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Abstract

A new formulation of Stochastic Model Predictive Output Feedback Control is presented and analyzed as a translation
of Stochastic Optimal Output Feedback Control into a receding horizon setting. This requires lifting the design into a
framework involving propagation of the conditional state density, the information state, via the Bayesian Filter and solution
of the Stochastic Dynamic Programming Equation for an optimal feedback policy, both stages of which are computationally
challenging in the general, nonlinear setup. The upside is that the clearance of three bottleneck aspects of Model Predictive
Control is connate to the optimality: output feedback is incorporated naturally; dual regulation and probing of the control
signal is inherent; closed-loop performance relative to infinite-horizon optimal control is guaranteed. While the methods are
numerically formidable, our aim is to develop an approach to Stochastic Model Predictive Control with guarantees and, from
there, to seek a less onerous approximation. To this end, we discuss in particular the class of Partially Observable Markov
Decision Processes, to which our results extend seamlessly, and demonstrate applicability with an example in healthcare
decision making, where duality and associated optimality in the control signal are required for satisfactory closed-loop behavior.

Key words: stochastic control, predictive control, information state, performance analysis, dual optimal control.

1 Introduction

MPC, in its original formulation, is a full-state feedback
law. This underpins two theoretical limitations of MPC:
accommodation of output feedback, and extension to in-
clude a cogent robustness theory since the state dimen-
sion is fixed. This paper addresses the first question.
There have been a number of approaches, mostly hinging
on replacement of the measured true state by a state es-
timate, which is computed via Kalman filtering [26,33],
moving-horizon estimator [5,31], tube-based minimax
estimators [20], etc. Apart from [5], these designs, often
for linear systems, separate the estimator design from
the control design. The control problem may be altered
to accommodate the state estimation error by methods
such as: constraint tightening [33], chance/probabilistic
constraints [25], and so forth.

In this paper, we first consider Stochastic Model Predic-
tive Control (SMPC), formulated as a variant of Stochas-
tic Optimal Output Feedback Control (SOOFC), with-
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out regard to computational tractability restrictions.
By taking this route, we establish a formulation of
SMPC which possesses central features: accommoda-
tion of output feedback and duality/probing; examina-
tion of the probabilistic requirements of deterministic
and probabilistic constraints; guaranteed performance
of the SMPC controller applied to the system. Perfor-
mance bounds are stated in relation to the infinite-
horizon-optimally controlled closed-loop performance.
We next particularize our performance results to the
class of Partially Observable Markov Decision Processes
(POMDPs), as is discussed explicitly in [28]. For this
special class of systems, application of our results and
verification of the underlying assumptions are computa-
tionally tractable, as we demonstrate using a numerical
example in healthcare decision making from [29].

This paper does not seek to provide a comprehensive sur-
vey of the myriad alternative approaches proposed for
Stochastic Model Predictive Control (SMPC). For that,
we recommend the numerous available references such
as [11,16,19,21]. Rather, we present a new algorithm for
SMPC based on SOOFC and prove, particularly, perfor-
mance properties relative to optimality. As a by-product,
we acquire a natural treatment of output feedback via
the Bayesian Filter and of the associated controller du-
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ality required to balance probing for observability en-
hancement and regulation. The price we pay for gen-
eral nonlinear systems is the suspension of disbelief in
computational tractability. However, the approach de-
lineates a target controller with assured properties. Ap-
proximating this intractable controller by a more com-
putationally amenable variant, as opposed to identifying
soluble but indirect problems without guarantees, holds
the prospect of approximately attracting the benefits.
Such a strategy, using a particle implementation of the
Bayesian filter and scenario methods at the cost of losing
duality of the control inputs, is discussed in [27]. Alter-
natively, as suggested in [29], one may approximate the
nonlinear SMPC problem by POMDPs and apply the
methods of the current paper directly, resulting in opti-
mality and duality on the approximate POMDP system.

Comparison with Other Performance Results

Our work is related to four central papers discussing
performance bounds linking the achieved cost of MPC
on the infinite horizon with the cost of infinite-horizon
optimal control:

Grüne & Rantzer [13] study the deterministic, full-
state feedback situation and provide comparison
between the infinite-horizon stochastic optimal cost
and the achieved infinite-horizon MPC cost. In par-
ticular, the achieved MPC cost is bounded in terms
of the computed finite-horizon MPC cost.

Hernándes & Lasserre [14] consider the stochastic
case with full-state feedback and average as well
as discounted costs. Their results yield a compari-
son between the infinite-horizon stochastic optimal
cost and the achieved infinite-horizon MPC cost in
terms of the unknown true optimal cost.

Chatterjee & Lygeros [3] also treat the stochastic
case with full-state feedback and average cost
function. They establish and quantify a bound on
the expected long-run average MPC performance
related to the terminal cost function and its asso-
ciated monotonicity requirement.

Riggs & Bitmead [24] consider the stochastic full-
state feedback as an extension to [13] via a dis-
counted infinite-horizon cost function. Similarly to
[13], they establish a performance bound of the
achieved infinite-horizon MPC cost in terms of the
computed finite-horizon MPC cost.

The current paper extends [13,24] to include output
feedback stochastic MPC. Achieved performance is
bounded in terms of the computed finite-horizon
MPC cost. The incorporation of state estimation
into the problem is the central contribution.

Each of these works relies on a sequence of assumptions
concerning the well-posedness of the underlying opti-
mization problems and specific monotonicity conditions
on certain value functions which admit the establish-
ment of stability and performance bounds.

We summarize the main contribution of this paper,
Corollary 2, for stochastic MPC with state estimation.
Subject to cost monotonicity Assumption 10, which is
testable in terms of a known terminal policyand the
terminal cost function, an upper bound is computable
for the achieved infinite-horizon MPC cost in terms of
the the computed finite-horizon MPC cost and other
parameters of the monotonicity condition. As in [3],
we provide an example – here a POMDP form health-
care – in which the assumptions are verified, indicating
the substance of the assumptions and the nature of
the conclusion regarding closed-loop output-feedback
stochastic MPC.

Organization of this Paper

The structure of the paper is as follows. Section 2 briefly
formulates SOOFC, as used in Section 3 to present a new
SMPC algorithm. After discussing recursive feasibility
of this algorithm in Section 4, we proceed by establishing
conditions for boundedness of the infinite-horizon dis-
counted cost of the SMPC-controlled nonlinear system
in Section 5. Section 6 ties the performance of SMPC to
the infinite-horizon SOOFC performance. Section 7 pro-
vides a brief encapsulation and post-analysis of the set
of technical assumptions in the paper. The results are
particularized for POMDPs in Section 8, followed by dis-
cussion of our numerical example in Section 9. We con-
clude the paper in Section 10. To aid the development,
all proofs are relegated to the Appendix.

Notation

R and R+ are real and non-negative real numbers, re-
spectively. The set of non-negative integers is denoted
N0 and the set of positive integers by N1. We write se-
quences as tm , {t0, t1, . . . , tm}, where m ∈ N0; t∞ is
an infinite sequence of the same form. pdf(X) denotes
the probability density function of random variable X
while pdf(X|Y ) denotes the conditional probability den-
sity function of random variable X given jointly dis-
tributed random variable Y . The acronyms a.s., a.e. and
i.i.d. stand for almost sure, almost everywhere and inde-
pendent and identically distributed, respectively.

2 Stochastic Optimal Output-Feedback Control

We consider stochastic optimal control of nonlinear
time-invariant dynamics of the form

xk+1 = f(xk, uk, wk), x0, (1)

yk = h(xk, vk), (2)

where k ∈ N0, xk ∈ Rnx denotes the state with initial
value x0, uk ∈ Rnu the control input, yk ∈ Rny the
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measurement output, wk ∈ Rnw the process noise and
vk ∈ Rnv the measurement noise. We denote by

π0|−1 , pdf(x0) (3)

the known a-priori density of the initial state and by

ζk , {y0, u0, y1, u1, . . . , uk−1, yk}, ζ0 , {y0}

the data available at time k. We make the following
standing assumptions on the random variables and sys-
tem dynamics.

Assumption 1 The dynamics (1-2) satisfy

1. f(·, u, ·) is differentiable a.e. with full rank Jacobian
∀u ∈ Rnu .

2. h(·, ·) is differentiable a.e. with full rank Jacobian.
3. wk and vk are i.i.d. sequences with known densities.
4. x0, wk, vl are mutually independent for all k, l ≥ 0.

Assumption 2 The control input uk at time instant k ≥
0 is a function of the data ζk and π0|−1.

As there is no direct feedthrough from uk to yk, Assump-
tions 1 and 2 assure that system (1-2) is a controlled
Markov process [17]. Assumption 1 further ensures that
f and h enjoy the Ponomarev 0-property [22] and hence
that xk and yk possess joint and marginal densities.

2.1 Information State & Bayesian Filter

Definition 1 The conditional density of state x given
data ζk,

πk , pdf
(
xk | ζk

)
, k ∈ N0, (4)

is the information state of system (1-2).

For a Markov system such as (1-2), the information state
is propagated via the Bayesian Filter (e.g. [4,30]):

πk =
pdf(yk | xk)πk|k−1∫

pdf(yk | xk)πk|k−1 dxk
, (5)

πk+1|k ,
∫

pdf(xk+1 | xk, uk)πk dxk, (6)

for k ∈ N0 and density π0|−1 as in (3). For linear dy-
namics and Gaussian noise, the recursion (5-6) yields
the Kalman Filter.

Definition 2 The recursion (5-6) defines the mapping

πk+1 = T (πk, yk+1, uk) , k ∈ N0. (7)

2.2 Cost and Constraints

Definition 3 Ek[ · ] and Pk[ · ] are expected value and
probability with respect to state xk – with conditional den-
sity πk – and i.i.d. random variables {(wj , vj+1) : j ≥ k}.

Given the available data ζ0, we aim to select non-
anticipatory (i.e. subject to Assumption 2) control
inputs uk to minimize

JN (π0,u
N−1) , E0

N−1∑
j=0

αjc(xj , uj) + αNcN (xN )

 ,
(8)

where N is the control horizon, c : Rnx × Rnu → R+

the stage cost, cN : Rnx → R+ the terminal cost and
α ∈ R+ a discount factor. Drawing from the literature
(e.g. [1,17]), optimal controls in (8) must inherently be
separated feedback policies. That is, control input uk de-
pends on data ζk and initial density π0|−1 solely through
the current information state πk. Optimality thus re-
quires propagating πk and policies gk, where

uk = gk(πk). (9)

Cost (8) then reads

JN (π0,g
N−1) =

E0

N−1∑
j=0

αjc(xj , gj(πj)) + αNcN (xN )

 . (10)

Extending stochastic optimal control problems with
cost (10) to the infinite horizon (see [1,2]) typically re-
quires α < 1 and omitting the terminal cost term cN (·),
leading to

J∞(π0,g
∞) , E0

 ∞∑
j=0

αjc(xj , g(πj))

 . (11)

In addition to minimizing the expected value cost (10),
we impose probabilistic state constraints of the form

Pk [xk ∈ Xk] ≥ 1− εk, k ∈ N1 (12)

for εk ∈ [0, 1). That is, we enforce constraints with re-
spect to the known distributions of the future noise vari-
ables and the conditional density of the current state
xk, captured by the information state πk. Moreover, we
consider input constraints of the form

uk = gk(πk) ∈ Uk, k ∈ N0. (13)
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When discussing infinite-horizon optimal control with
cost (11), we replace the state constraints (12) by the
stationary probabilistic state constraints

Pk [xk ∈ X∞] ≥ 1− ε∞, k ∈ N1 (14)

for ε∞ ∈ [0, 1) and the input constraints (13) by

uk = gk(πk) ∈ U∞, k ∈ N0.

Definition 4 Denote by D the set of all densities on
Rnx . Further define Ck ⊆ D, k ∈ N1, to be the set of all πk
of xk satisfying the probabilistic constraint (12). Define
C∞ likewise for (14).

2.3 Stochastic Optimal Control

Definition 5 Given dynamics (1-2), α ∈ R+ and hori-
zon N ∈ N1, define the finite-horizon stochastic optimal
control problem

PN (π0) :


infgN−1 JN (π0,g

N−1)

s.t. Pj [xj ∈ Xj ] ≥ 1− εj , j = 1, . . . , N.

gj(πj) ∈ Uj , j = 0, . . . , N − 1.

Definition 6 Given dynamics (1-2) and α ∈ R+, define
the infinite-horizon stochastic optimal control problem

P∞(π0) :


infg∞ J∞(π0,g

∞)

s.t. Pj [xj ∈ X∞] ≥ 1− ε∞, j ∈ N1.

gj(πj) ∈ U∞, j ∈ N0.

Definition 7 π0 is feasible for PN (·) if there exists a
sequence of policies gN−1 such that, {wj , vj+1}j≥0-a.s.,
uj = gj(πj) satisfy the constraints and JN (π0,g

N−1) is
finite. Define feasibility likewise for P∞(π0).

In Stochastic Optimal Control, feasibility entails the
existence of policies gk(·) such that for any πk ∈ Ck,
gk(πk) ∈ Uk and

πk+1 = T (πk, yk+1, gk(πk)) ∈ Ck+1, (wk, vk+1)− a.s.

Even though the state constraints (12) are probabilistic,
this condition results in an equivalent almost sure con-
straint on the conditional state densities. The stochastic
optimal feedback policies in PN (π0) may now be com-
puted in principle by solving the Stochastic Dynamic

Programming Equation (SDPE),

Vk(πk) , inf
gk(·)

Ek [c(xk, gk(πk)) + αVk+1(πk+1)] ,

s.t. πk+1 ∈ Ck+1, (wk, vk+1)− a.s.

gk(πk) ∈ Uk

(15)

for k = 0, . . . , N −1 and πk ∈ Ck. The equation is solved
backwards in time, from its terminal value

VN (πN ) , EN [cN (xN )] , πN ∈ CN . (16)

Solution of the SDPE is the primary source of the re-
strictive computational demands in Stochastic Optimal
Control. The reason for this difficulty lies in the depen-
dence of the future information state in each step of (15-
16) on the current and future control inputs. While the
dependence on future control inputs is limiting even in
deterministic control, the computational burden is dras-
tically worsened in the stochastic case because of the
complexity of the operator Tk in (7). On the other hand,
optimality via the SDPE leads to a control law of dual
nature. Dual optimal control connotes the compromise
in optimal control between the control signal’s function
to reveal the state and its function to regulate that state.
These dual actions are typically antagonistic [9]. The du-
ality of stochastic optimal control is a generic feature,
although there exist some problems – called neutral –
where the probing nature of the control evanesces, linear
Gaussian control being one such case.

Notice that, while the Bayesian Filter (5-6) can be ap-
proximated to arbitrary accuracy using a Particle Fil-
ter [30], the SDPE cannot be easily simplified without
loss of optimal probing in the control inputs. While con-
trol laws generated without solution of the SDPE can be
modified artificially to include certain excitation proper-
ties, as discussed for instance in [10,18], such approaches
are suboptimal and do not generally enjoy the theoreti-
cal guarantees discussed below. For the stochastic opti-
mal control problems considered here, excitation of the
control signal is incorporated automatically and as nec-
essary through the optimization. The optimal control
policies, g?j (·), will inherently inject excitation into the
control signal depending on the quality of state knowl-
edge embodied in πk.
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3 Stochastic Model Predictive Control

(Dual Optimal) SMPC

Given: π0|−1 ∈ D and α ∈ R+

1: Offline: Solve PN (·) for g?0(·) via (15-16)
2: Online:
3: for k ∈ N0 do
4: Measure yk
5: Compute πk
6: Apply first optimal control policy, uk = g?0(πk)
7: Compute πk+1|k
8: end for

Notice how this algorithm differs from common practice
in SMPC [15,21] in that we explicitly use the informa-
tion states πk ∈ D. Throughout the literature, these in-
formation states – conditional densities – are replaced
by best available, or certainty-equivalent state estimates
in Rnx . While this makes the problem more tractable,
one no longer solves the underlying stochastic optimal
control problem. As we shall demonstrate in this paper,
using information state πk and optimal policy g?0(·) re-
sulting from solution of Problem PN (πk) at each time
instance leads to a number of results regarding closed-
loop performance on the infinite horizon.

4 Recursive Feasibility

Assumption 3 π0|−1 yields π0 feasible for PN (·), v0-
a.s.

Assumption 4 The constraints inPN (·) andP∞(·), for
j = 1, . . . , N − 1, satisfy

Cj+1 ⊆ Cj ⊆ C∞, Uj ⊆ Uj−1 ⊆ U∞.

Assumption 5 For all densities πk ∈ CN , there exists
a policy g̃(πk) satisfying

g̃(πk) ∈ UN−1,
T (πk, yk+1, g̃(πk)) ∈ CN , (wk, vk+1)− a.s.,

c(xk, g̃(πk)) <∞.

Theorem 1 Given Assumptions 3-5, SMPC yields πk
feasible for PN (·), {wj , vj+1}j≥0-a.s., for all k ∈ N1.

The proof of this result follows directly as a stochas-
tic version of the corresponding result in deterministic
MPC, e.g. [12]. Notice that recursive feasibility and com-
pact X1 immediately implies a stability result indepen-
dent of the cost (10), i.e.

Pk[xk ∈ X1] ≥ 1− ε1, {wj , vj+1}j≥0 − a.s., (17)

for k ∈ N1.

5 Convergence and Stability

Assumption 6 For a given α ∈ R+, the terminal feed-
back policy g̃(π) specified in Assumption 5 satisfies

αEπ [cN (f(x, g̃(π), w))]− cN (x)
a.s.
≤ −c(x, g̃(π)) (18)

for all densities π of x with π ∈ CN . The expectation Eπ[·]
is with respect to state x – with density π – and w.

For α ≥ 1, Assumption 6 can be interpreted as the exis-
tence of a stochastic Lyapunov function on the terminal
set of densities, CN . If (18) holds for α ≥ 1, it naturally
holds for all α ∈ (0, 1].

Theorem 2 Given Assumptions 3-6, SMPC yields

lim
M→∞

M∑
k=0

αkc(xk, g
?
0(πk))

a.s.
< ∞. (19)

While the discount factorαmay not seem to play a major
role in this result, notice that small values of α may be
required to satisfy Assumption 6. For α ≥ 1, (19) implies
almost sure convergence to 0 of the achieved stage cost.

Assumption 7 State x is detectable via the stage cost:

c(xk, uk)
a.s.→ 0 as k →∞ =⇒ xk

a.s.→ X as k →∞.

Theorem 3 Given Assumptions 3-7, SMPC with α ≥ 1
yields

lim
M→∞

M∑
k=0

c(xk, g
?
0(πk))

a.s.
< ∞

and

xk
a.s.→ X , as k →∞. (20)

While (20) holds only for α ≥ 1, notice that SMPC for
α ∈ [0, 1) with recursive feasibility possesses the default
stability property (17). For zero terminal cost cN (x) ≡ 0,
Assumption 8 replaces Assumption 6 to guarantee (19),
a finite discounted infinite-horizon SMPC cost.

Assumption 8 The terminal feedback policy g̃(π) spec-
ified in Assumption 5 satisfies

c(x, g̃(π))
a.s.
= 0

for all densities π of x with π ∈ CN .
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Corollary 1 Given Assumptions 3-5 and 8, SMPC with
zero terminal cost cN (x) ≡ 0 yields

lim
M→∞

M∑
k=0

αkc(xk, g
?
0(πk))

a.s.
< ∞.

Moreover, if α = 1 and Assumption 7 is added, we have

xk
a.s.→ X , as k →∞.

6 Infinite-Horizon Performance Bounds

In the following, we establish performance bounds for
SMPC, implemented on the infinite horizon as a proxy
to solving the infinite-horizon stochastic optimal con-
trol problem P∞(π). These bounds are in the spirit of
previously established bounds reported for determinis-
tic MPC in [13] and the stochastic full state-feedback
case in [24].

Assumption 9 There exist γ ∈ [0, 1] and η ∈ R+ such
that

E0 [V0(T (π0, y1, g
?
0(π0)))− V1(T (π0, y1, g

?
0(π0)))] ≤

γ E0 [c(x0, g
?
0(π0))] + η (21)

for all densities π0 of x0 which are feasible in PN (·).

Definition 8 Denote by gMPC the SMPC implementa-
tion of policy g?0(·) on the infinite horizon, i.e.

gMPC , {g?0 , g?0 , g?0 , . . .}.

Similarly, g?
N−1

and g?
∞

are the optimal sequences of
policies in Problems PN (·) and P∞(·), respectively.

Theorem 4 Given Assumptions 3-5 and 9, SMPC with
α ∈ [0, 1) yields

(1− αγ) J∞(π0,g
?∞) ≤

(1− αγ) J∞(π0,g
MPC) ≤

JN (π0,g
?N−1

) +
α

1− α
η. (22)

In the special case γ = 0, we impose the following as-
sumption on the terminal cost to obtain an insightful
corollary to Theorem 4.

Assumption 10 For α ∈ [0, 1), there exists η ∈ R+

such that the terminal policy g̃(·) specified in Assump-
tion 5 satisfies

Eπ [α cN (f(x, g̃(π), w))− cN (x)] ≤

− Eπ [c(x, g̃(π))] +
η

αN−1
,

for all densities π of x with π ∈ CN . The expectation Eπ[·]
is with respect to state x – with density π – and w.

Corollary 2 Given Assumptions 3-5 and 10, SMPC
with α ∈ [0, 1) yields

J∞(π0,g
?∞) ≤ J∞(π0,g

MPC) ≤

JN (π0,g
?N−1

) +
α

1− α
η.

This Corollary relates the following quantities: design

cost, JN (π0,g
∗N−1

),which is known as part of the SMPC
calculation, optimal cost J∞(π0,g

∗∞) which is unknown
(otherwise we would use g∗

∞
), and unknown infinite-

horizon SMPC achieved cost J∞(π0,g
MPC).

7 Analysis of Assumptions

The sequence of assumptions becomes more inscrutable
as our study progresses. However, they deviate only
slightly from standard assumptions in MPC, suitably
tweaked for stochastic applications. Assumptions 1 and
2 are regularity conditions permitting the development
of the Bayesian filter via densities and restricting the
controls to causal policies. Assumptions 3 and 4 limit
the constraint sets and initial state density to admit
treatment of recursive feasibility.

Assumptions 5, 6, 8 and 10 each concerns a putative ter-
minal control policy, g̃(·). Assumption 5 implies positive
invariance of the terminal constraint set under g̃. Us-
ing the martingale analysis of the proof of Theorem 3,
Assumption 6 ensures that the extant g̃ achieves finite
cost-to-go on the terminal set. The cost-detectability As-
sumption 7 is familiar in Optimal Control to make the
implication that finite cost forces state convergence. As-
sumption 8 temporarily replaces Assumption 6 only to
consider the zero terminal cost case. Assumptions 9 and
10 presume monotonicity of the finite-horizon cost with
increasing horizon, firstly for the optimal policy g?0 and
then for the putative terminal policy, g̃ on the termi-
nal set. These monotonicity assumptions mirror those
of, for example, [13] for deterministic MPC and [24] for
full-state stochastic MPC. They underpin the determin-
istic Lyapunov analysis and the stochastic Martingale
analysis based on the cost-to-go. These assumptions are
validated for a POMDP example in Section 9.

8 Dual Optimal Stochastic MPC for POMDPs

We now proceed by particularizing the performance re-
sults from Section 6 for the special class of POMDPs, as
suggested for instance in [28,29,32]. This class of prob-
lems is characterized by probabilistic dynamics on a fi-
nite state space X = {1, . . . , n}, finite action space U =
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{1, . . . ,m}, and finite observation space Y = {1, . . . , o}.
POMDP dynamics are defined by the conditional state
transition and observation probabilities

P (xt+1 = j | xt = i, ut = a) = paij , (23)

P (yt+1 = θ | xt+1 = j, ut = a) = rajθ, (24)

where t ∈ N0, i, j ∈ X, a ∈ U , θ ∈ Y . The state transi-
tion dynamics (23) correspond to a conventional Markov
Decision Process (MDP, e.g. [23]). However, the control
actions ut are to chosen based on the known initial state
distribution π0 = pdf(x0) and the sequences of observa-
tions, {y1, . . . , yt}, and controls {u0, . . . , ut−1}, respec-
tively. That is, we are choosing our control actions in
a Hidden Markov Model (HMM, e.g. [8]) setup. Notice
that, while POMDPs conventionally do not have an ini-
tial observation y0 in (24), as is commonly assumed in
nonlinear system models of the form (1-2), one can eas-
ily modify this basic setup without altering the following
discussion.

Given control action ut = a and measured output yt+1 =
θ, the information state πt in a POMDP is updated via

πt+1,j =

∑
i∈X πt,jp

a
ijr

a
jθ∑

i,j∈X πt,jp
a
ijr

a
jθ

,

where πt,j denotes the jth entry of the row vector πt. To
specify the cost functionals (10) and (11) in the POMDP
setup, we write the stage cost as c(xt, ut) = cai if xt =
i ∈ X and ut = a ∈ U , summarized in the column
vectors c(a) of the same dimension as row vectors πk.
Similarly, the terminal cost terms are cN (xt) = ci,N if
xN = i ∈ X, summarized in the column vector cN . The
infinite horizon cost functional defined in Section 2 then
follows as

J∞(π0, g) = E0

[ ∞∑
k=0

αkπkc(gk(πk))

]
,

with corresponding finite-horizon variant

JN (π0, g) = E0

[
N−1∑
k=0

αkπkc(gk(πk)) + αNπNcN

]
.

Extending (15-16), optimal control decisions may then
be computed via

J?N−k(πk) = min
gk(·)

{
πkc(gk(πk))

+ α
∑
θ∈Y

P (yk+1 = θ | πk, gk(πk)) J?N−k−1(πk+1)

}
,

(25)

for k = 0, . . . , N − 1, from terminal value function

J?0 (πN ) = πNcN . (26)

Assumption 11 For α ∈ [0, 1), there exist η ∈ R+ and
a policy g̃(·) such that

E0 [απ1cN ] ≤ E0 [π0cN − π0c(g̃(π0))] +
η

αN−1
, (27)

for all densities π0 of x0 ∈ X.

Theorem 5 ([28]) Given Assumption 11, SMPC for
POMDPs with α ∈ [0, 1) yields

J∞(π,g?
∞

) ≤ J∞(π,gMPC) ≤

JN (π,g?
N−1

) +
α

1− α
η,

for all densities π of x ∈ X.

A special case of Corollary 2, this result allows us to
bound the achieved infinite-horizon cost of SMPC on
POMDPs. In this special case, we can compute the dual
optimal control policies and verify Assumption 11 nu-
merically, as is demonstrated for a particular example
below.

9 An Example in Healthcare Decision Making

9.1 Problem Setup

Consider a patient treated for a specific disease which
can be managed but not cured. For simplicity, we assume
that the patient does not die under treatment. While
this transition would have to be added in practice, it
results in a time-varying model, which we avoid in order
to keep the following discussion compact.

The example, introduced in [29], is set up as follows.
The disease encompasses three stages with severity in-
creasing from Stage 1 through Stage 2 to Stage 3, transi-
tions between which are governed by a controlled Markov
chain, where P (a) is the transition probability matrix
with values paij at row i and column j and R(a) is the
observation matrix with elements rajθ. All transition and
observation probability matrices below are defined sim-
ilarly. Once our patient enters Stage 3, Stages 1 and 2
are inaccessible for all future times. However, Stage 3
can only be entered through Stage 2, a transition from
which to Stage 1 is possible only under costly treatment.
The same treatment inhibits transitions from Stage 2 to
Stage 3. We have access to the patient state only through
imprecise tests, which will result in one of three possible
values, each of which is representative of one of the three
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Disease	Stage	1

Disease	Stage	2

Disease	Stage	3

Test	Result	1

Test	Result	2

Test	Result	3

State	Transitions Observations

Fig. 1. Feasible state transitions and possible test results in
healthcare example. Solid arrows for feasible state transitions
and observations. Dashed arrows for transitions conditional
on treatment and diagnosis decisions.

disease stages. However, these tests are imperfect, with
non-zero probability of returning an incorrect disease
stage. All possible state transitions and observations are
illustrated in Figure 1.

At each point in time, the current information state πt is
available to make one of four possible decisions/actions:

(1) Skip next appointment slot.
(2) Schedule new appointment.
(3) Order rapid diagnostic test.
(4) Apply available treatment.

Skipping an appointment slot results in the patient pro-
gressing through the Markov chain describing the tran-
sition probabilities of the disease without medical inter-
vention, without new information being available after
the current decision epoch. Scheduling an appointment
does not alter the patient transition probabilities but
provides a low-quality assessment of the current disease
stage, which is used to refine the next information state.
The third option, ordering a rapid diagnostic test, allows
for a high-quality assessment of the patient’s state, lead-
ing to a more reliable refinement of the next information
state than otherwise possible when choosing the previ-
ous decision option. The results from this diagnostic test
are considered available sufficiently fast so that the pa-
tient state remains unchanged under this decision. The
remaining option entails medical intervention, allowing
probabilistic transition from Stage 2 to Stage 1 while
preventing transition from Stage 2 to Stage 3. Transition
probabilities P (a), observation probabilities R(a), and
stage cost vectors c(a) for each decision are summarized
in Table 1. Additionally, we impose the terminal cost

cN =
[
0 8 60

]T
.

In the solution for the optimal feedback control, the se-

lection of a diagnostic test comes at a cost to the objec-
tive criterion and, evidently, serves to refine the infor-
mation state of the system/patient. It does so without
effect on the regulation of the patient other than to im-
prove the information state. Clearly, testing to resolve
the state of the patient is part of an optimal strategy
in this stochastic setting; but it does take resources. A
certainty-equivalent feedback control would assign treat-
ment on the supposition that the patient’s state is pre-
cisely known. Such a controller would never order a test.
The decision to apply a test in the following numeri-
cal solution is evidence of duality in receding-horizon
stochastic optimal control, viz. SMPC.

9.2 Computational Results

The trade-off between the two principal decision cate-
gories – testing versus treatment, probing versus regu-
lating, exploration versus excitation – is precisely what
is encompassed by duality, which we can include in an
optimal sense by solving (25-26) and applying the re-
sulting initial policy in receding horizon fashion. This is
demonstrated in Figure 2, which shows simulation re-
sults for SMPC with control horizonN = 4 and discount
factor α = 0.85. As anticipated, the stochastic optimal
receding horizon policy shows a structure not drastically
different from the decision structure motivated above. In
particular, diagnostic tests are used effectively to decide
on medical intervention.

In order to apply Theorem 5 to this particular exam-
ple, we choose the policy g̃(·) in Assumption 11 always
to apply medical intervention. Using the worst-case sce-
nario for the expectations in (27), which entails transi-
tion from Stage 1 to Stage 2 under treatment, we can
satisfy Assumption 11 with η ≈ 7. The computed cost in

our simulation is JN (π0,g
?N−1

) ≈ 8.5. Combined with
the discount factor α = 0.85, we thus have the upper
bound

J∞(π0,g
MPC) ≤ J?N (π0) +

α

1− α
η ≈ 48.2

via application of Theorem 5. Denoting by ej the row-
vector with entry 1 in element j and zeros elsewhere, the
observed (finite-horizon) cost corresponding with Fig-
ure 2 is

Jobs
∞ =

29∑
k=0

exk
c(µN0 (πk)) ≈ 9.2 < 48.2.

10 Conclusions

The central contribution of the paper is the presentation
of an SMPC algorithm based on SOOFC. This yields a

8



Table 1
Problem data for healthcare decision making example.

Decision a Transition Probabilities P (a) Observation Probabilities R(a) Cost c(a)

1: Skip next appointment slot


0.80 0.20 0.00

0.00 0.90 0.10

0.00 0.00 1.00




1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3




0

5

5


2: Schedule new appointment


0.80 0.20 0.00

0.00 0.90 0.10

0.00 0.00 1.00




0.40 0.30 0.30

0.30 0.40 0.30

0.30 0.30 0.40




1

1

1


3: Order rapid diagnostic test


1.00 0.00 0.00

0.00 1.00 0.00

0.00 0.00 1.00




0.90 0.05 0.05

0.05 0.90 0.05

0.05 0.05 0.90




4

3

4


4: Apply available treatment


0.80 0.20 0.00

0.75 0.25 0.00

0.00 0.00 1.00




0.40 0.30 0.30

0.30 0.40 0.30

0.30 0.30 0.40




4

2

4


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Fig. 2. Simulation results for SMPC with horizon N = 4 and discount factor α = 0.85. Top plot displays patient state
and transitions, with optimal SMPC decisions based on current information state: appointment (pluses); diagnostic test
(crosses); treatment (circles). Bottom plot shows information state evolution. Dashed vertical lines mark time instances of
state transitions.

number of theoretical properties of the controlled sys-
tem, some of which are simply recognized as the stochas-
tic variants of results from deterministic full-state feed-
back MPC with their attendant assumptions, including
for instance Theorem 1 for recursive feasibility. Theo-
rem 2 is the main stability result in establishing the
finiteness of the discounted cost of the SMPC-controlled
system. Theorem 3 and Corollary 1 deal with consequent
convergence of the state in special cases.

Performance guarantees of SMPC are made in compari-
son to performance of the infinite-horizon stochastically
optimally controlled system and are presented in Theo-
rem 4 and Corollary 2. These results extend those of [24],
which pertain to full-state feedback stochastic optimal
control and which therefore do not accommodate dual-
ity. Other examples of stochastic performance bounds
are mostly restricted to linear systems and, while com-
putable, do not relate to the optimal constrained con-

trol. While the formal stochastic results are traceable to
deterministic predecessors, the divergence from earlier
work is also notable. This concentrates on the use of the
information state to accommodate measurements and
the exploration of control policy functionals stemming
from the Stochastic Dynamic Programming Equation.
The resulting output feedback control possesses dual-
ity and optimality properties which are either artificially
imposed in or absent from earlier approaches.

We have further suggested two potential strategies
to ameliorate the computational intractability of the
Bayesian filter and SDPE, famous for its curse of di-
mensionality. Firstly, one may use the Particle filter
implementation of the Bayesian filter, which has many
examples of fast execution for small state dimensions,
which with a loss of duality can be combined with sce-
nario methods. This approach is discussed in [27] as an
approximation of the algorithm in this paper. Secondly,
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we point out that our algorithm becomes computation-
ally tractable for the special case of POMDPs, which
may be used either to approximate a nonlinear model
or to model a given system in the first place. This strat-
egy inherits the dual nature of our SMPC algorithm for
general nonlinear systems.

A Proofs

A.1 Theorem 2

Denote by Mk the discounted PN -cost-to-go,

Mk ,
k+N−1∑
j=k

αjc(xj , g
?
j−k(πj)) + αk+NcN (xk+N )

= αk

N−1∑
j=0

αjc(xk+j , g
?
j (πk+j)) + αNcN (xk+N )

 ,

where g?j (·), j = 0, . . . , N − 1, are the optimal feedback
policies in Problem PN (·). Moreover, define Fk as the
σ-algebra generated by the initial state x0 with density
π0|−1 and the i.i.d. noise sequences wj and vj for j =
0, . . . , k+N−1. ThenMk is Fk-measurable andMk ≥ 0
by non-negativity of stage and terminal cost. Then,

E0 [Mk+1 | Fk] =

αk+1E0

[
N−1∑
j=0

αjc(xj+k+1, g
?
j (πj+k+1))

+ αNcN (xk+N+1) | Fk

]
,

and, by optimality of the policies g?j (·) in PN (·),

E0[Mk+1 | Fk]
a.s.
≤ E0

[
Mk − αkc(xk, g?0(πk))

− αk+NcN (xk+N ) + αk+Nc(xk+N , g̃(πk+N ))

+ αk+N+1cN (f(xk+N , g̃(πk+N ), wk+N )) | Fk
]
,

where g̃(·) denotes the terminal feedback policy, specified
by Assumptions 5 and 6, and feasibility follows as in the
proof of Theorem 1. Given that

Mk − αkc(xk, g?0(πk))− αk+NcN (xk+N )

+ αk+Nc(xk+N , g̃(πk+N ))

is Fk-measurable, we then have

E0[Mk+1 | Fk]
a.s.
≤ Mk − αkc(xk, g?0(πk))

− αk+NcN (xk+N ) + αk+Nc(xk+N , g̃(πk+N ))

+ αk+N+1E0[cN (f(xk+N , g̃(πk+N ), wk+N )) | Fk].

By Assumption 6, this yields

E0 [Mk+1 | Fk]
a.s.
≤ Mk − αkc(xk, g?0(πk)). (A.1)

Taking expectations in (A.1) further gives

E0 [Mk+1] ≤ E0

[
Mk − αkc(xk, g?0(πk))

]
,

where E0 [M0] < ∞ via feasibility of π0 for P(·). By
positivity of the stage cost, this yields

sup
k∈N0

E0 [|Mk|] <∞. (A.2)

Inequalities (A.1) and (A.2) with non-negativity of
the stage cost show that Mk is a non-negative L1-
supermartingale on its filtration Fk and thus, by Doob’s
Martingale Convergence Theorem (see [7]), converges
almost surely to a finite random variable,

Mk
a.s.→ M∞ <∞, as k →∞. (A.3)

Now define Zk to be the discounted sample PN cost-to-
go plus the achieved MPC cost at time k,

Zk ,Mk +

k−1∑
j=0

αjc(xj , g
?
0(πj)) ≥ 0.

Then,

E0 [Zk+1 | Fk]
a.s.
≤

Mk − αkc(xk, g?0(πk)) +

k∑
j=0

αjc(xj , g
?
0(πj)) = Zk.

That is, recognizing that Z0 = M0 so that E0[|Z0|] <
∞, Zk also is a non-negative L1-supermartingale and
converges almost surely to a finite random variable

Zk
a.s.→ Z∞ <∞, as k →∞.

However, by definition of Zk and (A.3), this im-
plies (19). 2

A.2 Theorem 3

First proceed as in the proof of Theorem 2. By Doob’s
Decomposition Theorem (see [6]) on (A.3), there exists a
martingaleMk and a decreasing sequence Ak such that
Mk = Mk + Ak, where Ak → A∞ a.s. by (A.3). Using
this decomposition, (A.1) yields

c(xk, g
?
0(πk)) ≤ αkc(xk, g?0(πk))

a.s.
≤

Mk − E0 [Mk+1 | Fk] = Ak − E0 [Ak+1 | Fk]
a.s.
≤

Ak − E0 [A∞ | Fk] .
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Taking limits as k →∞ and re-invoking non-negativity
of the stage cost then leads to c(xk, g

?
0(πk)) → 0 a.s.,

which by the detectability condition on the stage cost
(Assumption 7) verifies (20). 2

A.3 Theorem 4

The optimal value function in the SDPE (15) satisfies

V0(π0) = JN (π0,g
?N−1

), so that optimality of policy
g?0(·) in Problem PN (π0) implies

V0(π0) = E0 [c(x0, g
?
0(π0)) + αV1(T (π0, y1, g

?
0(π0)))]

+ αE0 [V0(T (π0, y1, g
?
0(π0)))]

− αE0 [V0(T (π0, y1, g
?
0(π0)))] ,

which by Assumption 9 yields

(1− αγ)E0 [c(x0, g
?
0(π0))] ≤

V0(π0)− αE0 [V0(T (π0, y1, g
?
0(π0)))] + αη. (A.4)

Now denote by JM∞ (π0,g
MPC) the first M ∈ N1 terms

of the infinite-horizon cost J∞(π0,g
MPC) subject to the

SMPC implementation of policy g∗0(·). By (A.4), we have

(1− αγ)JM∞ (π0,g
MPC) =

(1− αγ)E0

[
M−1∑
k=0

αkc(xk, g
?
0(πk))

]
≤

E0

[
V0(π0)− αV0(π1) + αη + αV0(π1)− α2V0(π2)+

α2η + . . .+ αM−1V0(πM−1)− αMV0(πM ) + αMη
]
,

such that

(1− αγ)JM∞ (π0,g
MPC) ≤ JN (π0,g

?N−1

)

− αME0

[
JN (πM ,g

?N−1

)
]

+
(
α+ . . .+ αM

)
η,

which by non-negativity of the stage cost confirms the
right-hand inequality in (22) in the limit asM →∞. The
left-hand inequality follows directly from optimality. 2

A.4 Corollary 2

For conditional densities π1 of x1 such that π1 ∈ C1, use
optimality and subsequently Assumption 10 to conclude

V0(π1)− V1(π1)

= E1

[(
N−1∑
k=0

αkc(xk+1, g
?
k(πk+1)) + αNcN (xN+1)

)

−

(
N−2∑
k=0

αkc(xk+1, g
?
k+1(πk+1)) + αN−1cN (xN )

)]
≤ E1[αN−1c(xN , g̃(πN ))

+ αNcN (f(xN , g̃(πN ), wN ))− αN−1cN (xN )]

≤ η,

which by (17) implies V0(πk) − V1(πk) ≤ η for k ∈ N1.
However, this means Assumption 9 is satisfied with γ = 0
and thus completes the proof by Theorem 4. 2
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