliary estimators is not established.

For UDP-like systems, the optimal estimator and its sta-
bility and convergence are studied in this paper. Main
results and contributions are summarized as follows:

1) We obtain the optimal estimator for UDP-like sys-
tem with dual packet losses, which is consisted of an
exponentially increasing number of terms.

2) We show that the stability of the EEC is only deter-
mined by the observation packet arrival rate, and is
independent of the control packet arrival rate. That is,
there is a critical value for a given UDP-like system,
and the EEC is stable if the observation packet ar-
rival rate is greater than this critical value. Moreover,
this critical value is identical to its counterpart for the
TCP-like system corresponding this UDP-like system.
It reveals the fact whether there is packet ACK or not
does not affect the stability of the optimal estimator.

3) We show that the EEC, although containing expo-
nentially increasing terms, converges if there is no ob-
servation packet loss and control inputs eventually
tend to zero.

The paper is organized as follows. The system and prob-
lems are formulated in Section 2. The optimal estima-
tor for UDP-like systems is obtained in Section 3. An
auxiliary estimator is constructed in Section 4. The con-
ditions on the stability and convergence of the optimal
estimator are established in Section 5. In Section 6, nu-
merical examples are given to illustrate the obtained re-
sults. Conclusions are presented in Section 7. The proofs
of lemmas are presented in Appendix.

Notations:
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• P(·) denotes the probability measure.
• p(·) and p(·|·) denote the probability density function

(pdf) and the conditional pdf, respectively.
• N (µ, P ) denotes a Gaussian pdf with mean µ and co-

variance P . Both x ∼ N (µ, P ) and p(x) = N (µ, P )
mean the pdf of the random variable x is a Gaus-
sian pdf with mean µ and covariance P . Nx(µ, P ) is
used to emphasize that the random variable of the pdf
N (µ, P ) is x.

•
x
E[·] and

x
cov(·) denote the probability expectation and

the covariance with respect to x, respectively.
• || · || denotes the norm. Specifically, for a vector, || · ||

denotes the 2-norm; For a matrix, || · || denotes the
spectral norm, i.e., the maximum singular value.

• (·)′ denotes the transpose of a matrix or vector.
• (·)2I with the identity matrix I means (·)(·)′.
• (·)2 denotes the binary representation, e.g., (101)2=5.
• N, Z, and R denote the natural number, the integer,

and the real number, respectively.

2 System setup and problem formulation

Consider the following system:

xk+1 = Axk + νkBuk + ωk

yk =

{
Cxk + υk, for γk = 1

∅, for γk = 0

(1)

where xk ∈ Rn is the system state, uk ∈ Rq is the con-
trol input, and yk ∈ Rp is the observation. ωk and υk are
Gaussian noises with zero means and covariances Q ≥ 0
and R > 0, respectively. γk and νk are independent i-
dentically distributed (i.i.d.) Bernoulli random variables
with P(γk = 1) = γ and P(νk = 1) = ν. They describe
the packet losses in the sensor-to-estimator (S/E) and
the controller-to-actuator (C/A) channels, respectively.
ν and γ are also known as packet arrival rates of control
input and observation, respectively. This paper does not
involve the design of controller, and only assume that uk

is bounded 1 and deterministic.

Assumption 1 x0 ∼ N (x̄0, P0), ωk, υk, νk, and γk are
mutually independent. The pair (A,C) is observable, and
the pair (A,Q1/2) is controllable.

Define information sets Ik , {yk, γk, νk−1} and Gk ,
{yk, γk} with I0 = G0 , ∅ (empty set), where νk ,
{ν0, · · · , νk}, γk , {γ1, · · · , γk}, and yk , {y1, · · · , yk}.

Definition 1 (UDP-like system and TCP-like system)
The UDP-like system, i.e., Suy

UDP , is the system de-
scribed in (1) with the value of νk unknown to the esti-
mator. The TCP-like system, denoted by Suy

TCP , is the

1 In practical control systems, physical actuators are subject
to saturation, and thus inputs always have maximum and
minimum values [8].

Fig. 1. The UDP-like system. The symbol
⊗

is used to
emphasize that there is no acknowledgment signal from the
actuator to the estimator.

one described in (1) with the value of νk available to the
estimator. We also call the Suy

TCP system the TCP-like
system corresponding to Suy

UDP .

Definition 2 (Optimal estimation) An estimation of
system state, denoted by x̂k, is said to be optimal in
the minimum mean square error (MMSE) sense, if it
minimizes E[||xk − x̂k|Gk||2].

It is known in [1] that the desired optimal MMSE es-

timation x̂k is E[xk|Gk]. Define x̄k , E[xk|Gk−1] as the
prediction of system state. Denote the prediction and
the estimation ECs by P̄k , E[(xk)

2
I |Gk−1] and Pk ,

E[(xk)
2
I |Gk], respectively. For the TCP-like system, de-

fine the predicted and the estimated system states as
x̄t
k , E[xk|Ik−1] and x̂t

k , E[xk|Ik], respectively. De-

note the prediction and the estimation ECs by P̄ t
k ,

E[(xk)
2
I |Ik−1] and P t

k , E[(xk)
2
I |Ik], respectively. 2

Definition 3 (Stability) The error covariance P̄k is said
to be stable in the mean sense (or stable for short), if
E[P̄k] is bounded, i.e., supk E[P̄k] < ∞, for k ∈ N. Then
the optimal estimator is said to be stable in the mean
sense (or stable for short), if P̄k is stable.

For UDP-like systems, our aim is to solve the following
problems:

• Derive the optimal estimator and find out the relation-
ship between it and the optimal estimator for TCP-
like systems.

• Determine conditions for the stability of the optimal
estimator, and analyze the impact of ACK signals and
packet arrival rates.

• Find out whether there exist some conditions under
which the EEC is convergent.

Preliminaries:

(i) For TCP-like systems, the optimal estimator has been
obtained in [28] and is given as follows:

x̄t
k+1 = Ax̂t

k + νkBuk (2a)

2 The superscript t of these estimates means TCP-like and
is used to distinguish from those for UDP-like systems.
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P̄ t
k+1 = AP t

kA
′ +Q (2b)

Kk+1 = P̄ t
k+1C

′ (CP̄ t
k+1C

′ +R
)−1

(2c)

x̂t
k+1 = x̄t

k+1 + γk+1Kk+1(yk+1 − Cx̄t
k+1) (2d)

P t
k+1 = P̄ t

k+1 − γk+1Kk+1CP̄ t
k+1 (2e)

with P t
0 = P0.

Define a function

g(γ, P ) = APA′ − γAPC ′(CPC ′ +R)−1CPA′ +Q.

Substituting (2e) into (2b) yields P̄ t
k+1 = g(γk, P̄

t
k). If

γk = 1 for all k ∈ N then P̄ t
k+1 = g(1, P̄ t

k) is the standard
Riccati equation.

(ii) LetX be a random variable with a Gaussian mixture

pdf, i.e., p(X) =
∑N

i=1 ξiN (µi, B). Its mean X̂ = E[X]

and covariance PX = E[(X − X̂)2I ] can be calculated as
follows ([1, p.213]):

X̂ =
N∑
i=1

ξiµi and PX = B +
N∑
i=1

ξi(µi − X̂)2I . (3)

(iii) Let X ∼ N (m,P ), Y ∼ N (0, PY ), and Z = CX +
Y . Assume X and Y are independent. Then ([33, p. 88,
(3.7), (3.8), (3.13), (3.14); p.98])

p(Z) = N (Cm,CPC ′ + PY ) (4)

p(X|Z) = N (m+K(Z − Cm), (I −KC)P ), (5)

where K = PC ′(CPC ′ + PY )
−1.

(iv) Given two random variables Z and J , and a function
~(Z, J). Then we have ([27, p. 117, p.119, p.180])

cov(Z) = E[Z2]−
(
E[Z]

)2
(6)

Z,J
E
[
~(Z, J)

]
=

J
E
[
Z
E[~(Z, J)|J ]

]
(7)

cov(Z) = E
[
cov(Z|J)

]
+ cov

(
E[Z|J ]

)
. (8)

3 Optimal estimator for the UDP-like system

In this section, we study the conditional pdfs p(xk|Gk−1)
and p(xk|Gk), and then derive the optimal estimator.

3.1 Description of the event of control packet losses

We first introduce the random events of control pack-
et losses, which are described by the sequence of ran-
dom variables {νk}. At time k, the event takes the form

{νk, . . . , ν0} with νj ∈ {0, 1} for 0 ≤ j ≤ k. The proba-
bility space denoted by Ωk contains 2k+1 such elemen-
tary events. For each binary-valued sequence (νk · · · ν0),
we can determine a unique integer i by

i = ρ(νk · · · ν0) , (νk · · · ν0)2 + 1. (9)

Consequently, the event of control packet losses can be
defined via ρ as follows:

θ
(i)
k , {νk, . . . , ν0|i = ρ(νk · · · ν0)}, 1 ≤ i ≤ 2k+1. (10)

For instance, θ
(1)
1 = {0, 0} due to 1 = ρ(00) = (00)2+1,

which means θ
(1)
1 = {ν1 = 0, ν0 = 0}. It is easy to verify

that for 1 ≤ i ≤ 2k,

θ
(i)
k ={νk=0, θ

(i)
k−1} and θ

(i+2k)
k ={νk=1, θ

(i)
k−1}. (11)

3.2 Probability density function of xk

By the total probability law, the conditional pdfs of xk

under Gk−1 and Gk can be presented as follows:

p(xk|Gk−1) =

2k∑
i=1

p(xk|θ(i)k−1,Gk−1)p(θ
(i)
k−1|Gk−1) (12a)

p(xk|Gk) =
2k∑
i=1

p(xk|θ(i)k−1,Gk)p(θ
(i)
k−1|Gk). (12b)

Lemma 1 At time k with 1 ≤ i ≤ 2k,

p(xk|θ(i)k−1,Gk−1) = N (z̄
(i)
k , P̄ t

k) (13a)

p(xk|θ(i)k−1,Gk) = N (ẑ
(i)
k , P t

k), (13b)

where

z̄
(i)
k =

{
Aẑ

(i)
k−1, for 1 ≤ i ≤ 2k−1

Aẑ
(i−2k−1)
k−1 +Buk−1, for 2

k−1+1 ≤ i ≤ 2k

(14a)

ẑ
(i)
k = z̄

(i)
k + γkKk(yk − Cz̄

(i)
k ) (14b)

with ẑ
(1)
0 = x̄0. Kk, P̄

t
k, and P t

k are calculated by (2).

Lemma 2 At time k with 1 ≤ i ≤ 2k, define ᾱ
(i)
k ,

p(θ
(i)
k−1|Gk−1) and α̂

(i)
k , p(θ

(i)
k−1|Gk). Then

ᾱ
(i)
k =

{
ν̄α̂

(i)
k−1, for 1 ≤ i ≤ 2k−1

να̂
(i−2k−1)
k−1 , for 2k−1+1 ≤ i ≤ 2k

(15a)
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α̂
(i)
k =

(
ϕ
(i)
k∑2k

j=1 ϕ
(j)
k ᾱ

(j)
k

)γk

ᾱ
(i)
k (15b)

with α̂
(1)
0 = 1, where ν̄ , 1−ν, ϕ

(i)
k , p(yk|θ(i)k−1,Gk−1) =

Nyk
(Cz̄

(i)
k , PY

k ), PY
k , CP̄ t

kC
′ +R. P̄ t

k, Kk, and P t
k are

calculated by (2).

Substituting these four conditional pdfs in Lemmas 1
and 2 into (12) yields

p(xk|Gk−1) =

2k∑
i=1

ᾱ
(i)
k N (z̄

(i)
k , P̄ t

k) (16a)

p(xk|Gk) =
2k∑
i=1

α̂
(i)
k N (ẑ

(i)
k , P t

k). (16b)

Remark 1 For the TCP-like system in (1), the linear
system is driven by Gaussian noises, and νk is known for
the estimator. Therefore, the pdf of xk is Gaussian; For
the UDP-like system in (1), the system is driven not only
by Gaussian noises ωk but also by a Bernoulli random
variable νk, and this accounts for the Gaussian mixture
pdf of xk.

3.3 Optimal estimator for UDP-like systems

Theorem 1 (Optimal estimator) For the UDP-like
system in (1), the optimal estimator of xk is given as
follows:

x̂k =

2k∑
i=1

α̂
(i)
k ẑ

(i)
k (17a)

Pk = P t
k +

2k∑
i=1

α̂
(i)
k (ẑ

(i)
k − x̂k)

2
I (17b)

x̄k+1 =
2(k+1)∑
i=1

ᾱ
(i)
k+1z̄

(i)
k+1 (17c)

P̄k+1 = P̄ t
k+1+

2(k+1)∑
i=1

ᾱ
(i)
k+1(z̄

(i)
k+1−x̄k+1)

2
I , (17d)

where {z̄(i)k , ẑ
(i)
k }, {ᾱ(i)

k , α̂
(i)
k }, and {P̄ t

k, P
t
k} can be com-

puted by (14), (15), and (2), respectively.

Proof: For Gaussian mixture pdfs, by applying (3) to
p(xk|Gk−1) and p(xk|Gk), the optimal estimator can be
readily obtained as in (17). 2

4 Construction of an auxiliary estimator

Since the coefficient α̂
(i)
k in (17b) is so complex that (17)

cannot be expressed as recursive equations. Consequent-
ly, the conventional Riccati equation approach is not ap-
plicable to analyzing the stability of P̄k. In the following,
an auxiliary estimator is developed to analyze P̄k.

4.1 Construction of an auxiliary system state

Clearly, xk is a random variable, and p(xk|Gk−1)
characterizes the pdf of xk conditioned on Gk−1.
From p(xk|Gk−1), we will construct a well-defined pdf
p(xa

k|Gk−1) in the following. As a pdf, p(xa
k|Gk−1) is

associated with some random variable in a certain way.
Similar to p(xk|Gk−1), p(x

a
k|Gk−1) in fact characterizes

the pdf of the associated random variable conditioned
on Gk−1. We denote the associated random variable by
xa
k, and call it an auxiliary system state.

From (13a), it is clear that p(xk|θ(i)k−1,Gk−1) is aGaussian

pdf. Based on it, we define a function p(xa
k|θ

(i)
k−1,Gk−1)

by replacing the symbol xk in p(xk|θ(i)k−1,Gk−1) with

xa
k. As p(xk|θ(i)k−1,Gk−1) is a deterministic function,

p(xa
k|θ

(i)
k−1,Gk−1) is deterministic and well-defined.

Note that the function ρ defined in (9) is a bijection.
For each i, there is a unique sequence denoted by

(ν
(i)
k · · · ν(i)0 ) such that i = ρ(ν

(i)
k · · · ν(i)0 ). From the def-

inition of θ
(i)
k in (10) and the mutual independence of

{νk}, it follows that p(θ
(i)
k ) =

∏k
j=0 p(νj = ν

(i)
j ). For

each i, p(θ
(i)
k ) is a deterministic value. Moreover, it is

easy to verify that
∑2k

i=1 p(θ
(i)
k−1) = 1. Based on p(θ

(i)
k−1)

and p(xa
k|θ

(i)
k−1,Gk−1), we define a function

p(xa
k|Gk−1) ,

2k∑
i=1

p(xa
k|θ

(i)
k−1,Gk−1)p(θ

(i)
k−1). (18)

Since p(xa
k|θ

(i)
k−1,Gk−1) and p(θ

(i)
k ) are deterministic and

well defined, p(xa
k|Gk−1) is deterministic and well de-

fined as well. The p(xa
k|Gk−1) defined above is not only

a function but also a pdf, as it satisfies two conditions:
p(xa

k|Gk−1) ≥ 0 and
∫∞
−∞ p(xa

k|Gk−1)dx
a
k = 1.

4.2 The auxiliary estimator and its properties

We first derive the conditional pdf of xa
k, and then com-

pute its estimator.

Lemma 3 p(xa
k|Gk−1) defined in (18) can be presented
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as follows:

p(xa
k|Gk−1) =

2k∑
i=1

α̃
(i)
k N (z̄

(i)
k , P̄ t

k), (19)

where

α̃
(i)
k =

{
ν̄α̃

(i)
k−1, for 1 ≤ i ≤ 2k−1

να̃
(i−2k−1)
k−1 , for 2k−1+1 ≤ i ≤ 2k

(20)

with α̃
(1)
0 = 1. z̄

(i)
k evolves in the same way as (14), and

P̄ t
k can be computed by (2).

Applying (3) to p(xa
k|Gk−1) in (19) yields the estimator

of xa
k as follows:

x̄a
k =

2k∑
i=1

α̃
(i)
k z̄

(i)
k (21a)

P̄ a
k = P̄ t

k +Mk, (21b)

where Mk ,
∑2k

i=1 α̃
(i)
k (z̄

(i)
k − x̄a

k)
2
I . x̄

a
k and P̄ a

k are the
mean and the error covariance of xa

k, respectively.

We will show that P̄ a
k is an upper bound for P̄k in the

mean sense. From (17d) and the computation of ᾱ
(i)
k+1

and z̄
(i)
k+1, it follows that P̄k contains random variables

{γk−1, yk−1} = Gk−1. Thus, in the following lemma the
mathematical expectation is taken with respect to Gk−1.

Lemma 4
Gk−1
E [P̄ t

k] ≤Gk−1
E [P̄k] ≤Gk−1

E [P̄ a
k ].

5 Stability and convergence of the optimal esti-
mator for UDP-like systems

5.1 Stability of the optimal estimator

Theorem 2 (Stability) Consider the UDP-like sys-
tem in (1) with unstable A. Then

(a) E[P̄k] is bounded if and only if E[P̄ t
k] is bounded,

where P̄ t
k and P̄k are computed by (2) and (17).

(b) There is a critical value λc ∈ [0, 1) such that

If 0 ≤ γ < λc, then lim
k→∞

E[P̄k] = +∞, ∃P0 ≥ 0

If λc < γ ≤ 1, then supk E[P̄k] ≤ HP0 , ∀P0 ≥ 0

where HP0 is a constant matrix and depends on P0.
(c) The critical value λc for the UDP-like system is i-

dentical to that for its corresponding TCP-like system.

Before proving Theorem 2, we give some lemmas as fol-
lows. For notational simplicity, let Ak , (A− γkAKkC)

and Uk , ν̄νBuku
′
kB

′. Then define

A(i)
k ,

{
Ak · · ·Ai, for 1 ≤ i ≤ k

I, for i = k + 1.
(22)

Lemma 5 For Mk in (21b),

Mk+1 = AkMkA′
k + Uk, with M0 = 0 (23)

Mk =

k∑
i=1

A(i)
k−1Ui−1A(i)

k−1

′
. (24)

Lemma 6 If Ui ≤ Q and U0 ≤ P̄ t
1 , then Mk ≤ P̄ t

k.

Proof of Theorem 2: Proof of part (a). From (17d), it
follows that if P̄ t

k diverges, so does P̄k, which proves the
necessity. To prove the sufficient condition, we consider
the term Uk in Mk. As assumed in Theorem 2 that uk

is bounded, we denote its bound by
√
µ, i.e., ||uk|| ≤

√
µ.

Then we have uku
′
k ≤ µI. Due to ν + ν̄ = 1, νν̄ ≤ 1/4.

Then Uk , ν̄νBuku
′
kB

′ ≤ µBB′

4 . There is a real num-

ber κ > 0 such that both µBB′

4κ ≤ P̄ t
1 and µBB′

4κ ≤ Q are
satisfied. That is, we can choose a real number κ > 0
such that, for the Ui in (24), U0/κ ≤ P̄ t

1 and Ui/κ ≤ Q
for 1 ≤ i ≤ k − 1. By (21b) and (24), P̄ a

k = P̄ t
k +∑k

i=1 A
(i)
k−1Ui−1A(i)

k−1

′
= P̄ t

k + κ
∑k

i=1 A
(i)
k−1

Ui−1

κ A(i)
k−1

′
.

By Lemma 6,
∑k

i=1 A
(i)
k−1

Ui−1

κ A(i)
k−1

′
≤ P̄ t

k. Thus, we

have P̄ a
k ≤ P̄ t

k + κP̄ t
k = (1 + κ)P̄ t

k. From the hypothe-
sis that E[P̄ t

k] is bounded, it follows that E[P̄ a
k ] is stable

(i.e., bounded). Using Lemma 4, we have that E[P̄k] is
stable. Part (a) is proved.

Proof of part (b). According to Theorem 2 in [31], for
the TCP-like system in (1), there is a critical value λ
such that if 0 ≤ γ < λ, limk→∞ E[P̄ t

k] = +∞ for some
P0 ≥ 0. Thus, by Theorem 2 (a), we have E[P̄k] = +∞
for this P0 ≥ 0, if 0 ≤ γ < λ. Analogously, according
to Theorem 2 in [31], if λ < γ ≤ 1, then E[P̄ t

k] ≤ HP0 ,
∀k and ∀P0 ≥ 0, where HP0 is a constant matrix and
depends on the initial value P0. Hence, by Theorem 2
(a), E[P̄k] ≤ (1 + κ)E[P̄ t

k] ≤ (1 + κ)HP0 , HP0 , for ∀k
and ∀P0 ≥ 0, if λc < γ ≤ 1. Consequently, the critical
value λ determines the boundedness of E[P̄ t

k] and E[P̄k],
which proves the existence of λc by letting λc = λ.

Part (c) is proved by noting that λc is the critical value
λ for the corresponding TCP-like system. 2

Remark 2 From Theorem 2 (a) and (c), it follows that
most of the results on the stability and critical value of the
optimal estimator for TCP-like systems are applicable to
UDP-like systems.

6



Remark 3 It follows from Theorem 2(a) that the opti-
mal estimator for the Suy

UDP system is stable if and only
if that for the Suy

TCP system is stable, which implies that
whether there exists the ACK for control packet losses or
not has no effect on the stability of the optimal estima-
tor. From a control perspective, it is reported in [10] that
for a class of plants, the ACK has no effect on the critical
value for stabilizing the systems.

5.2 Convergence of the optimal estimator

For TCP-like systems with 0 < γ < 1, E[P̄ t
k] is not nec-

essarily convergent [28, 31]. Thus, for UDP-like system-
s with 0 < γ < 1, E[P̄k] in (17d)—consisting of such
unconvergent E[P̄ t

k] and a summation part with expo-
nentially increasing number of terms—is not necessar-
ily convergent either. To guarantee the convergence of
E[P̄k], the first condition required would be γk = 1 for
all k ∈ N, since when γk ≡ 1, P̄ t

k, recursively computed
by the standard Riccati equation, is convergent under
Assumption 1. However, setting γk ≡ 1 is not sufficient
to render the convergence of E[P̄k]. We give conditions
for convergence of E[P̄k] as follows.

Theorem 3 (Convergence) Consider the UDP-like
system in (1) without observation packet losses.

(a) If the control input uk → 0, then E[P̄k] converges to
P̄ , where P̄ is the solution of the standard algebraic
Riccati equation (ARE), i.e., P̄ = g(1, P̄ ).

(b) If Uk satisfies Uk ≤ ρue
−ηu(k−mu)I with ρu, ηu > 0

and mu ∈ Z, then E[P̄k] exponentially converges to P̄ .

To prove Theorem 3, some preliminaries are given as
follows.

Denote by Su
TCP the TCP-like system in (1) with only

control packet loss, and by SLTI the system in (1) without
observation and control packet loss, i.e., the classic linear
time-invariant (LTI) system: xk+1 = Axk + Buk + ωk

and yk = Cxk + υk. For this LTI system, we denote the
optimal state prediction and the prediction error by x̄l

k

and ēlk = xk − x̄l
k, respectively. By the Kalman filter, x̄l

k

and ēlk can be calculated as follows [30, pp.131]:

x̄l
k+1 = A(I −KkC)x̄l

k +AKkCxk +AKkυk +Buk

ēlk+1 = Akē
l
k −AKkυk + ωk, (25)

where Ak = A(I − KkC) due to γk = 1. Kk can be
computed by (2b), (2c), and (2e) with γk = 1. The ho-
mogeneous part of (25) is ēlk+1 = Akē

l
k. The transition

matrix of the prediction error equation from ēlm to ēlk+1

is defined as Ak · · ·Am. That is, ēlk+1 = Ak · · ·Amēlm.

Note that the transition matrix is just A(m)
k defined in

(22) with γj = 1, 1 ≤ j ≤ k.

Lemma 7 For the Su
TCP system, there exist positive con-

stants ρ and η such that ||A(m)
k ||2 < ρe−η(k−m), where

A(m)
k is defined in (22).

Proof of Theorem 3: Proof of Part (a): Note that
Uk = ν̄νBuku

′
kB

′ → 0 when uk → 0. In the sequel, we
show that Mk+1 → 0 when Uk → 0. Since Uk → 0,
from the knowledge of limit theory, it follows that for
any εu > 0, there is an integer Nu such that Uk < εuI
for k > Nu. From (24),

Mk+1 =
k+1∑
i=1

A(i)
k Ui−1A(i)

k

′

≤
Nu+1∑
i=1

||A(i)
k ||2Ui−1 +

k+1∑
i=Nu+2

||A(i)
k ||2Ui−1

(a)

≤ µI

Nu+1∑
i=1

||A(i)
k ||2 + εuI

k+1∑
i=Nu+2

||A(i)
k ||2

(b)

≤ (µ− εu)

Nu+1∑
i=1

ρe−η(k−i)I + εu

k+1∑
i=1

ρe−η(k−i)I

≤ (µ− εu)ρe
2η

eη − 1
e−η(k−Nu)I + εu

ρe2η

eη − 1
I, (26)

where
(a)

≤ is obtained by using Uk < εuI for k > Nu. The

inequality
(b)

≤ is obtained by Lemma 7.

For any ε > 0, we claim that there exists an integer
N > 0 such that by choosing a sufficiently small εu and
by letting k > N , (26) < εI holds, i.e., Mk+1 < εI.
Then we have E[Mk+1] < εI, for k > N , which implies
that limk→∞ E[Mk+1] = 0. From Lemma 4 and (21b),
it follows that limk→∞ E[P̄ t

k] = limk→∞ E[P̄k].

It is easy to check that for γk = 1, k ∈ N, (2b) and (2e)
reduce to the standard Riccati equation. Thus, P̄ t

k is no
longer a random quantity, i.e., E[P̄ t

k] = P̄ t
k. Under As-

sumption 1, P̄ t
k converges to P̄ where P̄ = g(1, P̄ ). From

the results above, it follows that P̄ = limk→∞ E[P̄k].
Part (a) is proved.

Proof of Part (b): Let ζ , ρρue
ηu(mu+1)I. From (24),

Mk+1 =
k+1∑
i=1

A(i)
k Ui−1A(i)

k

′
≤

k+1∑
i=1

||A(i)
k ||2Ui−1

≤
k+1∑
i=1

ρe−η(k−i) · ρue−ηu(i−1−mu)I

≤ ρρue
ηu(mu+1)e−ηkI

k+1∑
i=1

eηi · e−ηui. (27)
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• If η = ηu, then (27) = ζe−ηk(k + 1). It is clear that

there exists an integer N such that (k + 1)e−
1
2ηk < 1

for k > N . Then, Mk+1 ≤ ζ(k + 1)e−ηk = ζ(k +

1)e−
1
2ηke−

1
2ηk ≤ ζe−

1
2ηk for k > N , which means that

the convergence rate of Mk → 0 is exponential.
• If η ̸= ηu, let τ , eη−ηu ,

(27) = ζe−ηk
k+1∑
i=1

eηi · e−ηui

= ζe−ηk τ

1− τ
[1− e(η−ηu)(k+1)]. (28)

If η < ηu, 0 < τ = eη−ηu < 1. From (28),
we have Mk+1 ≤ (27) < ζe−ηk τ

1−τ . If η > ηu,

1 < τ = eη−ηu . Then, (28) can be rewritten as (27) =
ζe−ηk τ

τ−1 [e
(η−ηu)(k+1)−1] < ζe−ηk τ

τ−1e
(η−ηu)(k+1) =

ζ τ
τ−1e

η−ηue−ηuk. That is,Mk+1 ≤ (27) < ζ τ2

τ−1e
−ηuk.

Thus, when η ̸= ηu, the convergence rate of Mk → 0
is exponential as well.

Note that the convergence rate of P̄ t
k is known to be

exponential and that E[P̄ t
k] ≤ E[P̄k] ≤ E[P̄ t

k + Mk].
Therefore, E[P̄k] exponentially converges to P̄ . 2

Remark 4 It follows from (17d) that P̄k+1 ≥ P̄ t
k+1,

which suggests that the lack of ACK signals degrades the
estimation performance, but this degradation may fade
away if the conditions in Theorem 3 are satisfied.

Remark 5 By designating values of {uk}, it would be

possible to keep E[P̄ t
k +

∑2(k)

i=1 ᾱ
(i)
k (z̄

(i)
k − x̄k)

2
I ] constan-

t so as to make E[P̄k] convergent. However, we do not
consider such kind of convergence since this paper does
not involve controller design, as mentioned in Section 2.
Moreover, it is computationally infeasible to design uk.

6 Numerical Example

Consider the system in (1) with following parameters:

A =
[
σ 0
0 0.5

]
, σ > 1, B =

[−1
1

]
, C =

[
−1 1

]
,

Q =
[
20 0
0 20

]
, R = 20.

For the convenience in calculating the critical value, we
choose A with only one unstable eigenvalue σ. If such
systems are TCP-like, it follows from [31] that the crit-
ical value λ = 1 − 1/σ2. It takes about 10 mins (110
mins) to compute the optimal estimator with the time
step 30 (40). Here, the simulation step is set to be 30,
and the EEC is computed by performing simulations 50
times with randomly generated {νk, γk} and then taking
the average value of them. Main results obtained in this
paper are illustrated by numerical examples as follows:

• Stability: By letting σ take different values {1.0541,
1.1952, and 1.4142}, respectively, the corresponding
critical values are {0.1, 0.3, and 0.5}. For the UDP-
like system with bounded inputs (||uk|| < 10), the re-
lationship between the trace of E[P̄k] and the obser-
vation packet arrival rate γ is shown in Fig. 2. It can
be seen from Fig. 2 that for a UDP-like system there
does exist a critical threshold value, which is identi-
cal to that for its corresponding TCP-like system, as
stated in Theorem 2.

• Convergence: By letting uk = 10e(−k2/30) and γ = 1,
it is shown in Fig. 3 that for a UDP-like system, E[P̄k]
eventually converges, regardless of what the control
packet arrival rate ν is, as stated in Theorem 3.

• Impact of ACK: Let σ = 1.1952, then the correspond-
ing critical value λ = 0.2. For different values of γ, the
relationship between the trace of EEC E[P̄30] and the
control packet arrival rate ν is illustrated in Fig. 4,
which shows that the boundedness of EEC does not
depend on ν. Note that there is an interesting phe-
nomenon in Fig. 4. For each γ, the EEC attains its
maximum value near ν = 0.5.

γ
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7 Conclusions

In this paper, the optimal estimator for UDP-like sys-
tems with dual packet losses has been obtained. It has
been shown that its stability is only determined by the
observation packet arrival rate, and that whether or
not there are ACK signals does not affect its stabili-
ty. If there is no observation packet loss and control in-
puts eventually tend to zero, then the EEC converges.
Although some theoretical problems have been solved,
there still exist many issues for UDP-like systems, such
as designing efficient sub-optimal/approximate estima-
tors and controllers, consideringMarkovian or correlated
packet losses in communication channels, and studying
consensus problems [37] for multi-agent UDP-like sys-
tems. Investigating estimation and control problems for
UDP-like systems equipped with devices having compu-
tational ability or intelligent strategies—such as event-
trigger schemes [22], smart sensors [17], and network re-
lays [12]—may obtain some interesting results.

Appendix

Proof of Lemma 1: Lemma 1 is proved by mathemat-
ical induction in the following four steps.

Step 1: We check (13) and (14) for k = 1. That is, we

examine p(x1|θ(i)0 ,G0) and p(x1|θ(i)0 ,G1) for (13), and z̄
(i)
1

and ẑ
(i)
1 for (14) with i = {1, 2}. Note that G0 = ∅,

G1 = {y1, γ1}, θ(1)0 = {ν0 = 0}, and θ
(2)
0 = {ν0 = 1}.

Consider the case i = 1. It follows from (4) that

p(x1|θ(1)0 ) = p(Ax0 + ω0|ν0 = 0)

= N (Ax̄0, AP0A
′ +Q). (29)

By (2b), P̄ t
1 = AP0A

′+Q due to P̄ t
0 = P0. Letting z̄

(1)
1 =

Ax̄0, we have p(x1|θ(1)0 ) = N (z̄
(1)
1 , P̄ t

1) with z̄
(1)
1 = Aẑ

(1)
0

(ẑ
(1)
0 = x̄0). Hence, (13a) and (14a) are true when i = 1

and k = 1.

Step 2: For (13b), we compute p(x1|θ(i)0 ,G1), i.e.,

p(x1|θ(i)0 ) conditioned on {y1, γ1}. When γ1 = 0, y1 = ∅.
p(x1|θ(1)0 , γ1 = 0, y1 = ∅) = N (z̄

(1)
1 , P̄ t

1). When γ1 = 1,
using (5) and (29) yields

p(x1|θ(1)0 , γ1 = 1, y1) = p(x1|θ(1)0 , y1)

= N (z̄
(1)
1 +K1(y1 − Cz̄

(1)
1 ), (I −K1C)P̄ t

1). (30)

By (2e), P t
1 = P̄ t

1 − γ1K1CP̄ t
1 . By letting ẑ

(1)
1 = z̄

(1)
1 +

γ1K1(y1 − Cz̄
(1)
1 ), from (30), we have p(x1|θ10,G1) =

N (ẑ
(1)
1 , P t

1). Hence, (13b) and (14b) are true when i = 1
and k = 1. Consequently, (13) and (14) are true when
i = 1 and k = 1. Similarly, it is easy to show that (13)
and (14) remain true for i = 2. Hence, (13) and (14) are
true when k = 1 with 1 ≤ i ≤ 2.

Step 3: Suppose that (13) and (14) hold for 1, . . . , k.
We check the case for k+1 with 1 ≤ i ≤ 2k+1. When 1 ≤
i ≤ 2k, from (11), θ

(i)
k = {νk = 0, θ

(i)
k−1}. It follows from

(4) that p(xk+1|θ(i)k ,Gk) = p(Axk +ωk|νk = 0, θ
(i)
k−1,Gk)

= N (Aẑ
(i)
k , AP t

kA
′+Q). By (2b), P̄ t

k+1 = AP t
kA

′+Q. By

letting z̄
(i)
k+1 = Aẑ

(i)
k , p(xk+1|θ(i)k ,Gk) = N (z̄

(i)
k+1, P̄

t
k+1).

Hence, (13a) and (14a) are true when k+1 with 1 ≤ i ≤
2k.

Step 4: When γk+1 = 0, yk+1 = ∅. p(xk+1|θ(i)k ,Gk+1) =

p(xk+1|θ(i)k ,Gk) = N (z̄
(i)
k+1, P̄

t
k+1). When γk+1 = 1,

yk+1 is available. By using (5), p(xk+1|θ(i)k ,Gk+1) =

p(xk+1|θ(i)k , γk+1 = 1, yk+1,Gk) = N
(
z̄
(i)
k+1+Kk+1(yk+1−

Cz̄
(i)
k+1), (I − Kk+1C)P̄ t

k+1

)
. By (2e), P t

k+1 = P̄ t
k+1 −

γk+1Kk+1CP̄ t
k+1. Letting ẑ

(i)
k+1 = z̄

(i)
k+1+γk+1Kk+1(yk+1−

Cz̄
(i)
k+1), we have p(xk+1|θ(i)k ,Gk+1) = N (ẑ

(i)
k+1, P

t
k+1).

Hence, (13b) and (14b) are true when k+1, 1 ≤ i ≤ 2k.
Similarly, it is not difficult to verify that they remain
true for 2k+1 ≤ i ≤ 2k+1. The derivations are not given
here for saving space. Therefore, (13) and (14) are true
when k + 1, 1 ≤ i ≤ 2k+1. The proof is completed. 2

Proof of Lemma 2: We first check (15a). For 1 ≤ i ≤
2k, by (11), ᾱ

(i)
k+1 = p(θ

(i)
k |Gk) = p(νk = 0, θ

(i)
k−1|Gk) =

ν̄α̂
(i)
k , since νk is independent of θ

(i)
k−1 and Gk−1. For

2k+1≤ i≤2k+1, by the same derivation, ᾱ
(i)
k+1=p(νk=

1, θ
(i−2k)
k−1 |Gk)=να̂

(i−2k)
k . Hence, (15a) holds.

Eq.(15b) is proved by the mathematical induction
method as follows. Consider k = 1 with i = 1 or 2. When
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γ1 = 0, y1 = ∅. α̂(i)
1 , p(θ

(i)
0 |y1) = p(θ

(i)
0 ) = ᾱ

(i)
1 =

(·)γ1 ᾱ
(i)
1 |γ1=0. When γ1 = 1, y1 is available. By Bayesian

formula, we have α̂
(i)
1 , p(θ

(i)
0 |y1) = c−1p(y1|θ(i)0 )p(θ

(i)
0 )

where c = p(y1|θ(1)0 )p(θ
(1)
0 ) + p(y1|θ(2)0 )p(θ

(2)
0 ). By

Lemma 1, p(x1|θ(i)0 ) = N (z̄
(i)
1 , P̄ t

1). By using (4),

p(y1|θ(i)0 ) = Ny1(Cz̄
(i)
1 , CP̄ t

1C
′ + R) = ϕ

(i)
1 . Thus,

α̂
(i)
1 =

(
ϕ
(i)
1

ᾱ
(1)
1 ϕ

(1)
1 +ᾱ

(2)
1 ϕ

(2)
1

)γ1

ᾱ
(i)
1 |γ1=1. This shows that

(15b) holds for k = 1 with i = 1 or 2.

Suppose that (15b) are true for 1, . . . , k. Consider
the case k + 1 and 1 ≤ i ≤ 2k+1. When γk+1 = 0,

yk+1 = ∅. α̂
(i)
k+1 , p(θ

(i)
k |Gk+1) = p(θ

(i)
k |Gk) =

(·)γk+1 ᾱ
(i)
k+1|γk+1=0. When γk+1 = 1, by using Bayesian

formula, α̂
(i)
k+1 , p(θ

(i)
k |Gk+1) = p(θ

(i)
k |yk+1,Gk) =

c−1
k p(yk+1|θ(i)k ,Gk)p(θ

(i)
k |Gk), where

ck =
2k+1∑
j=1

p(yk+1|θ(j)k ,Gk)p(θ
(j)
k |Gk).

By Lemma 1, p(xk+1|θ(i)k ,Gk) = N (z̄
(i)
k+1, P̄

t
k+1). By us-

ing (4), p(yk+1|θ(i)k ,Gk) = Nyk+1
(Cz̄

(i)
k+1, P

Y
k+1) = ϕ

(i)
k+1,

and thus α̂
(i)
k+1 =

(
ϕ
(i)

k+1∑2k+1

j=1
ϕ
(j)

k+1
ᾱ

(j)

k+1

)γk+1

ᾱ
(i)
k+1 with

γk+1 = 1. Therefore, (15b) is true for the case k + 1,
which completes the proof. 2

Proof of Lemma 3: Note that p(xa
k|θ

(i)
k−1,Gk−1) in (18)

and p(xk|θ(i)k−1,Gk−1) are the same Gaussian pdfs. It fol-

lows from Lemma 1 that p(xa
k|θ

(i)
k−1,Gk−1) = N (z̄

(i)
k , P̄ t

k).

Define α̃
(i)
k , p(θ

(i)
k−1) in (18). Then we check (20). For

1≤ i≤ 2k−1, by (11), θ
(i)
k−1 = {νk−1 = 0, θ

(i)
k−2}. α̃

(i)
k ,

p(θ
(i)
k−1) = p(νk−1=0, θ

(i)
k−2)=p(νk−1=0)p(θ

(i)
k−2)=ν̄α̃

(i)
k−1.

By following a similar line of argument, we obtain α̃
(i)
k =

να̃i−2k−1

k−1 , for 2k−1+1 ≤ i ≤ 2k. Thus, (20) holds.

From (18) and the results above, it follows that (19)
holds. The proof is completed. 2

Proof of Lemma 4: From (17d), it is evident that

Gk−1
E [P̄ t

k] ≤
Gk−1
E [P̄k]. In the sequel, we prove

Gk−1
E [P̄k] ≤

Gk−1
E [P̄ a

k ]. By (6), P̄k =
x
E[(xk)

2
I |Gk−1]− (

x
E[xk|Gk−1])

2
I and

P̄ a
k =

x
E[(xa

k)
2|Gk−1] − (

x
E[xa

k|Gk−1])
2
I , where x

E denotes
the expectation is taken with respect to xk or xa

k (the
specific one is known from the context). We use G to

denote Gk−1 in the following derivations to make the
formulas concise. By using the pdf in (12a), P̄k can be
further rewritten as

P̄k =
x
E[(xk)

2
I |G]− (

x
E[xk|G])2I

=

∫
(xk)

2
Ip(xk|G)dxk −

(∫
xkp(xk|G)dxk

)2

I

=
2k∑
i=1

∫
(xk)

2
Ip(xk|θ(i)k−1,G)dxkp(θ

(i)
k−1|G)

−

 2k∑
i=1

∫
xkp(xk|θ(i)k−1,G)dxkp(θ

(i)
k−1|G)

2

I

=
θ
E
[

x
E[(xk)

2
I |θ

(i)
k−1,G]

∣∣G]+ (−
θ
E
[

x
E[xk|θ(i)k−1,G]

∣∣G])2
I

, WL +WR,

where
∫
stands for

∫∞
−∞ and

θ
E denotes the expectation

is taken over all θ
(i)
k−1. Similarly, by using the pdf in (18),

P̄ a
k =

x
E[(xa

k)
2
I |G]− (

x
E[xa

k|G])2I

=

2k∑
i=1

∫
(xk)

2
Ip(xk|θ(i)k−1,G)dxkp(θ

(i)
k−1)

−

 2k∑
i=1

∫
xkp(xk|θ(i)k−1,G)dxkp(θ

(i)
k−1)

2

I

(31)

=
θ
E
[

x
E[(xk)

2
I |θ

(i)
k−1,G]

]
+
(
−
(

θ
E
[

x
E[xk|θ(i)k−1,G]

])2
I

)
, Wa

L +Wa
R.

For the convenience of comparing P̄k with P̄ a
k , we replace

xa
k in (31) with xk, which does not affect the value of

integration. Let

W ,
2k∑
i=1

(∫
xkp(xk|θ(i)k−1,G)dxk

)2

I

p(θ
(i)
k−1|G)

=
θ
E[(

x
E[xk|θ(i)k−1,G])

2
I |G],

and let P̄k = (WL −W) + (W +WR).

WL −W =
θ
E[

x
E((xk)

2
I |θ

(i)
k−1,G)− (

x
E[xk|θ(i)k−1,G])

2
I |G]

=
θ
E[

x
cov(xk|θ(i)k−1,G)|G]. (32)

W +WR

=
θ
E[(

x
E[xk|θ(i)k−1,G])

2
I |G]− (

θ
E[

x
E[xk|θ(i)k−1,G]|G])

2
I

=
θ

cov(
x
E[xk|θ(i)k−1,G]|G), (33)

10



where (33) follows from (6) by noting that
x
E[xk|θ(i)k−1,G]

is a function of θ
(i)
k−1. From (32) and (33), we have

P̄k =
θ
E
[

x
cov(xk|θ(i)k−1,G)

∣∣G]+
θ

cov
(

x
E[xk|θ(i)k−1,G]

∣∣G)
, P̄L + P̄R, (34)

where P̄L and P̄R denote the first and the second terms
in the right part of the first equality above, respectively.

Wa ,
2k∑
i=1

(∫
xa
kp(x

a
k|θ

(i)
k−1,G)dx

a
k

)2

I

p(θ
(i)
k−1)

=
θ
E
[(

x
E[xa

k|θ
(i)
k−1,G]

)2
I

]
,

and let P̄ a
k = Wa

L −Wa +Wa +Wa
R. By following the

same line above, we obtain

P̄ a
k =

θ
E
[

x
cov(xk|θ(i)k−1,G)

]
+

θ
cov
(

x
E[xk|θ(i)k−1,G]

)
, P̄ a

L + P̄ a
R, (35)

where P̄ a
L and P̄ a

R denote the first and the second terms in
the right part of the first equality above, respectively. For
the conciseness of formulation, we replace the symbols
xk in (34) and (35) with x.

We compare
G
E[P̄k] with G

E[P̄ a
k ] as follows:

G
E[P̄ a

L] = G
E
[

θ
E
[

x
cov(x|θ(i)k−1,G)

]]
(a)
=

G
E
[

θ
E
[

x
cov(x|θ(i)k−1,G)

∣∣G]] =
G
E[P̄L], (36)

where
(a)
= is obtained by using (7). Thus,

G
E[P̄ a

L] = G
E[P̄L].

Since cov(E[Z|J ]) ≥ 0, from (8), it follows that cov(Z) ≥
E[cov(Z|J)]. By viewing

x
E[x|θ(i)k−1,G] as Z and G as J ,

θ
cov
(

x
E[x|θ(i)k−1,G]

)
≥

G
E
[

θ
cov
(

x
E[x|θ(i)k−1,G]

∣∣G)]. (37)

The term on the left-hand side of (37) is a function of G,
and the term on the right-hand side is a constant quan-
tity. By taking the mathematical expectation to (37),

G
E
[

θ
cov
(

x
E[x|θ(i)k−1,G]

)]
≥

G
E
[

θ
cov
(

x
E[x|θ(i)k−1,G]

∣∣G)],
where the left part equates

G
E[P̄ a

R], and the right part

equates
G
E[P̄R]. Thus, G

E[P̄ a
R] ≥

G
E[P̄R]. By noting that

G
E[P̄ a

L] = G
E[P̄L], we have G

E[P̄ a
k ] ≥ G

E[P̄k]. 2

Proof of Lemma 5: By substituting (14b) into (14a),

z̄
(i)
k+1 =


Akz̄

(i)
k + γkAKkyk, for 1 ≤ i ≤ 2k

Akz̄
(i−2k)
k + γkAKkyk+ Buk,

for 2k+1 ≤ i ≤ 2k+1.

From (20) and (21a), x̄a
k+1 =

∑2k+1

i=1 α̃
(i)
k+1z̄

(i)
k+1 =∑2k

i=1 α̃
(i)
k+1z̄

(i)
k+1 +

∑2k+1

i=2k+1 α̃
(i)
k+1z̄

(i)
k+1 = Akx̄

a
k +

γkAKkyk + νBuk. According to the definition of Mk,

Mk+1 =
∑2k+1

i=1 α̃
(i)
k+1(z̄

(i)
k+1−x̄a

k+1)
2
I = Ak

∑2k

i=1 α̃
(i)
k (x̄a

k−
z̄
(i)
k )2IA′

k + ν̄νBuku
′
kB

′ = AkMkA′
k + ν̄νBuku

′
kB

′. The
proof of (23) is completed.

Equation (24) is proved by the mathematical induction.

When n = 1, we have M1 =
∑1

i=1 A
(1)
0 U0A(1)

0

′
= U0

owing to A(n+1)
n = 1. From (14a), (20), and (21b),

it follows that M1 = νν̄Bu0u
′
0B

′ = U0. Thus,
(24) is true when n = 1. Suppose that (24) is true
for n = 1, . . . , k. We examine the case n = k + 1
as follows. By (23), Mk+1 = AkMkA′

k + Uk =

Ak

∑k
i=1 A

(i)
k−1Ui−1A(i)

k−1

′
A′

k + A(k+1)
k UkA(k+1)

k

′
=∑k+1

i=1 A(i)
k Ui−1A(i)

k

′
. Hence, (24) is true when n = k+1,

which completes the proof. 2

Proof of Lemma6: . There are some different formulas
for presenting the relationship between P t

k and P̄ t
k. One

of them is (2e), and an equivalent one is P t
k = (I −

γkKkC)P̄ t
k(I − γkKkC)′ + γkKkRK ′

k. By (2b), P̄ t
k+1 =

AkP̄
t
kA′

k + γkAKkR(AKk)
′ + Q. Let ∆k , P̄ t

k − Mk.
From (23), ∆k+1 = Ak∆kA′

k + γkAKkR(AKk)
′ + (Q−

Uk). Due to Ui ≤ Q, ∆1 = P̄ t
1 − M1 ≥ 0 (M1 = U0),

and γkAKkR(AKk)
′ ≥ 0, we have ∆k ≥ 0, for all k.

Therefore, Mk ≤ P̄ t
k. The proof is completed. 2

Proof of Lemma 7: Note that for the Su
TCP system,

γi = 1, i ∈ N. As shown above, A(i)
k in (22) with γi ≡ 1

is the transition matrix of the prediction error equation
for the SLTI system. For LTI system, it is well known
[11, pp. 240] that under Assumption 1, the prediction
error equation (25), also called as the filtering equa-
tion, is exponentially stable. That is, for the state transi-

tion matrix A(m)
k = Ak · · ·Am, there exist positive con-

stants ρ1 and η1 such that ||A(m)
k || < ρ1e

−η1(k−m). Hence,

||A(m)
k ||2 < ρ21e

−2η1(k−m). Let ρ = ρ21 and η = 2η1. We

have ||A(m)
k ||2 < ρe−η(k−m). The proof is completed. 2
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