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Abstract

The Nonlinear Output Frequency Response Functions (NOFRFs) are atoghidpprovides a new extension of the
well-known concept of the Frequency Response Function (FRF) of Bgeams to the nonlinear case. The present study
introduces a NOFRFs based approach for the analysis of nonlineansystihe frequency domain. It is well known that a
nonlinear system can, under rather general conditions, be represeat@alpgomial type Nonlinear Auto Regressive with
eXogenous input (NARX) model. From the NARX model of a nonlineaesysinder study, the NOFRFs based approach
for the frequency analysis of nonlinear systems involvesirgpla set of linear difference equations known as the
Associated Linear Equations (ALES) to determine the system nonlingamt aesponses and then the NOFRFs of the
system up taan arbitrary order of nonlinearity of interests. The results enable asamation of the frequency domain
characteristics of nonlinear systems by means of a series of Bagtard like plots that can be used for nonlinear system
frequency analyses for various purposes including, for examplditioonmonitoring, fault diagnosis, and nonlinear moda
analysis.

Key words Volterra series, Associated Linear Equations, Nonlinear Output Frequency Respongens, Frequency
domain analysis

It is worth mentioning that describing functiofishalil,
1. Introduction 2002)are a traditional frequency domain analysis approach
to nonlinear systems which only involve a one dimen-

The frequency domain approach of linear systems is thesional function of frequency and have been used in
very basis of control, signal processing, and communi-practical nonlinear system control problentdowever,
cation and has been applied in almost all science andlescribing functions are defined for specific nonlinear
engineering areas. The key concept associated with theomponents and can only be applied in the context of
linear system frequency analysis is the Frequencysimple control systems with an a priori given structure.
Response Function (FRF), which is the foundation of Bode Nonlinear FRF and associated nonlinear Bode plots
diagrams, Nyquist stability criterion, modal analysis, filter (Pavlov et al, 2007Rijlaarsdam et al. 20} Avere introduced
designs, among other well-known and well-estabilished based on the exact evaluation of the bound on the output
theories and methods. response of nonlinear systems under a harmonic excitation.

The direct extension of the FRF concept to the nonlinearThese are the concepts of the nature and properties similar
case is known as the Generalized Frequency Responst® that of the describing functions.
Functions (GFRFs)George, 1959)which were proposed In order to resolve these difficulties, researchers have
under the assumption that the output of the nonlinearmade considerable efforts to develop new concepts that
systems under study can be described by a convergertan capture the system essential features while keeping
Volterra series(Boyd and Chua, 1985)The difficulties problem dimensionality low. Examples of such approaches
with the practical application of the GFRFs are that the are the best linear approximatié@dchoukens et al., 2003),
GFRFs can only be graphically studied up to the secondthe High Order Sinusoidal Input Describing Functions
order (Yue et al., 2005) This implies that the well- (HOSIDF) (Nuij et al., 2006) and the Associated
established Bode or Nyquist diagram based frequencyFrequency Response Functions (AFRFESEijoo et al.,
domain analysis cannot be generally extended to the?004) These approaches have also been applied to solve
nonlinear case. Therefore, although some specificmany engineering problemgRijlaarsdam et al., 2012,
applications can be found in literatures such as, e.g., in2013; Feijoo et al., 2006However, these approaches have
image processingRamponi, 1986)channel equalization many limitations. Br instance, HOSIDF can only deal
(Karam and Sari, 198%nd fault detectioriTang et al.,  with sinusoidal inputs and require complex computations
2010) a systematic approach for the analysis of nonlinearthat must be repeated for each frequency of interest while
systems in the frequency domain that can be generallyAFRFs can be evaluated only when the differential
applied in practice still does not exist. equation model of the system under study is available. In
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addition, these approaches have only been studied for ] 1 . n )
simple and particular cases. It is difficult to assess the Yn(la>)=—n,1an(an)HU (jo)ao,, 2
efficiency of these approaches in situations where systems \ﬁ(zﬂ) i=1
are described by more general nonlinear models. where the integration is carried out over the hyperplane
The concept of Nonlinear Output Frequency Responsey, 1.+ = with —z<w/f, <7 , where f, is the
Functions(Lang and Billings, 2005} NOFRFs - is a new .
extension of the FRF to the nonlinear case. One of its mostaMPling frequency._ .
attractive feature is its one-dimensional nature, which has The function H, (jo,)=H (@,...,®,) is the n -th
many advantages, as has been demonstrated by a widgrder GFRF defined as the-th ordernormalised DTFT
range of studie§”eng et al., 2007; Lang and Peng, 2008) of hn(‘r )
However, current applications of the NOFRFs use a Least n
Squares (LS) based method to evaluate the NOFRFs) . L s
and Billings, 2005)This requires an appropriate selection H, (jo,)=at) h(z,) [ Te™™ ®3)
of the maximum order of the system nonlinearity, which is zr i=1
sometimes difficult and may suffer from numerical issues. andU (jo) is the DTFT ofu(k).
In addition, the method requires the system response data o -
from several simulation or experimental tests, which may Def|n|t.|on L Let u('k) be t_he seque!']ce of a finite
not be convenient for implementation. energy signal. In the discrete time domain, theh order
The present study is motivated by the need of addressingeneralized spectrum qji(k) is defined as(Lang and
these problemsA systematic NOFRF-based approach for illings, 2005)
the nonlinear system frequency analysis is developed baseg gs:
7 . . . 1 n
on a polynomial type Nonlinear Auto Regressive with i\ — n _ i
eXogenous input (NARX) model, which can either be Uy (j) = DF {u" () at \/ﬁ(zﬂ)nleU(le)ddn,w(L")
obtained by discretizingh¢ system’s nonlinear differential h d he DTET
equation model or determined by a data driven system Where DF denotes the : . .
identification methodBillings, 2013) The work involves Definition 2. The n -th order NOFRF is defined as
the derivation of an algorithm which solves a set of linear (Lang and Billings, 200%)
difference equations to determine the nonlinear output ) n(] )
responses and then the NOFRFs of a nonlinear system up G, (jo)= 0 (o) weQc[-nf,nf] (5)
to an arbitrary order of interest. n (Ja))
The results enable a representation of the frequencyyhere (2 is the frequency support#ﬁn(ja))|,which can
domain characteristics of nonlinear systems by means of a i i
series of Bode diagram like plots that can be used forPe determined using the results about the output
nonlinear system frequency analyses for various purposeérequencies of nonlinear systemigang and Billings,
including, for example, condition monitoring, fault 19%).
diagnosis, and nonlinear modal analysighang et al, The NOFRFs as defined in (5) have the following
2016; Xia et al, 2017)The application of the proposed attractive properties.
new analysis to the detection and quantification of cracks Property 1. (Lang and Billings, 20050.et K be a non-
in a beam structure is finally demonstrated in a case study.zero constant andsn(jw) the n -th order NOFRF

2. The NOFRFs based approach for the analysis of computed forU (jw) . Then, the NOFRF computed for
nonlinear systemsin the frequency domain KU (jo) are alsoG, (jw).

Property 2. (Lang and Billings, 2005The frequency
support of G, (jo) , Y,(jw) and U (jw), ie. the
frequency range where these functions of frequency are

d Well defined, are the same.

2.1. Nonlinear Output Frequency Response Functions
(NOFRFs)

Let y(k) andu(k) respectively denote the output an

input of a discrete time fading memory syst&aoyd and 2.2. The NOFRFs based approach for the analysis of

Chua, 1985)N|th a Zero equilibrium, and represent the nonlinear systems in the frequency domain
discrete time. The system output response around the
origin can be describduy the Volterra series: It is obvious that the NOFRFs are an extension of the

= = n FRF to the nonlinear case, as wher=1, G (jo)
y(k) nz:;y”(k) ;;h”(r”)li;[u(k 7) @ =G (jw) reduces to the FRF of a linear system.

where y, (k) denotes a degreepolynomial functional of The NOFRFs of higher orders are generally dependent

. on the system input_ang and Billings, 2005)However,
u(k), h(z,)=h(z.....7,) is the degreen kernel. different systems have different NOFRFs when probed by

Functionals can be described in the frequency domainthe same input. Consequly, the NOFRFs evaluated

using integral transforms such as the thdransform or  under the same input can be exploited to reveal the
the normalised Discrete-Time Fourier Transform (DTFT). differences between systems in the frequency domain. This

For example, the normalised DTFT of (k) can be is the fundamental idea of the NOFRFs based system
described as_ang and Billings, 1996) frequency analysis.
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Based on these ideas, a general approach for the analysis The concept of the ALEs ag proposed in~eijoo et al
of nonlinear systems in the frequency domain using the(2005, 2006) but the available results about the

NOFRFs can be proposed as follows. construction of ALEs can only be used for a special
(i) Find an NARX model of the nonlinear system. differential equation model known as the Duffing model
(i) Determine the NOFRFs of the system from the In order to apply the above idea of the NOFRFs evaluation

NARX model under a probing input dependent on the to a much wider class of nonlinear systems, an important

specific application. theoretical result about the ALEs of the NARX model (6)
(iii) Analyze the system in the frequency domain from the and (7) ifirst established in Proposition 1 below:

determined NOFRFs for the specific application

Proposition 1. The ALEs of the NARX model (6)(7) are

related objective. a series of linear differee equations described by:

In this approach, the nonlinear system identification
approachin (Billings, 2013) can be applied to complete
step (i) if the system differential equation model is not

available. This approach is known as the NARMAX \here

method that includes an integration of model structure
determination, parameter estimation, and model validation
and can produce a reliable NARX model as has been
demonstrated in many real applicatiofisilings, 2013).
The NOFRFs based system analysis in step (iii) is
generally application dependent. The focus of the present
study is therefore to investigate how to determine the
NOFRF up toan arbitrary order from an NARX model for
a given probing input in step (ii).

In order to resolve this problem, a new algorithm will be
developed to enable an accurate evaluation of the NOFRFs
up to an arbitrary order of interest in the following.

3. Determining the NOFRFs of the NARX model up to
an arbitrary order of interest

Consider a general ponnomiaI NARX model

Ay, (k) =Bu(k) @
Ay, (k)=v,(k);n>2 (12)
- icmwm(k)z prdolK) (12)
[1.p(mD): 13)

_HI 1H1 =1 ml J)'
y/m(k):Hu(k—l)q(m') (14)

¢m(k)=ﬁHyk(k—l)“““"’” (15)

J =n- Z[ ml+ o mhj+1 (16)

and S, is the set of all non-negative integer solutions of

the linear Diophantine system

Ay (k Z (6)

where
=ﬁy(k—|)p(m")u(k—I)q(m') @

p(ml) and gq(m1) represent the non-negative integers

I

Zr(m,l,j):p(m,l) v )
Zz i-Yr(ml,j)=3,-1 (18)

Proof. SeeAppendix A
Proposition 1 implies that given the ordar of the

such thatq(ml)+ p(ml)>1, and A and B denote  system nonlinearity, the ALE of the NARX model (6)(7)

linear time shifting operators such that: can be obtained biyrst solving the Diophantine equations
L (17)-(18) tofind S, and then building the right-hand side
+> ay(k-1) (8)  of equation (11) fromS,, and equations (12)-(16).
1=1

Having established the ALEs (10)(11), theth order

L
= Hh u k— | 9) NOFRF can readily be evaluated as follows.

New Algorithm for the Computation of NOFRFs

It is worth noting that the Wiener and Hammerstein 1
models of nonlinear systenisVills et al., 2013) are the
special cases of the NARX model (67) (Billings 2013).

The basic idea of the new algorithm for the evaluation of
the NOFRFs comes from the observation that:

e The n-th order NOFRF can directly be obtained from
the ratio of the normalised DTFT of the-th order

system outpul, (jo) and then-th order generalized
input spectrun (je), and
e The n-th order system outpuyn(k) can be deter-

Write down then -th order ALEs, using Proposition :
for n={1,...,N}. N is the maximum order of syste
nonlinearity of interest.

Forn={1,...,N}

2.1.  Solve then-th order ALE for y, (k)
2.2.  ComputeY,(jw)=DF {y,(k)}At
2.3.  ComputeU, (jo)=DF {u,(k)}At
2.4.  ComputeG,(jo)=Y,(jo)/U, (o)

mined by solving a set of differea equations known
as the Associated Linear Equations (ALEs) of the
system.

Preprint submitted to Automatica 3

This new method can obviously determine the NOFRFs
up to an arbitrary high ordé&t and for any probing input.

It is worth pointing out that, the NOFRFs evaluated
under a sinusoidal probing input are input independent and
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can directly réect the systems’ intrinsic behaviorsPeng  nonlinear parametek, , are identified using the input and

etal., 2007) the output data generated using model (19) and the
In Section 4, a case study will be discussed to b J g (19)

oo onlinear system identification method(illings, 2013
demonstrate the application of the new NOFRFs bas:ec[I For the s)[gecific case of ( g )
frequency analysis to the detection and quantification of _ _
cracks in cantilever beams, where the NOFRFs under a k, =1x10° N/mz’ k4_[0’ 2,3.5,5, TX B N

sinusoidal probing input will be used. and the sampling frequency df =1024 Hz the identified
4 A <ud NARX model are
. A casestu
y Ay(k)=Bu(K)+c Yy (k-1)+cy' (k-1)  (20)
4.1. Fault detection problem with cracked structures where
Ay(k)=y(k)+ k-1)+ k—2
Beam like structures are widely applied in engineering {Bzgkg—)t/l(u&—%y( e X ) (21)
practice and the fault detection of such structures is widely o _
concerned by researchef8eng et al., 2007Ma et al, with the model coefficients shown in Tab.1.
2016. A simple cantilever beam with crack is illustrated in Tab.1 NARX model coefficients undek, =1x10G N/ nf
Fig.]_ k4 %10 o o
° Detect and quantify the crack N/m* ax10 & by G cx1
o .
x G,(j) 0 0.9436 1.9797 -0.9807 -0.0938 -
o 2.0 0.9438 1.9797 -0.9807 -0.0935 1.7690
Inbut si na¢4>. System 35 0.9437 19797 -0.9807 -0.0935 3.1558
severity putsig identification _ 5.0 0.9436 1.9797 -0.9807 -0.0930 4.3261
| crack Evaluation 7.0 0.9435 1.9797 -0.9807 -0.0940 6.4804
of NOFRFs .
; G,(jo); In the next, the newly proposed NOFRFs based analysis
Output signa {V\NWW n=1i..N will be applied to the NARX models (20) to demonstrate
how the novel analysis can reveal the changes of the

Harmonic input .
Fig.1 The NOFRFs based fault detection of cracked beams System nonlinear .p.ara.metd(‘l S0 a.s to 'enable the
Cracks in beam like structurean often be detected by detection and quantification of cracks in cantilever beams.
analyzing the output spectra under a harmonic excitation .
(Ma et al., 2016)and the higher order super-harmonic 4-3- Evaluation of the NOFRFs
output spectrum is expected to be monotonously increase L
decrease along the increase of the severitya afack. (1)GI_Deterr;11|n§t|:F?Xofth§ ’/'I\LES he ALEs of th
However, there are many cracks that can generate more ©'Venthe model (20), the ALEs of the system up
complex output responses, making the output spectrund© 4th order are obtained as follows. Fos1:
analysis based detection of cracks not applicable in these Ayl(k)zblu(k—l) 2
situations(Zeng et al., 2017; Zhang et &017) _ o _ o _
This issue will now be addressed by using the NOFRFs Folr n=2 ' Jl _2, 2+1=1 a.nd S, =2-4+1=-1,
which are more sensitive to variations in nonlinear Yi€lding the Diophantine system:

characteristics in structural systerfigeng et al., 2007) {r(l,l,]): zand {0:4 3)
The basic idea of the NOFRFs based fault detection 0=0 0=-2
follows the three steps in Section 2.2. The procedure is : : ; ;
illustrated in Figl ang the details will be exglained in 'I_'he_flrst Diophantine  system has _only one solution
Sections 4.2-4.4. which isr(1,1,9) = 2, and the second Diophantine system
is inconsistent so that can be ignored. Consequently, the

4.2. The NARX model of cracked cantilever beams second order ALE can be obtained as

AY, (k) = Cly12 (k _1) (2)

In practice, the dynamic properties of a cantilever beam £\ _3 4 gimilar procedures can be followed to
with cracks can often be investigated by using a nonlinear
differential equation model with second and forth order Produce the 3rd and 4th order ALEs as

nonlinearities such a§Zhang et al., 2017; Zeng et ,al. Ay (k) =20y, (k=1 y,(k—-1) (B)
2017) and
9(0)+o5(1)+ k(B)+ kY () -ky () =u(t)  (19) Ay, (K) =cay.2 (K-1)+ 26,y,(K- D
In this case studyc=20 N/ms", k=1x1C N/m, k, ¥ (k=1)+C,y." (k-1) (26)
and k, are the model nonlinear parameters determined byrespectively.
crack characteristics. (2) Evaluation of the NOFRFs

According to the NOFRFs based approach for nonlinear Consider the case where system (20) is subject to the
system analysis proposed above, the NARX models of thesinusoidal inputu(t)= Asin(at) . From the ALEs of
cracked cantilever beam, under different values of system (20) determined above, the nonlinear output
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responsesy, (K), ..., yy (k) of the system are obtained monotonously increases with the increasekpf while
Then, the system output spectra contributed by up to theG,(j2a,) and G;(jm,) have no change with the
4th order system nonlinearity, namelyy,(ja,) , increase ofk, , indicating that the severity of cracks in the
Y,(i2w,), Ys(im,) . Y:(i3a,) . Y,(i2®,).Y,(j4w,) are ~ beam can be detected and quantified using the NOFRF
obtained by evaluating the normalised DTFT of G,(j2w,).

¥:(K)..... V4 (k). Consequently, the NOFRFG, (ja,) , For a comparison, the traditional frequency response

; ; ; method introduced i@hang et al. (2017is also applied to
GZ(JZ%)’ G3(Jw“) and G“(sz") are evaluated as quantify the increase of parametiey. The results are

Gi(] h):Yl(j-wh); Gz(-wh):Y3(j.wh); illustrated in Fig.3, indicating the second order super-
U(ja,) Us(jo,) 27 harmonic magnitudefy (j2e, )| of the system varies non-
G, (j2a,) = Y, (i2a,) . G,(j20,) - Y, (i20,) monotonically with the increase of the valuekgfand is
U,(i2m,)" " U,(j2e,) therefore not suitable for use to detect cracks in this case.

where U (ja,) , U,(j2e,) , Us(j®m,) . U,(j20,) are
obtained from evaluating the normalised DTFT of

u(k),uz(k), u*(K) andu®(k), respectively. In the present study, a new NOFRFs based approach for
i ; the analysis of nonlinear systems in the frequency domain
Moreover, f.ora.specmc @, the NOFRFs in _(27_) 4 has been proposed. The NOFRFs are a series of one-
evaluated, which is expettto produce an effective index gimensjonal representations for the frequency properties of
whose value increases/decreases monotonically with the,;niinear systems, which are a new extension of the well
severity of cracks so as to be able to be used to detect anghown FRF to ’the nonlinear case and have been
quantify the cracks in beam structures. successfully used by many researchers to study nonlinear
. properties of engineering systems and structures. Tive ne
4.4. The NOFRF based crack detection NOFRFs based nonlinear system analysis involves the
: I - : determination of the NARX model of a system and
The sinusoidal input with the magmtu_de AE1N and evaluation of the NOFRFs of the NARX mogel for the
the frequency ofe, =30rad/s, which is close to the ,ose of the system analysis. The core technique is a
resonant frequency of the system, is agpto the NARX  qye| algorithm derived in the present study that can
model of (20) to evaluat6,(j2a,) . Gs(j@,) and  accurately determines the NOFRFs of nonlinear systems
G,(j2m,) under five different values ofk, =[0, 2, up to an arbitrary order of interest, which has never been
35,5, 7x 16 M achieved before. The approach can be used for nonlinear
7 ' system frequency analyses for various purposes including,

5. Conclusions

4
81-8x10 . for example, condition monitoring, fault diagnosis, and
218 -G 2a,) : nonlinear modal analysis. A case study has been
§1;’, G J.m“) conducted, the results have demonstrated the potential
€771 —Gy(i2e,) application of the new NOFRFs based analysis to the
Log--——————— A detection and quantification of cracks in cantilever beam
o6 ] structures.

Sod | | 3
0.2 1 Appendix A. Proof of Proposition 1
% 1 > 3 4 5 6 7 - : :
Nonlinear parameteg N/m* — x10w© Substituting the Volterra Series model (1) into (6) and
Fig.2 The change of the NOFRFs with respeckjoat (7) yields: . "
=30 < —
B i A (k) =Bu(k)+ 2a R (K (A
E where
S E4| Fn(K) = (K)a,(K) (A.2)
£53 - (m)
L qm,
=38 W (K) =] Ju(k-T1) (A.3)
sz F 1=1
3= Ll w p(m)
g am(k)zn[ yj(k—l)j (A4)
0 =1\ j=1 )
6 1 2 3 4 5 6 In order to determine the -th order ALE, (A.2) is

7
i 0
Nonlinear parameterW/m*  x10° expanded to identify alh -th order terms and equate them

Fig.3 The change ofY (j2a,)| with respect tok, at to those of the same order on the left-hand side of (A.1).
o, =30rad < The products in (A.2) produce an expansion in terms of

The results are given in Fig.8howing thatG, (j2a, ) eachy, (k) as
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L o ((mii) and isi cancellation techniques in digital radio systems with
K)=>T[BMmDO] Ty, (k-1)""" (A5) nonlinear transmit amplifiers. Communications, 1EEE
1=1 j=1 Transactions on 37 (12), 1245-1253.
; e Khalil, H., 2002. Nonlinear Systems. Prentice Hall PTR.
Wherer(m,l,j) are nonnegative integers Lang, Z. Q. Bilings, S. A., 1996. Output frequency
p(m |)! characteristics of nonlinear systems. International Journal of
B(ml)= (A.6) Control 64, 1049-1067.

r(m,l, j)! Lang, Z. Q., Billings, S. A., 2005. Energy transfer propertics of
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—

I
5N
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