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Abstract

We study Max-Product and Max-Plus Systems with Markovian Jumps and
focus on stochastic stability problems. At first, a Lyapunov function is
derived for the asymptotically stable deterministic Max-Product Systems.
This Lyapunov function is then adjusted to derive sufficient conditions for the
stochastic stability of Max-Product systems with Markovian Jumps. Many
step Lyapunov functions are then used to derive necessary and sufficient
conditions for stochastic stability. The results for the Max-Product systems
are then applied to Max-Plus systems with Markovian Jumps, using an
isomorphism and almost sure bounds for the asymptotic behavior of the
state are obtained. A numerical example illustrating the application of the
stability results on a production system is also given.
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1. Introduction

Max-Plus systems are dynamical systems which satisfy the superposition
principle in the Max-Plus algebra. The use of Max-Plus systems was
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proposed in various applications involving timing, such as communication
and traffic management, queueing systems, production planning,
multi-generation energy systems, et.c. (eg. Cuninghame-Green (1979),
Baccelli et al. (1992), Heidergott et al. (2014), Goverde (2007), Baccelli
and Hong (2000b)). Recently, the use of the closely related class of
Max-Product systems (systems which satisfy the superposition principle
in the Max-Product algebra) was proposed as a tool for the modelling of
cognitive processes, such as detecting audio and visual salient events in
multimodal video streams (Maragos and Koutras (2015)). Max-Plus and
Max-Product algebras have also computational uses involving Optimal
Control problems (McEneaney (2006)) and estimation problems in
probabilistic models such as the max-sum algorithm in Probabilistic
Graphical models and the Viterbi algorithm in Hidden Markov Models (eg.
Bishop (2006)).

In this work, we study stochastic Max-Plus and Max-Product systems,
where the system matrices depend on a finite state Markov chain. For
the Max-Plus systems we focus on the asymptotic growth rate, whereas
for the Max-Product systems on stochastic stability. A motivation to
study Max-Plus systems with Markovian jumps is to model production
systems, where the processing or holding times are random variables (not
necessarily independent) or there are random failures and repairs, modeled
as a Markov chain. The results on max-product stochastic systems will
be used as an intermediate step. An independent motivation to study
Max-Product systems is the modeling of cognitive processes interrupted
by random events. Similar problems with Markovian delays for linear
systems were studied in Beidas and Papavassilopoulos (1993), for random
failures in Papavassilopoulos (1994) and for nonlinear time varying systems
in Beidas and Papavassilopoulos (1995), in the context of distributed parallel
optimization and routing applications. In the current work, we try to exploit
the special (Max-Product or Max-Plus) structure of the system.

At first, deterministic Max-Product systems are considered and their
asymptotic stability is characterized using Lyapunov functions. The
Lyapunov function derived can be also used to study systems which are not
linear in the Max-Product algebra. We then study Max-Product systems
with Markovian Jumps and derive sufficient conditions for their stochastic
stability. Further, necessary and sufficient conditions for the stochastic
stability of Max-Product systems with Markovian Jumps are derived using
many step Lyapunov functions. The results for the stochastic stability of
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Max-Product systems are then used to derive bounds for the evolution of the
state of Max-Plus systems with Markovian Jumps.

The results of this work relate to the literature for the approximation
of the Lyapunov exponent of Max-Plus stochastic systems. The existence
of the Lyapunov exponent was proved in Cohen (1988). Limit theorems for
the scaled asymptotic evolution of stochastic Max-Plus systems were proved
in Merlet (2007), Merlet (2008). Most of the works on the approximation
of the Lyapunov exponent focus on the independent random matrix case.
In Baccelli and Hong (2000a), Gaubert and Hong (2000) series expansions
are used in order to approximate the Lyapunov exponent and Goverde
et al. (2008), Goverde et al. (2011) use approximate stochastic simulation
techniques to estimate the Lyapunov exponent. In Blondel et al. (2000) it
is shown that the approximation of the Lyapunov exponent is an NP-hard
problem. Bounds for the tail distributions of Max-Plus stochastic systems are
proposed in Chang (1996). In Liu et al. (1995), a model of Max-Plus system
with Markovian input is considered and bounds for the tail distributions
are derived. A model where the Markov chain (branching process) evolves
according to a Max-Plus stochastic system is analyzed in Altman and Fiems
(2012). Bounds on the length of the transient phase of Max-Plus systems
are proved in Nowak and Charron-Bost (2014).

Another related class of systems is Switching Max-Plus systems with
deterministic or stochastic switching introduced in van den Boom and
De Schutter (2006) and studied further in van den Boom and De Schutter
(2012). The basic difference with the current work is that the current
work focuses on stochastic stability properties whereas van den Boom and
De Schutter (2006), van den Boom and De Schutter (2012) study stability
under arbitrary switching. Several approximation methods in stochastic
Max-plus systems control and identification were studied in Farahani (2012).

The techniques used in this work closely parallel the techniques used
for the stability analysis of Markovian Jump Linear Systems (MJLS). The
study of the stochastic stability of MJLS dates back at least to the 1960s
(Bhaurucha (1961)) and today is a well-established field (eg. Costa et al.
(2006), Fang and Loparo (2002), Beidas and Papavassilopoulos (1993),
Papavassilopoulos (1994), Kordonis and Papavassilopoulos (2014)).

1.1. Background

The Max-Plus and Max-Product algebras are used. In the Max-Plus
algebra the usual summation is substituted by maximum and the usual
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multiplication is substituted by summation. In the Max-Product algebra the
usual summation is substituted by maximum but the multiplication remains
unchanged.

The Max-Plus algebra is defined on the set of extended reals R̄ = R ∪
{−∞,+∞} with the binary operations “∨” and “�”. The operation “∨”
stands for the maximum i.e., for x, y ∈ R̄, it holds x ∨ y = max{x, y}. The
operation “�” corresponds to the usual addition i.e., for x, y ∈ R̄ it holds
x�y = x+y, where the convention −∞�∞ = −∞ is used. For a set (xi)i∈I
of extended reals “

∨
” stands for the supremum i.e.

∨
i∈I xi = supi∈I{xi}.

For a pair of matrices A = [Aij] and B = [Bij], the operation “∨” is their
element-wise maximum, i.e.:

(A ∨B)ij = Aij ∨Bij,

and similarly is the element-wise supremum for an arbitrary set of matrices.
For a pair of matrices A = [Aij] ∈ R̄n×m and B = [Bij] ∈ R̄m×l their

Max-Plus product A�B is an n× l matrix and its i, j-th element is given
by:

(A�B)ij =
m∨
p=1

(Aip +Bpj) , (1)

where “
∨

” denotes the maximum of the m elements.
The Max-Product algebra is defined on R̄+ = [0,∞], with the binary

operations “∨” and “�”. The “�” operation is the usual scalar multiplication
with the convention 0�∞ = 0. The “∨” operation is defined exactly as in the
Max-Plus algebra. The matrix multiplication in the Max-Product algebra is
defined by:

[A�B]ij =
m∨
p=1

(AipBpj) ,

The power of a square matrix is defined by Ak = Ak−1 �A and A0 = I.
For a given square matrix A a new matrix A+ is defined as A+ =

∨∞
k=0A

k.
The subset R+ = [0,∞) of R̄+ will be also used.

Max-Product multiplication distributes over “
∨

”, i.e.:

∨
i∈I

A�Bi = A�

(∨
i∈i

Bi

)
. (2)

The same property holds also for the Max-Plus multiplication.
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Operation Meaning
∨ The maximum. Applies for scalars, vectors and matrices
� Max-plus multiplication. Defined in (1)
� Max-plus multiplication. Defined in (2)

Table 1: The algebraic operations used.

In both algebras, the “∨” operation has lower priority than “+” or
“�” in the Max-Plus algebra and “·” or “�” in the Max-Product algebra
respectively. Let us note that there is an isomorphism exp(·) between the
Max-Plus algebra (R̄,∨,�) and the Max-Product algebra (R̄+,∨,�).

A unifying algebraic framework to study Max-Plus and Max- Product
systems (and also other systems) is the theory of Weighted Lattices (Maragos
(2013), Maragos (2016)).

1.2. Notation

For a pair of vectors x = (x1, . . . , xn)T and y = (y1, . . . , yn)T , the
inequality notation x ≤ y is used meaning that xi ≤ yi, for all i. Similarly,
the inequality notation x < y stands for xi < yi, for all i. The infinity norm
will be used i.e. ‖x‖ = maxi |xi|. We denote by 1 the column vector of
dimension n consisting of ones. The underlying probability space is denoted
by (Ω,F , P ).

A function α : R+ → R+ will be called class K function if α is increasing
and α(0) = 0. A function β : R+×R+ → R+ will be called class KL function
if, for each fixed t, the function β(·, t) is a class K function and for any fixed
s, the function β(s, ·) is decreasing and β(s, t)→ 0 as t→∞.

1.3. Problem Formulation

The first class of systems considered is Max-Product systems with
Markovian jumps. The uncertainty of the system is described by a Markov
chain yk having a finite state space {1, . . . ,M} and transition probabilities
cij. That is, the evolution of yk is described by cij = P (yk+1 = j|yk = i). A
Max-Product system with Markovian jumps is described by:

xk+1 = A(yk) � xk, (3)

x0 ∈ Rn+.

That is, at each time step the system matrix A takes one of the M different
values A(1), . . . , A(M) according to the value of the Markov chain.
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At first, the class of deterministic Max-Product systems will be
considered. In these systems the matrix A(·) does not depend on the Markov
chain and takes a single value A.

The other class of systems considered is Max-Plus systems with
Markovian jumps in the form:

xk+1 = A(yk) � xk, (4)

x0 ∈ Rn.

In the following definitions, some notions of stability and stochastic
stability are recalled from the literature (eg. Khalil (2002), Maragos (2016)
and Kozin (1969)).

Definition 1. Consider the system:

xk+1 = (A� xk) ∨ (B � uk) , (5)

zk = (C � xk) ∨ (D � uk) , (6)

where xk, uk, zk, denote the system state, input and output and A,B,C,D
are matrices of appropriate dimensions.

(i) The free system, i.e. (5) with uk = 0, is exponentially stable, if there
exist constants a > 1 and L > 0 such that ‖xk‖ ≤ L‖x0‖/ak, for any
initial conditions and any k.

(ii) The system (5) is Input to State Stable (ISS) if there exist a class KL
function β and a class K function α such that:

‖xk‖ ≤ β(‖x0‖, k) + α

(
k∨
i=0

‖uk‖

)
,

for any initial condition, any k and any input sequence uk.

(iii) The system (5), (6) is Bounded Input Bounded Output (BIBO) stable
(Maragos (2016)) if

∨∞
k=0 ‖uk‖ < ∞ implies

∨∞
k=0 ‖zk‖ < ∞, for any

initial conditions.

Definition 2. The system given by (3) is:

(i) Almost surely stable if for any initial conditions, xk → 0 almost surely.
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(ii) Mean norm stable if E[‖xk‖]→ 0 as k →∞.

(iii) Mean norm exponentially stable if there exist constants a > 1 and L > 0
such that E[‖xk‖] ≤ L‖x0‖/ak.

Conditions for the stochastic stability of systems in the form (3) will be
derived. For Max-Plus systems bounds on the growth of xk will be derived.

2. Deterministic Max-Product Systems

In this section the asymptotic stability of deterministic Max-Product
systems in the form:

xk+1 = A� xk, (7)

x0 ∈ Rn+,

is studied.
The following Lemma presents a condition equivalent to the the

exponential stability of (7) (for a definition of exponential stability see for
example Khalil (2002)).

Lemma 1. It holds:

(i) The function f(x) = A � x is homogeneous of order 1, i.e. it holds
f(ρx) = ρf(x) for any ρ ∈ R+.

(ii) The system (7) is exponentially stable iff for some a > 1, the system
xk+1 = aA� xk is stable.

Proof: The proof is immediate. �
A Lyapunov function will be constructed for the stable systems in the

form (7). Consider the function:

V (x) =
∞∨
k=0

λT �Ak � x, (8)

where λ is a vector with positive entries. Equivalently, V can be written as

V (x) =
∞∨
k=0

λT � xk,
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where xk is the state vector of (7) with initial condition x0 = x. It is not
difficult to see that if (7) is stable, then V (x) is finite for any x and V (0) = 0.
Furthermore, the sequence V (xk) is non-increasing:

∞∨
k=k0+1

λT � xk ≤
∞∨

k=k0

λT � xk.

Thus, V is a Lyapunov function.
The form of V can be computed using the following calculations:

V (x) =
∞∨
k=0

λT �Ak � x = λT �

[
∞∨
k=0

Ak

]
� x

= (λT �A+) � x. (9)

Thus, V has the form:
V (x) = pT � x, (10)

where p is an n vector with positive entries.

Proposition 1. The following are equivalent:

(i) The system (7) is exponentially stable.

(ii) There exists a vector p, with positive entries, such that AT � p < p

Proof: In order to show the direct part, we use Lemma 1, to obtain a
constant a > 1 such that xk+1 = aA � xk is stable. Using a Lyapunov
function in the form (8) for that system, we obtain a positive vector p such
that V (x) = pT � x. Then it holds:

apT �A� x ≤ pT � x,

for any x ∈ Rn+. Thus, pT �A < pT or equivalently AT � p < p.
The fact that (ii) implies (i) is shown with usual Lyapunov analysis. �

Remark 1. The condition apT � A ≤ pT can be checked using Linear
Programming.
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Remark 2. A Lyapunov function in the form (8) is the direct analogue of
a Lyapunov function for a usual linear system xk+1 = Axk, x0 = x in the
form VL(x) =

∑∞
k=0 x

T
kQxk. Particularly, in the place of the summation, we

have the supremum and in the place of the Q-norm ‖x‖2
Q = xTQx we have

the λ-norm ‖x‖λ = max{λ1x1, . . . , λnxn}.

Remark 3. The asymptotic behaviour of Max-Plus deterministic systems,
depends on the Max-Plus eigenvalue of the system matrix which under
connectivity assumptions turns out to be unique (eg. Baccelli et al. (1992)).
This eigenvalue can be computed in terms of the critical paths i.e. the
paths with maximal average weight. This analysis can be transferred to
Max-Product systems using the exp(·) isomorphism of the Max-Plus and
Max-Product algebras. The Lyapunov approach adopted here could, however,
be extended to stochastic systems and systems which are not linear in the
Max-Product algebra.

The following corollary studies the Input to State Stability (ISS) and the
Bounded Input Bounded Output (BIBO) stability.

Corollary 1. Assume that the system given by (7) is exponentially stable.
Then:

(i) The system given by (5) is input to state stable.

(ii) The system given by (5), (6) is BIBO stable.

Proof : (i) Consider a Lyapunov function V in the form (10). Then V satisfies
Lemma 3.5 of Jiang and Wang (2001). Thus, the system is ISS.

(ii) Follows immediately from (i). �
The following example illustrates that the same Lyapunov functions can

be used to analyze systems which are nonlinear in the Max-Product algebra.

Example 1. Consider the system:

xk+1 =

[
2/3 2
1/3 3/4

]
� xk. (11)

We consider the Lyapunov function candidate V (x) = [2 5] � x. It holds:

[2 5]

[
2/3 2
1/3 3/4

]
= [5/3 4] < [2 5].
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Thus, V is a Lyapunov function and the system (11) is exponentially stable.
Let us then consider the system:

xk+1 =

[
2/3 2
1/3 3/4

]
� xk ∨

[
2
3

]
� (xTk � xk), (12)

which is not in the form of (7). The same Lyapunov function V (x) can be
used to show the local asymptotic stability of (12).

Furthermore, the same Lyapunov function V (x) can be used to show the
ISS of the system:

xk+1 =

[
2/3 2
1/3 3/4

]
� xk ∨

[
5
8

]
� uk.

3. Max-Product Systems with Markovian Jumps

We then turn to Max-Product systems with Markovian Jumps in the form
(3). Lyapunov functions in the form:

V (x, y) = p(y)T � x, (13)

generalizing (10) are considered.

Proposition 2. Assume that there exist a constant a > 1 and vectors with
positive entries p(1), . . . ,p(M) such that:

a
M∑
j=1

cijp(j)T �A(i) � v ≤ p(i)T � v, (14)

for any vector v with positive entries. Then, (3) is mean norm exponentially
stable and almost surely stable.

Proof: Consider the function (13). It holds:

E[V (xk+1, yk+1)|xk = x, yk = i] =
M∑
j=1

cijp(j)T �A(i) � x.

Condition (14) implies that V is a positive super-martingale. Furthermore,
V = 0 implies x = 0. Thus, the system is almost surely stable.

10



Condition (14) further implies that:

E[V (xk+1, yk+1)|V (xk, yk)] ≤ V (xk, yk)/a.

Thus, using this inequality repeatedly and taking expectations in both sides
we have:

E[V (xk, yk)] ≤ V (x0, y0)/ak.

Denoting by pM and pm the maximum and the minimum entry of
p(1), . . . ,p(M), we obtain:

E[pm‖xk‖] ≤ pM‖x0‖/ak.

Thus, using L = pM/pm, the inequality in Definition 2 part (iii) holds and
the system (3) is mean norm exponentially stable. �

Condition (14) should hold for any v ∈ Rn+ and thus, it could be difficult
to check it in general. The following lemma may be used to simplify condition
(14). The lemma will be used also in Section 4 which considers many step
Lyapunov functions. Hence, the lemma will be stated using a possibly
different timing (with t in the place of k), a possibly different set of system
matrices, depending on an additional random variable wt and a state vector
x̄ in the place of x.

Lemma 2. Consider a system in the form:

x̄t+1 = Ā(yt, wt) � x̄t, (15)

where yt takes values in {1, . . . ,M} and wt take values in {1, . . . , M̄}.
Assume also that (yt, wt) is a Markov chain and that wt is independent of
(wt−1, yt−1) given yt. Denote by c̃(i, j, i′) the conditional probability P (yt+1 =
i′, wt = j|yt = i). Consider also the function:

V (x̄, y) = p(y)T � x̄, (16)

with p(1), . . . ,p(M) vectors with positive entries. For some δ with 0 < δ < 1,
the following are equivalent:

(i) It holds
E[V (x̄t+1, yt+1)|x̄t, yt] ≤ δV (x̄t, yt), (17)

for all x̄t, yt.
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(ii) It holds:

M̄∑
j=1

M∑
i′=1

c̃(i, j, i′)1T � Ã(i′, i, j) � 1 ≤ δ, (18)

for i = 1, . . . ,M , where

Ã(yt+1, yt, wt) = diag(p(yt+1))Ā(yt, wt)diag(p(yt)
−1). (19)

Proof: Consider the vector:

zt = diag(p(yt)) � x̄t.

Then, it holds:

V (x̄t, yt) = 1T � zt = ‖zt‖. (20)

Furthermore, zt evolves according to:

zt+1 = Ã(yt+1, yt, wt) � zt.

Let us first show that (i) can be expressed in terms of zt as:

E
[
‖zt+1‖

∣∣zt, yt] ≤ δ‖zt‖. (21)

Equation (20) shows that the both the right and the left hand side of (21)
are equal to the corresponding terms of(17). Hence, it remains to prove that
(ii) is equivalent to (21).

It holds:

E
[
‖zt+1‖

∣∣zt, yt = i
]

= F (zt, i) =

=
M̄∑
j=1

M∑
i′=1

c̃(i, j, i′)1T � Ã(i′, i, j) � zt.

The function F (z, i) is 1-homogeneous in z. Thus, (21) is equivalent to

max
‖z‖≤1

F (z, i) ≤ δ, for i = 1, . . . ,M.

Furthermore, F (z, i) is non-decreasing in z. Thus, (i) is equivalent to
F (1, i) ≤ δ, which is equivalent to (ii). �
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Remark 4. Equation (18) is stated using the matrix Ã, which is computed
in transformed coordinates (equation (19)). A similar transformation is used
(in a different context) in van den Boom and De Schutter (2012), in order
to define the ‘maximum autonomous growth rate’.

For the needs of the rest of the current section we shall use k in the place
of t,A(y) in the place of Ā(y, w) and x in the place of x̄.

Corollary 2. Assume that:

M∑
j=1

cijp(j)T �A(i) � (p−1(i)) ≤ δ,

for i = 1, . . . ,M , δ < 1 and p−1(i) is a vector having as entries the inverses of
the entries of p(i). Then the system given by (3) is mean norm exponentially
stable and almost surely stable.

Proof: Using k in the place of t, A(y) in the place of Ā(y, w) and x in the
place of x̄ in Lemma 2 we get that the conditions of Proposition 2 hold true.
Thus, the system given by (3) is mean norm exponentially stable and almost
surely stable. �

We then consider Max-Product stochastic systems with inputs and
outputs and the notion of BIBO stability in probability is introduced.

Definition 3. Consider the system:

xk+1 = A(yk) � xk ∨B(yk) � uk, (22)

zk = C(yk) � xk. (23)

The system is Bounded Input Bounded in probability Output (BIBipO) stable
if for any ε > 0, Mu > 0 and any initial condition, there exist a bound
Mz > 0 such that:

P (‖zk‖ ≤Mz) > 1− ε. (24)

The following proposition shows that the exponential mean norm stability
of the free system implies the BIBipO stability.

Proposition 3. If the free system given by (3) is mean norm exponentially
stable then the system (22)-(23) is BIBipO stable.
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Proof: Consider a pair of constants ε > 0, Mu > 0 and an initial condition
x0 ∈ Rn+. Following Maragos (2016) the state vector can be written as:

xk = Φ(k, 0) � x0 ∨

(
k∨
t=1

Φ(k, t) �B(yt−1) � ut−1

)
,

where Φ is the transition matrix given by:

Φ(k2, k1) =

{
A(yk2−1) � · · ·�A(yk1) if k2 > k1

I if k2 = k1.

For any given constant Mx > 0 it holds:

P [‖xk‖ > Mx] ≤ P [‖Φ(k, 0) � x0‖ > Mx]+

+
k∑
t=1

P [‖Φ(k, t) �B(yt−1) � ut−1‖ > MX ]

≤ P [‖Φ(k, 0) � x0‖ > Mx]+

+
k∑
t=1

P [‖Φ(k, t) � Ū‖ > Mx], (25)

where Ū = max {‖B(i) � u‖ : ‖u‖ ≤Mu, i = 1, . . . ,M}1.
The following claim will be used:

Claim: There exists a value Mx > 0 such that the right hand side of the last
inequality in (25) is less than ε for any positive integer k.

To prove the claim we first use the Markov inequality:

E[‖xk‖ > Mx] ≤
1

Mx

[
E[‖Φ(k, 0) � x0‖] +

k∑
t=1

E[‖Φ(k, t) � Ū‖]

]
. (26)

The term E[‖Φ(k, 0) � x0‖] is bounded, due to the mean norm exponential
stability of the free system. Then, observe that it holds E[‖Φ(k, t) � Ū‖] =
E[‖x̃k−t‖] where x̃l satisfies:

x̃l+1 = A(yk−t+l)x̃l, (27)

x̃0 = Ū .
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The system (27) is mean norm exponentially stable. Thus:

k∑
t=1

E[‖Φ(k, t) � Ū‖] ≤
∞∑
t=1

E[‖Φ(k, t) � Ū‖] ≤ aL

a− 1
‖Ū‖, (28)

where a and L the constants satisfying the mean norm exponential stability
definition. Hence, the right hand side of (26) tends to zero as Mx increases,
which completes the proof of the claim.

Hence, a constant Mz satisfying (24) is given by: Mz =
max {‖C(i) � x‖ : ‖x‖ ≤Mx, i = 1, . . . ,M}. �

4. k-Step Lyapunov Functions

In the last section, Lyapunov functions were used for the stability analysis
of Max-Product systems with Markovian jumps. In this section we consider
k-step Lyapunov functions and derive necessary and sufficient conditions for
the mean-norm exponential stability. It turns out that many step Lyapunov
functions offer greater flexibility.

We shall consider Lyapunov functions V : Rn+ × {1, . . . ,M} → R+ with
the following properties:

P1. V (x, y) is 1-homogeneous in x.

P2. V (x, y) is continuous in x.

P3. It holds V (x, y) = 0 iff x = 0.

The following proposition gives necessary and sufficient conditions for the
mean-norm exponential stability in terms of many step Lyapunov functions.

Proposition 4. Consider a function V (x, y) satisfying (P1)-(P3). Then,
the following are equivalent:

(i) The system given by (3) is mean-norm exponentially stable.

(ii) For each δ ∈ (0, 1), there exists a positive integer k0 such that:

E[V (xk, yk)] ≤ δV (x0, y0), (29)

for any x0 ∈ Rn+, y0 ∈ {1, . . . ,M} and any k ≥ k0.
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(iii) There exists a δ ∈ (0, 1) and a positive integer k0 such that:

E[V (xk0 , yk0)] ≤ δV (x0, y0), (30)

for any x0 ∈ Rn+, y0 ∈ {1, . . . ,M}.

Proof : (i) ⇒ (ii). The following claim is first proved:
Claim: There exist positive constants bmin and bmax such that:

bmin‖x‖ ≤ V (x, y) ≤ bmax‖x‖. (31)

From (P2) and (P3) the values of the constants bmin and bmax defined by:

bmin = min{V (x, y) : x ∈ Rn+, ‖x‖ = 1},
bmax = max{V (x, y) : x ∈ Rn+, ‖x‖ = 1},

are finite and positive. Then, (P1) completes the proof of the claim.
Assume that the system given by (3) is mean-norm exponentially stable

and a and L satisfy Definition 2 part (iii). Fix a δ ∈ (0, 1). It holds:

E[V (xk, yk)]] ≤ E[bmax‖xk‖] ≤

≤ bmaxL‖x0‖/ak ≤
bmax
bmin

La−kV (x0, y0).

Choosing k0 such that bmax

bmin
La−k0 < δ, inequality (29) is satisfied.

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i). Using the same arguments as in the first part of the proof it

is easy to see that there exists a positive integer N0 such that:

E[‖xN0k0‖] ≤ δ‖x0‖.

Consider the Euclidean division of k by N0k0, i.e. k = (N0k0)q + r. Using
repeatedly the following inequality:

E[‖xk‖] =E
[
E
[
‖xk‖

∣∣xk−N0k0 , yk−N0k0

]]
≤ δE[‖xk−N0k0‖],

we obtain:

E[‖xk‖] ≤ δqE[‖xr‖]. (32)
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Furthermore, r as a remainder satisfies 0 ≤ r < N0k0 and q as a quotient
satisfies q ≥ k

N0k0
− 1. A bound for E[‖xr‖] is then derived using repeatedly

the following inequality:

‖A(y) � x‖ ≤
[
max
i,j,y

Aij(y)

]
‖x‖.

Inequality 32 implies that:

E[‖xk‖] ≤ δ
k

N0k0

[
max
i,j,y

Aij(y)

]N0k0−1

/δ.

Thus, using for a and L the values a = δ1/(N0k0) and L =
[maxi,j,y Aij(y)]N0k0−1 /δ, the inequality in Definition 2 part (iii) holds true
and the system is mean norm exponentially stable. �

The following corollary uses Lyapunov functions in the form V (x, y) =
p(y)T�x and Lemma 2. Particularly, a system in the form (15) is considered
with x̄t = xk0t.

Corollary 3. Fix a positive integer k0. Assume that there exists a set of
vectors p(1), . . . ,p(M) such that:∑

(j1,...,jk0−1),i′

c̃(i, (j1, . . . , jk0−1), i′)1T�

� Ã(i′, i, (j1, . . . , jk0−1), i′)) � 1 ≤ δ, (33)

where δ < 1, the matrix Ã is given by (19), the matrix Ā by:

Ā(yt, (j1, . . . , jk0−1), i′) = A(jk0−1) � · · ·�A(j1),

and the constants c̃ by:

c̃(i, (j1, . . . , jk0−1), i′) = cij1cj1j2 · · · · · cjk0−1i′ .

Then (3) is mean norm exponentially stable. Furthermore, if (3) is mean
norm exponentially stable then there exists a positive integer k0 and a set of
vectors p(1), . . . ,p(M) satisfying (33). �
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5. Max-Plus Systems with Markovian Jumps

5.1. Almost Sure Bounds for the Free System

We then turn to Max-Plus systems with Markovian Jumps in the form
(4). An almost sure bound on the evolution of the state of (4) will be derived
using the results of the previous sections.

For a given system in the form (4) and a positive constant γ, we construct
an equivalent Max-Product system. Particularly, consider the vector x′k =
exp(xk)/γ

k, where the exponentiation is considered component-wise. Then,
x′k evolves according to:

x′k+1 = A′(yk) � x
′
k, (34)

x′0 ∈ Rn+,

and A′ = exp(A)/γ where the exponentiation is again considered
component-wise.

Remark 5. A transformation of a Max-Plus system to a sub-linear system
is used in Chang (1996). In contrast to the transformation to a sub-linear
system the transformation to a max-product system is exact (invertible). Let
us note that the proof of the following proposition uses similar techniques
with the proof of Corollary 2.3 of Chang (1996).

The mean norm exponential stability of (34) can be used to derive some
almost sure bounds for the evolution of (4).

Proposition 5. Assume that (34) is Mean-norm exponentially stable. Then
almost all the sample paths of (4) satisfy:

xk < (k ln γ)1, (35)

for large k.

Proof: Consider the sets:

Bk = {ω ∈ Ω : xk ≮ (k ln γ)1}. (36)

It holds E[‖x′k‖] ≤M/ak for some a > 1. Thus, using Markov inequality
P [‖x′k‖ > 1] ≤ M/ak. Furthermore, ‖x′k‖ > 1 iff xk ≮ (k ln γ)1. Hence,
P (Bk) ≤M/ak and

∑∞
k=1 P (Bk) <∞.
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Thus, 1st Borel-Cantelli lemma (eg. Billingsley (2008)) applies. Hence:

P (lim supBk) = 0, (37)

which concludes the proof. �
The results of Proposition 5 can be used to bound the Lyapunov Exponent

of a Max-Plus systems with Markovian jumps. Conditions for the existence
of the Lyapunov exponent are given in Cohen (1988).

Corollary 4. Assume that the system described by (4) has a Lyapunov
exponent `. Furthermore, assume that (34) is mean norm exponentially
stable. Then, ` < ln γ.

Proof : It holds xk/k < γ1 for large k, almost surely. �

5.2. Systems with Inputs

In this section systems of the form:

xk+1 = (A(yk) � xk) ∨ (B(yk) � uk) ,

zk = C(yk) � xk, (38)

are considered in the context of the multi machine production system example
studied in the following section. Using the results of Theorem 1 of van den
Boom and De Schutter (2012), we assume that the input signal uk is scalar
and that it grows in an approximately linear fashion:

uk = kT + δk, (39)

with δk bounded and T a positive constant. In van den Boom and De Schutter
(2012) it is proved that, under certain additional conditions, inputs in the
form (39) stabilize the corresponding switching Max-Plus linear system.

The following proposition shows that the difference of the state vector
entries from kT are bounded in probability. Let us note that the boundedness
of these differences have been used in the literature to define a notion of
stability for discrete-event systems van den Boom and De Schutter (2012),
Passino and Burgess (1998).

Proposition 6. If the system (34) with γ = eT , where e is the basis of the
natural logarithm, is mean norm exponentially stable then for any ε > 0 there
exists a bound Mx such that:

P [xik − kT ≤Mx] > 1− ε, (40)

for any k, where xik is the i-th component of the vector xk.
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Proof : Consider the vector x′k = exp(xk)/γ
k = exp(xk)/ exp kT . This vector

evolves according to:

x′k+1 = (A′(yk) � x
′
k) ∨ (B′(yk) � dk) , (41)

where dk = eδk , A′ = exp(A)/γ and B′ = exp(B)/γ where all the matrix
exponentiations are considered component-wise. Then, the application of
Proposition 3 to (41) competes the proof. �

6. Numerical Examples

6.1. Deterministic Max-Product Systems

In this section we use the Lyapunov analysis of deterministic max-product
systems to analyze slightly ‘nonlinear’ max-plus systems. Such systems may
arise in the modeling of discrete event systems for which the transport,
processing, holding or idle times depend on system operation. For example,
the necessary cooling time for a machine in a production system may depend
on the length of the previous cycle. Another example is the loading or
boarding times in a rail transportation system which depend on the quantity
of products or the number of passengers waiting to be served, which in turn
may depend on the length of the last cycle. In this section we analyze a
simple model of such a discrete event system.

Consider the two dimensional model:

x1
k+1 = max

(
x1
k + ā11, x

2
k + ā12

)
+ f1(x1

k+1 − x1
k),

x2
k+1 = max

(
x1
k + ā21, x

2
k + ā22

)
+ f2(x2

k+1 − x2
k), (42)

where xik represents the instant of time at which an event takes place for the
k−th time (eg. the train departs from station i) and f1, f2 terms represent
the dependence on the length of the last cycle. For simplicity assume that
f1 and f2 are linear: f1(z) = z2(z) = δ̄z, with |δ̄| < 1/2.

Then (1) can be be written as:

x1
k+1 = max(x1

k + a11, x
2
k + a12 − δ(x1

k − x2
k)),

x2
k+1 = max(x1

k + a21 − δ(x2
k − x1

k), x
2
k + a22), (43)

where aij = aij/(1 − δ) and δ = δ̄/(1 − δ). This system is clearly not of
the max-plus form. In order to analyze (43), consider the corresponding
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exponentiated system:

x′1k+1 = max
(
a′11x

′1
k , a

′
12x
′2
k (x′1k /x

′2
k )−δ

)
,

x′2k+1 = max
(
a′21x

′1
k (x′2k /x

′1
k )−δ, a′22x

′2
k

)
, (44)

where x′ik = exp(xik)/γ
k, a′ij = exp(aij)/γ. The dynamics (44) can be written

as:

x′k+1 = A′(x′1k /x
′2
k ) � x′k, (45)

where

A′(x′1k /x
′2
k ) =

[
a11 a′12(x′1k /x

′2
k )−δ

a′21(x′2k /x
′1
k )−δ a′22

]
.

Then, the stability of the dynamics (44) can be studied using the
Lyapunov function of the max-product ‘linearized’ system:

x′k+1 = A′(1) � x′k. (46)

Example 2. Assume that a11 = a22 = 1.5686, a12 = 1.7918, a21 = 1.3350,
d = −0.15 and γ = 5. Then, the exponentiated system is:

x′1k+1 = max
(
0.96x′1k , 1.2(x′1k /x

′2
k )0.15x′2k

)
,

x′2k+1 = max
(
0.76x′1k (x′2k /x

′1
k )0.15, 0.96x′2k

)
, (47)

and the ‘max-product linearized’ matrix is:

A′(1) =

[
0.96 1.2
0.76 0.96

]
.

Using (9), (10) we obtain a Lyapunov function for the max-plus linearized
system:

V (x) = [1 1.25] � x.

We then use V as a Lyapunov function candidate for (47). The function
f(x) = A′(x1/x2) � x is 1-homogenus. Therefore, we need only to show
that if V (x′k) ≤ 1 implies V (x′k+1) ≤ 1. Equivalently we need to show that
x′1k+1 ≤ 1 and x′2k+1 ≤ 0.8, if x′1k ≤ 1 and x′2k ≤ 0.8. Indeed for such x′k it
holds:

x′1k+1 = max
(
0.96x′1k , 1.2(x′1k )0.15(x′2k )0.85

)
≤ 1,

x′2k+1 = max
(
0.76(x′1k )0.85(x′2k )0.15, 0.96x2

k

)
≤ 0.8.

Thus, the system (47) is stable. �

Let us note it is not possible to analyze (43) using directly max-plus
techniques and the transformation to a max-product system is essential.
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6.2. Max-Product Systems with Markovian Jumps

In this section, we present a very simple numerical example of a
Max-Product system with Markovian jumps. The Markov chain has two
possible states yk ∈ {1, 2} and the values of matrix A are given by:

A(1) =

[
1.05 1.5
0.4 0.3

]
,A(2) =

[
0.5 0.4
0.7 0.3

]
, (48)

and the Markov chain has transition probability matrix:

c =

[
0.3 0.7
0.4 0.6

]
.

Using simple search techniques a Lyapunov function satisfying the
conditions of Corollary 2 can be obtained. One of those Lyapunov functions
is:

p(y) =

{
[4 6]T if y = 1

[3 2]T if y = 2.

Hence, the system is mean norm exponentially stable. Several sample paths
of the system are given in Figure 1.

6.3. Application to Multi-Machine Production Systems

In this section we study a very simple example of a production system
consisting of three machines analyzed in van den Boom and De Schutter
(2012). The production system may produce two distinct outputs A and
B. The order in which the machines process the raw material is different
for the two products. Particularly, when the product A is produced, the
machines are used with order M1 →M2 →M3 while when the product B is
produced the order is M2 →M1 →M3. The production system is depicted in
Figure 2. An important question is that of maximum throughput. Maximum
throughput is the maximum rate at which the system can process the raw
material and it is defined as the inverse of the minimum cycle time (Baccelli
et al. (1992)).

A max-plus stochastic system describing the timing of the production
system will be described. Each machine starts working as soon as possible,
that is when the input material is available and also it has finished all the
previous work. Let us denote by uk the time instant at which the raw material
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Figure 1: Several sample paths of the system described by (48). (Best viewed in color)

Figure 2: The production system
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for the k− th product becomes available and by xik the time instant at which
the machine i starts working for the production of the k-th product. We
assume that the processing time for the machines are s1 = 1, s2 = 2 and
s3 = 1. Furthermore, zk denotes the time instant at which the product k
becomes available.

The evolution of xk and zk is given by:

xk+1 = (A(yk) � xk) ∨ (B(yk) � uk+1) ,

zk = C � xk, (49)

where yk = 1 when the product A is produced and yk = 2 when product B
is produced. The matrices A(1),A(2),B(1),B(2) and C are given by:

A(1) =

 s1 −∞ −∞
2s1 s2 −∞

2s1 + s2 2s2 s3

 , B(1) =

 0
s2

s1 + s2

 ,

A(2) =

 s1 2s2 −∞
−∞ s2 −∞
2s1 s1 + 2s2 s3

 , B(2) =

 s2

0
s1 + s2

 ,
and C = [−∞ −∞ s3]. The details can be found in van den Boom and
De Schutter (2012).

We assume that which product is produced at each time step depends on
exogenous orders which behave randomly. Particularly we assume that yk is
a Markov chain with transition probability matrix:

c =

[
0.8 0.2
0.2 0.8

]
.

We further assume that the raw material arrives at a constant rate. Thus,
the input signal has the form uk = kT . Proposition 6 will be used to show
that the raw material that has arrived to the production system but not yet
fully processed remains bounded in probability. Thus the system is capable
of processing the raw material at the given rate. The condition that all the
buffer levels remain bounded has been used in the literature to define the
stability of Discrete Event Systems (eg. van den Boom and De Schutter
(2012)).
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Figure 3: The differences xi
k− kT in a sample path of the system (49). (Should be viewed

in color).

Example 3. Assume that the raw material arrival has a period T = 2.5.
The matrices A′(yk) are:

A′(1) =

0.2231 0 0
0.6065 0.6065 0
4.4817 4.4817 0.2231

 ,
A′(2) =

0.2231 4.4817 0
0 0.6065 0

0.6065 12.1825 0.2231

 .
The vectors p1 = [12 12 1], p2 = [3 32 1] satisfy the conditions of Corollary
2. Hence, Proposition 6 applies and xik − kT remains bounded in probability.
Figure 3 illustrates the evolution of stock times.

Remark 6. A stability condition is also derived in van den Boom and
De Schutter (2012). This stability condition resembles the stability under
arbitrary switching property. It turns out that, in contrast to usual linear
systems, the stability under arbitrary switching property is easier to check
than the stochastic stability in the Max-Plus systems (Blondel et al. (2000)).

The minimum value for T satisfying the stability conditions of van den
Boom and De Schutter (2012) can be computed using Linear Programming
and for the current example has a value T = 3.

Thus, the stochastic stability conditions (40) are less restrictive and allow
the system to operate at a higher rate, compared with the stability under
arbitrary switching.
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7. Conclusion

Max-Plus and Max-Product systems with Markovian jumps were
considered. A Lypaunov function is constructed for asymptotically stable
deterministic Max-Product systems. This Lyapunov function is found to have
a simple form and the stability conditions derived can be checked using Linear
Programming. Slightly modified Lyapunov functions are then used to derive
sufficient conditions for the mean norm exponential stability of Max-Product
systems with Markovian Jumps. A simpler form of these conditions can be
derived based on the monotonicity of the Lyapunov functions. Necessary
and sufficient conditions for the mean norm exponential stability are then
derived using many step Lyapunov functions.

Bounds for the evolution of the state of Max-Plus systems with Markovian
jumps are then derived, based on the results for the Max-Product systems.
Finally a numerical example illustrates the application of the methods
described on a production system.
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