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Abstract

In this paper, we describe a broad class of control functions for extremum seek-
ing problems. We show that it unifies and generalizes existing extremum seeking
strategies which are based on Lie bracket approximations, and allows to design new
controls with favorable properties in extremum seeking and vibrational stabilization
tasks. The second result of this paper is a novel approach for studying the asymp-
totic behavior of extremum seeking systems. It provides a constructive procedure
for defining frequencies of control functions to ensure the practical asymptotic and
exponential stability. In contrast to many known results, we also prove asymp-
totic and exponential stability in the sense of Lyapunov for the proposed class of
extremum seeking systems under appropriate assumptions on the vector fields.

1 Introduction

In many control applications, the goal is to operate a system in some optimal fashion.
Often, however, the optimal operating point is unknown or may even change over time so
that it cannot be determined a priori. Extremum seeking control is a control methodology
to solve such problems of stabilizing and tracking an a priori unknown optimal operating
point. Typically, it is model-free and minimizes or maximizes the steady-state map of a
system. The steady-state map maps constant control input values to the steady-state out-
put values. It is a well-defined map under appropriate assumptions on the system. There
exist many ways to design the extremum seeking strategies. A classical perturbation-
based approach is to use the controls consisting of time-periodic oscillating inputs (often
called dither, excitation, perturbation or learning signal) and state-dependent vector fields
in order to gather information about the unknown steady-state map. Based on the per-
turbed input and the perturbed output response, typically the gradient or other descent
directions of the steady-state map are approximated or estimated by appropriate signal
processing or filtering methods, see, e.g. [2, 3, 4, 7, 8, 9, 10, 11, 15, 22]. Hereby, the shape
of control functions plays an important role since it influences the speed of convergence
and may be subject to input constraints. In the literature, different types of excitation
signals have been analyzed, see, e.g. [1, 14, 18, 20, 23].
In this paper, we propose a novel class of vector fields for extremum seeking controls
based on Lie bracket approximation techniques [3, 2]. The first contribution of this paper
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is a formula describing a whole class of vector fields for an extremum seeking system
which allows to approximate a gradient flow in various ways. The formula unifies and
generalizes previously known controls presented in [3, 18, 20, 21] and allows to generate
new extremum seeking strategies with desirable properties. In particular, we demonstrate
benefits of this formula by designing a control which has bounded update rates and van-
ishing amplitudes at the same time.
Moreover, the second contribution is a rigorous proof of the asymptotic and exponential
stability in the sense of Lyapunov, under appropriate assumptions on the considered class
of generating vector fields. This is in contrast to many results in the literature, where
typically practical stability results are established. The proof also extends the techniques
developed in [24, 25, 5, 6] to a wide class of cost functions and to systems whose vector
fields are non-differentiable at the origin. An advantage of these techniques is the possi-
bility to estimate the decay rate of solutions of the extremum seeking systems.
Finally, we demonstrate that the proposed formula is not only of use in extremum seeking
but also in vibrational stabilization problems [17, 13].
The paper is organized as follows. Section 2 contains some preliminary results on ex-
tremum seeking based on Lie bracket approximations. In Section 3, we present a novel
formula to approximate the gradient flows and establish various asymptotic stability con-
ditions. In Section 4, we illustrate several extremum seeking strategies by using numerical
simulations, and discuss the application of the obtained results to the vibration stabiliza-
tion problem. Appendix A contains auxiliary lemmas and proofs.

2 Preliminaries

2.1 Notations

Throughout the text, R
+ denotes the set of all non-negative real numbers, Bδ(x

∗) is
the δ-neighborhood of x∗∈Rn, Bδ(x∗) is its closure. For h∈C1(Rn;R), ξ∈Rn, we define

the column ∇h(ξ) := ∂h(x)
∂x

T
∣

∣

∣

x=ξ
. For a function f : R → R, f(z) = O(z) as z → z0

means that there is a c > 0 such that |f(z)| ≤ c|z| in some neighborhood of z0. For

f, g : Rn → R
n, x ∈ R

n, we denote the Lie derivative as Lgf(x) = lim
s→0

f(x+sg(x))−f(x)
s

,

and [f, g](x) = Lfg(x)− Lgf(x) is the Lie bracket. For m,n ∈ Z, the notation i = m,n
means that i = m,m + 1, . . . , n. For a, b ∈ R

n, we denote their open convex hull as
co{a, b} = {λa+ (1− λ)b | λ ∈ (0, 1)}.

2.2 Lie bracket approximations

Consider a control-affine system

ẋ = f0(x) +

ℓ
∑

j=1

fj(x)
√
ωuj(ωt), (1)

where x=(x1, . . . , xn)
T∈Rn, x(t0)=x0∈Rn (without loss of generality, we assume t0 = 0),

ω>0, fj : R
n → R

n, j=1, ℓ. Assume that:

A0 uj(t) are continuous T -periodic functions,
∫ T

0
uj(τ)dτ=0,

∫ T

0

∫ θ

0
ui(θ)uj(τ)dτds=βi,jT ,

T>0, βi,j ∈ R, i, j = 1, ℓ.
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It can be shown that the trajectories of (1) approximate trajectories of the following Lie
bracket system:

˙̄x=f0(x̄)+
∑

i<j

βj,i[fi, fj](x̄), x̄(0) = x0. (2)

The stability properties of systems (1) and (2) are related as follows.

Lemma 1 ([3]). Let f0, fi ∈ C2(Rn;Rn), and ui satisfy A0, i = 1, ℓ. If a compact
set S ⊂ R

n is locally (globally) uniformly asymptotically stable for (2) then it is locally
(semi-globally) practically uniformly asymptotically stable for (1).

Below we recall the notion of practical stability.

Definition 1. A compact set S ⊂ R
n is said to be locally practically uniformly asymptot-

ically stable for (1) if:
– it is practically uniformly stable, i.e. for every ε>0 there exist δ>0 and ω0>0 such
that, for all t0≥0 and ω>ω0, if x

0∈Bδ(S) then the corresponding solution of (1) satisfies
x(t)∈Bε(S) for all t≥t0;
– δ̂-practically uniformly attractive with some δ̂>0, i.e. for every ε>0 there exist t1≥0
and ω0>0 such that, for all t0≥0 and ω>ω0, if x

0∈Bδ̂(S) then the corresponding solution
of (1) satisfies x(t)∈Bε(S) for all t≥t0+t1.
If the attractivity property holds for every δ̂>0, then the set S is called semi-globally
practically uniformly asymptotically stable for (1).

2.3 Extremum seeking problem

In this paper, we address a class of extremum seeking problems related to the uncon-
strained minimization of a cost function J . We assume that J ∈ C2(Rn;R) is unknown
(as an analytic expression) but can be evaluated (measured) at each x ∈ R

n. The goal
is to construct a control system of the form ẋ = u(t, J(x)) such that the (local) minima
of J have some desired stability properties for this system. In this setup, a static map J
corresponds to the steady-state map of a system. However, the extremum seeking based
on Lie bracket approximations can be applied to much more general scenarios, including
dynamic maps (dynamical systems), constrained optimization problems, distributed and
multi-agent extremum seeking, stabilization, synchronization and consensus problems as
well as problems on manifolds, etc. The results obtained in this paper can be applied to
such more general problems but are not discussed here for the sake of simplicity.
The underlying idea of the extremum seeking based on the Lie bracket approximations is
as follows. Suppose that n = 1, i.e. x ∈ R, and consider the system

ẋ = J(x)
√
ω cos(ωt) +

√
ω sin(ωt). (3)

It can be seen that the Lie bracket system for (3) approximates the gradient flow of J :

˙̄x = [J(x̄), 1] = −1
2
∇J(x̄). (4)

Thus, the trajectories of system (3) approximate trajectories of the gradient flow of J
and they converge, for example, if J is convex and has minima, into an arbitrary small
neighborhood of the set of minima of J , for sufficiently large ω. For n > 1, the gradient
flow can be approximated in a similar way, see [3] for details.
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3 Main results

3.1 Vector fields for approximating gradient flows

Observe that there are many ways to define the vector fields of system (1) such that the
corresponding Lie bracket system has the form (4). For example, consider the system

ẋ = 1
2
eJ(x)

√
ω cos(ωt) + e−J(x)

√
ω sin(ωt). (5)

Computing
[

1
2
eJ(x), e−J(x)

]

yields −∇J(x) and, hence, the associated Lie bracket system
is again of the form (4).
The main idea and the first main result of this paper is the description of a class of
vector fields for system (1) such that the corresponding Lie bracket system (2) represents
a gradient-like flow of J . Consider first the system

ẋ = F1(J(x))
√
ωu1(ωt) + F2(J(x))

√
ωu2(ωt). (6)

We begin with the one-dimensional case x∈R to simplify the presentation, and the multi-
dimensional case will be considered later as an extension.

Theorem 1. Let the functions F1, F2 ∈ C1(R;R) satisfy

F2(z) = −F1(z)

∫

F0(z)

F1(z)2
dz, (7)

with some F0 : R→R, and let us : R
+→R satisfy A0. Then the Lie bracket system for (6)

has the form
˙̄x = −β2,1∇J(x̄)F0(J(x̄)). (8)

PROOF. Consider the differential equation

F2(z)
dF1(z)

dz
− F1(z)

dF2(z)

dz
= F0(z), z ∈ R, (9)

and observe that it represents a linear ordinary differential equation with respect to F2(z)
(or F1(z)), whose solutions are given by (7). Then, by computing the Lie bracket system
for (6), we obtain (8):

˙̄x= 1
T
[F1(J(x̄)), F2(J(x̄))]

∫ T

0

∫ θ

0

u2(θ)u1(τ)dτdθ

=β2,1

(

F1(J(x̄))
dF2(J(x̄))

dJ
−F2(J(x̄))

dF1(J(x̄))

dJ

)

∇J(x̄)

=−β2,1∇J(x̄)F0(J(x̄)). �

Formula (7) describes the whole class of solutions of (9), and this is the unique way to
obtain the Lie bracket system (8) if the original system has the form (6). However, there
are many ways to obtain the Lie bracket system of the type (8) if the original system has
the form ẋ = u, e.g., by expressing the gradient-like dynamics as a linear combination of
certain Lie brackets.
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Remark 1. In formula (7), we assume that F1(z) 6= 0 except for at most a countable

set of isolated zeros Z∗ = {z∗k}. We treat the function Ψ1(z) :=
∫ F0(z)

F1(z)2
dz as an an-

tiderivative of F0(z)
F1(z)2

defined on the open set R \ Z∗, so that (7) holds as an identity

with continuous functions in a neighborhood of each point z /∈ Z∗. As the functions F1

and F2 are assumed to be globally continuous, formula (7) is treated in the sense that
F2(z

∗
k) = − limz→z∗k

F1(z)Ψ1(z) at each z∗k ∈ Z.

Formula (7) can also be used to approximate gradient-like flows of multivariable cost
functions. Consider the system

ẋ =
n
∑

i=1

(

F1i(J(x))u1i(t) + F2i(J(x))u2i(t)
)

ei, x ∈ R
n, (10)

where J∈C2(Rn;R), ei denotes the i-th unit vector in R
n.

Theorem 2. Suppose that each pair F1i, F2i ∈ C1(R;R) satisfies relation (7) with some
F0i : R → R. Define usi(t) :=

√
ωũsi(ωt), s = 1, 2, i = 1, n, ω > 0, where the functions

ũsi satisfy A0. Then the Lie bracket system for (10) has the form

˙̄x = −
n
∑

i=1

β2i,1i
∂J(x̄)

∂x̄i
F0i(J(x̄))ei. (11)

Moreover, if F1i, F2i∈ C2(R;R) and a compact set S⊂R
n is locally (globally) uniformly

asymptotically stable for (11), then S is locally (semi-globally) practically uniformly asymp-
totically stable for (10).

The proof follows directly from Lemma 1 and Theorem 1.

3.2 Examples

Formula (7) describes a whole class of vector fields F1, F2 such that the trajectories of
system (6) approximate trajectories of the gradient-like system (8). Moreover, formula (7)
unifies and generalizes some known results which are discussed in the following. In par-
ticular, assume F0 = 1.
In [3], the case

F1(z) = z, F2(z) = 1

was considered, which corresponds to system (3). The paper [18] introduced the functions

F1(z) = sin(z), F2(z) = cos(z),

which possess a priori known bounds (i.e. one has bounded update rates) for a fixed ω,
due to the property −1 ≤ Fs(z) ≤ 1, s = 1, 2.
The paper [19] presented a class of control functions vanishing at the origin. In particular,
the control u =

√
ω(α‖x‖r cos(ωt)− k

1−r
‖x‖2−r sin(ωt)), r∈[0, 1), α, k>0 was proposed,

which corresponds to J(x)=‖x‖2m with m>0,

F1(z)=αz
r
2m , F2(z)=− k

1− r
z
2−r
2m , F0(z)=

1

m
z
1−m
m ,

so that the above control can also be described by formula (7). In [19], practical asymp-
totic stability conditions for control-affine system (2) with vector fields fi ∈ C2(Rn \

5



{0};Rn) were presented under the assumption [fi, fj] ∈ C2(Rn;Rn).
Another case with vanishing at the origin vector fields was studied in [21], namely,

F1(z) =
√
zsin(ln(z)), F2(z) =

√
zcos(ln(z))

were considered for z ≥ 0.
Besides unifying these known results, formula (7) allows also to construct novel controls
with desirable properties. In particular, it is possible to combine the advantage of having
bounded update rates and vanishing perturbation amplitudes, e.g., this can be achieved
with F0(z) = 1 and

F1(z) =
√

φ1(z) sin(φ2(z)), F2(z) =
√

φ1(z) cos(φ2(z)),

φ1(z) =
1−e−z

1+ez
, φ2(z) = ez + 2 ln(ez − 1),

for z > 0, F1(0) = F2(0) = 0. For z ≥ 0, one has |Fs(z)| ≤
√

3− 2
√
2, s = 1, 2.

The controls which tend to zero whenever z approaches the origin are useful when the
minimal value of J(x∗) is known a priori (but not the extremum point x∗ itself). For
example, such situations arise in the distance minimization, consensus or synchronization
problems and, as we will see in Section 4.2, in vibrational stabilization problems where J
plays the role of a Lyapunov function. Note that the solutions F1, F2 to the differential
equation (9) are not necessary of class C2, as it was illustrated by the above examples.
In the next section, we will relax the regularity assumption on F1i, F2i and propose new
asymptotic stability conditions for system (10).

3.3 Stability conditions

In this section, we establish the second main result of the paper. Namely, we present
conditions for asymptotic stability in the sense of Lyapunov, which are in contrast to
many existing results in extremum seeking literature stating only the practical asymptotic
stability. We present a novel approach for studying the stability properties of extremum
seeking system (10) with a broad family of vector fields described by (7). We will refer to
the following assumptions in a domain D ⊆ R

n.
A1 There exists an x∗∈D such that ∇J(x∗)=0, ∇J(x) 6=0 for all x∈D\{x∗}; J(x∗)=J∗∈R,
J(x)>J(x∗) for all x∈D\{x∗}.
A2 There exist constants γ1, γ2, κ1, κ2, µ, and m1 ≥ 1, such that, for all x ∈ D,

γ1‖x−x∗‖2m1≤J̃(x)≤γ2‖x−x∗‖2m1 , J̃(x) = J(x)− J∗,

κ1J̃(x)
2− 1

m1 ≤‖∇J(x)‖2≤κ2J̃(x)
2− 1

m1 ,
∥

∥

∥

∥

∂2J(x)

∂x2

∥

∥

∥

∥

≤µJ̃(x)
1− 1

m1 .

A3 The functions Fsi(J(·)) ∈ C2(D \ {x∗};R), D ⊆ R
n; the functions LFpj

Fsi(J(·)),
LFql

LFpj
Fsi(J(·)) ∈ C(D;R), for all s, p, q ∈ {1, 2}, i, j, l = 1, n.

A4 The functions Fsi(J(x)) are Lipschitz continuous on each compact χ ⊂ D, and

α1J̃
m2(x) ≤ F0i(J̃(x)) ≤ α2J̃

m2(x),

|Fsi(J̃(x))| ≤ MJ̃m3(x),

‖LFql
LFpj

Fsi(J̃(x))‖ ≤ HJ̃m4(x), for all x ∈ D,

6



for all s, p, q=1, 2, i, j, l=1, n, with m2≥ 1
m1

− 1, m3=
1
2
(m2 + 1), m4 = 3

2
(1 + m2) − 1

m1
,

and some α1, α2,M > 0, H ≥ 0.
Assumption A1 requires that the cost function J has an isolated local minimum, and the
attained minimal value of J at x∗ is J∗. Assumption A2 is obtained from the requirement
that the cost function J locally behaves as a power function. Assumption A3 requires
that the first and the second Lie derivatives of Fsi(J(·)) be continuous, even if Fsi(J(·))
itself are not continuously differentiable in D. Similar assumptions were exploited, e.g.,
in [19, 21] for a certain class of controls. Finally, assumption A4 requires that the controls
vanish at the extremum point. As it will be shown in Theorem 3, if the minimal value of
the cost function is known for the functions in (10), then the asymptotic stability in the
sense of Lyapunov can be ensured. A4 is not needed for the practical asymptotic stability.
Although the choice of m3, m4 may seems artificial, it naturally holds if all |Fsi(J(x))| are
bounded with the same power of J .
We will use the following trigonometric inputs in (10) (however, some other inputs are
possible, see, e.g., [23]):

u1i(t)=uε
1i(t)=2

√

πkiε−1 cos
(

2πkitε
−1
)

,

u2i(t)=uε
2i(t)=2

√

πkiε−1 sin
(

2πkitε
−1
)

,
(12)

where ki ∈ N, ki 6= kj for all i 6= j, and ε is a positive parameter. Note that such inputs
satisfy A0 with ω = ε−1, T = ε. We underline the dependence of controls on ε by using
the superscript uε

si in (12).
The next result states conditions for the asymptotic and exponential stability (both for the
practical stability and for the stability in the sense of Lyapunov) of x∗ for system (10) with
the class of controls given by (7). Although practical asymptotic stability can be proven
with other methods (see Theorem 2), our result does not require the C2-assumption.
Furthermore, its proof presents a constructive procedure for defining ε in (12).

Theorem 3. Assume that the cost function J ∈ C2(Rn;R) satisfies A1–A2, the functions
F1i, F2i in (10) satisfy assumption A3 in D = B∆(x

∗) (0 < ∆ ≤ +∞) and the relation (7)
with some F0i, for each i ∈ {1, . . . , n}. Then the following statements hold.
I. Let F0i(J(x)) = α, where α is a positive constant. Then x∗ is practically exponentially
stable for (10) if m1 = 1, and x∗ is practically asymptotically stable for (10) if m1 > 1.

Namely, for any δ ∈
(

0, 2m1

√

γ1
γ2
∆
)

, λ̄ ∈ (0, ακ1), ρ ∈ (0, δ) there exists an ε̄>0 such that,

for any ε∈(0, ε̄], λ ∈ (0, λ̄], the solutions of system (10) with x0∈Bδ(x
∗) and uε

1i(t), u
ε
2i(t)

defined by (12), i = 1, n, satisfy

‖x(t)− x∗‖ ≤ σ(t) m1

√

γ2
γ1
‖x(t)− x∗‖ϕm̃(λ(t− ε)) + ρ, (13)

where σ(t)≤
(

1+
M

L

(

γ2
γ1

)m̃/2

δm1m̃(eνLε−1)
)

, for all t ≥ 0,

σ(t)→1 as t→∞, m̃ = 1− 1
m1

,

ϕm̃(s) =







e−
s
2 , if m̃ = 0,

(

1+m̃sJm̃(x0)
)− 1

2m1m̃ , if m̃ > 0.
(14)

II. Let F0i(J(·)), F1i(J(·)), F2i(J(·)) satisfy A4. Then x∗ is exponentially stable for (10)
if m̃ = 1 +m2 − 1

m1
= 0, and x∗ is asymptotically stable for (10) if m̃ > 0.

Namely, for any δ ∈
(

0, 2m1

√

γ1
γ2
∆
)

, λ̄ ∈ (0, α1κ1), there exists an ε̄>0 such that, for any

7



ε∈(0, ε̄], λ ∈ (0, λ̄], the solutions of system (10) with x0∈Bδ(x
∗) and uε

1i(t), u
ε
2i(t) defined

by (12), i = 1, n, satisfy property (13) with ρ = 0.

The proof is in Appendix A. It represents a constructive procedure for choosing ε̄
and contains some auxiliary results which may be used in related problems concerning
stabilization and stability analysis.

Remark 2. One of the main assumptions required for asymptotic stability in the sense
of Lyapunov is Fsi(J

∗)=0 (s=1, 2, i=1, n.) If the above assumption is not satisfied, the
proposed result states practical asymptotic or exponential stability conditions which do not
require the knowledge of x∗ and J(x∗), but just the local behavior of J in a neighborhood of
x∗. Note that only the existence of positive constants in A2 is essential for the assertion
of Theorem 3, while we do not require the knowledge of their exact values in the stability
proof. However, a crucial point of our construction is that the value of ε̄ and the decay
rate estimates are obtained explicitly in terms of these constants. We believe that this
theoretical result is conceptually valuable. In practice, this result can be used for adjusting
the control parameters in order to ensure better convergence properties, provided that the
corresponding information on the cost is available.

To prove the exponential and asymptotic stability in the sense of Lyapunov, the value
J∗ (but not x∗ itself) has to be known so that Fsi can be chosen appropriately. The
knowledge of J∗ may seem quite restrictive in the context of extremum seeking, however,
as discussed in Section 3.2 and Section 4, such cases are still of relevance in applications.
Besides, if J∗ is unknown, often it is possible to choose an acceptable minimal value
Ĵ > J∗ and to use Fsi(J − Ĵ) instead of Fsi(J − J∗). Although in this case only the
practical asymptotic stability can be proven, the controls satisfying A4 still may exhibit
better performance if Ĵ is close enough to J∗.

4 Examples

4.1 Extremum seeking

As it has been already mentioned, formula (7) describes a whole class of vector fields
in (6) with various properties for approximating gradient-like flows of the cost function.
In this section, we illustrate the behavior of solutions of (10) with different vector fields
discussed in Section 3 and controls of the type (12). For numerical simulation, we take
J1(x)=2(x−x∗)2, x ∈ R, x∗=1, J∗=0, k1 = 1, and ε = 0.1 in each example. The extremum
seeking system introduced in [3] is useful in practical implementations due to its simple
form:

ẋ = J1(x)u
ε
1(t) + uε

2(t). (15)

It can be used for minimizing the cost functions of rather general form, without any
information about its analytical expression and extremum values. The same property
holds for the control strategy with so-called bounded updated rates proposed in [18]:

ẋ = sin(J1(x))u
ε
1(t) + cos(J1(x))u

ε
2(t). (16)

It is easy to see that both of the above strategies do not vanish at the extremum point
which leads to an oscillating behavior (see Fig. 1 a) and b)). For problems with known
value of the extremum (but not the extremum point), it is possible to achieve vanishing

8
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Figure 1: a)–d): Trajectory (top) and control (bottom) of system (15)–(18) with J1.

oscillations as x(t) → x∗, as it is stated in Theorem 3. In particular, the following control
strategy proposed in [21] ensures the exponential convergence to x∗:

ẋ =
√

J1(x) sin (ln(J1(x)))u
ε
1(t)

+
√

J1(x) cos (ln(J1(x))) u
ε
2(t),

(17)

for J1(x) 6= 0, and ẋ = 0 for J1(x) = 0. Indeed, in this case the conditions of Theorem 3.II
are satisfied with m1=1, m2=0. In order to have also bounded update rates, we propose
the following extremum seeking system:

ẋ=
√

1−e−J1(x)

1+eJ1(x)

(

sin(eJ1(x)+2 ln(eJ1(x)−1))uε
1(t)

+ cos(eJ1(x)+2 ln(eJ1(x)−1))uε
2(t)
)

,
(18)

for J1(x) 6= 0, and ẋ = 0 for J1(x) = 0. Similarly to the previous example, its vector fields
locally satisfy the assumptions of Theorem 3.II with m1 = 1, m2 = 0. Figs. 1 c) and d)
illustrate the behavior of trajectories of systems (17) and (18). The time plots of control
functions illustrate that the magnitude of controls satisfying A4 decreases when the cost
function approaches the minimum.
To illustrate the decay rate estimate obtained in Theorem 3, consider the function ϕ(λ̄(t−
ε)) defined by (14) with λ̄ = α1κ1. In all above cases, α1 = 8, γ1 = γ2 = κ1 = 1,
ϕ(s) = e−0.5s. Fig. 1 demonstrates that estimate (13) holds with good accuracy. For
comparison, consider also J2(x) = 2(x−1)4. In this case, ϕ(s) = (1+0.5

√
2s‖x0−1‖2)−1/2.

Fig. 2 shows the trajectories of systems (16) and (18) with ε = 0.01 < (λm̃
√

J2(x0))−1,
and the time plot of ϕ. Observe that the higher order nonlinearity of J2 results in a
slower convergence of the extremum seeking algorithm in comparison with the quadratic
J1. This decay rate can be increased, e.g., by choosing α1J

−1/2
2 (x)≤F0(J(x))≤α2J

−1/2
2 (x),

α1, α2 > 0.

Remark 3. In this paper, we do not discuss tuning rules, however, formula (7) provides
a possibility to adjust the control parameters. For example, let u =

√
ω
(

F1(J(x)) cos(ωt)+

F2(J(x)) sin(ωt)
)

. Taking F1(J(x)) = c1J(x), F0 ≡ c2, F2(z) = −F1(z)

∫

c2
F 2
1 (z)

dz
∣

∣

∣

z=J(x)
,

we obtain the extremum seeking control u = c1
√
ω
(

J(x) cos(ωt) + c2 sin(ωt)
)

with tuning
parameters c1, c2.

9
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Figure 2: a)–b): Trajectory of systems (16) and (18) with J2.

4.2 Vibrational stabilization

Another application, where formula (7) is of use, is found in the area of the vibrational
stabilization of systems with partially unknown dynamics. Consider the system

ẋ = f(x) + g(x)u, (19)

where x∈Rn, f, g∈C2(Rn;Rn), u∈R. It was shown in [13, 17] that, under appropriate
assumptions, system (19) can be practically stabilized by using the control law

u = V (x)
√
ω cos(ωt) + 2α

√
ω sin(ωt), (20)

where α is a positive constant, and V is a control Lyapunov function for (19). To see
why this is possible, compute the corresponding Lie bracket system which takes the form

˙̄x = f(x̄)− αg(x̄)LgV (x̄), (21)

where LgV = ∇V Tg. Hence, (20) approximates the control law uLgV (x) = −αLgV (x),
which is sometimes called damping- or LgV -control law. An interesting feature of the
“vibrational” control law (20) is that it only relies on the values of the control Lyapunov
function, and neither the vector field g nor the gradient of V is needed to implement
this control law. Such controls find many applications, e.g., in adaptive control [16, 17].
Similarly to Section 3, we can construct more general control laws of the form

u = F1(V (x))
√
ωu1(ωt) + 2αF2(V (x))

√
ωu2(ωt), (22)

where F1, F2, satisfy relation (7) with F0(z) = α > 0, and u1, u2 satisfy the assumptions
made in Theorem 1. It is easy to verify that the corresponding Lie bracket system for (22)
coincides with (21), so that formula (7) allows to define a class of vibrational control laws
which approximate the LgV -control laws and stabilize nonlinear systems of the form (19)
using only the values of the control Lyapunov function V . The approaches for constructing

10
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Figure 3: Trajectory of (23) with controls as in (15) (top), (17) (middle), (18) (bottom).

control Lyapunov functions in case of unknown f , g are proposed, e.g., in [17]. Notice
that the control Lyapunov functions are positive definite and hence predestinated to apply
formulas with bounded update rate and vanishing amplitudes as discussed in Section 3.
For a simple illustration, consider the equation

ẋ = x+ µu, (23)

where x ∈ R and µ ∈ R is an unknown parameter, |µ| ≥ 1. We take the control Lyapunov
function V (x) = x2, and uLgV (x) = −2αµx, α > 0.5. The evolution of the solution of
system (23) with the control law (20) and controls of the type (17), (18), and the initial
condition x(0) = 1 is presented on Fig. 3.

5 Conclusions

In this paper, we have proposed a new formula for constructing a class of vector fields to
approximate gradient-like flows based on the Lie bracket approximation idea. We have
shown how this formula gives rise to a broad class of controls for the extremum seeking
and vibrational stabilization problems. It generalizes and unifies some existing results
and gives an opportunity for the design of new control functions. While the formula looks
rather simple, we believe that it potentially comprises more applications than the ones
discussed in this paper. In particular, although we assume the extremum seeking system
to have the single integrator dynamics, it is also possible to apply the obtained formula
for systems with more complicated dynamics, e.g. using the approach proposed in [2].
Besides, this result is of use for the vibrational stabilization problems with known control
Lyapunov functions. Furthermore, from a conceptual point of view, we have presented
a novel approach to the proof of stability properties of extremum seeking systems. This
approach gives several advantages compared to the existing results. First, the proofs
of the main results present a constructive procedure for defining the frequencies of the
control functions for ensuring the practical asymptotic stability; second, the practical

11



exponential stability is proven for certain cost functions. Finally, the main advantage of
the developed approach are conditions for the asymptotic and exponential stability in
the sense of Lyapunov for extremum seeking systems whose vector fields satisfy certain
additional requirements. An important step in the proof of this result concerns novel
decay rate estimates for the cost function along the solutions of the obtained extremum
seeking system. Besides, some auxiliary results of this paper (in particular, Lemmas 2–
5) extend the results of [24, 25] and can be exploited in other control problems, e.g.,
asymptotic stabilization of nonholonomic systems when the exponential stabilization is
not possible.
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[23] Y. Tan, D. Nešić, and I. Mareels. On the choice of dither in extremum seeking
systems: A case study. Automatica, 44(5):1446–1450, 2008.

[24] A. Zuyev. Exponential stabilization of nonholonomic systems by means of oscillating
controls. SIAM J. on Control and Optimization, 54(3):1678–1696, 2016.

[25] A. Zuyev, V. Grushkovskaya, and P. Benner. Time-varying stabilization of a class
of driftless systems satisfying second-order controllability conditions. In Proc. 15th
European Control Conf., pages 1678–1696, 2016.

13



A Proofs

A.1 Preliminary results

Without loss of generality, throughout this section we assume J∗ = 0. An important
step of the proof is the representation of solutions of system (10) with initial conditions
x(0) = x0 ∈ D ⊆ R

n by using the Volterra series [12, 24]. Before proving Theorem 3, we
need to state several auxiliary results. Since they can be used not only in the extremum
seeking problem, we formulate them for a general system

ẋ =

ℓ
∑

i=1

fi(x)ui(t), x ∈ D ⊆ R
n, fi : D → R

n. (24)

Lemma 2. Let the vector fields fi be Lipschitz continuous in a domain D ⊆ R
n, and

fi ∈ C2(D \ Ξ;R), where Ξ = {x ∈ D : fi(x) = 0 for all 1 ≤ i ≤ ℓ}. Assume, moreover,
that Lfjfi, LflLfjfi ∈ C(D;Rn), for all i, j, l = 1, ℓ. If x(t) ∈ D, t ∈ [0, τ ], is a solution
of system (24) with u ∈ C([0, τ ];Rm) and x(0) = x0 ∈ D, then x(t) can be represented by
the Volterra series:

x(t)=x0+
ℓ
∑

i=1

fi(x
0)

t
∫

0

ui(v)dv+
ℓ
∑

i,j=1

Lfjfi(x
0)

t
∫

0

v
∫

0

ui(v)uj(s)dsdv +R(t), t ∈ [0, τ ] (25)

where R(t)=
ℓ
∑

i,j,l=1

t
∫

0

v
∫

0

s
∫

0

LflLfjfi(x(p))ui(v)uj(s)ul(p)dpdsdv

is the remainder of the Volterra series expansion.

Proof. The validity of (25) is justified, e.g., in [12] for analytic vector fields fi. Recall
that fi are Lipschitz continuous in D, and u ∈ C([0, τ ];Rm), therefore, u is bounded in on
[0, τ ]. Hence, the uniqueness of the solution to the Cauchy problem implies that the set
Ξ is strongly invariant under our assumptions, i.e. if x(t) is a solution of (24) with some
control u ∈ C([0, τ ];Rm) and x(t∗) ∈ Ξ for some t∗ ∈ [0, τ ] then x(t) ∈ Ξ for all t ∈ [0, τ ]
(and x(t) ≡ const because of the definition of Ξ). These arguments show that either
x(t) ∈ Ξ (so that the representation (25) is valid with all fi(x

0), Lfjfi(x
0), LflLfjfi(x(p))

being zero), or x(t) /∈ Ξ for all t ∈ [0, τ ]. In the latter case we apply the fundamental
theorem of calculus to see that

fi(x(v)) = fi(x
0)+

∫ v

0

dfi(x(s))

ds
ds

= fi(x
0)+

∫ v

0

m
∑

j=1

Lfjfi(x(s))uj(s)ds.

Applying the same procedure to Lfjfi(x(s)) and representing x(t)=x0+
ℓ
∑

i=1

∫ t

0
fi(x(v))ui(v)dv,

we finally obtain (25) for all solutions of system (24) in D \ Ξ.
Lemma 3. Let D ⊆ R

n, x∗ ∈ D, x(t) ∈ D, 0 ≤ t ≤ τ , be a solution of system (24).
Assume that there exist m ≥ 0, M̃, L > 0 such that

‖fi(x)‖ ≤ M̃‖x− x∗‖m, ‖fi(x)− fi(y)‖ ≤ L‖x− y‖,
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for all x, y ∈ D, i=1, ℓ. Then

‖x(t)− x(0)‖≤ M̃‖x(0)−x∗‖m
L

(eνLt−1), t∈[0, τ ], (26)

with ν = max
t∈[0,τ ]

∑ℓ
i=1 |ui(t)|.

The proof is analogous to the proof of [24, Lemma 4.1]. Note that Lemma 3 comple-
ments [24, Lemma 4.1] stating that ‖x(t)− x(0)‖ → 0 as x(0) → x∗.

Lemma 4. Let the conditions of Lemma 3 be satisfied. Assume that ντ < 1 and there
exist H̃ ≥ 0, ̟ ∈ {0} ∪ [1,∞) such that

ℓ
∑

i,j,l=1

‖LflLfjfi(x)‖ ≤ H̃‖x− x∗‖̟ for all x ∈ D.

Then, for all t ∈ [0, τ ], the remainder R(t) of the Volterra expansion (25) of x(t) satisfies
the estimate

‖R(t)‖ ≤ (tν)3‖x(0)− x∗‖̟C(tν, ‖x(0)−x∗‖),
C(tν, ‖x(0)− x∗‖)=2̟−1H̃

(

1+c1(νt‖x(0)−x∗‖m−1)̟
)

,

c1 =
6(M̃(eL−1))̟

L(̟+1)(̟+2)(̟+3)
.

Proof. From (25) and Lemma 3,

‖R(t)‖ ≤ ν3

ℓ
∑

i,j,l=1

t
∫

0

τ
∫

0

s
∫

0

∥

∥

∥

∥

LflLfjfi(x(p))

∥

∥

∥

∥

dpdsdτ

≤ ν3H

t
∫

0

τ
∫

0

s
∫

0

‖x(p)− x∗‖̟dpdsdτ

≤ ν3H2̟−1

t
∫

0

τ
∫

0

s
∫

0

(

‖x(0)−x∗‖̟+‖x(p)−x(0)‖̟
)

dpdsdτ

≤ ν3H2̟−1‖x(0)−x∗‖̟
t
∫

0

τ
∫

0

s
∫

0

(

1+
(

M̃
L

)̟

‖x(0)−x∗‖̟(m−1)(eνLt−1)̟
)

dpdsdτ.

The estimation of eνLt−1 ≤ νt(eL − 1) for νt ≤ 1 and computation of the integrals
complete the proof.

Lemma 5. Let D ⊆ R
n be a bounded convex domain, V, hi : D → R, i = 1, n, V ∈

C2(D;R), x∗ ∈ D, and let the following inequalities hold:

γ1‖x− x∗‖2m1 ≤ V (x) ≤ γ2‖x− x∗‖2m1 ,

κ1V (x)
2− 1

m1 ≤ ‖∇V (x)‖2 ≤ κ2V (x)
2− 1

m1 ,
∥

∥

∥

∥

∂2V (x)

∂x2

∥

∥

∥

∥

≤ µV (x)
1− 1

m1 ,

α1V (x)m2 ≤ hi(x) ≤ α2V (x)m2 , for all x ∈ D,
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where m1 ≥ 1, m2 ≥ 1
m1

− 1, and α1, α2, γ1, γ2, κ1, κ2, µ are positive constants. Then, for

any x0 = x(0) ∈ D \ {x∗} and any function x : [0, ε] → D satisfying the conditions

x(0)=x0, x(ε)=x0−ε
n
∑

i=1

∂V (x0)

∂xi

hi(x
0)ei+rε, rε∈Rn,

the function V satisfies the estimate:

V (x(ε))≤V (x0)
(

1−εκ1

m1

V m̃(x0)+
ε2κ2

2m2
1

V 2m̃(x0)
)m1

,

where m̃ = 1 +m2 − 1
m1

, κ1 = α1κ1 −
√
κ2‖rε‖

εV
m̃+

1
2m1 (x0)

,

κ2 = ((m1 − 1)κ2 + µm1)

(

α2
√
κ2 +

‖rε‖

εV
m̃+

1
2m1 (x0)

)2

.

Proof. For x0∈D \ {x∗}, we denote

y = x(ε)− x0 = −ε

n
∑

i=1

∂V (x0)

∂xi
hi(x

0)ei + rε,

and introduce the function v(θ) = V
1
m1 (x0 + θy), θ ∈ [0, 1]. Note that x0 + θy ∈ D

for all θ ∈ [0, 1] since D is convex, so the above v(θ) is well-defined. Straightforward
computations show that

v′(θ) =
1

m1
V

1
m1

−1
(x)

n
∑

i=1

∂V

∂xi
yi

∣

∣

∣

x=x0+θy
if x0 + θy 6= x∗.

In case x0 + θ∗y = x∗ for some θ∗ ∈ (0, 1], we see that v′(θ∗) = lim
θ→θ∗

v(θ)−v(θ∗)
θ−θ∗

= 0

and lim
θ→θ∗

v′(θ) = 0 under the assumptions of this lemma. Thus we have shown that

v ∈ C1([0, 1];R+). The next step is to prove that the function w(θ) = v′(θ) is Lipschitz
continuous on [0, 1]. Indeed, if x∗ /∈ co{x0, x(ε)}, then w ∈ C1([0, 1];R+), and

w′(θ) =
V

1
m1

−1
(x)

m1

(

1−m1

m1V (x)

(

n
∑

i=1

∂V (x)

∂xi

yi

)2

+
n
∑

i,j=1

∂2V (x)

∂xi∂xj

yiyj

)

∣

∣

∣

∣

∣

∣

x=x0+θy

.

By exploiting the assumptions of this lemma, we conclude that |w′(θ)| ≤ L̄ for all θ ∈ [0, 1],

where L̄ = (m1−1)κ2+µm1

m2
1

‖y‖2. If x∗ = x0 + θ∗y for θ∗ ∈ (0, 1], then w′(θ) is continuous

at each point θ ∈ [0, 1] \ {θ∗}, and |w′(θ)| ≤ L̄ for all θ ∈ [0, 1] \ {θ∗}. These arguments
imply that w(·) is Lipschitz continuous, so that w(θ) ≤ w(0) + L̄θ for all θ ∈ [0, 1]. By
integrating the above inequality, we get:

v(θ) =v(0) +

∫ θ

0

w(s)ds ≤ v(0) +

∫ θ

0

(w(0) + L̄s)ds

=v(0) + v′(0)θ +
L̄

2
θ2.

In particular, for θ = 1 with regard for the definition of v, we have:

V
1
m1 (x(ε)) ≤ V

1
m1 (x0)+

1

m1
V

1
m1

−1
(x0)

n
∑

i=1

∂V (x0)

∂xi
yi +

L̄

2
.

Then the assertion of Lemma 5 follows from the above estimate by exploiting the assump-

tions on ‖∇V (x)‖,
∥

∥

∥

∂2V (x)
∂x2

∥

∥

∥
, hi(x), and the definition of L̄.

Lemma 5 provides an extension of [24, Lemma 3.2] from m̃ = 0 to an arbitrary m̃ ≥ 0.
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A.2 Proof of Theorem 3

The idea of the proof is based on the approach proposed in [24, 25]. However, un-
like the above papers, we use continuous controls and the classical notion of solutions
(Carathéodory solutions). Besides, we use more general assumptions on the vector fields
and on the cost function.
Let ∆ ∈ (0,∞] be such that A1–A3 are satisfied in D = B∆(x

∗), δ ∈
(

0, 2m1

√

γ1
γ2
∆
)

be

fixed, and let

ν = max
t

n
∑

i=1
s=1,2

|uε
si(t)| = 2

√
2πε−1/2

n
∑

i=1

√

ki. (27)

Step 1. For an arbitrary δ0∈( 2m1

√

γ2
γ1
δ,∆), denote

D0 = Bδ0(x
∗)⊂D=B∆(x

∗), MF = sup
x∈D0

s=1,2,1≤i≤n

|Fsi(J(x))|.

First of all, we specify an ε0 > 0 such that, for each ε ∈ (0, ε0], all solutions x(t) of
system (10) with controls uε(t) (12) and the initial conditions x(0) = x0 ∈ D0 are well
defined on t ∈ [0, ε]. We put d = ∆− δ0 > 0 and see that

0 < ε0 <
(

2
√
2πL

n
∑

i=1

√

ki

)−2

ln2

(

Ld
MF

+ 1

)

. (28)

Then by Lemma 3 with m = 0, ‖x(t)− x0‖ < d, for each ε ∈ (0, ε0], t ∈ [0, ε]. If ∆=+∞,
then we take d=+∞ and arbitrary ε0∈(0,∞). Hence, all solutions x(t) of system (10)
with the initial conditions x0∈D0 and controls uε

si(t) (12) are in the set D for t ∈ [0, ε].
Without loss of generality, we assume x(ε) 6= x∗ (otherwise, similarly to the proof of
Lemma 2, we will have that x(t) ≡ x∗).
Step 2. Let J satisfy the conditions of the theorem. We introduce the level sets

Lc = {x ∈ D : J(x) ≤ c},

and define c0=γ1δ
2m1
0 . It is easy to see that Bδ(x∗) ⊆ Lc0 ⊆ D0, and Lc ⊆ Lc0 for all

c ≤ c0.
We begin with the proof of assertion II of Theorem 3.

Proof of exponential and asymptotic stability in the sense of Lyapunov

Step 3.II. Applying Lemma 2 with formula (7) and the expressions for controls (12), the
representation (25) may be written as

x(ε) = x0 +
1

2

n
∑

i=1

[F1iei, F2iei](J(x
0))

ε
∫

0

τ
∫

0

(

u2i(τ)u1i(θ)− u1i(τ)u2i(θ)
)

dθdτ + R(ε)

= x0−ε
n
∑

i=1

∂J(x0)

∂xi

F0i(J(x
0))ei +R(ε). (29)

Let us estimate the remainder R(ε) in (29). Choosing ε1=
(

2
√
2π
∑n

i=1

√
ki
)−2

, we guaran-
tee that νε ≤ 1 for all ε ∈ (0, ε1]. Note that, as requested in A4, 2m1m3 = m1(m2+1) > 0,
2m1m4 = 3m1(1 + m2) − 2 ≥ 1. Then Lemma 4 with m = 2m1m3, ̟ = 2m1m4,
M̃ = Mγm3

1 , H̃ = Hγm4
1 implies the following estimate:

‖R(ε)‖≤(εν)3‖x0−x∗‖2m1m4C(νε, ‖x0−x∗‖).
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Define ε2∈(0,min{ε0, ε1, c−m̃
0 }) (for m̃=0 or ∆<∞, the ε2 can be chosen independently of

c0.) Then, for ε∈(0, ε2], x0∈Lc0,

εJm̃(x0) ≤ εcm̃0 < 1. (30)

Hence, there is a constant Ω > 0 such that

‖R(ε)‖ ≤ ΩJm4(x0)ε3/2 = Ωε
3
2J

3
2
m̃+ 1

2m1 (x0),

for all ε ∈ (0, ε2], x
0 ∈ Lc0. Indeed, from (30),

J
m3− 1

2m1 (x0) = J
m̃
2 (x0) < ε−1/2;

then (27) implies that the constant C in Lemma 4 does not depend on x0 and ε:

C ≤ γ
−m4/2m1

1 22m1m4−2H̃
(

1+c1γ
1/2m1−m3

1 (ν
√
ε2)

2m1m4
)

.

Step 4.II. Assume that assumption A4 hold, and fix λ̄ ∈ (0, α1κ1). On this step, we will
find an ε̄ > 0 ensuring the following property: for any ε ∈ (0, ε̄], λ ∈ (0, λ̄], the solutions of
system (10) with the controls uε

is(t) and initial conditions from Lc0 satisfy the inequality:

J(x(ε))≤J(x0)
(

1− ελ

m1
Jm̃(x0)

)m1

, (31)

Lemma 5 with V=J , m1 defined in A3, m2 ≥ 1
m2

− 1, yields

J(x(ε))≤J(x0)
(

1−εκ1

m1
Jm̃(x0)+

ε2κ2

2m2
1

J2m̃(x0)
)m1

, (32)

where m̃=1+m2− 1
m1

, and κ1,κ2 are defined in Lemma 5. Estimating κ1,κ2 and taking
into account (30), we obtain

J(x(ε)) ≤ J(x0)
(

1− εJm̃(x0)
m1

(

α1κ1 −
√
ελ1c

m̃/2
0

)

)m1

,

λ1 = Ω
√
κ2 +

1
2m1

((m1 − 1)κ2 + µm1)

(

α2

√
κ2 + Ω

)2

.

Recall that λ̄ ∈ (0, α1κ1) and put ε4 ∈
(

0,
(

α1κ1−λ̄

c
m̃/2
0 λ1

)2]

. Defining ε̄=min
{

ε3, ε4,
m1

λ̄cm̃0

}

, we

conclude that εJm̃(x0)λ
m1

<1 and (31) is satisfied for any ε∈(0, ε̄], λ∈(0, λ̄], x0∈Lc0⊆D0. Note

that the above ε̄ may be chosen independently of x0 ∈ Bδ(x
∗).

Step 5.II. The next step is to estimate ‖x(t)− x∗‖ for t = ε, 2ε, . . . .

Let m̃ = 0. Since ελ
m1

< 1, estimate (31) can be rewritten as J(x(ε)) ≤ J(x0)
(

e
− λ
m1

ε
)m1

.

Iterating the obtained inequality for x0 ∈ Lc0, we get J(x(t)) ≤ J(x0)e−λt for t =
0, ε, 2ε, . . . .

For m̃ > 0, recall that εJ(x0)m̃λ
m1

< 1, and, additionally, require ε ∈ (0, (λ̄m̃cm̃0 )
−1). Then

we may rewrite (31) as

J(x(ε))≤J(x0)
(

1− ελ
m1

Jm̃(x0)
)m1

≤J(x0)
(

1+m̃ελJm̃(x0)
)− 1

m̃
.
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Iterating the obtained inequality for x0 ∈ Lc0, we get

J(x(t)) ≤ J(x0)
(

1+tλm̃Jm̃(x0)
)− 1

m̃
for t = 0, ε, 2ε, . . . .

Note that, since J(x(ε)) ≤ J(x0), the same λ, c0, ε can be chosen for all x0 ∈ D0.
Thus, if x0 ∈ Bδ(x

∗) ⊆ Lc0, ε ∈ (0, ε̄], and uε
si are given by (12), then the corresponding

solution of (10) is well defined in D: x(nε) ∈ Lc0 ⊆ D0 for n = 0, 1, 2, . . . , and due to the
choice of d, ε and Lemma 3: x(t) ∈ D for all t ≥ 0. Combining the above results with A3,
we conclude that

‖x(t)− x∗‖ ≤ 2m1

√

γ2
γ1
‖x0 − x∗‖ϕm̃(λt), for t = 0, ε, 2ε, . . . ,

Step 6.II. Finally, it remains to prove the exponential (or power) decay rate of ‖x(t)−x∗‖
for all t ≥ 0.
For any t ≥ 0 denote the integer part of t

ε
as tεin, and note that 0 ≤ t− tεinε < ε. By using

the triangle inequality, the results of 4.II, and Lemma 3 with m = m1(1+m2), we obtain

‖x(t)−x∗‖ = ‖x(t)−x∗−x(tεinε)+x(tεinε)‖
≤ ‖x(tεinε)−x∗‖+‖x(t)−x(tεinε)‖

≤ ‖x(tεinε)−x∗‖+ M

L
‖x(tεinε)−x∗‖m1(1+m2)(eνLε−1)

≤ 2m1

√

γ2
γ1
‖x0 − x∗‖ϕm̃(λt

ε
inε)
(

1 +
M

L

(

γ2
γ1

)m̃/2

(‖x0 − x∗‖ϕm̃(λt
ε
inε))

m1m̃(eνLε−1)
)

:= σ(t) 2m1

√

γ2
γ1
‖x0 − x∗‖ϕm̃(λt

ε
inε),

This proves the second assertion of Theorem 3.

Proof of practical exponential and asymptotic stability

Step 3.I. Assume that A4 is not satisfied, F0i(J(x)) > α in D. We fix a ρ ∈ (0, δ), and
suppose that x0 ∈ Bδ(x

∗) \ Bρ(x
∗) ⊂ Lc0. The case x0 ∈ Bρ(x∗) will be covered on

Step 4.I. For any ρ0∈(0, ρ), ρmin∈(0, ρ0), let d̃ = min{ρ− ρ0, ρ0 − ρmin}, and 0 < ε̃0 <
(

2
√
2πL

n
∑

i=1

√
ki

)−2

ln2
(

Ld̃
M

+ 1
)

. Then:

P1 x0 ∈ Bρ0(x
∗) ⇒ x(t) ∈ Bρ(x

∗) for t ∈ [0, ε];
P2 x0 ∈ Bρ(x

∗) \Bρ0(x
∗) ⇒ ‖x(t)− x∗‖ > 0 for t ∈ [0, ε].

From P2, representation (29) holds for all x0∈Bδ(x
∗)\Bρ0(x

∗). Step 4.I.Applying Lemma 5
with m2=0, Lemma 4 with

m=0, ̟=0, H̃ = max
x∈D0;s,p,q=1,2;

i,j,l=1,n

‖LFql
LFpj

Fsi(J(x))‖,

and taking into account J(x0) ≥ γ1ρ
2m1
0 > 0, we conclude that, for all ε ∈ (0,min{ε̃0, ε1, ε2}]

‖R(ε)‖ ≤ ε3/2H
(

2
√
2π

n
∑

i=1

√

ki
)3

:= ε3/2Ω̃,

J(x(ε)) ≤ J(x0)
(

1− εJm̃(x0)
m1

(

ακ1 −
√
εc

m̃/2
0 λ̃1

)

)m1

,

λ̃1 =
√
κ2Ω̃γ

1
2m1

−1

1 ρ1−2m1
0 + ((m1 − 1)κ2 + µm1)

(

α
√
κ2 +

√
εΩ̃γ

1
2m1

−1

1 ρ1−2m1
0

)2

.
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Similarly to Step 4.II, we may define an ε̄ > 0 ensuring the following property: for any

ε ∈ (0, ε̄], λ ∈ (0, λ̄], the property εJ(x0)λ
m1

< 1 holds, and the solutions of system (10) with
the controls uε

is(t) and initial conditions from Bδ(x
∗) \Bρ(x

∗) satisfy the inequality (31).
Step 5.I. Following the argumentation from Step 5.II, we conclude that there is an N ≥ 0
such that ‖x(nε) − x∗‖ > ρ0 for n = 0, 1, . . . , N − 1, ‖x(Nε) − x∗‖ ≤ ρ0. Namely,
N ≥ − 1

λ̄ε̄
ln ρ0

σδ
if m1 = 1, and N ≥ 1 − m1

λ̄σ2ε̄
(σ1δ

−2m1m̃ − ρ−2m1m̃
0 ) if m1 > 1. Since

‖x(nε) − x∗‖ > ρ0 for n = 0, 1, . . . , N − 1, representation (29) remains valid for all
n = 0, 1, . . . , N − 1 because of P2. Furthermore, similar to 5.II, we apply Lemma 3 with
m = 0, ε ∈ (0,min{ε̄, ε̃0}), for t < Nε:

‖x(t)−x∗‖ ≤ 2m1

√

γ2
γ1
‖x0 − x∗‖ϕm̃(λt

ε
inε) + ρ− ρ0 (33)

≤ 2m1

√

γ2
γ1
‖x0 − x∗‖ϕm̃(λ(t− ε)) + ρ− ρ0,

where ϕm̃(λt) is given by (14) with σ = 1. From P1, x(t) ∈ Bρ(x
∗) for all t ∈ [Nε, (N +

1)ε]. Thus, there are two cases:
i) if x((N + 1)ε) ∈ Bδ(x

∗) \Bρ0(x
∗), we conclude that (33) holds for all t ≤ (N + 1)ε;

ii) if x((N+1)ε) ∈ Bρ0(x
∗), the property P1 yields x(t) ∈ Bρ(x

∗) for all t ∈ [(N+1)ε, (N+
2)ε].
Repeating i),ii), we prove that x(t) ∈ Bρ(x

∗) for all t ≥ Nε. Recall that ϕm̃(t
ε
inε) is a

positive decreasing function, and ϕm̃(t
ε
inε) ≤ ρ0, for all t ≥ (N + 1)ε.

Combining this with (33), we complete the proof of Theorem 3. �
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