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Abstract 

The Nonlinear Output Frequency Response Functions (NOFRFs) are a concept which provides a new extension of the 
well-known concept of the Frequency Response Function (FRF) of linear systems to the nonlinear case. The present study 
introduces a NOFRFs based approach for the analysis of nonlinear systems in the frequency domain. It is well known that a 
nonlinear system can, under rather general conditions, be represented by a polynomial type Nonlinear Auto Regressive with 
eXogenous input (NARX) model. From the NARX model of a nonlinear system under study, the NOFRFs based approach 
for the frequency analysis of nonlinear systems involves solving a set of linear difference equations known as the 
Associated Linear Equations (ALEs) to determine the system nonlinear output responses and then the NOFRFs of the 
system up to an arbitrary order of nonlinearity of interests. The results enable a representation of the frequency domain 
characteristics of nonlinear systems by means of a series of Bode diagram like plots that can be used for nonlinear system 
frequency analyses for various purposes including, for example, condition monitoring, fault diagnosis, and nonlinear modal 
analysis. 
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1. Introduction 

The frequency domain approach of linear systems is the 
very basis of control, signal processing, and communi-
cation and has been applied in almost all science and 
engineering areas. The key concept associated with the 
linear system frequency analysis is the Frequency 
Response Function (FRF), which is the foundation of Bode 
diagrams, Nyquist stability criterion, modal analysis, filter 
designs, among other well-known and well-estabilished 
theories and methods. 

The direct extension of the FRF concept to the nonlinear 
case is known as the Generalized Frequency Response 
Functions (GFRFs) (George, 1959), which were proposed 
under the assumption that the output of the nonlinear 
systems under study can be described by a convergent 
Volterra series (Boyd and Chua, 1985). The difficulties 
with the practical application of the GFRFs are that the 
GFRFs can only be graphically studied up to the second 
order (Yue et al., 2005). This implies that the well-
established Bode or Nyquist diagram based frequency 
domain analysis cannot be generally extended to the 
nonlinear case. Therefore, although some specific 
applications can be found in literatures such as, e.g., in 
image processing (Ramponi, 1986), channel equalization 
(Karam and Sari, 1989) and fault detection (Tang et al., 
2010), a systematic approach for the analysis of nonlinear 
systems in the frequency domain that can be generally 
applied in practice still does not exist. 

It is worth mentioning that describing functions (Khalil, 
2002) are a traditional frequency domain analysis approach 
to nonlinear systems which only involve a one dimen-
sional function of frequency and have been used in 
practical nonlinear system control problems. However, 
describing functions are defined for specific nonlinear 
components and can only be applied in the context of 
simple control systems with an a priori given structure. 

Nonlinear FRF and associated nonlinear Bode plots 
(Pavlov et al, 2007, Rijlaarsdam et al. 2017) were introduced 
based on the exact evaluation of the bound on the output 
response of nonlinear systems under a harmonic excitation. 
These are the concepts of the nature and properties similar 
to that of the describing functions. 

In order to resolve these difficulties, researchers have 
made considerable efforts to develop new concepts that 
can capture the system essential features while keeping 
problem dimensionality low. Examples of such approaches 
are the best linear approximation (Schoukens et al., 2003), 
the High Order Sinusoidal Input Describing Functions 
(HOSIDF) (Nuij et al., 2006) and the Associated 
Frequency Response Functions (AFRFs) (Feijoo et al., 
2004). These approaches have also been applied to solve 
many engineering problems (Rijlaarsdam et al., 2012, 
2013; Feijoo et al., 2006). However, these approaches have 
many limitations. For instance, HOSIDF can only deal 
with sinusoidal inputs and require complex computations 
that must be repeated for each frequency of interest while 
AFRFs can be evaluated only when the differential 
equation model of the system under study is available. In 
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addition, these approaches have only been studied for 
simple and particular cases. It is difficult to assess the 
efficiency of these approaches in situations where systems 
are described by more general nonlinear models. 

The concept of Nonlinear Output Frequency Response 
Functions (Lang and Billings, 2005) - NOFRFs - is a new 
extension of the FRF to the nonlinear case. One of its most 
attractive feature is its one-dimensional nature, which has 
many advantages, as has been demonstrated by a wide 
range of studies (Peng et al., 2007; Lang and Peng, 2008). 
However, current applications of the NOFRFs use a Least 
Squares (LS) based method to evaluate the NOFRFs (Lang 
and Billings, 2005). This requires an appropriate selection 
of the maximum order of the system nonlinearity, which is 
sometimes difficult and may suffer from numerical issues. 
In addition, the method requires the system response data 
from several simulation or experimental tests, which may 
not be convenient for implementation. 

The present study is motivated by the need of addressing 
these problems. A systematic NOFRF-based approach for 
the nonlinear system frequency analysis is developed based 
on a polynomial type Nonlinear Auto Regressive with 
eXogenous input (NARX) model, which can either be 
obtained by discretizing the system’s nonlinear differential 
equation model or determined by a data driven system 
identification method (Billings, 2013). The work involves 
the derivation of an algorithm which solves a set of linear 
difference equations to determine the nonlinear output 
responses and then the NOFRFs of a nonlinear system up 
to an arbitrary order of interest.  

The results enable a representation of the frequency 
domain characteristics of nonlinear systems by means of a 
series of Bode diagram like plots that can be used for 
nonlinear system frequency analyses for various purposes 
including, for example, condition monitoring, fault 
diagnosis, and nonlinear modal analysis (Zhang et al, 
2016; Xia et al, 2017). The application of the proposed 
new analysis to the detection and quantification of cracks 
in a beam structure is finally demonstrated in a case study. 

2. The NOFRFs based approach for the analysis of 
nonlinear systems in the frequency domain 

2.1. Nonlinear Output Frequency Response Functions 
(NOFRFs) 

Let  y k  and  u k  respectively denote the output and 

input of a discrete time fading memory system (Boyd and 
Chua, 1985) with a zero equilibrium, and k  represent the 
discrete time. The system output response around the 
origin can be described by the Volterra series: 

       
1 1 1n

n

n n n i
n n i

y k y k h u k 
 

  

    Ĳ         (1) 

where  ny k  denotes a degree-n polynomial functional of 

 u k ,    1, ,n n n nh h  Ĳ  is the degree-n  kernel. 

Functionals can be described in the frequency domain 
using integral transforms such as the the Z  transform or 
the normalised Discrete-Time Fourier Transform (DTFT). 
For example, the normalised DTFT of  ny k  can be 

described as (Lang and Billings, 1996) 

 
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where the integration is carried out over the hyperplane 

1 n      with sf     , where sf  is the 
sampling frequency. 

The function    1j , ,n n n nH H  Ȧ  is the n -th 
order GFRF defined as the n -th order normalised DTFT 
of  n nh Ĳ  
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and  jU   is the DTFT of  u k . 

Definition 1. Let  u k  be the sequence of a finite 
energy signal. In the discrete time domain, the n -th order 
generalized spectrum of  u k  is defined as (Lang and 
Billings, 2005): 
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n i nn
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where DF  denotes the DTFT. 
Definition 2. The n -th order NOFRF is defined as 

(Lang and Billings, 2005): 
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where   is the frequency support of  jnU  , which can 

be determined using the results about the output 
frequencies of nonlinear systems (Lang and Billings, 
1996). 

The NOFRFs as defined in (5) have the following 
attractive properties. 

Property 1. (Lang and Billings, 2005) Let K  be  a non-
zero constant and  jnG   the n -th order NOFRF 

computed for  jU  . Then, the NOFRF computed for 

 jKU   are also  jnG  . 
Property 2. (Lang and Billings, 2005) The frequency 

support of  jnG  ,  jnY   and  jnU  , i.e., the 

frequency range where these functions of frequency are 
well defined, are the same. 

2.2. The NOFRFs based approach for the analysis of 
nonlinear systems in the frequency domain 

It is obvious that the NOFRFs are an extension of the 
FRF to the nonlinear case, as when 1n  ,  jnG   

 1 jG   reduces to the FRF of a linear system.  
The NOFRFs of higher orders are generally dependent 

on the system input (Lang and Billings, 2005). However,  
different systems have different NOFRFs when probed by 
the same input. Consequently, the NOFRFs evaluated 
under the same input can be exploited to reveal the 
differences between systems in the frequency domain. This 
is the fundamental idea of the NOFRFs based system 
frequency analysis. 
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Based on these ideas, a general approach for the analysis 
of nonlinear systems in the frequency domain using the 
NOFRFs can be proposed as follows. 
(i) Find an NARX model of the nonlinear system. 
(ii)  Determine the NOFRFs of the system from the 

NARX model under a probing input dependent on the 
specific application. 

(iii)  Analyze the system in the frequency domain from the 
determined NOFRFs for the specific application 
related objective. 

In this approach, the nonlinear system identification 
approach in (Billings, 2013) can be applied to complete 
step (i) if the system differential equation model is not 
available. This approach is known as the NARMAX 
method that includes an integration of model structure 
determination, parameter estimation, and model validation 
and can produce a reliable NARX model as has been 
demonstrated in many real applications (Billings, 2013). 
The NOFRFs based system analysis in step (iii) is 
generally application dependent. The focus of the present 
study is therefore to investigate how to determine the 
NOFRF up to an arbitrary order from an NARX model for 
a given probing input in step (ii). 

In order to resolve this problem, a new algorithm will be 
developed to enable an accurate evaluation of the NOFRFs 
up to an arbitrary order of interest in the following.  

3. Determining the NOFRFs of the NARX model up to 
an arbitrary order of interest 

Consider a general polynomial NARX model 

     
1

M

m m
m

Ay k Bu k c F k
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where 
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 ,p m l  and  ,q m l  represent the non-negative integers 

such that    , , 1q m l p m l  , and A  and B  denote 

linear time shifting operators such that: 
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It is worth noting that the Wiener and Hammerstein 
models of nonlinear systems (Wills et al., 2013)  are the 
special cases of the NARX model (6), (7) (Billings, 2013).  

The basic idea of the new algorithm for the evaluation of 
the NOFRFs  comes from the observation that: 
 The n -th order NOFRF can directly be obtained from 

the ratio of the normalised DTFT of the n -th order 

system output  jnY   and the n -th order generalized 

input spectrum  jnU  , and 

 The n -th order system output  ny k  can be deter-

mined by solving a set of difference equations known 
as the Associated Linear Equations (ALEs) of the 
system. 

The concept of the ALEs was proposed in Feijoo et al 
(2005, 2006) but the available results about the 
construction of ALEs can only be used for a special 
differential equation model known as the Duffing model. 
In order to apply the above idea of the NOFRFs evaluation 
to a much wider class of nonlinear systems, an important 
theoretical result about the ALEs of the NARX model (6) 
and (7) is fi rst established in Proposition 1 below: 

Proposition 1. The ALEs of the NARX model (6)(7) are 
a series of linear difference equations described by: 

   1Ay k Bu k                              (10) 

   ; 2n nAy k k n                           (11) 
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and mS  is the set of all non-negative integer solutions of 
the linear Diophantine system 

   
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, , ,
mJ

j

r m l j p m l l

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1 2
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mJL

m
l j

j r m l j J
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Proof. See Appendix A. 
Proposition 1 implies that given the order n  of the 

system nonlinearity, the ALE of the NARX model (6)(7) 
can be obtained by fi rst solving the Diophantine equations 
(17)-(18) to find mS  and then building the right-hand side 
of equation (11) from mS  and equations (12)-(16).  

Having established the ALEs (10)(11), the n th order 
NOFRF can readily be evaluated as follows. 
New Algorithm for the Computation of NOFRFs 
1. Write down then -th order ALEs, using Proposition 1, 

for  1, ,n N . N is the maximum order of system 
nonlinearity of interest.  

2. For  1, ,n N  

2.1. Solve the n -th order ALE for  ny k  

2.2. Compute     jn nY DF y k t    

2.3. Compute     jn nU DF u k t    

2.4. Compute      j j jn n nG Y U    

This new method can obviously determine the NOFRFs 
up to an arbitrary high order N and for any probing input. 

It is worth pointing out that, the NOFRFs evaluated 
under a sinusoidal probing input are input independent and 
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can directly reflect the systems’ intrinsic behaviors (Peng 
et al., 2007).  

In Section 4, a case study will be discussed to 
demonstrate the application of the new NOFRFs based 
frequency analysis to the detection and quantification of 
cracks in cantilever beams, where the NOFRFs under a 
sinusoidal probing input will be used. 

4. A case study 

4.1. Fault detection problem with cracked structures 

Beam like structures are widely applied in engineering 
practice and the fault detection of such structures is widely 
concerned by researchers (Peng et al., 2007; Ma et al., 
2016). A simple cantilever beam with crack is illustrated in 
Fig.1.  

Input signal

Output signal

Crack
NARX model

Evaluation

of NOFRFs

 j ;
1, ,

nG
n N




Detect and quantify the crack

Harmonic input

Crack 

severity

 jnG 

N
O

F
R

F
s
 

System 

identification

 
Fig.1 The NOFRFs based fault detection of cracked beams 

Cracks in beam like structures can often be detected by 
analyzing the output spectra under a harmonic excitation 
(Ma et al., 2016), and the higher order super-harmonic 
output spectrum is expected to be monotonously increase/ 
decrease along the increase of the severity of a crack. 
However, there are many cracks that can generate more 
complex output responses, making the output spectrum 
analysis based detection of cracks not applicable in these 
situations (Zeng et al., 2017; Zhang et al., 2017). 

This issue will now be addressed by using the NOFRFs 
which are more sensitive to variations in nonlinear 
characteristics in structural systems (Peng et al., 2007). 
The basic idea of the NOFRFs based fault detection 
follows the three steps in Section 2.2. The procedure is 
illustrated in Fig.1 and the details will be explained in 
Sections 4.2-4.4. 

4.2. The NARX model of  cracked cantilever beams 

In practice, the dynamic properties of a cantilever beam 
with cracks can often be investigated by using a nonlinear 
differential equation model with second and forth order 
nonlinearities such as (Zhang et al., 2017; Zeng et al., 
2017) 

           2 4
2 4y t cy t ky t k y t k y t u t          (19) 

In this case study, 120 N msc  , 31 10k   N m , 2k  

and 4k  are the model nonlinear parameters determined by 
crack characteristics.  

According to the NOFRFs based approach for nonlinear 
system analysis proposed above, the NARX models of the 
cracked cantilever beam, under different values of 

nonlinear parameter 4k , are identified using the input and 
the output data generated using model (19) and the 
nonlinear system identification method in (Billings, 2013).  

For the specific case of  
5 2

2 1 10 N mk   ,   10 4
4 0, 2, 3.5, 5, 7 10 N mk   , 

and the sampling frequency of 1024 Hzsf   the identified 
NARX model are 

       2 4
1 21 1Ay k Bu k c y k c y k            (20) 

where 
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with the model coefficients shown in Tab.1. 
Tab.1 NARX model coefficients under 5 2

2 1 10 N mk    
10

4
4

10
N m

k 
 6

1 10a   2a  1b  1c  4
2 10c   

0  0.9436 1.9797 -0.9807 -0.0938 - 
2.0 0.9438 1.9797 -0.9807 -0.0935 1.7690 

3.5 0.9437 1.9797 -0.9807 -0.0935 3.1558 

5.0 0.9436 1.9797 -0.9807 -0.0930 4.3261 

7.0 0.9435 1.9797 -0.9807 -0.0940 6.4804 
 

In the next, the newly proposed NOFRFs based analysis 
will be applied to the NARX models (20) to demonstrate 
how the novel analysis can reveal the changes of the 
system nonlinear parameter 4k  so as to enable the 
detection and quantification of cracks in cantilever beams. 

4.3. Evaluation of the NOFRFs 

(1) Determination of the ALEs 
Given the NARX model (20), the ALEs of the system up 

to 4th order are obtained as follows. For 1n  : 

 1 1 ( 1)Ay k bu k                           (22) 

For 2n  , 1 2 2 1 1J      and 2 2 4 1 1J      , 
yielding the Diophantine system: 

 1,1,1 2
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r 
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 and 0 4
0 2

                       (23) 

The first Diophantine system has only one solution 
which is  1,1,1 2r  , and the second Diophantine system 
is inconsistent so that can be ignored. Consequently, the 
second order ALE can be obtained as 

   2
2 1 1 1Ay k c y k                        (24) 

For 3, 4n  , similar procedures can be followed to 

produce the 3rd and 4th order ALEs as 

     3 1 1 22 1 1Ay k c y k y k                  (25) 

and 
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1 2 1

1 1
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respectively. 
 (2) Evaluation of the NOFRFs 

Consider the case where system (20) is subject to the 
sinusoidal input    sin hu t A t . From the ALEs of  
system (20) determined above, the nonlinear output 
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responses    1 , , Ny k y k  of the system are obtained. 
Then, the system output spectra contributed by up to the 
4th order system nonlinearity, namely,  1 j hY  , 

 2 j2 hY  ,  3 j hY  ,  3 j3 hY  ,  4 j2 hY  ,  4 j4 hY   are 
obtained by evaluating the normalised DTFT of 

   1 4, ,y k y k . Consequently, the NOFRFs  1 j hG  , 

 2 j2 hG  ,  3 j hG   and  4 j2 hG   are evaluated as 
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where  j hU  ,  2 j2 hU  ,  3 j hU  ,  4 j2 hU   are 

obtained from evaluating the normalised DTFT of 

  2 3, ( ), ( )u k u k u k  and 4( )u k , respectively.  

Moreover, for a specific h , the NOFRFs in (27) are 
evaluated, which is expected to produce an effective index 
whose value increases/decreases monotonically with the 
severity of cracks so as to be able to be used to detect and 
quantify the cracks in beam structures. 

4.4. The NOFRF based crack detection  

The sinusoidal input with the magnitude of 1 NA  and 
the frequency of 30 rad/sh  , which is close to the 
resonant frequency of the system, is applied to the NARX 
model of (20) to evaluate  2 j2 hG  ,  3 j hG   and 

 4 j2 hG   under five different values of 4 0, 2,k 
 10 43.5, 5, 7 10 N m .  
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Fig.3 The change of  j2 hY   with respect to 4k  at 

30 rad sh   

The results are given in Fig.2, showing that  4 j2 hG   

monotonously increases with the increase of 4k , while  

 2 j2 hG   and  3 j hG    have no change with the 
increase of 4k , indicating that  the severity of cracks in the 
beam can be detected and quantified using the NOFRF 

 4 j2 hG  . 
For a comparison, the traditional frequency response 

method introduced in Zhang et al. (2017) is also applied to 
quantify the increase of parameter 4k .  The results are 
illustrated in Fig.3, indicating the second order super-
harmonic magnitudes  j2 hY   of the system varies non-

monotonically with the increase of the value of 4k and is 
therefore not suitable for use to detect cracks in this case. 

5. Conclusions 

In the present study, a new NOFRFs based approach for 
the analysis of nonlinear systems in the frequency domain 
has been proposed. The NOFRFs are a series of one-
dimensional representations for the frequency properties of 
nonlinear systems, which are a new extension of the well 
known FRF to the nonlinear case and have been 
successfully used by many researchers to study nonlinear 
properties of engineering systems and structures. The new 
NOFRFs based nonlinear system analysis involves the 
determination of the NARX model of a system and 
evaluation of the NOFRFs of the NARX model for the 
purpose of the system analysis. The core technique is a 
novel algorithm derived in the present study that can 
accurately determines the NOFRFs of nonlinear systems 
up to an arbitrary order of interest, which has never been 
achieved before. The approach can be used for nonlinear 
system frequency analyses for various purposes including, 
for example, condition monitoring, fault diagnosis, and 
nonlinear modal analysis. A case study has been 
conducted, the results have demonstrated the potential 
application of the new NOFRFs based analysis to the 
detection and quantification of cracks in cantilever beam 
structures. 

Appendix A. Proof of Proposition 1 

Substituting the Volterra Series model (1) into (6) and 
(7) yields: 

     
1 1

M

j m m
j m

Ay k Bu k c F k


 

               (A.1) 

where 
     m m mF k k k                        (A.2) 
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k y k l
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 
  

 
              (A.4) 

In order to determine the n -th order ALE, (A.2) is 
expanded to identify all n -th order terms and equate them 
to those of the same order on the left-hand side of (A.1). 

The products in (A.2) produce an expansion in terms of 
each  jy k  as 
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r m l j

m j
l j

k m l y k l 


 

        (A.5) 

where  , ,r m l j  are nonnegative integers 
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                (A.8) 

(A.7) and (A.8) are known as a Diophantine system as 
all unknowns are integers and can be further simplified, for 
every possible l , to yield 
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Notice that, since  , , 0r m l j  , we must have mj J , 

so that mJ  can be used as upper limit to all summations 
and products in j , allowing system (A.7) and (A.8) to be 
rewritten as (17) and (18). 

Let mS  denote the set of all nonnegative solutions of 
(17) and (18). By taking only the n -th order terms from 
the expansion of (A.2), the n -th order ALE can be written 
as: 

     
1

; 1
M

n m m m
m

Ay k c k k n 

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       , ,

1 1

,
m

m
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Finally, by splitting the products in  m k  with respect 

to l , and defining m  and  m k  as (13) and (15), 
respectively, we obtain the n -th order ALE (11). 
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