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Minimal Inputs/Outputs for Subsystems in a

Networked System
Tong Zhou

Abstract— Minimal input/output selection is investigated in this
paper for each subsystem of a networked system. Some novel
sufficient conditions are derived respectively for the controlla-
bility and observability of a networked system, as well as some
necessary conditions. These conditions only depend separately on
parameters of each subsystem and its in/out-degrees. It is proven
that in order to be able to construct a controllable/observable
networked system, it is necessary and sufficient that each subsys-
tem is controllable/observable. In addition, both sparse and dense
subsystem connections are helpful in making the whole system
controllable/observable. An explicit formula is given for the
smallest number of inputs/outputs for each subsystem required
to guarantee controllability/observability of the whole system.

Key Words: controllability, large scale system, networked sys-
tem, out-degree, observability.

I. INTRODUCTION

With the increment of the dimension of a system, which is

mainly due to technology developments in sensors, commu-

nications, etc., as well as more complicated and demanding

tasks expected for a system, computation costs and numerical

stability emerge as essential issues in system analysis and

synthesis [9], [13], [17], [21]. It is now widely recognized that

with the increment of its subsystem number, direct applications

of results about a lumped system to a large scale or networked

system may often result in an exponential increment of compu-

tation time and storage requirements [2], [4], [9], [13], [17].

To make things worse, these direct applications are usually

numerically unreliable. A well known example is to compute

the eigenvalues and/or eigenvectors of a square matrix, which

is often required in analyzing system properties and designing

a controller. If this matrix has a large dimension and its

condition number is also large, then numerical computation

results of all the available algorithms are generally far from

actual values [3], [16], [17]. To overcome these difficulties,

various efforts have emerged recently for the analysis and

synthesis of a networked system. Among which, an exten-

sively studied problem is about its controllability/observability

verifications, and construction of a controllable/observable

networked system [1], [4], [5], [6], [8], [11], [12], [17], [19].

Various results have now been obtained for this important

theoretical issue on systems and control. For example, robust-

ness of structural controllability, input addition, decentralized

controllability, etc., have been investigated respectively in [1],

[8]. In [7], clustered networks are found easier to be controlled.
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It is declared in [5] that finding the sparest input/output matrix

such that a networked system is controllable/observable is

NP-hard, and some algorithms are suggested in [11], [6] to

approximately solve this minimal controllability/observability

problem. A minimal actuator placement problem is also proven

in [12] to be NP-hard, and a best approximation is suggested

which has a polynomial computational complexity. Structural

controllability and the cavity method are used in [4] to derive

a set of driver nodes for assuring system controllability. In

[17], we have obtained a necessary and sufficient condition

for an arbitrarily connected networked system to be control-

lable/observable, which depends separately on parameters of

each subsystem. These results have been extended to various

situations, such as the full column normal rank (FCNR)

condition adopted in [17] is not satisfied, there are constraints

on system inputs and states, etc. [18], [19], [22]. It has been

discovered in [10], [15], [20] that, when the state transition

matrix (STM) of a networked system is given, in order to

guarantee its controllability/observability, the minimal number

of its inputs/outputs is equal to the maximum geometric

multiplicity of its STM.

In actual engineering, however, it is generally preferable to

have inputs/outputs directly and separately affecting/measuring

the states of each individual subsystem and/or their functions

[9], [11], [6], [14], [17]. Under this restriction, it is still

not clear how many inputs/outputs are required for each

subsystem to make the whole system controllable/observable.

To emphasize this characteristic, the associated problem is

called in this paper local input/output selections.

To settle this problem, we at first investigate rela-

tions among subsystem observability/controllabilty, subsystem

out/in-degree and system observability/controllability. It has

been made clear that in order to guarantee the observabil-

ity/controllability of a networked system, each of its subsys-

tems should be observable/controllable. A sufficient condition

is derived for system observability which depends separately

only on parameters of each subsystem and its out-degree.

This condition reveals that both sparse and dense subsystem

connections are helpful to make the whole system observ-

able/controllable. On the basis of these results, it is further

proven that a necessary and sufficient condition for being

able to build an observable/controllable networked system is

that, each subsystem is observable/controllable. It has also

been proven that in order to guarantee system controllabil-

ity/observability, the number of inputs/outputs in each subsys-

tem must at least be equal to that of the maximum geometric

multiplicity of its STM.

The outline of this paper is as follows. At first, Section
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II gives a precise problem formulation and some preliminary

results. Relations between controllability/observability of a

networked dynamic system and subsystem out/in-degree are

investigated in Section III. The minimal input/output problem

is discussed in Section IV. Finally, some concluding remarks

are given in Section V. An appendix is included to give

proofs of some technical results. Some numerical examples

are provided to illustrate the obtained theoretical conclusions.

The following notation and symbols are adopted. Rm×n and

Cm×n are utilized respectively to represent the sets of m× n
dimensional real and complex matrices. When m and/or n are

equal to 1, they are usually omitted. diag{Xi|
L
i=1} denotes

a block diagonal matrix with its i-th diagonal block being

Xi, while col{Xi|
L
i=1} the vector/matrix stacked by Xi|

L
i=1

with its i-th row block vector/matrix being Xi. 0m and 0m×n

represent respectively the m dimensional zero column vector

and the m × n dimensional zero matrix. The superscripts T
and H stand respectively for the transpose and the conjugate

transpose of a matrix/vector, while || · ||2 the Euclidean norm

of a vector.

II. PROBLEM FORMULATION AND SOME PRELIMINARIES

Consider the networked system Σ adopted in [17], [19],

[18], [22] which consists of N linear time invariant (LTI)

dynamic subsystems. In this system, the dynamics of its i-
th subsystem Σi is described by




x(t+1, i)
z(t, i)
y(t, i)



=





ATT(i) ATS(i) BT(i)
AST(i) ASS(i) BS(i)
CT(i) CS(i) D(i)









x(t, i)
v(t, i)
u(t, i)



 (1)

and interactions among its subsystems are described by

v(t) = Φz(t) (2)

Here, z(t) = col
{

z(t, i)|Ni=1

}

and v(t) = col
{

v(t, i)|Ni=1

}

.

Moreover, t and i stand respectively for the temporal variable

and the index number of a subsystem, x(t, i) represents the

state vector of the i-th subsystem Σi at time t, z(t, i) and

v(t, i) respectively its outputs affecting other subsystems and

inputs denoting influences from other subsystems, y(t, i) and

u(t, i) respectively its output and input vectors. Similar to

the treatments adopted in [17], [19], in order to distinguish

these vectors, z(t, i) and v(t, i) are called internal output/input

vectors, while y(t, i) and u(t, i) external output/input vectors.

The following hypotheses are adopted throughout this paper.

Assumption 1: the dimensions of the vectors x(t, i), v(t, i),
u(t, i), z(t, i) and y(t, i), are respectively mxi, mvi, mui, mzi

and myi. ✸

Assumption 2: the networked system Σ is well-posed. ✸

Assumption 3: the subsystem connection matrix (SCM) Φ is

a constant matrix, and each of its rows has only one nonzero

element which is equal to one. ✸

The first assumption is adopted only for clarifying di-

mensions of the associated vectors, while the second one is

necessary for a networked system to work properly, which

physically means that for an arbitrary external input series

col
{

u(t, i)|Ni=1

}∞

t=0
, the system states col

{

x(t, i)|Ni=1

}∞

t=0
, as

well as the external outputs col
{

y(t, i)|Ni=1

}∞

t=0
, are uniquely

determined [16], [17]. This assumption is equivalent to the

requirement that the matrix I − Φdiag
{

ASS(i)|
N
i=1

}

is in-

vertible [17]. The third assumption appears very restrictive,

but as argued in [17], [19], [18], it actually does not intro-

duce any constraints on the structure of the whole system.

Briefly, when this assumption is not satisfied by an original

system model, it can be satisfied by a modified model with

completely the same input-output relations, through simply

augmenting the associated subsystem internal input/output

vectors v(t, i)/z(t, i) with repeated elements, and modifying

the associated matrices AST(i), ASS(i) and BS(i). Note

that a large scale networked system usually has a sparse

structure, which implies that this augmentation generally does

not increase significantly the dimensions of the associated

matrices. In addition, under this assumption, each element of

a subsystem’s internal output vector is able to simultaneously

affect more than one subsystems, and different elements of an

internal output vector are able to affect different subsystems.

In this paper, the following problem is investigated.

Problem: For prescribed subsystem STMs ATT(i)|
N
i=1, find

the minimal mzi and myi (mvi and mui) , such that an ob-

servable (controllable) networked system Σ can be constructed

using only external outputs col
{

y(t, i)|Ni=1

}

, t = 0, 1, 2, · · ·
(external inputs col

{

u(t, i)|Ni=1

}

, t = 0, 1, 2, · · · ). ✸

A similar problem has been investigated in [10], [15],

[20] for a lumped system. The above problem, however, is

different in the sense that it asks for the minimal number

of outputs/inputs for each subsystem in constructing an ob-

servable/controllable networked system in the whole. This

requirement reflects the fact that subsystems of a networked

system are usually far away from each other geometrically,

which makes it expensive in engineering practices to have

a signal that simultaneously and directly affects actuators

of two or more different subsystems, or have a sensor to

measure an output that is an explicit function of the states

of several subsystems. In other words, it is more attractive

in applications to restrict each input to directly affect states

of only one subsystem, as well as to restrict each output

to be a direct linear combination of the states only in one

subsystem. To emphasize this characteristic, an input/output

meeting these restrictions is called a local input/output, and the

associated input/output selection problem is called a minimal

local input/output problem.

To investigate this problem, the following results are re-

quired which are widely known as the PBH test [16], [17].

Lemma 1. Consider a discrete LTI system with the following

state space model

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t) (3)

• This system is controllable, if and only if for every

complex scalar λ, the matrix [λI −A B] is of full row

rank (FRR).

• This system is observable, if and only if for every

complex scalar λ, the matrix col{λI − A, C} is of full

column rank (FCR). ✸

We sometimes also use an expression like that the matrix

pair (A, C) is observable, and that the matrix pair (A, B) is

controllable, when the associated system is.
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The next lemma provides some characteristics of a plant

transmission zero, which is closely related to the existence of

a nonzero plant input vector sequence that makes its output

vector constantly equal to zero [16].

Lemma 2. Let G(λ) be a proper transfer function matrix

having FCNR. Then, a complex number λ0 is one of its

transmission zeros, if and only if there exists a nonzero

complex vector z0 satisfying G(λ0)z0 = 0. ✸

To make mathematical derivations more concise, the fol-

lowing matrix symbols are adopted throughout this paper.

A∗# = diag
{

A∗#(i)|
N
i=1

}

, B∗ = diag
{

B∗(i)|
N
i=1

}

, C∗ =
diag

{

C∗(i)|
N
i=1

}

and D=diag
{

D(i)|Ni=1

}

, in which ∗,# =
T or S. Moreover, denote col

{

u(t, i)|Ni=1

}

, col
{

x(t, i)|Ni=1

}

and col
{

y(t, i)|Ni=1

}

respectively by u(t), x(t) and y(t). Fur-

thermore, define integers M⋆i and M⋆ as M⋆ =
∑N

k=1 m⋆k,

M⋆0 = 0, M⋆i =
∑i

k=1 m⋆k with 1 ≤ i ≤ N . Here, ⋆ = x,

u, y, v or z.

The following results have been established in [17] which

are starting points of this paper.

Lemma 3. Define a matrix valued polynomial M(λ) as

M(λ) =





λIMx
−ATT −ATS

−CT −CS

−ΦAST IMv
− ΦASS



 (4)

The networked system Σ is observable, if and only if at each

complex scalar λ, M(λ) is of FCR. ✸

The following results give the minimal number of outputs

of a lumped system for observability assurance, which appears

to be firstly observed in [10] and re-observed in [15]. Their

correct proof, however, seems to be firstly given in [20], in

which the requirement that an output matrix must be real

valued has been taken into account.

Lemma 4. Concerning the LTI system of Equation (3), there

exists a matrix C such that this system is observable, if and

only if the dimension of the output vector y(t) is not smaller

than the maximum geometric multiplicity of the STM A. ✸

III. OUT-DEGREE, CONTROLLABILITY AND

OBSERVABILITY OF A NETWORKED SYSTEM

To investigate the minimal local input/output selection prob-

lem, we at first develop some new methods for verifying the

controllability and observability of the networked system Σ.

For this purpose, the following property of the SCM Φ is at

first introduced. This property is firstly observed in [21] and

plays important roles in the analysis of its stability and robust

stability.

Let m(i) stand for the number of subsystems that is

directly affected by the i-th element of the vector z(t), i =
1, 2, · · · , Mz. Define matrices Θ(j), j = 1, 2, · · · , N ,

and Θ respectively as Θ(j) = diag{
√

m(i)|
Mz,j

i=Mz,j−1+1} and

Θ = diag{
√

m(i)|Mz

i=1}. It has been proven in [21] that

ΦTΦ = Θ2 = diag
{

Θ2(j)
∣

∣

N

j=1

}

(5)

Obviously from the definition of m(i), we have that
∑Mz,j

i=Mz,j−1+1 m(i) equals the out-degree of the j-th subsys-

tem of the networked system Σ.

On the basis of this relation and Lemma 3, a necessary

condition is obtained for the observability of System Σ. Its

proof is given in the appendix.

Lemma 5. The networked system Σ is observable, only

if for each i = 1, 2, · · · , N , the matrix pair (ATT(i),
col{CT(i), AST(i)}) is observable. ✸

From the state space model of the subsystem Σi, it is

clear that both the vector y(t, i) and the vector z(t, i) are its

output vectors. In other words, when this subsystem is isolated

from the influences of other subsystems, and its influences

to other subsystems are also completely removed, then the

observability of the subsystem Σi is equivalent to that of

the matrix pair (ATT(i), col{CT(i), AST(i)}). Hence, the

results of Lemma 5 imply that, in order to construct an

observable networked system, each of its subsystems should

be observable.

To illustrate these theoretical results, we adopt a system

model used in [17]. Due to space considerations, its parameters

are not included. Interested readers are recommended to refer

to [17] for details.

Example I. Consider the system of the first numerical example

of [17]. Observability is checked for each subsystem respec-

tively with external outputs only and with both the external

and the internal outputs. The singular values of the associated

observability matrices are given in Table I.

From these values, it is clear that except Subsystem Σ1,

the other two subsystems are always observable, no matter

they use only their external outputs, that is, y(t, i), or use

both their internal and external outputs, that is, z(t, i) and

y(t, i). In addition, when both external and internal outputs

are available, the first subsystem is also observable. The results

of [17], however, show that when the matrix Φ is utilized as

the SCM, the overall system is unobservable. This confirms

that observability of each subsystem can not guarantee that

the overall system also has this property. On the other hand,

when the SCM is modified to the matrix Φ̄, [17] shows that

the overall system becomes observable. As 8.4218× 10−10 is

very close to zero and significantly less than one-thousandth

of 1.1603, it is reasonable to declare that the first subsystem is

unobservable, at least very close to unobservable, provided that

only its external outputs are available [7], [16], [17]. Hence,

appropriate subsystem connections can make the states of a

subsystem observable that is unobservable with only its own

external outputs. ✸

Note that observability of the matrix pair

(ATT(i), col{CT(i), AST(i)}) is not equivalent to that of

the matrix pair (ATT(i), CT(i)). In fact, from Lemma 1, it

is clear that if the matrix pair (ATT(i), CT(i)) is observable,

then the matrix pair (ATT(i), col{CT(i), AST(i)}) is also

observable; but the converse is in general not true. Results

of Lemma 5 therefore also imply that even when there exist

subsystems that are not observable through only their own

external outputs, the whole networked system may still be

observable by means of subsystem connections.

It is worthwhile to note that while similar results have been

observed in [22] for system controllability, the conclusions

there depend on the SCM Φ. This makes them difficult to

be applied in constructing a controllable networked system,
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TABLE I

SINGULAR VALUES OF THE OBSERVABILITY MATRICES FOR EACH SUBSYSTEM

External Outputs Only External + Internal Outputs
Subsystem 1 Subsystem 2 Subsystem 3 Subsystem 1 Subsystem 2 Subsystem 3

8.4218× 10−10 4.4831× 10−1 3.7206× 10−1 4.2694× 10−1 4.5542× 10−1 5.9149× 10−1

1.1603 1.0254 1.5623 2.0086 1.0361 1.8373

5.4545 6.0747 5.7118 5.6423 6.0810 5.8053

as an appropriate subsystem connection is usually not known

before system designs. On the other hand, note that col{λIMx
−

ATT, −CT, −ΦAST}=diag{IMx
, −IMy

, −Φ}col{λIMx
−

ATT, CT, AST}. This means that in order to guarantee that

the matrix col{λIMx
−ATT, −CT, −ΦAST} is of FCR, it

is necessary that the matrix col{λIMx
−ATT, CT, AST} is.

Based on these observations and similar arguments as those in

the proof of Lemma 5, it can be shown that the conclusions

of Lemma 5 are in fact valid for an arbitrary SCM Φ.

To establish a relation between system observability

and its subsystem out-degrees, define transfer function

matrices G[1](λ) and G[2](λ) respectively as G[1](λ) =

diag{G
[1]
i (λ)|Ni=1} and G[2](λ) = diag{G

[2]
i (λ)|Ni=1}, in

which G
[1]
i (λ) = CS(i) + CT(i)[λImxi

−ATT(i)]
−1ATS(i),

G
[2]
i (λ)=ASS(i)+AST(i)[λImxi

−ATT(i)]
−1ATS(i) for each

i = 1, 2, · · · , N . From the block diagonal structure of G[1](λ),

it is clear that it is of FCNR if and only if each of G
[1]
i (λ),

i ∈ {1, 2, · · · , N}, is.

Assume that G[1](λ) and G
[1]
i (λ) have respectively m and

mi distinctive transmission zeros. Then, under the condition

that G[1](λ) is of FCNR, it is obvious from Lemma 2 and

G[1](λ) = diag{G
[1]
i (λ)|Ni=1} that, for each i = 1, · · · , N ,

every transmission zero of G
[1]
i (λ) is also a transmission zero

of G[1](λ). As argued in [17], we generally only have that

max1≤i≤N mi ≤ m ≤
∑N

i=1 mi. Moreover, for each of the

transmission zeros of G[1](λ), there exists at least one integer

i belonging to the set { 1, 2, · · · , N }, such that it is also a

transmission zero of G
[1]
i (λ).

Let λ
[k]
0 denote the k-th transmission zero of G[1](λ), k =

1, 2, · · · ,m. Assume that in the set {G
[1]
1 (λ), G

[1]
2 (λ), · · · ,

G
[1]
N (λ)}, there are s[k] transfer function matrices which

have this transmission zero. Denote them by G
[1]
k(s)(λ), s =

1, · · · , s[k]. Clearly, both s[k] and k(s) belong to the set

{1, 2, · · · , N}. As in [17], it is assumed, without any loss

of generality, that k(1) < k(2) < · · · < k(s[k]). Let Y
[k]
s

denote the matrix constructed from a set of linear independent

vectors that span the null space of G
[1]
k(s)(λ

[k]
0 ), and p(k, s) the

dimension of this null space. Obviously, the matrix Y
[k]
s is

of FCR, which further leads to that the matrix Y
[k]H
s Y

[k]
s is

positive definite. Hence, the matrix Γ
[k]
s is well defined for

each s = 1, 2, · · · , s[k] and each k = 1, 2, · · · ,m, which has

the following definition

Γ[k]
s = G

[2]
k(s)(λ

[k]
0 )Y [k]

s

(

Y [k]H
s Y [k]

s

)−1/2

(6)

Using these matrices, the following conclusions are derived,

which give a sufficient condition for the observability of the

networked system Σ. Their proof is deferred to the appendix.

Theorem 1. Assume that all G
[1]
i (λ)|Ni=1 are of FCNR. Let

{λ
[k]
0 |mk=1} denote the set of distinctive transmission zero of

G[1](λ). If the matrix Θ satisfies simultaneously the following

inequality

Ip(k,s) − Γ[k]H
s Θ2(k(s))Γ[k]

s > 0 (7)

or

Ip(k,s) − Γ[k]H
s Θ2(k(s))Γ[k]

s < 0 (8)

for each s = 1, 2, · · · , s[k] and k = 1, 2, · · · ,m, then the

dynamic system Σ is observable. ✸

Compared with the results reported in [17], the conditions

of Theorem 1 are only sufficient. On the other hand, these

conditions can be verified individually for each subsystem

and therefore have a much lower computational complexity,

and the computation results are generally more numerically

reliable. In particular, in the above conditions, the dimension

of the involved matrix is p(k, s) × p(k, s), while that in [17]

is
∑N

i=1 mvi ×
∑s[k]

i=1 p(k, i). Obviously, the latter is usually

significantly greater than the former for a large scale system,

which is less attractive from the viewpoint of computations.

Note that the matrix Θ is closely related to the out-degrees

of the networked system Σ. Theorem 1 in fact establishes

a relation between the observability of a networked system

and its subsystem out-degrees. This theorem, together with

the following Theorem 2, which is the counterpart of this

theorem in controllability verifications, are essential in solving

the minimal local input/output problem described in Section

II. The details are given in the next section.

Remark I. Note that for each j = 1, 2, · · · , N , Θ(j) ≥ Imzj

from its definition. It can be easily understood that if there

is an integer pair (k, s) with k ∈ {1, 2, · · · ,m} and s ∈

{1, 2, · · · , s[k]}, such that the associated matrix Γ
[k]
s is not

of FCR, then for all the SCM Φ, the associated inequality

Ip(k,s) − Γ
[k]H
s Θ2(k(s))Γ

[k]
s < 0 can not be satisfied. Hence,

to satisfy the conditions of Theorem 1, one possible approach

is to meet the inequality Ip(k,s)−Γ
[k]H
s Θ2(k(s))Γ

[k]
s > 0. This

might be achieved by reducing the number of subsystems that

an internal output straightforwardly affects. These observations

mean that under such a situation, sparse subsystem connections

might be helpful to make a networked system observable.

On the contrary, if for each s = 1, 2, · · · , s[k] and each

k = 1, 2, · · · ,m, the associated matrix Γ
[k]
s is always of FCR,

then the minimal eigenvalue of the matrix Γ
[k]H
s Θ2(k(s))Γ

[k]
s

can be made large through increasing the number of sub-

systems that an internal output directly influences, which

implies that the inequality Ip(k,s) − Γ
[k]H
s Θ2(k(s))Γ

[k]
s < 0

might be satisfied through simply increasing the number of

subsystem connections. That is, dense subsystem connections

are appreciated from the viewpoint of system observability. ✸

Example II. To illustrate the influences of subsystem out-

degrees on the observability of a networked system, consider
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again the system of the first numerical example in [17]. Modify

its SCM Φ into the following one,

Φ = col{[0 0 1 0 0 0], [0 0 0 0 1 0], [1 0 0 0 0 0],

[0 0 0 0 0 1], [0 0 0 0 0 0], [0 1 0 0 0 0]}

Note that the fifth row of the SCM has been replaced by a

row with all elements being zero, which means that the out-

degree of the subsystem Σ2 is reduced from 2 to 1. With

this SCM, the singular values of the observability matrix of

the whole networked system become 6.2043×10−1, 8.3070×
10−1, 1.3217, 1.5944, 3.3636, 6.7586, 1.1178×101, 1.5611×
101 and 9.0003 × 103. It can therefore be declared that the

associated networked system is now observable. ✸

Remark II. While the matrix Y
[k]
s is not unique for each

integer pair (k, s), its selection does not have any influences

on the satisfaction of the conditions of Equations (7) and (8),

which can be straightforwardly proven from relations among

different basis vectors of a subspace. ✸

When controllability is to be investigated, by means of

the duality between controllability and observability of a LTI

system, which has already been adopted in [17], similar results

can be derived through completely the same arguments. More

precisely, based on this duality and the state space model of

the whole system given in [17], it can be directly declared that

when the networked system Σ is well-posed, it is controllable

if and only if for each complex scale λ, the following matrix

valued polynomial M̄(λ) is of FRR [17], [22]

M̄(λ) =

[

λIMx
−ATT −BT −ATSΦ

−AST −BS IMv
−ASSΦ

]

Note that the transpose of M̄(λ) has completely the same

form as that of M(λ). It is not out of imaginations that

necessary/sufficient conditions similar to those of Lemma 5

and Theorem 1 can be derived for controllability verifications

of a networked system.

However, in order to achieve these conclusions, it appears

necessary to assume that every column of the SCM Φ only

has one nonzero element. While this condition can be satisfied

in general through augmenting the subsystem internal output

vectors z(t, i)|Ni=1 with repeated elements, the augmentation

usually violates an associated FCNR condition and therefore

greatly restricts applicability of the associated results.

In this paper, we derive another necessary/sufficient condi-

tion for system controllability without that assumption.

For this purpose, define Ḡ[1](λ) and Ḡ[2](λ) respectively

as Ḡ[1](λ) = diag{Ḡ
[1]
i (λ)|Ni=1} and Ḡ[2](λ) = diag{

Ḡ
[2]
i (λ)|Ni=1}, in which Ḡ

[1]
i (λ) = BT

S (i) + BT
T(i)[λImTi

−

AT
TT(i)]

−1AT
ST(i) and Ḡ

[2]
i (λ) = (G

[2]
i (λ))T . Assume that

Ḡ[1](λ) has m̄ distinctive transmission zeros which are de-

noted by λ̄
[k]
0 |m̄k=1. Moreover, let Ḡ

[1]

k̄(s)
(λ)|s̄

[k]

s=1 represent the

transfer function matrices that have λ̄
[k]
0 as its transmission

zero, and k̄(1) < k̄(2) < · · · < k̄(s̄[k]). Furthermore, let

p̄(k, s) denote the dimension of the null space of the matrix

Ḡ
[1]

k̄(s)
(λ̄

[k]
0 ), and Ȳ

[k]
s the matrix constructed from a set of

linear independent vectors that span this null space. Define a

matrix Γ̄
[k]
s as

Γ̄[k]
s = Ḡ

[2]

k̄(s)
(λ̄

[k]
0 )Ȳ [k]

s

(

Ȳ [k]H
s Θ−2(k̄(s))Ȳ [k]

s

)−1/2

(9)

Then, we have the following results, whose proof is included

in the appendix.

Theorem 2. Assume that Ḡ[1](λ) is of FCNR. Then,

System Σ is controllable, only when the matrix pair

(ATT(i), [BT(i) ATS(i)]) is controllable for every i =
1, 2, · · · , N . Moreover, if for each integer pair (k, s) with

k ∈ {1, 2, · · · , m̄} and s ∈ {1, 2, · · · , s̄[k]}, the following

matrix inequality is satisfied,

Ip̄(k,s) − Γ̄[k]H
s Γ̄[k]

s > 0 (10)

then this system is controllable. ✸

It is interesting to notice that while the necessary condition

of Theorem 2 is dual to that of Lemma 5, its sufficient

condition differs significantly from that of Theorem 1. More-

over, their proofs are also not completely dual to each other.

These are due to that in order to apply the duality between

controllability and observability, it is necessary that the SCM

Φ satisfies the condition that ΦΦT is a diagonal matrix, which

can not be met in general.

From the definition of the matrix Γ̄
[k]
s , careful comparisons

between Equations (10) and (7) show that, some qualitative

relations exist between in-degrees and controllability of a

networked system, which are similar to those between its out-

degrees and observability.

IV. MINIMAL LOCAL INPUT/OUTPUT SELECTION FOR A

NETWORKED SYSTEM

For a networked system, it is often interesting to know how

many sensors are required to monitor its states, as well as

how many actuators are required to maneuver its states [6],

[7], [11], [9], [12], [14]. Recall that in order to reconstruct

the states of a system from measured input-output data, it is

necessary that the system is observable. Moreover, controlla-

bility is necessary for a system to perform satisfactorily [16],

[17]. In this section, we investigate the minimal number of

outputs/inputs required for each subsystem to guarantee the

observability/controllability of the whole networked system,

that is, the problem described in Section II, using the results

of Section III.

The following theorem gives an answer to this minimal

input/output problem. Its proof is provided in the appendix.

Theorem 3. Let pmax(i) denote the maximum geometric

multiplicity of the matrix ATT(i), i = 1, 2, · · · , N . Then,

an observable networked system Σ can be constructed with

local external outputs, if and only if

myi +mzi ≥ pmax(i), ∀i ∈ { 1, 2, · · · , N }

Moreover, a controllable networked system Σ can be con-

structed with local actuators, if and only if

mui +mvi ≥ pmax(i), ∀i ∈ { 1, 2, · · · , N }

Here, m∗i stands for the dimension of the column vector ∗(t, i)
with ∗ = u, v, y, z. ✸
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TABLE II

SINGULAR VALUES OF THE OBSERVABILITY MATRICES OF THE OVERALL SYSTEM

k = 1 κ = 0.98 κ = 0.96 κ = 0.94 κ = 0.92 κ = 0.90

1.9362× 10
−15

1.8098× 10
−1

4.2275× 10
−1

4.9783× 10
−1

5.1380× 10
−1

5.2634× 10
−1

4.4421× 10
−1

4.6358× 10
−1

4.8757× 10
−1

7.6579× 10
−1

1.0373 1.1071

1.0277 1.0455 1.0744 1.1353 1.4116 1.4448

1.4593 1.4555 1.4524 1.4509 1.4803 1.7099

2.1211 2.0690 2.0268 2.0120 2.1752 3.6578

4.0509 4.0360 4.0194 4.0057 4.0171 6.1553

7.3917 7.4216 7.4645 7.5180 7.5792 7.6485

1.1216× 101 1.1198× 101 1.1187× 101 1.1183 × 101 1.1187 × 101 1.1224 × 101

2.1032× 10
1

2.0932× 10
1

2.0822× 10
1

2.0703 × 10
1

2.0577 × 10
1

2.0454 × 10
1

Remark III. This theorem reveals that in order to reduce the

required number of external inputs/outputs, it is better to de-

sign a subsystem with its STM having distinctive eigenvalues.

This is in a good agreement with the results on a lumped

system reported in [10], [15], [20]. ✸

Corollary 1. In order to be able to build a control-

lable/observable networked system from several subsystems,

it is necessary and sufficient that each subsystem is control-

lable/observable.

Proof: This is an immediate result of Lemmas 4 and 5, together

with Theorem 3. ✸

Note that the matrices AST(i), ASS(i) and ATS(i) repre-

sent connection strengthes among subsystems of the system Σ.

The bigger the magnitude of the elements of these matrices

is, the tighter the subsystems are connected [17]. On the other

hand, it is clear from the proof of Theorem 3 that when

each subsystem is observable/controllable, through reducing

subsystem connection strengthes, it is always possible to

construct an observable/controllable networked system. In the

extreme situation, when all the subsystems are disconnected,

the networked system becomes a collection of isolated indi-

vidual observable/controllable subsystems, which is obviously

observable/controllable.

On the other hand, when these matrices are appropriately

selected such that the corresponding matrices Γ
[k]
s is of FCR

for each integer pair (k, s), it can be easily seen from Equation

(8) that through increasing magnitudes of the elements of these

matrices, that is, through increasing subsystem connection

strengthes, it is also possible to build an observable networked

system using observable subsystems. Similar conclusions can

be obtained for building a controllable networked system, by

means of the duality between observability and controllability.

Combing together the results of Lemma 5 and Theorems 1

and 3, a prototypical algorithm can be constructed for building

an observable networked system.

Algorithm for Constructing an Observable System:

• Compute the maximum geometric multiplicity pmax(i)
for each STM ATT(i), i = 1, 2, · · · , N . Select a real

matrix C(i) for Subsystem Σi which has at least pmax(i)
rows, such that the matrix pair (ATT(i), C(i)) is observ-

able.

• Partition the matrix C(i) as C(i) = col{CT(i), AST(i)}.

In this partition, it is preferable to make the number of

the rows of the matrix AST(i) as small as possible, in

order to reduce communication costs among subsystems.

• Construct an initial value for each of the subsystem matri-

ces ASS(i)|
N
i=1. Select an appropriate factor κ belonging

to (0, 1).

1) Verify whether or not the constructed networked

system is observable. If the answer is positive, end

the computations.

2) If the answer is negative, replace each subsystem

matrix ASS(i) respectively with κASS(i), 1 ≤ i ≤
N . Return to Step 1).

In the above algorithm, it is also possible to select a positive

κ greater than 1. This situation, however, can be included

through selecting an initial ASS(i)|
N
i=1 with the absolute

values of their elements being large. In addition, similar

algorithms can be constructed for building a controllable

networked system using controllable subsystems.

Note that for a lumped system, a complete parametrization

has been given for its output matrix C in [20] that constructs

an observable matrix pair (A, C) with a prescribed STM A.

It can be declared that in the above algorithm, the construction

of a desirable matrix C(i) is not a difficult task.

Note also that in the above algorithm, the factor κ satisfies

0 < κ < 1. It is obvious that the magnitude of each element in

the matrix ASS(i), i = 1, 2, · · · , N , monotonically decreases

with the iterations. As each subsystem is observable from its

constructions, it can be declared from the proof of Theorem 3

that, with the increment of iterations, an observable networked

system will certainly be constructed. On the other hand, the

computational complexity of the above algorithm depends

mainly on observability verification of the constructed system,

for which a method is suggested in [17] whose computational

complexity increases linearly with the subsystem number.

Example III To reveal influences of subsystem connection

strengthes on system observability, the subsystem matrices

ASS(i)|
3
i=1 of the first numerical example in [17] is multiplied

by a factor κ. Table II shows the singular values of the

observability matrix of the whole system with κ respectively

equal to 1, 0.98, 0.96, 0.94, 0.92 and 0.90∗. Obviously, with

the decrement of the subsystem connection strengthes, the

whole system becomes observable.

Note that the eigenvalues of the subsystem STM

ATT(i)|
3
i=1 are respectively 9.0391×10−1±j2.6359×10−2,

1.0243; 6.7874× 10−1, 8.6742× 10−1, 1.0588 and 8.5354×
10−1, 1.2027, 1.3343. Theorem 3 implies that only one output

is required for each subsystem to make the whole system

∗The first two singular values in the first column of Table II are a little
different from those reported in [17]. This difference might be caused by
numerical computations.
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observable. Such a system can really be constructed through

removing some elements of the output vectors z(t, i) and/or

y(t, i), i = 1, 2, 3. The details are omitted due to space

considerations.

However, when there are restrictions on the SCM Φ, and/or

on subsystem connection strengthes, which is often required

in practical engineering [13], [9], [17], further efforts are still

necessary to find the minimal number of inputs/outputs for

each subsystem in the construction of a controllable/observable

system.

V. CONCLUDING REMARKS

In this paper, we have discussed minimal local input/output

selections for a networked system. Some relations are estab-

lished among out/in-degrees, observability and controllability

of a networked system. It is observed that to guarantee the

observability/controllability of the whole system, each sub-

system must be observable/controllable. Moreover, according

to properties of subsystems, sparse or dense connections may

be helpful in constructing a controllable/observable system.

Furthermore, in order to be able to construct a control-

lable/observable networked system, it is necessary and suf-

ficient that each subsystem is controllable/observable, and the

number of inputs/outputs of every subsystem must not be

smaller than the maximum geometric multiplicity of its state

transition matrix.

APPENDIX: PROOF OF SOME TECHNICAL RESULTS

Proof of Lemma 5: Define matrix valued polynomials M1(λ)
and M̂1(λ) respectively as

M1(λ)=





λIMx
−ATT

−CT

−ΦAST



 , M̂1(λ)=





λIMx
−ATT

CT

ΘAST





(a.1)

Assume that the system Σ is observable. Then, according to

Lemma 3, it is necessary that for every complex scalar λ,

the M(λ) of Equation (4) is of FCR. From the definitions of

M(λ) and M1(λ), it is obvious that M1(λ) must be of FCR

at every complex scale λ also, which is equivalent to

MH
1 (λ)M1(λ) > 0 (a.2)

On the basis of Equations (5) and (a.1), the following

equality can be straightforwardly established for each λ ∈ C,

MH
1 (λ)M1(λ) = (λIMx

−ATT)
H
(λIMx

−ATT) +

CT
TCT +AT

STΦ
TΦAST

= (λIMx
−ATT)

H
(λIMx

−ATT) +

CT
TCT +AT

STΘ
2AST

= M̂H
1 (λ)M̂1(λ) (a.3)

It can therefore be declared that, in order to guarantee the

observability of the system Σ, it is necessary that M̂1(λ) is

of FCR at each complex scale λ.

From the block diagonal structure of the matrices ATT,

AST and CT, as well as Equation (5), it is obvious that

M̂1(λ) =





diag
{

λImxi
−ATT(i)|

N
i=1

}

diag
{

CT(i)|
N
i=1

}

diag
{

Θ(i)AST(i)|
N
i=1

}



 (a.4)

Define matrix valued polynomials M̂1i(λ) and M̃1i(λ) with

i = 1, 2, · · · , N as

M̂1i(λ)=





λImxi
−ATT(i)

CT(i)
Θ(i)AST(i)



, M̃1i(λ)=





λImxi
−ATT(i)

CT(i)
AST(i)





Straightforward matrix manipulations show that for each fixed

complex λ, the complex valued matrix M̂1(λ) is of FCR, if and

only if for each i = 1, 2, · · · , N , the complex valued matrix

M̂1i(λ) is of FCR. Moreover, clearly from the definitions of

M̂1i(λ) and M̃1i(λ), we have that

M̂1i(λ)=diag
{

Imxi
, Imyi

, Θ(i)
}

M̃1i(λ) (a.5)

Note that the matrix Θ(i) is positive definite from its defini-

tion. It is clear that M̂1i(λ) is of FCR at every complex scale

λ, if and only if M̃1i(λ) is.

The proof can now be completed through a direct applica-

tion of Lemma 1. ✸

Proof of Theorem 1: From Lemma 3, it can be easily seen

that System Σ is observable, if and only if for each nonzero

vector x ∈ CMx+Mv , if there exists a λ ∈ C, such that
[

λIMx
−ATT −ATS

−CT −CS

]

x = 0 (a.6)

then with the same complex number λ, the following inequal-

ity is valid

[−ΦAST IMv
− ΦASS]x 6= 0 (a.7)

Partition the vector x as x =
[

xT
1 xT

2

]

in which x1 ∈ CMx

and x2 ∈ CMv . Then, according to Equation (a.6), we have

that

[λIMx
−ATT]x1 −ATSx2 = 0 (a.8)

CTx1 + CSx2 = 0 (a.9)

When λ is not an eigenvalue of the matrix ATT, the matrix

λIMx
−ATT is invertible. In this case, Equation (a.8) implies

that x1 = [λIMx
−ATT]

−1
ATSx2. Substitute this relation

into Equations (a.7) and (a.9), direct algebraic manipulations

show that

G[1](λ)x2 = 0 (a.10)
[

IMv
− ΦG[2](λ)

]

x2 6= 0 (a.11)

In these derivations, the definitions of the transfer function

matrices G[1](λ) and G[2](λ) have been utilized.

When λ is an eigenvalue of the matrix ATT, a pseudo-

inverse must be taken and the treatments are completely

the same as those of [17], [18]. In particular, note that the

dimension of the matrix ATT is finite, which means that all

its eigenvalues can only take an isolated value. Hence, there

exists a ε > 0 which in general depends on the value of λ, such

that for each δ ∈ (−ε, ε)/{0}, the matrix (λ−δ)IMx
−ATT is

invertible. These imply that the vector x1 satisfying Equation

(a.8) can be formally expressed as

x1 = lim
δ→0

[(λ− δ)IMx
−ATT]

−1
ATSx2 (a.12)
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Using this expression, conclusions can be obtained which are

completely the same as those for the case when λ is not an

eigenvalue of the matrix ATT.

Note that every G
[1]
i (λ), i = 1, 2, · · · , N , is assumed to

be of FCNR, and G[1](λ) is block diagonal with its i-th

diagonal block being G
[1]
i (λ). It is obvious that G[1](λ) is

also of FCNR. It can therefore be declared from Lemma 2 and

Equation (a.10) that λ is a transmission zero of G[1](λ). These

results imply that when G
[1]
i (λ)|Ni=1 are of FCNR, verifications

of the conditions in Lemma 3 are necessary only for all the

transmission zeros of G[1](λ).

Assume that λ = λ
[k]
0 . Then, according to the definition of

the number λ
[k]
0 , it is also a transmission zero of G

[1]
k(s)(λ),

s = 1, 2, · · · , s[k]. Moreover, from the definition of the matrix

Y
[k]
s , we have that for every nonzero complex valued vector

αs ∈ Cp(k,s),

G
[1]
k(s)(λ

[k]
0 )Y [k]

s αs = 0 (a.13)

Define a matrix Y [k] as

Y [k]=







0Mv,k(1)−1×p(k,1) · · · 0M
v,k(s[k])−1

×p(k,s[k])

Y
[k]
1 · · · Y

[k]

s[k]

0(Mv−Mv,k(1))×p(k,1) · · · 0(Mv−Mv,k(s[k])
)×p(k,s[k])







Then, from the block diagonal structure of G[1](λ) and Equa-

tion (a.13), it can be directly proven that for each nonzero

vector x2 ∈ CMv satisfying G[1](λ
[k]
0 )x = 0, there exists one

and only one nonzero α ∈ C
∑s[k]

j=1 p(k,j), such that

x2 = Y [k]α (a.14)

On the other hand, based on the block diagonal structures of

G[2](λ) and the matrix Θ, direct algebraic manipulations show

that for each complex valued vector x2 satisfying Equation

(a.14), we have that

ΘG[2](λ
[k]
0 )x2

=diag{Θ(i)|Ni=1}diag{G
[2]
i (λ)|Ni=1}Y

[k]α

=







0Mv,k(1)−1×p(k,1) · · · 0M
v,k(s[k])−1

×p(k,s[k])

Θ(k(1))G
[2]
k(1)(λ)Y

[k]
1 · · · Θ(k(s[k]))G

[2]

k(s[k])
(λ)Y

[k]

s[k]

0(Mv−Mv,k(1))×p(k,1) · · · 0(Mv−Mv,k(s[k])
)×p(k,s[k])






α

(a.15)

Hence,

xH
2 x2 = αHdiag

{

Y
[k]H
j Y

[k]
j |s

[k]

j=1

}

α (a.16)

Moreover, from Equation (5), we have that

(

ΦG[2](λ
[k]
0 )x2

)H (

ΦG[2](λ
[k]
0 )x2

)

= xH
2 G[2]H(λ

[k]
0 )Θ2G[2](λ

[k]
0 )x2

=
(

ΘG[2](λ
[k]
0 )x2

)H (

ΘG[2](λ
[k]
0 )x2

)

(a.17)

Substitute the right hand side of Equation (a.15) into that of

Equation (a.17), it can be directly proven that

(

ΦG[2](λ
[k]
0 )x2

)H (

ΦG[2](λ
[k]
0 )x2

)

= αHdiag

{

(

Θ(k(j))G
[2]
k(j)(λ

[k]
0 )Y

[k]
j

)H

×

(

Θ(k(j))G
[2]
k(j)(λ

[k]
0 )Y

[k]
j

)∣

∣

∣

s[k]

j=1

}

α (a.18)

Denote the vector diag{(Y
[k]H
j Y

[k]
j )1/2|s

[k]

j=1}α by α̂. It can

be declared from the FCR property of the matrices Y
[k]
j |s

[k]

j=1

that the vector α̂ is not equal to zero if and only if the vector

α is. On the other hand, from Equations (a.16) and (a.18), as

well as the definitions of the matrices Γ
[k]
j |s

[k]

j=1, straightforward

algebraic manipulations show that

xH
2 x2 −

(

ΦG[2](λ
[k]
0 )x2

)H (

ΦG[2](λ
[k]
0 )x2

)

= α̂Hdiag

{

Ip(k,s) − Γ[k]H
s Θ2(k(s))Γ[k]

s

∣

∣

∣

s[k]

s=1

}

α̂ (a.19)

Therefore, if the inequality of Equation (7) is satisfied

for each s = 1, 2, · · · , s[k], then the matrix diag{Ip(k,s) −

Γ
[k]H
s Θ2(k(s))Γ

[k]
s |s

[k]

s=1} is positive definite. This means that

for an arbitrary nonzero complex vector x2 satisfying Equation

(a.10), we have that

xH
2 x2 −

(

ΦG[2](λ
[k]
0 )x2

)H (

ΦG[2](λ
[k]
0 )x2

)

> 0 (a.20)

On the other hand, if for every s ∈
{

1, 2, · · · , s[k]
}

, the

inequality of Equation (8) is satisfied, then similar arguments

show that for each nonzero complex vector x2 satisfying

Equation (a.10), the following inequality is satisfied

xH
2 x2 −

(

ΦG[2](λ
[k]
0 )x2

)H (

ΦG[2](λ
[k]
0 )x2

)

< 0 (a.21)

Therefore, under both of these situations,

x2 6= ΦG[2](λ
[k]
0 )x2 (a.22)

Hence, M(λ) is of FCR at each λ = λ
[k]
0 . This completes the

proof. ✸

Proof of Theorem 2: To prove the condition for the necessity,

assume that there exists a subsystem, denote it by Σi, such

that the associated matrix pair (ATT(i), [BT(i) ATS(i)]) is

not controllable. Then, according to Lemma 1, there exist at

least one λ0 ∈ C and one nonzero vector xi ∈ Cmxi , such that

xH
i [λ0Imxi

−ATT(i) BT(i) ATS(i)] = 0 (a.23)

Define a Mx dimensional vector x as x = col{0Mx,i−1 , xi,
0Mx−Mx,i

}. Then, x 6= 0. Moreover, from Equation (a.23)

and the block diagonal structure of the matrices ATT, BT

and ATS, direct matrix algebraic manipulations show that

xH [λ0IMx
−ATT −BT −ATS] = 0 (a.24)

Note that

[λ0IMx
−ATT −BT −ATSΦ]

= [λ0IMx
−ATT −BT −ATS]diag{Imx

, Imu
, Φ}
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We therefore have that the matrix [λ0IMx
−ATT −BT −ATSΦ]

can never be of FRR, no matter how the SCM Φ is designed.

Hence, it can be claimed further from the definition of M̄(λ)
that it is also never of FRR at λ = λ0. According to Lemma

1, System Σ is not controllable.

To prove the condition for the sufficiency, note that M̄T (λ)
and M(λ) have completely the same form. Similar arguments

as those for the derivations of Equations (a.10) and (a.11)

in the proof of Theorem 1 show that, M̄(λ) is of FRR at

each complex number λ, if and only if for each pair (λ, x2)
satisfying

Ḡ[1](λ)x2 = 0 (a.25)

in which λ ∈ C, and x2 ∈ CMz and x2 6= 0, the following

inequality is satisfied
[

IMz
− ΦT Ḡ[2](λ)

]

x2 6= 0 (a.26)

From the assumption that Ḡ[1](λ) is of FCNR and its

block diagonal structure, as well as the definitions of the

matrices Ȳ
[k]
s |s̄

[k]

s=1, it can be straightforwardly shown that every

λ satisfying Equation (a.25) must be a transmission zero of

Ḡ[1](λ). Moreover, all the nonzero x2 satisfying Equation

(a.25) with λ = λ̄
[k]
0 can be expressed as

x2 = Ȳ [k]α (a.27)

in which α is a nonzero
∑s̄[k]

s=1 p̄(k, s) dimensional complex

vector and

Ȳ [k]=







0Mz,k̄(1)−1×p̄(k,1)
· · · 0M

z,k̄(s̄[k])−1
×p̄(k,s̄[k])

Ȳ
[k]
1 · · · Ȳ

[k]

s̄[k]

0(Mz−Mz,k̄(1))×p̄(k,1) · · · 0(Mz−Mz,k̄(s̄[k])
)×p̄(k,s̄[k])







On the other hand, from Equation (5) and singular value

decompositions for a matrix [3], it can be declared that there

exist a U1 ∈ RMv×Mz and a U2 ∈ RMv×(Mv−Mz), such that

Φ=U1Θ, [U1 U2]
T [U1 U2]=[U1 U2][U1 U2]

T =IMv

(a.28)

Hence, for each x2 satisfying Equation (a.27), we have that
[

IMz
−ΦT Ḡ[2](λ

[k]
0 )

]

x2=Θ
[

Θ−1Ȳ [k]−UT
1 Ḡ[2](λ

[k]
0 )Ȳ [k]

]

α

(a.29)

which means that
[

IMz
−ΦT Ḡ[2](λ

[k]
0 )

]

x2 6= 0 if and only if

[

Θ−1Ȳ [k]−UT
1 Ḡ[2](λ

[k]
0 )Ȳ [k]

]

α 6= 0 (a.30)

Note that
∣

∣

∣

∣

∣

∣
Θ−1Ȳ [k]α

∣

∣

∣

∣

∣

∣

2

2
=αHdiag

{

Ȳ [k]H
s Θ−2(k̄(s))Ȳ [k]

s

∣

∣

∣

s̄[k]

s=1

}

α

(a.31)

Moreover, from Equation (a.28), we have that U1U
T
1 = IMv

−
U2U

T
2 ≤ IMv

. Hence,
∣

∣

∣

∣

∣

∣
UT
1 Ḡ[2](λ

[k]
0 )Ȳ [k]α

∣

∣

∣

∣

∣

∣

2

2

=αH Ȳ [k]HḠ[2](λ
[k]H
0 )U1U

T
1 Ḡ[2](λ

[k]
0 )Ȳ [k]α

≤αH Ȳ [k]HḠ[2]H(λ
[k]
0 )Ḡ[2](λ

[k]
0 )Ȳ [k]α

=αHdiag

{

Ȳ [k]H
s Ḡ

[2]H

k̄(s)
(λ

[k]
0 )Ḡ

[2]

k̄(s)
(λ

[k]
0 )Ȳ [k]

s

∣

∣

∣

s̄[k]

s=1

}

α (a.32)

which further leads to that
∣

∣

∣

∣

∣

∣
Θ−1Ȳ [k]α

∣

∣

∣

∣

∣

∣

2

2
−
∣

∣

∣

∣

∣

∣
UT
1 Ḡ[2](λ

[k]
0 )Ȳ [k]α

∣

∣

∣

∣

∣

∣

2

2

≥αHdiag
{(

Ȳ [k]H
s Θ−2(k̄(s))Ȳ [k]

s −

Ȳ [k]H
s Ḡ

[2]H

k̄(s)
(λ

[k]
0 )Ḡ

[2]

k̄(s)
(λ

[k]
0 )Ȳ [k]

s

)∣

∣

∣

s̄[k]

s=1

}

α

= α̂Hdiag

{

(

Ip̄(k,s) − Γ̄[k]H
s Γ̄[k]

s

)∣

∣

∣

s̄[k]

s=1

}

α̂ (a.33)

in which α̂ = diag{(Ȳ
[k]H
s Θ−2(k̄(s))Ȳ

[k]
s )1/2|s̄

[k]

s=1}α.

Note that the matrix Ȳ
[k]H
s Θ−2(k̄(s))Ȳ

[k]
s is invertible for

each feasible integer pair (k, s). It is obvious that the vector

α is nonzero if and only if the vector α̂ is. Therefore, if the

condition of Equation (10) is satisfied, then for any nonzero
∑s̄[k]

s=1 p̄(k, s) dimensional complex vector α, we have that

∣

∣

∣

∣

∣

∣
Θ−1Ȳ [k]α

∣

∣

∣

∣

∣

∣

2

2
−
∣

∣

∣

∣

∣

∣
UT
1 Ḡ[2](λ

[k]
0 )Ȳ [k]α

∣

∣

∣

∣

∣

∣

2

2
> 0 (a.34)

Hence, the condition of Equation (a.30) is satisfied, which

means that the system Σ is controllable. This completes the

proof. ✸

Proof of Theorem 3: From Theorem 1, we have that in order

to guarantee the observability of the networked system Σ, it

is necessary that for each i = 1, 2, · · · , N , the matrix pair

(ATT(i), [C
T
T(i) A

T
ST(i)]

T ) is observable. It can therefore be

declared from Lemma 4 that to construct an observable Σ, it

is necessary that myi +mzi ≥ pmax(i).
Now, assume that myi +mzi = pmax(i) for every 1 ≤ i ≤

N . Then, according to Lemma 4, there always exists a matrix

CT(i) and a matrix AST(i) for each i ∈ {1, 2, · · · , N}, such

that the matrix pair (ATT(i), [C
T
T(i) A

T
ST(i)]

T ) is observable.

Note that for an arbitrary real number κi, we have that




λImxi
−ATT(i)

CT(i)
κiAST(i)



=diag
{

Imxi
, Imyi

, κiImzi

}





λImxi
−ATT(i)

CT(i)
AST(i)





It is clear from Lemma 1 that observability of the matrix

pair (ATT(i), col{CT(i), κiAST(i)}) is equivalent to that of

the matrix pair (ATT(i), col{CT(i), AST(i)}), provided that

κi 6= 0.

For each j ∈ { 1, 2, · · · , N }, define a set J (j) as

J (j) =

{

(k, s)

∣

∣

∣

∣

k(s) = j,
s ∈ { 1, 2, · · · , s[k] }
k ∈ { 1, 2, · · · , m }

}

That is, this set is associated with all the transmission zeros

of G[1](λ) that is also a transmission zero of G
[1]
j (λ) with

j ∈ { 1, 2, · · · , N }. Then, obviously, the satisfaction of

Equation (7) can be equivalently expressed as that for each

j = 1, 2, · · · , N , the following inequality

Ip(k,s) − Γ[k]H
s Θ2(j)Γ[k]

s > 0 (a.35)

is satisfied for every pair (k, s) of the set J (j).
For a fixed SCM Φ, define γi as

γi=max

{

σmax(Θ(i)ASS(i)), max
(k,s)∈J (i)

σmax

(

Θ(i)Γ[k]
s

)

}

(a.36)
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in which σmax(·) stands for the maximal singular value of

a matrix. Moreover, for each subsystem of System Σ, define

matrices ÂST(i) and ÂSS(i) respectively as

ÂST(i) = κiAST(i), ÂSS(i) = κiASS(i) (a.37)

in which κi is an arbitrary number belonging to (0, 1/γi).
Using these two matrices, construct a new networked system

Σ̂ through simply replacing the system matrices AST(i) and

ASS(i) respectively by ÂST(i) and ÂSS(i), while keeping the

other system matrices unchanged. Moreover, define matrices

ÂSS, ÂST, etc., as well as transfer function matrices Ĝ[1](λ),
Ĝ[2](λ), etc., respectively as their counterparts associated with

System Σ.

Based on the block diagonal structure of the matrix

ÂSS and Equation (5), it can be straightforwardly proven

that (ΦÂSS)
T(ΦÂSS) = diag{κ2

iA
T
SS(i)Θ

2(i)ASS(i)|
N
i=1}.

Hence, it can be claimed from Equations (a.36) and (a.37)

that

σmax

(

ΦÂSS

)

= max
1≤i≤N

{

σmax

(

Θ(i)ÂSS(i)
)}

= max
1≤i≤N

{κi × σmax (Θ(i)ASS(i))}

< 1 (a.38)

Note that the absolute value of each eigenvalue of a square

matrix is not greater than its maximal singular value [3]. It can

therefore be declared that the matrix I−ΦÂSS is invertible, and

hence the re-constructed networked system Σ̂ is well-posed.

On the other hand, note that in System Σ̂, only the matrices

ÂST(i) and ÂSS(i) are different from those of System Σ. This

implies that G[1](λ) and Ĝ[1](λ), their transmission zeros, as

well as the associated matrices Y
[k]
s , are completely the same.

It can therefore be declared from the definition of the matrix

Γ
[k]
s that for each integer pair (k, s) with k ∈ {1, 2, · · · , m}

and s ∈ {1, 2, · · · , s[k] }, there certainly exists one and only

one j ∈ { 1, 2, · · · , N }, such that the pair (k, s) belongs to

the set J (j). This further leads to that

Γ̂[k]
s = κjΓ

[k]
s (a.39)

Hence, we have from Equations (a.36) and (a.37) that

σmax

(

Γ̂[k]
s Θ(j)

)

= κjσmax

(

Γ[k]
s Θ(j)

)

< 1 (a.40)

which further implies the satisfaction of the condition of

Equation (a.35) for each element of the set J (j) and each

j ∈ { 1, 2, · · · , N }, and hence the system Σ̂ is observable.

The results on minimal input selection for system con-

trollability can be established directly using duality between

controllability and observability of a dynamic system, as well

as the sufficient condition of Theorem 2.

This completes the proof. ✸
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