1707.00407v1 [cs.SY] 3 Jul 2017

arxXiv

On Asymptotic Properties of Hyperparameter Estimators for
Kernel-based Regularization Methods *

Bigiang Mu ?, Tianshi Chen ", and Lennart Ljung ®

* Division of Automatic Control, Department of Electrical Engineering, Linkoping University, Linkoping SE-58183, Sweden

b School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China

Abstract

The kernel-based regularization method has two core issues: kernel design and hyperparameter estimation. In this paper, we
focus on the second issue and study the properties of several hyperparameter estimators including the empirical Bayes (EB)
estimator, two Stein’s unbiased risk estimators (SURE) and their corresponding Oracle counterparts, with an emphasis on the
asymptotic properties of these hyperparameter estimators. To this goal, we first derive and then rewrite the first order optimality
conditions of these hyperparameter estimators, leading to several insights on these hyperparameter estimators. Then we show
that as the number of data goes to infinity, the two SURESs converge to the best hyperparameter minimizing the corresponding
mean square error, respectively, while the more widely used EB estimator converges to another best hyperparameter minimizing
the expectation of the EB estimation criterion. This indicates that the two SUREs are asymptotically optimal but the EB
estimator is not. Surprisingly, the convergence rate of two SUREs is slower than that of the EB estimator, and moreover, unlike
the two SURESs, the EB estimator is independent of the convergence rate of CI>T<I>/N to its limit, where ® is the regression
matrix and N is the number of data. A Monte Carlo simulation is provided to demonstrate the theoretical results.
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1 Introduction

The kernel-based regularization methods (KRM) from
machine learning and statistics were first introduced
to the system identification community in Pillonetto &
De Nicolao (2010) and then further developed in Chen
et al. (2014, 2012); Pillonetto et al. (2011). These meth-
ods attract increasing attention in the community and
have become a complement to the classical maximum
likelihood/prediction error methods (ML/PEM) (Chen
et al., 2012; Ljung et al., 2015; Pillonetto & Chiuso,
2015). In particular, KRM may have better average ac-
curacy and robustness than ML /PEM when the data is
short and/or has low signal-to-noise ratio (SNR).

There are two core issues for KRM: kernel design and hy-
perparameter estimation. The former is regarding how to
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parameterize the kernel matrix with a parameter vector,
called hyperparameter, to embed the prior knowledge of
the system to be identified, and the latter is regarding
how to estimate the hyperparameter based on the data
such that the resulting model estimator achieves a good
bias-variance tradeoff or equivalently, suitably balances
the adherence to the data and the model complexity.

The kernel design plays a similar role as the model struc-
ture design for ML /PEM and determines the underlying
model structure for KRM. In the past few years, many
efforts have been spent on this issue and several ker-
nels have been invented to embed various types of prior
knowledge, e.g., Carli et al. (2017); Chen et al. (2014,
2016, 2012); Dinuzzo (2015); Marconato et al. (2016);
Pillonetto et al. (2016, 2011); Pillonetto & De Nicolao
(2010); Zorzi & Chiuso (2017). In particular, two system-
atic kernel design methods (one is from a machine learn-
ing perspective and the other one is from a system theory
perspective) were developed in Chen & Ljung (2016) by
embedding the corresponding type of prior knowledge.

The hyperparameter estimation plays a similar role as
the model order selection in ML/PEM and its essence
is to determine a suitable model complexity based on
the data. As mentioned in the survey of KRM Pillonetto
et al. (2014), many methods can be used for hyperpa-
rameter estimation, such as the cross-validation (CV),
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empirical Bayes (EB), C), statistics and Stein’s unbiased
risk estimator (SURE) and etc. In contrast with the nu-
merous results on kernel design, there are however few
results on hyperparameter estimation except Aravkin
et al. (2012a,b, 2014); Chen et al. (2014); Pillonetto &
Chiuso (2015). In Aravkin et al. (2012a,b, 2014), two
types of diagonal kernel matrices are considered. When
®T®/N is an identity matrix, where ® is the regression
matrix and N is the number of data, the optimal hy-
perparameter estimate of the EB estimator has explicit
form and is shown to be consistent in terms of the mean
square error (MSE). When ®7®/N is not an identity
matrix, the EB estimator is shown to asymptotically
minimize a weighted MSE. In Chen et al. (2014), the EB
with linear multiple kernel is shown to be a difference
of convex programming problem and moreover, the op-
timal hyperparameter estimate is sparse. In Pillonetto
& Chiuso (2015), an unbiased estimator of MSE was in-
troduced and used as a measure to evaluate the perfor-
mance of the EB estimator and two SUREs: one for im-
pulse response reconstruction and the other one for out-
put prediction, and the robustness issue by introducing
the so-called excess degree of freedom was considered.

In this paper, we study the properties of the EB esti-
mator and two SUREs in Pillonetto & Chiuso (2015)
with an emphasis on the asymptotic properties of these
hyperparameter estimators. In particular, we are inter-
ested in the following questions: When the number of
data goes to infinity,

1) what will be the best kernel matrix, or equivalently,
the best value of the hyperparameter?

2) which estimator (method) shall be chosen such
that the hyperparameter estimate tends to this
best value in the given sense?

3) what will be the convergence rate of that the hyper-
parameter estimate tends to this best value? and
what factors does this rate depend on?

In order to answer these questions, we employ the regu-
larized least squares method for FIR model estimation
in Chen et al. (2012). As a motivation, we first show that
the regularized least squares estimate can have smaller
MSE than the least squares estimate for any data length,
if the kernel matrix is chosen carefully. We then derive
the first order optimality conditions of these hyperpa-
rameter estimators and their corresponding Oracle coun-
terparts (relying on the true impulse response, see Sec-
tion 3.2 for details). These first order optimality condi-
tions are then rewritten in a way to better expose their
relations, leading to several insights on these hyperpa-
rameter estimators. For instance, one insight is that for
the Oracle estimators, for any data length, and without
structure constraints on the kernel matrix, the optimal
kernel matrices are same as the one in Chen et al. (2012)
and equal to the outer product of the vector of the true
impulse response and its transpose. Moreover, explicit
solutions of the optimal hyperparameter estimate for two
special cases are derived accordingly. Then we turn to the
asymptotic analysis of these hyperparameter estimators.
Regardless of the parameterization of the kernel matrix,
we first show that the two SUREs actually converge to

the best hyperparameter minimizing the corresponding
MSE, respectively, as the number of data goes to infin-
ity, while the more widely used EB estimator converges
to the best hyperparameter minimizing the expectation
of the EB estimation criterion. In general, these best hy-
perparameters are different from each other except for
some special cases. This means that the two SUREs are
asymptotically optimal but the EB estimator is not. We
then show that the convergence rate of two SURESs is
slower that of the EB estimator, and moreover, unlike
the two SURES, the EB estimator is independent of the
convergence rate of ®7'® /N to its limit.

The remaining parts of the paper is organized as fol-
lows. In Section 2, we recap the regularized least squares
method for FIR model estimation and introduce two
types of MSE. In Section 3, we introduce a couple of
widely used parameterizations of kernel matrix and six
hyperparameter estimators, including the EB estima-
tor, two SURESs, and their corresponding Oracle coun-
terparts. In Section 4, we derive the first order optimal
conditions of these hyperparameter estimators and put
them in a form that clearly shows their relation, leading
to several insights. In Section 5, we give the asymptotic
analysis of these hyperparameter estimators, including
the asymptotic convergence and the corresponding con-
vergence rate. In Section 6, we illustrate our theoretical
results with a Monte Carlo simulation. Finally, we con-
clude this paper in Section 7. All proofs of the theoret-
ical results (propositions, corollaries and theorems) are
postponed to the Appendix.

2 Regularized Least Squares Approach for FIR
Model Estimation

Consider a single-input single-output linear discrete-
time invariant, stable and causal system

y(t) = Go(g Hu(t) +v(t), t=1,....,.N (1)

where ¢ is the time index, y(t), u(t), v(t) are the output,
input and disturbance of the system at time ¢, respec-
tively, Go(g~!) is the transfer function of the system
and ¢~ ! is the backshift operator: ¢~ tu(t) = u(t — 1).
Assume that the input u(¢) is known (deterministic)
and the input-output data are collected at time instants
t =1,---,N, and moreover, the disturbance v(t) is a
zero mean white noise with variance o2 > 0. The prob-
lem is to estimate a model for G (¢~ 1) as well as possible
based on the the available data {u(t — 1), y(¢)}¥ ;.

The transfer function Go(g~!) can be written as

Gola™) =Y gl ", (2)

k=1

where g2,k = 1,--- ,00 form the impulse response of
the system. Since the impulse response of a stable linear
system decays exponentially, it is possible to truncate
the infinite impulse response at a sufficiently high order,



leading to the finite impulse response (FIR) model:
ngq F0=lg, 90" €R™.(3)

With the FIR model (3), system (1) is now written as

y(t) =" ()0 +o(t), t=1,...,N

where ¢(t) = [u(t — 1), ,u(t — n)]¥ € R, and its
matrix-vector form is
Y = ®6 +V, where (4)
=[y(1) y(n +2)--- y(N)"

[6(1) ¢(n+2) -+ ¢(N)]"
(1) v(n +2) - o(N))".

Y
o
v

The well-known least squares (LS) estimator

'S = argmin ||Y — ®6)° (5a)
OcR™
~ @T3) o7y, (5b)
where || - || is the Euclidean norm, is unbiased but may

have large variance and mean square error (MSE) (e.g.,
when the input is low-pass filtered white noise). The
large variance can be mitigated if some bias is allowed
and traded for smaller variance and smaller MSE.

One possible way to achieve this goal is to add a regular-
ization term o267 P~16 in the LS criterion (5a), leading
to the regularized least squares (RLS) estimator:

6% = argmin ||Y — ®|]> + o267 P10 (6a)
geRn

=P3T(dPOT + 5%IN)"Y (6b)

where P is positive semidefinite and is called the kernel
matrix (02 P! is often called the regularization matrix),
and I is the N-dimensional identity matrix.

Remark 1 Aswell known, the RLS estimator (6b) has a
Bayesian interpretation. Specifically, assume that 60 and
v(t) are independent and Gaussian distributed with

6~ A(0,P), wv(t)~N(0,0%), (7)

where P is the prior covariance matriz. Then 6 andY are
jointly Gaussian distributed and moreover, the posterior
distribution of 0 given 'Y is

)Y ~ .4 (6%, PR)

g% = POT(0PDT + o2Iy) 'Y

PR =P — P (®PDT + 0%Iy) 'DP.

Two types of MSE could be used to evaluate the perfor-
mance of the RLS estimator (6b). The first one is the

MSE related to the impulse response reconstruction, see
e.g., Chen et al. (2012); Pillonetto & Chiuso (2015),

MSEg(P) = E(||0™(P) — 6o]?), (8)

where E(-) is the mathematical expectation and 6y =
[99,---, g% with g0, i = 1,...,n, defined in (2). The
second one is the MSE related to output prediction, see
e.g., Pillonetto & Chiuso (2015),

N

MSEy(P Z

()60 +v*(t) —5t) 7|, (9)

where (t) = ¢T(t)8%(P) and v*(t) is an independent
copy of the noise v(t). Interestinly, the two MSEs (8)
and (9) are related with each other through

MSEy(P)="Tr(E(% —0,)(6% )" ®T®) + No?, (10)
where Tr(+) is the trace of a square matrix. Moreover,
they have explicit expressions, which are given in the
following proposition.

Proposition 1 For a given kernel matriz P, the two
MSEs (8) and (9) take the following form

MSEg(P) = |[P&"Q ' ®6y — ||
+ *Tr(POT Q'@ ToPT) (11)
MSEy(P) = || P37 Q1 @0y — ®y||> + No?
+*Tr(PRTQ Q" ToPTd™) (12)
Q= dPd" +o?Iy. (13)

2.1 RLS estimator can outperform LS estimator

It is interesting to investigate whether the RLS estimator
(6b) with a suitable choice of the kernel matrix P can
have smaller MSEs (8) and (9) than the LS estimator
(5b). The answer is affirmative for MSEg (8) and for
the ridge regression case, where P~ = (3/0?)I,, with
8 > 0, Hoerl & Kennard (1970); Theobald (1974). In
what follows, we further show that this property also
holds for more general P for MSEg (8) and MSEy (9).

Proposition 2 Consider the RLS estimator (6b) and
the LS estimator (5b). Suppose that P~ = BA/o?, where
B > 0 and A is positive semidefinite. Then for a given
A, there exits 8 > 0 such that (6b) has a smaller MSEg
(8) and MSEy (9) than (5b). Moreover, if A is positive
definite, then (6b) has a smaller MSEg (8) and MSEy
(9) than (5b) whenever 0 < 8 < 202 /(6FAby).

Proposition 2 shows that for any data length NV, the RLS
estimator (6b) can have smaller MSEg (8) and MSEy (9)
than the LS estimator (5b) with a sufficiently small reg-
ularization “in any direction” and this merit motivates
to further explore the potential of the RLS estimator
(6b) by careful design of the kernel matrix P.



3 Design of Kernel Matrix and Hyperparame-
ter Estimation

The regularization method has two core issues: kernel
matrix design, namely parameterization of the kernel
matrix by a parameter vector, called hyperparameter,
and the hyperparameter estimation.

8.1 Parametrization of Kernel Matriz

For efficient regularization, the kernel matrix P has to
be chosen carefully. It is typically done by postulating a
parameterized family of matrices

P(n), neQCR?, (14)

where 7 is called the hyperparameter and the feasible set
Q of n is assumed to be compact. The choice of parame-
terization is a trade-off of the same kind as the choice of
model class in identification: On one hand it should be
a large and flexible class to allow as much benefits from
regularization as possible. On the other hand, a large set
requires larger dimensions of 7, and the estimation of
these comes with their own penalties (much in the spirit
of the Akaike’s criterion). Since P is the prior covariance
of the true impulse response, the prior knowledge of the
underlying system to be identified, e.g., exponential sta-
bility and smoothness, should be embedded in the pa-
rameterized matrix P(n).

A popular way to achieve this goal is through a parame-
terized positive semidefinite kernel function. So far, sev-
eral kernels have been invented, such as the stable spline
(SS) kernel (Pillonetto & De Nicolao, 2010), the diagonal
correlated (DC) kernel and the tuned-correlated (TC)
kernel (Chen et al., 2012), which are defined as follows:

akJerrmax(k,j) s max(k,j)
SS - ij(n)_c< 5 - 6 >,
n=[cal eN={c>0,0<a<1}; (15)

DC: Pyy(n) = cal+)/2pl=H,
n=[ca,pleQ={c>0,0<a<l|p| <1} (16)
TC: Py;(n) = camxkd)
n=lcae={c>0,0<a<1}. (17)

3.2 Hyperparameter Estimation

Once a parameterized family of the kernel matrix P(n)
has been chosen, the task is to estimate, or “tune”, the
hyperparameter 1 based on the data.

Several methods are suggested in the literature, see e.g.,
Section 14 of Pillonetto et al. (2014), including the em-
pirical Bayes (EB) and SURE methods. The EB method
uses the Bayesian interpretation in Remark 1. Under the
assumption (7), it follows that Y is Gaussian with mean
zero and covariance matrix ®7 P(n)® + 0?Iy. As a re-
sult, it is possible to estimate the hyperparameter n by

maximizing the (marginal) likelihood of Y, i.e.,

EB: g = arg rgin Frs(P(1n)), (18)
ne
Fep(P) =YTQ7'Y +logdet(Q). (19)

where @ is defined in (13) and det(-) denotes the deter-
minant of a square matrix. The SURE method first con-
structs a Stein’s unbiased risk estimator (SURE) of the
MSE and then estimates the hyperparameter by mini-
mizing the constructed estimator. Two variants of the
SURE method were considered in Pillonetto & Chiuso
(2015), which construct the SURES for MSEg(P) in (11)
and MSEy(P) in (12), and are referred to as SUREg and
SUREYy, respectively:

Fs(P) = ||0%S — 0% (P)|]* + o*Tr (2R~ — (@7 ®) 1)
_ 0’4YTQ_T‘I>(‘I>T‘I>)_2‘I>TQ_1Y
+?Tr(2R™'— (@7®) 1) (20)
Fsy(P)=||Y— ®6%(P)|?+20°Tr(0POTQ 1)
=o'YTQ Q'Y +20°Tx(@PRT Q") (21)
R=3"0 +o°P L. (22)

Then the hyperparameter 7 is estimated by minimizing
the SUREg (20) and SUREy (21):

SUREg : 7js; = argmin .Zg.(P(n)), (23)
ne

SUREy : 7jgy = arg min Fg,(P(n)). (24)
neQ

In the following sections, we will study the properties
of the above three estimators EB, SUREg and SUREy.
To set reference for these estimators, we introduce their
corresponding Oracle counterparts that depend on the
true impulse response 6:

MSEg : Tmsgg = arg rgin E[Fss(P(n)]
ne
= arg min MSEg(P(n)), (25)
neN
MSEy : iusgy = arg rginE[ﬂsy (P(n))]
ne
= argmin MSEy(P(n)), (26)
neN
EEB : jgpp = arg fgin E[Fes(P(n))]
ne
= argmin EEB(P(n)), (27)
neQd
EEB(P) = 0307 Q ' ®0y+0*Tr(Q ") + log det(Q),
(28)

where MSEg(P) and MSEy(P) are defined in (11) and
(12), respectively.

The hyperparameter estimators (25) and (26) give the
optimal hyperparameter estimates in the corresponding
MSE sense and thus provide reference when evaluating
the performance of hyperparameter estimators.

Remark 2 Among these hyperparameter estimators,
only SUREg (23) depends on (®T®)~1. When (&7 @)1



is ill-conditioned, SUREg (23) should be avoided for
hyperparameter estimation. One may also note that
(®@T®)~1 in the second term is independent of P and
thus can actually be removed in the calculation.

Remark 3 [t is interesting to note that the first terms
of Fsg(P), Fsy(P), and Frp(P) given in (20), (21),
and (19) contain the same factors Y and Q~'. Moreover,
similarto (10), Fsg(P) and Fsy(P) are related with each
other through

Fsy(P) = Te{ (8% 0% (P)) (6" —0"(P))"
+o*2R™ ' —(2"2) )] o o}
+YT0(0"7®) oY —YTY —no?. (29)

independent of the kernel matrix P

In what follows, we will investigate the properties of
the hyperparameter estimators EB, SUREg, and SUREy
and their corresponding Oracle estimators EEB, MSEg
and MSEy. Before proceeding to the details, we make,
without loss of generality, the following assumption.

Assumption 1 The optimal hyperparameter estimates

Nse: Nsy, TEB, IMSEg, IMSEy and g are interior points
of 2.

Remark 4 To justify Assumption 1, we take the DC
kernel as an erxample. For the case where either ¢ = 0
ora =0, P(n) = 0 and thus (6b) is trivially 0. For the
case where o = 1, this violates the stability of the system.
For the case where |p| = 1, the coefficients of the impulse
response is perfectly positive or negative correlated, but
this is impossible for a stable system. In fact, more formal
justification regarding this assumption can be found on
(Pillonetto & Chiuso, 2015, p. 115), which shows that the
measure of the set containing all optimal estimates lying
on the boundary of Q) is zero and thus can be neglected
when making almost sure convergence statement.

4 Properties of Hyperparameter Estimators:
Finite Data Case

In this section, focusing on the finite data case we first
give the first order optimality conditions of the hyper-
parameter estimators and then we consider two special
cases for which closed-form expressions of the optimal
hyperparameter estimates are available.

4.1 First Order Optimality Conditions

The optimal hyperparameter estimates 7jsg, fjsy, and gs

n (23), (24), and (18) should satisfy the first order op-
timality conditions if they are interior points of 2. For
convenience, we let 4" to denote one of the following esti-
mation criteria Fgg, Fsy, FEB, MSEg, MSEy or EEB.
Then the corresponding optimal hyperparameter esti-
mate is a root of the system of equations:

9% (P(n))

rraial (30)

By the chain rule of compound functions, we have

Tr (aif) (agg))T> —0,1<i<p. (31

where the symmetry of P is not considered, that is, the
elements of P are treated independently. Clearly, the
term agg) is irrespective of the parameterization of P
and its explicit expressions for the estimation criteria

(20), (21), and (19) are available.

Proposition 3 The first order partial derivatives of
(20), (21), and (19) with respect to P are, respectively,

agsifp) _ _204(I)TQ7T(I)((I)T(I))72(I)TQ71YYTQ7T(I)
+ootHTH " (32)
853;;3(13) :_204(I)TQ7TQ71YYTQ7T(I)
+20'0TQ T T (33)
0Fen(P) SIBJ(P ) _eTQTYYTQ TP 4+ 07O T, (34)
H = PoT® + 51, H=3dTdP + 0%I,. (35)

Similarly, the partial derivatives of MSEg(P), MSEy (P),
and EEB(P) with respect to P are also available.

Proposition 4 The first order partial derivatives of
(11), (12), and (28) with respect to P are, respectively,

OMSEg(P T _

7@5( ) _ oot TH 0T T QT
+20'HTH'POTQ T® (36)

OMSEy(P) o _

—p = 20'0TQ TQ ' ®h 0l dTQ "D
+20*0TQ T toPdTQ " Td (37)

OEEB(P _ _

7313( ) aTQ Ta6,670TQ T

+oTQ TorPTdTQ To. (38)
where H is defined in (35).

In order to better expose the relation among the partial
derivatives derived in Propositions 3 and 4, we define

S=P+c*(dT®)" L (39)

With the use of (39) and the identities (B.49)—(B.51) in
the appendix, we rewrite the partial derivatives derived
in Propositions 3 and 4 as follows.

Corollary 1 The partial derivatives derived in Proposi-
tions 3 and 4 can be rewritten as follows:

OMSEg(P)

o 204571 (@T®) 25 (P — 0008 )S™T

(40)



0F3g(P)

S5 =205 (®T2) 25T (5 — 65 (0)T) 5™
(41)
78MS;IJZ(P) =205 T(®T®) 'SP — 0065 ) S~
(42)
aySV(P) :2045—T((I)T(1))—15—1 (S _ é\LS(é\LS)T)S—T
P
(43)
aEgi];(P) =S T(PT —9,00)Ss~ T (44)
0FeB(P) _ 1 (or _ ALS GLS\T\ o—T
5P =85S —6(0)") s, (45)

It follows from Corollary 1 that the difference between
the partial derivatives of Fgq(P), Zsy(P), Frs(P) and
that of their Oracle counterparts is that the factor S —
gLs (é\LS)T is replaced by P — 6062". Moreover, the differ-
ence between the partial derivative of Fg,(P) and that
of Zsy(P) is that there is one extra factor (7 ®)~1. The
difference between the first order derivative of Zgy (P)
and that of Zgp(P) is that there is one extra factor
o (®T®)"1S~1 = 20*H~1. The above relations extend
to the partial derivatives of their Oracle counterparts.

Remark 5 It is important to note from Propositions 3
and 4 that only the first term of aysg(P) depends on the

possibly ill-conditioned (®T®)~1 Wzth the use of S in
(39), all partial derivatives of the hyperparameter esti-
mators seemingly depend on the possibly ill-conditioned
term (®T®)~1. However, it should be stressed that the
partial derivatives derived in Corollary 1 are not intended
for numerical calculation but for theoretical analysis and
for better exposition of the relation among the partial
derivatives derived in Propositions 8 and 4.

Remark 6 The kernel matriz P is in general assumed to
be symmetric. In this case, we have ST = S and thus the
partial derivatives derived in Corollary 1 can be simplified
accordingly.

OMSEg(P) _ ) OMSEg(P) _ 0, and QE%?D(P) —0

Setting ,
in Corollary 1 leads to the next proposition.

Proposition 5 The optimal kernel matriz that mini-
mizes MSEg(P), MSEy(P), and EEB(P) without struc-

ture constraints on P is

P =006 (46)

It was found in Chen et al. (2012) that (46) minimizes the

MSE matrix E(B® — 60)(6® — 6,)7 in the matrix sense.
Here we further find that (46) is optimal for MSEg(P),
MSEy(P) and EEB(P), and for any data length N.

Remark 7 It seems that S — /Ls(é\LS) =0, e, P=

gLs (@“S) o?(®T®)~! is a possible candidate for the
optimal matriz minimizing SUREg(P ), SUREy(P), and

EB(P ). However, this is not true, since this kernel matriz

would make S = @“S(@“S)T singular and SUREg(P),
SUREy(P), and EB(P) take the value of —oc.

In general, there is no explicit expression of these hyper-
parameter estimators. However, there exist some specific
cases, for which it is possible to derive the explicit solu-
tion based on Corollary 1. In the following, we consider
two special cases.

4.2 Ridge Regression with ®T® = N1,

We let P(n) = nl, with n > 0 and assume ®7® = NT,,.
Then we have the following result.

Proposition 6 Consider P(n) = nl, with n > 0. Fur-
ther assume that ®T® = N1,,. Then we have

(éIS)TéIS 2
7)sg = N)sy = 7JEB = mMax (0, f - N) (47)

Moreover,
MSEg = TMsEy = Tees = 0 0o /7. (48)

Remark 8 It is worth noting that the optimal hyperpa-
rameter 0% 0 /n holds for any N. Moreover, one has

TLO’2 ’fLO'2

MSEg(03 0p/nl,) = 5 < ——,
8l o/nln) = o Ty = W

where no? /N is equal to the MSEg of the LS estima-
tor (5b). This means that the ridge regression with P =
0F00/nl, has a smaller MSEqg than the LS estimator (5b)
when ®T® = N1I,,. Finally, (47) is a consistent estima-

tor of 0100 /n zf/LS — 6y as N — oo.
4.8 Diagonal Kernel Matriz with ®T® = N1,

We let P(n) be a diagonal kernel matrix (in this case we
have p = n.), i.e.,
P(n) = diag[m, - ,nn] withn; >0, 1 <i<mn. (49)
where 71, - - , 7, are the main diagonal elements of the
diagonal matrix diag[n,---,n,]. Then under the as-
sumption ®T'® = N1,,, we have the following result.

Proposition 7 Consider P(n) in (49). Further assume

that ®T® = N1,,. Then we have
ﬁSg = ﬁSy = ﬁEB = [max{(),’g\%—a2/]\]},
qmax{0,52—0%/N}]" (50)

where g; is the i-th element of the LS estimate (5b),
1=1,...,n. Moreover,

T
nMSEg—nMSEy TEEB = [(9?)2= T (92)2} (51)



Remark 9 In the papers (Aravkin et al., 2012b, 2014),
the linear model (4) but with a slightly different setting
is considered, where the parameter 0 is partitioned into
m sub-vectors § = [0V ... 00T and the dimen-
sion of 0 s n; so that n = 2111 n;. In addition, the
prior distribution of 0 is set to be A (0,1;1,,) and n;
is an independent and identically distributed exponen-
tial random variable with probability density p(n;) =
~yexp(—vyn; )x(n:) where v is a positive scalar and x(t) =
1 fort > 0 and 0 otherwise. Under the setting given
above, the solution maximizing the marginal posterior
density of n given the data and the optimal solution of
the MSEg are derived in Aravkin et al. (2012b, 2014)
when ®T® = NI,,. Whenn; =1 fori=1,---,m and
v =0, their solutions become (50) and (51), respectively.
In contrast, we study here the SUREg, SUREy, MSFEy,
and EEB estimators other than the EB and MSEg estima-
tors and find their solutions are the same under the sim-
plified setting, respectively. Clearly, max{0,g? — o?/N}
is a consistent estimator of (¢)%,i=1,...,n.

5 Properties of Hyperparameter Estimators:
Infinite Data Case

In this section, we investigate the asymptotic properties
of these hyperparameter estimators. For this purpose,
it is useful to first consider the asymptotic property of
the partial derivatives derived in Corollary 1. Noting the
finding of Corollary 1 under (45) and that § — 65 (§-5)T
converges to P — 0] under proper conditions, we can
derive the following Proposition.

Proposition 8 Consider the partial derivatives de-
rived in Corollary 1. Assume that P is nonsingular and
®T®/N — ¥ almost surely as N — oo, where ¥ is
positive definite. Then we have as N — 0o

NﬂaMiifg”_+m#p—Tz—%T4<P—aﬁ§ﬂ*T(5%
N?%ﬁjp) =20 P~ TN 2P Y (P-0000)P~T  (53)
NaM%Eg(P) =20 PSP~ (P—0,0L P~T (54)
Na‘g‘\;ﬁp) =20 P~ TR P (P00 P~T  (55)
e (56)
07 SIBD(P ) =P T(PT—0,07\ P~ (57)

almost surely.

Proposition 8 shows that the three pairs, szsaLpg(P)

and N2%§5(P), and NaMSaLg(P) and N%}(P), and

OE%};(P) and 8&75}33(13), have respectively the same limit

as N goes to co. This observation motivates to explore
if this property also holds for the estimation criteria of
these hyperparameter estimators. The answer is affirma-
tive and we have the following result.

Proposition 9 Consider the hyperparameter estima-
tion criteria SUREg (20), SUREy (21), and EB (19),
and their corresponding Oracle counterparts MSEg (11),
MSEy (12), and EEB (28). Assume that P is nonsingu-
lar and ®T®/N — ¥ almost surely as N — oo, where ¥
1s positive definite. Then we have as N — oo

N%(MSEg(P) — o*Tr((®@7®)™1)) — W, (P, %, 8)) (58)
NQ(ySg(P) - UQTT(((I)T(I))il)) - Wq(Pv Ev 6‘0)7 (59)

N(MSEy(P) — (n+ N)o?) — W, (P, %, 0) (60)
N(Zsy(P)+YT0(0T0) 10Ty —YTY — 2n0?)
— W,(P,%, ), (61)

EEB(P) — (N —n)

— (N_n) 10g0’2—10gd6t((1)T(1))—>WB(P7 90)7 (62)
Fep(P)+ YT O(@T0)0TY/0? — YTY/o?

— (N —n)log 0'2—1Og det((I)T(I)) —Wg(P,b), (63)

almost surely, where

W,(P,%,60) = c*0t P~T272P 710,

— 20Ty (271 PIE Y, (64)

W, (P, %, 00) = c*0f P~T2~1 P14,
— 20Ty (271 P7Y), (65)
Wg(P,6p) = 6L P~0y + log det(P). (66)

Remark 10 For these hyperparameter estimation cri-
teria, Wy (P, %, 6p), Wy (P, X, 00) and Wg(P,0y) contain
all information about the asymptotic benefits of reqular-
1zation: how it depends on any kernel matrixz P, any true
impulse response vector 0y and any stationary properties
of the input covariance matriz 2.

Proposition 9 enable us to derive asymptotic properties
of these hyperparameters estimator for any parameter-
ization P(n) of the kernel matrix. Moreover, it also im-
plies that the estimators 7)sg, 7sy, and jgp possibly share
the same limits with their corresponding Oracle coun-
terparts ﬁMSEgy ﬁMSEyy and ﬁEEB7 respectively.

To state the result, we need an extra assumption. It is
worth to note that the limit functions Wy(P(n), X, 6p),
Wy (P(n),%,60) and Wg(P(n),60p) may not have a
unique global minimum, respectively. In this case, the
analysis of how minimizing elements of a sequence of
functions My (n) converge to the minimizing element of
the limit function lim My (n), i.e.,

“limargmin My (n) = argminlim My (n)”,  (67)

where My (n) denotes any function on the left hand-
side of “—” in (58) to (63), follows the same idea as for
prediction error identification methods, see, e.g. Lemma
8.2 and Theorem 8.2 in Ljung (1999). Accordingly, it
is useful in this context to let “argmin” denote the set
of minimizing arguments in case where W, (P(n), 3, 6p),
Wy (P(n),%,6) and Wg(P(n),0y) do not have a unique

global minimum, respectively,:

argmin M (1) = {nln € @, M(n) = min M(r)}, (68)

RS



where M (n) could be any one of Wy(P(n),X%,60),
Wy (P(n), %, 6p) and Wg(P(n), 0o).

Now we define

My = argmin W (P(n), 2, 60), (69)

ny = argmin W, (P(n), %, 6), (70)
neN

ng = argmin Wi (P(n), 0p). (71)
neQ

and the assumption we need can be stated as follows.

Assumption 2 The setsny,n, andnp are discrete, i.e.,
made up of only isolated points, respectively.

Then we have the following theorem.

Theorem 1 Assume that P(n) is any parameterization
of the kernel matriz such that P(n) is positive definite
and moreover, ®T®/N — X almost surely as N — oo,
where ¥ is positive definite. Then we have as N — oo

ﬁMSEg — 77;7 ﬁSg — 77;7 (72)
ﬁMSEy — 77;7 ﬁSy — 77;7 (73)
NEEB = N5, TEB — N5, (74)

almost surely. Moreover, 0z, ng, and ng are a root of the

system of equations, respectively, i =1,...,p:
e - _10P
1 (P) 2720 (Pln) — 6088 Py 20 ) =,
e - _10P
(P ) (0 - ) 2 ) o

8P(n)):0'

T (PO (POo) — 00 Pn) =5,

The Oracle estimators Nviskg and Nviseg are optimal for
any data length IV in the average sense if we are con-
cerned with the ability to reproduce the true impulse
response and predict the future outputs of the system
respectively, while the SUREg 7js and the SUREy 7jsy
are not optimal in general. Surprisingly, a nice property
of s and 7jsy is that they converge to the best possible
hyperparameter 7, and 7y, respectively, for any chosen
parameterized kernel matrix P(n). It is so to speak that
the two SURE methods are “asymptotically consistent
or asymptotically optimal”. This means that when NV is
sufficiently large, fjgg and 7jsy perform as well as vseg
and 7usky, respectively. It is also worth noting that even
with increasing number of data the EB estimator 7)gg has
another preference than to minimize MSEg and MSEy.

Remark 11 In contrast withWy (P, %, 6p) and W, (P, X, 0y),

a unique property of Wi (P,0y) is that it does not de-
pend on the limit > of ®T® /N . This can to some extent
explain why the EB estimator is more robust than the
SUREqg and SUREy, when ®T® is ill-conditioned. In-
terested readers can find experimental evidence for this

in Pillonetto & Chiuso (2015). However, in contrast
with the SUREg and SUREy, the EB estimator is not
asymptotically optimal.

Remark 12 The different expressions of the limit func-

tions Wy (P(n), %, 6p), Wy (P(n), X, 00), and Wg(P(n), 0y)
imply that the optimal hyperparameters ng, 1y, and ng

may be different. To check this, we consider the ridge

regression case, where P = nl,, with n > 0. In this case,

(69), (70) and (71) become

ot 204 oF'x—20
f= in — 00 20— ——Tr(87?%) = L2
Mg arglglzuol 20 0 7 r( ) Tr(%-2)
4 4 Ty—1
“ _ aremin T Ty -1g.— 2% -1y = D20
1y = argmin = 05 X" ; (X)) = Tr(1)’

n = argmin 6 6o /1 + log ™ = 65 fo/n.
n>

which shows that 1, ng and ng can be different. Clearly,
when 3 = dI, withd > 0, ny =0} = ng.

Corollary 2 Assume that T ®/N — dI,, almost surely
with d > 0 and P(n) is any positive definite parameteri-
zation of the kernel matriz. Then we have

T = 1y = arg min g P(n) 6o — 2Tx(P(n) "),
"
ng =argmin 62 P(n) ™6y + log det(P(n)).
neQd

and further ng and ng are roots of the following system
of equations, respectively:

Tr(P(n)*Q(P(n) — 605 ) P(n) ™! on;

-1 oP(n)
om;

Tr(P(n)’l(P(n) — 0067 ) P(n) ) —0,i=1,....p.

In addition, for the diagonal kernel matriz (49), we have

* T
ne =y =g = [(g))% -, (90)°]

In Theorem 1, we have considered the convergence of
those hyperparameter estimators. In fact, we can further
derive their corresponding convergence rate. To this end,
we let {y = op(an) denote that the sequence {{n/an}
for nonzero sequence {ax} converges in probability to
zero, i.e., Ve > 0,P(|én/an| > €) — 0 as N — oo,
while éx = Op(an) denote that {x/an} is bounded in
probability, i.e., Ve > 0,3L > 0 such that P(|¢x/an| >
L) <€, YN. Then we have the following theorem.

Theorem 2 Assume that |[®T®/N — 3| = O,(6n),
where || - || denotes the Frobenius norm for a square ma-
triz, Sy — 0 as N — oo and P(n) is any positive definite
parameterization of the kernel matriz. Then we have

[vsee — ngll = Op(@n), [liisg = ngll = Op(pn), (75)
lsey = 13ll = Op(@n), llisy = 05|l = Op(pn), (76)
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Fig. 1. Boxplot of the 1000 fits for the bandlimited white Gaussian noise input with the normalized band [0, 0.6] and boxplot
of the condition numbers of the matrix ®7 ®: data lengths N = 500 (left) and N = 8000 (right).
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e —ngll = Op(1/N), |ies — 15l = Op(l/\/N?)?a

wy=max (0,(0n),0p(1/N)),
[N =max (Op((SN)a Op(l/\/]v))'

Theorem 2 shows that the convergence rate of Jggp and
MeB to nf depends only on the fact ®T®/N — ¥ as
N — o0 (#7® = O,(N)) but not on the rate ||®T®/N —
Y|l = O,(6n). Moreover, we have

e the convergence rate of g to 7y is faster than
that of ysgg to 1 and that of NMsEy to 75

e the convergence rate of g to 1y is faster than that
of 7jsg to 7y and that of 75y to 7y.

e the convergence rate of fusgg, NvsEy and Nees to
N, Ny and ng, respectively, is faster than that of
7sg, sy and Mep to 1y, 7y and g, respectively.

Theorem 2 has the following corollary.

Corollary 3 Assume that |[®T®/N — 3| = O,(dn),
where dy — 0 as N — oo and P(n) is any positive

definite parameterization of the kernel matriz. Then

||77MSEg - 77Sg|| = OP(IUN)v (80)
||77MSEy - USyH = OZD(:UN)a (81)
||77EEB - 77EB|| = Op(l/\/ﬁ), (82)

where uy is defined in (79).

This corollary shows that the convergence rate of
| TeEB —EB|| to zero is faster than that of ||7MmsEe — 7sg ||
and ||nvsey — Tsy || to zero.

6 Numerical Simulation

In this section, we illustrate the theoretical results with
numerical simulation.

6.1 Test data-bank

The method in Chen et al. (2012); Pillonetto & Chiuso
(2015) is used to generate 1000 30th order test systems.



Then for each test system, we consider four different test
inputs:

e The first two test inputs are implemented by the
MATLAB command idinput choosing the ban-
dlimited white Gaussian noise with normalized
bands [0, 0.6] and [0, 1], respectively, and denoted
by IT1 and IT2, respectively.

e The third and fourth test inputs are the white Gaus-
sian noise of unit variance filtered by a second order
rational transfer function 1/(1 —ag~')? with a cho-
sen to be 0.95 and 0.05, respectively, and denoted
by IT3 and IT4, respectively.

To generate the data set, we simulate each system with
one of the four test inputs to get the output, which is
then corrupted by an additive white Gaussian noise. The
signal-to-noise ratio (SNR), i.e., the ratio between the
variance of the noise-free output and the noise, is uni-
formly distributed over [1,10], and is kept same for the
four test inputs.

Finally, in order to test the finite sample and asymptotic
behavior of the hyperparameter estimators, we consider
data sets with different data lengths N = 500 and 8000,
respectively.

0.2  Simulation Setup

The performance of the RLS estimator (6b) is evaluated
by the measure of fit (Ljung, 2012) defined as follows :

n

> g

k=1

[ _
_ 16—l G =
(60 — o]

where n is set to 200. This fit is actually to evaluate the
RLS estimator in the MSEg sense.

S|

Fit = 100 x (1

The TC kernel (17) is considered and its hyperparam-
eter 1 = [c,a]T is estimated by using the estimators
SUREg (23), SUREy (24), and EB (18), respectively.
For reference, we also consider their corresponding Ora-
cle counterparts, i.e., the estimators MSEg (25), MSEy
(26), and EEB (27), respectively. The notations Sg, Sy,
EB, MSEg, MSEy, and EEB are used to denote the cor-
responding simulation results, respectively.

6.3  Simulation results

The average fits are given in Table 1. The boxplots of
the 1000 fits for IT1 and IT2 are displayed in Figs. 1-2,
respectively. The boxplots for IT3 and IT4 are skipped
because of their similarity with IT1 and IT2.

6.4 Findings

Firstly, for all tested cases and in terms of average accu-
racy and robustness, the Oracle estimators MSEg and
MSEy (not implementable in practice) are better than
Sg and Sy, respectively, while EB is just a little bit worse
than but very close to its Oracle estimator EEB.
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Table 1
Average fits for 1000 test systems and data sets.

MSEg Sg MSEy Sy EEB EB
IT1
N=500 80.34 -24E9 78.07 53.83 77.98 77.26
N=8000 90.63 -8.6E8 88.08 78.39 88.39 88.36
T2
N=500 87.11 84.46 87.02 86.03 86.60 86.16
N=8000 96.67 96.60 96.67 96.60 96.47 96.44
IT3
N=500 46.95 -2220 41.61 -146.4 39.47 39.03
N=8000 57.67 -176.8 53.63 38.86 51.05 50.86
T4
N=500 86.78 83.89 86.69 85.66 86.24 85.84
N=8000 96.57 96.49 96.56 96.49 96.38 96.35

Secondly, we consider the cases with input IT1, where
®T'® is very ill-conditioned for both N = 500 and N =
8000. In this case and in terms of average accuracy and
robustness, Sg performs badly because it depends on
(®T'®)~1. Moreover, Sy is better than Sg, but worse than
EB.

Thirdly, we consider the case with input IT2 and N =
500, where ®7® is much better conditioned than the
cases with input IT1. In this case and in terms of aver-
age accuracy and robustness, Sg behaves much better in
contrast with the cases with input IT1. Moreover, EB
and Sy are quite close though EB is a little bit better,
and they are all better than Sg.

Lastly, we consider the case with input IT2 and N =
8000, where ®7® is very well-conditioned and in terms
of average accuracy and robustness, Sg behaves much
better in contrast with all the other cases, and performs
as well as Sy and better than EB. Moreover, Sg and Sy
are very close to the corresponding Oracle estimators
MSEg and MSEy. These observations coincide with the
results found in Theorem 1 and Corollary 2. Namely, Sg
and Sy are asymptotically optimal but EB is not in the
MSEg/MSEy senses and moreover, Sg and Sy give the
same optimal hyperparameter estimate as their Oracle
counterparts MSEg and MSEy, because the limit > = I,
of T ®/N as N — oo. It can also be seen from Figs. 1
and 2 that the boxplots of EEB and EB is closer than
that of MSEg and Sg and that of MSEy and Sy. This
observation coincides with the result found in Corollary
3, that is, the convergence rate of |Jrgp — NEp|| to zero
is faster than that of HﬁMSEg — ﬁsg” and HﬁMSEy — ﬁsyH
to zero.

7 Conclusions

Kernel matrix design and hyperparamter estimation are
two core issues for the kernel based regularization meth-
ods. In contrast with the former issue, there are few re-
sults reported for the latter issue. In this paper, we fo-
cused on the latter issue and studied the properties of



several hyperparameter estimators including the empir-
ical Bayes (EB) estimator, two Stein’s unbiased risk es-
timators (SURE) and their corresponding Oracle coun-
terparts, with an emphasis on the asymptotic properties
of these hyperparameter estimators. Our major results
are the following:

e The first order optimality conditions of these hy-
perparameter estimators are put in similar forms
that better expose their relation and lead to several
insights on these hyperparameter estimators.

e As the number of data goes to infinity, the two
SURESs converge to the best hyperparameter min-
imizing the corresponding mean square error, re-
spectively, while the more widely used EB estima-
tor converges to another best hyperparameter min-
imizing the expectation of the EB estimation crite-
rion. This indicates that the two SUREs are asymp-
totically optimal but the EB estimator is not.

e The convergence rate of two SUREs is slower than
that of the EB estimator, and moreover, unlike the
two SURESs, the EB estimator is independent of the
convergence rate of ®7'®/N to its limit, where ® is
the regression matrix and N is the number of data.

The results enhance our understanding about these hy-
perparameter estimators and is one step forward towards
the goal of building a theory of the hyperparameter es-
timation for the kernel-based regularization methods.

Appendix A

Appendix A contains the proof of the results in the pa-
per, for which the technical lemmas are placed in Ap-
pendix B. The proofs of Propositions 1, 5, 6, 7,and 8
and Corollaries 1, 2, and 3 are straightforward and thus
omitted.

A.1  Proof of Proposition 2

Under the setting P~1 = 8A/0?, the MSEg (11) of the
RLS estimator (6b) is a function of S for a given A:

MSEg(3) = Bias(3) + Var(3) where (A1)
Bias(3) = 5203 AT (@7 ® + BA) (@7 ® + BA) Afy,
Var(8) = o*Tr (@7 @ + BA) 10T @(07 @ 4 BA) ).

Note that MSEg(0) = o?Tr((®7®)~!) corresponds to
the MSEg of the LS estimator (5b). The derivatives of
Bias(3) and Var(8) with respect to 8 are as follows:

dBi%;(m = 2607 AT(®T® + fA) 1 (®TD + FA) 1 Aty
— 26267 AT (@D + FA)LABTD + fA) !

X (BT® + BA) "L Ay (4.2)

%ﬁ;m = —202Tr((7® + BA) L A(@T P + BA) !

x T (@T P+ BA)!) (A.3)
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)

where the formula dCT =-CYB) %ﬁf)cil (B) for

an invertible matrix C'(8) is used. Then we have

dBias(/5) ’ B
dg  Ig—o+

dVar(B) B T o T oan—
Tﬂ‘@—ﬂw = —2.°Tr((@7®) 1 A(®T D)) < 0

where Lemma B2 in Appendix B is used. Therefore, we

dMSEg(8) ;
15 ‘6—>0+ < 0. This means that MSEg(5) <

MSEg(0) in some small right neighborhood of the origin
g =0.

have

Under the assumption that A is positive definite, denote

M(B) £ E(B™ — 00) (0% — 6p)".

We first prove M(0) — M(8) > 0 for 0 < 8 <
202 /(02A0,). A straightforward calculation gives

M(0) — M(B)
=02 (®T®) ' — *(@T P + pA) 1T (@7 D + BA) !
— BXHDT® + BA) L A0 0L A(DTD + BA)!
=B(®"® + BA) ' (0?24 + BA(DT @) A] — BAOO; A)
x (@T® + BA)L.

As a result, to prove M (0) — M(B) > 0, it suffices to
show

0224 + BA(PTD) 1Al — BAOHT A >0 (A.4)

which is true if 2021, — BAY20,0% AY/? > 0 due to

0224 + BA(PT D)1 A] — BAGHL A
> 202 A — BAGHL A
= AY2(20°1, — BAY20,0F AV A2 > 0.

In addition, the eigenvalues of A'/20,0% A'/2 are 6F A6,
and zero (with multiplicity n—1). This shows 2021, —
BAYV2000F A2 > 0 for 0 < B < 20%/(0Aby).

Note that MSEg(83) = Tr(M(3)). One has proved that
M(0)—M () is positive definite if 0 < 8 < 202 /(62 Afy),
so we have MSEg(0)—MSEg(8) =Tr(M (0)—M (8)) > 0.

The proof for the MSEy (12) is similar to that for the
MSEg (11) by using the connection (10).

Remark 13 When 5 — oo, from the MSEg (A.1) we
have

1) Bias(8) — 676y and 1222 — o,
2) Var(f) — 0 and %ﬁ;ﬁ) — 0,

3) MSEg(8) — 6% 6 and M5Ps(@)

7 — 0.



A.2  Proof of Proposition 3

We first prove (34). Using the formulas (B.40) and (B.41)

derives that

0FuB(P)
oP

0Qi;
i 9P

_ Z ( _ Q_TYYTQ_T + Q_T)

=-0"QTYY'Q "o+ 2" Q "0,
To prove (32), let us set

Fse, (P) ='YTQ To(0T0)207Q 'Y
Fsg,(P) = 0°Tr(2R™ — (@7 @) 71).

By (B.39) and (B.42), the derivative of .Zg,, (P) is

aySgl (P)

o =0 > (2e(@"e)2eTQ YY)

]

:—2042 o(@T0)20TQ YY) ;0T Q T, T

i OP

=—204<I>TQ To@To) 207 'yYTQ T®. (A5)

and using (B.54) implies the derivative of Zg_, (P)

8‘/Sg2 _20_22

:204P’TR’TR’TP’T = 204H’TF_T. (A.6)
Combining (A.5) with (A.6) derives (32).

Finally, let us prove (33). Similarly, by using (B.52) we
write (21) as

Fsy(P) =a*YTQ TQ7'Y + (20°N — 2 Tr(Q™1))
:ySm(P) + ySYQ(P)'

By (B.39) and (B.53), the derivative of Zg_, (P) is

0.Fs,,(P)

55 :042(2Q*1YYT)Z__M

i 9P
- 2042 1YYT @TQ’TJZ-J-Q’Tq)
=— 2a4<I>TQ To-lvyyToTe (A7)

and by using (B.43) the derivative of Zg ,(P) is

=20'0TQTQ 1. (A.8)
The equations (A.7) and (A.8) implies (33).
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Q)i

A.8  Proof of Proposition 4:
It follows from (6b) that

% —6, = R'oTY — 0,
= —0?R7'P7 Y9, + R 0TV
=—0*H Y9y + R TV,

which derives

MSEg(P) = o*0l H-"H 10y + o*Tr(R'®TOR™T)
= MSEgl(P) + MSEg2(P).

For the term MSEg1(P), using the formulas (B.39) and
(B.42) gives

OMSEgl(P) - O(H1),.
—p— = ot ; (2H 19095)”87PJ
=o'y (2H 6005, (— H " J;H "o ®)
i
=—20"H TH 90 H-"0" ®
=-—20"H TH 9,07 0T Q " o. (A.9)

By using the formulas (B.44) and (B.54), one derives

MSERP) _ > (en a0, 0 (fzpl)ij

=0’y (2R*1<I>TL<I>)ij(azP*TR*TJin’TP*T)

= 204;*TR*TR*1<I>T<I>R*TP*T

=20'H"TH'POTQ "o. (A.10)
%g)nbining (A.9) with (A.10) implies the conclusion

In the following, we intend to prove (37). Let us set

MSEy;(P) = | ®P®TQ '@, — &b, |? + No>
=0l dTQ " TQ'®0y + No?

MSEy2(P) = o*Tr(€PTQ '@ "oP ™)
=o*Tr((In—0*Q "IN -a’Q™")).

By using (B.39) and (B.53), one obtains

OMSE,: (P) _
571? =0t Z; (2Q " 665 ®7)

=20'Q 1 ®0y0% T (—dTQ T J,;Q T D)
= 20'0TQ Q0O 0l T QT . (A.11)

8(Q_1)ij

For the term MSEys(P), using the formulas (B.44) and
(B.53) derives

MSE g
# 22 In — 020 1))UT7



=20") (Iv - 0°Q7"), (09" Q" J;Q " ®)
1,9

_ 20_4(I)TQ7T (IN _ O_QQ*I)Q*T(I)
=20*0TQTQ oPoTQ 1. (A.12)
Combining (A.11) with (A.12) implies the assertion (37).

At last, we prove (38), which is derived by

OEEB(P) _ _ T
—p :;(_Q Toht5 0T Q" —0?QTQ T
_r 0Q;
T 2
+Q )ij oOP

=-0TQ To000f dTQTO + T QT (Iy — *Q®
=-0TQ 10 dTQ "o+ dTQ TePTOTQ "D

in terms of (B.40), (B.41), (B.43) and (B.52).
A.4  Proof of Proposition 9

Under the assumptions that ®7®/N — ¥ > 0 and the
white noise v(t), we have (®T®)~t = O,(1/N) — 0,
S~! 5 P71 NR! ¥ RTTP — I, and O —
0y almost surely as N — oo.

Let us first prove (58). Using (39), we rewrite MSEg(P)
in (11) as follows:

MSEg(P) = o0 ST (®T®)=257 14,
+o*Tr(R'oTOR™T).

Noting Tr(X~!P71Y71) = (21 P~TE~1) and

N?*(R7'®TeR™T — (@7 @) )
=—o’N*R™H (P '+ P T4a?P 1 (") P )R
— -2 (Pl Tx ! (A.13)

yields that

N%(MSEg(P) — o*Tr((®T®)71))
= o9l S~T(N?(®T®)~2)S 716,
+*N*Tr(R'@"eR™T — (27 0) 1)
=00y P~TE 2P0y — 20Ty (2 PTIETY)
=W, (P, %, 6)). (A.14)

To prove (59), note that the first term of .Fg,(P) can
be rewritten as o4 (-5)7 57 (®7®) =25~ 1915 Thus one
derives

N?*(Fsg(P) = " Tr((@7@)7))
:0,4 (éIS)TS_TN2((I)T(I))_2S_1§LS
+20°N°Tr(R™ = (@7®) ")

—W, (P, 0) (A.15)
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where we use the limit

N (R '—(®T®)™") = -’ NR'P!N(®T®)!

i VY S Y
Similarly, we can rewrite MSEy(P) as

MSEy(P) = 60 S~ T(®7®)~ 15719y + No?
+Tr(R'e"eR 0" ) (A.16)

and hence the assertion (60) is proved by

N(MSEy(P)—(n+N)o?)
=o*0F ST N(®T®)"1 S 14,
+*NTr(R'e"TeR "o 1,) (A.17)
—W, (P, %, 6)

where we use the formulas

NR'oToRrToT® - 1,)
=—’NR '[P '+P T+o’P 1 (@"®) ' P TR 0T D
— o2 (P4 P

and Tr(S~1P~1) = Tr(P~Tx~1) = Ty(2-1P-7).

To prove (61), we need some identities. A straightfor-
ward calculation shows that

QT (Iy —®(@Td) 'o)Q = o' (Iy — ®(dT®) 10T,
This means that

QT (Iy —o@Td) e Q = Iy— o(0Td) ToT
and hence we derive

cYTQTQ 'y +YTo(0oTo) 1o’y —vTY
_ O_4yTQ—T(I)((I)Tq))—1(I)TQ—1Y

It follows from (B.49) and (B.52) that

N[Zsy(P)+YT®(@"®) ' @"Y — Y'Y — 2n0?]
=N[o'Y'Q T®(®"®) ' Q 'Y+25°Tr(R™'®"®—1,)]
=N[o?(@")T S T(@T®) 1S 105+ 20> Tr(R &7 D~ 1,,)]
—W,(P,%,6) (A.18)
where we use the limit

NR'®T® - 1,) = —¢>NR'P7! = —¢*2 P71

Similarly, we need two identities to prove (62). Using
the Sylvester’s determinant identity det(l,, + AB) =
det(In + BA) derives

det(Q) = o>V~ det(®T @) det(P + o2 (®Td) 1)



which implies

log det(Q) — (N — n)logo? — log det(®T'®)

=logdet(S) — logdet(P). (A.19)

Starting with the identity Iy =02Q ' +®P®T Q! gives

?Tr(Q™) = N — Tr(ePdTQ ™)
=N-Tr(R'®T®) = N —n.

Therefore, the limit (62) is proved by
EEB(P)— (N —n)— (N —n)logo®~log det(®” )
— 075 00+ (0P THQ ) — (N — )

+log det(Q) — (N — n)log o® — log det(®” @)
— 0 P~10y + log det(P) = Wg(P, ). (A.20)

At last, we finish the proof by checking (63). The identity
QIy — (@Td) 10T /0?2 = Iy — ®(dTd) 1T
implies that
YIQ 'y +YTo(@Te) 1o’y /o? — YTY/0?
=YTQ'o@T®)'oTY. (A.21)
It follows from (A.19), (A.21), and (B.49) that
Fep(P) +YTo(0T0) 10"y /o ~YTY/0?
— (N —n)logo? —logdet(®T @)
=YTQ 'y +v'o@"®) 'oTY/o* — Y'Y /0?
+logdet(Q) — (N —n)logo? — log det(dT®)

=YTQ'®(®"®) 1dTY + logdet(S)

—Ws(P,0). (A.22)

A.5  Proof of Theorem 1

Firstly, we prove jusgg — 7 as N — oc. Define
MSEg(P) £ N2(MSEg(P) — o> Tr((#7®)™")). (A.23)
Clearly, we have fmsgg also minimizes MSEg(P(n)), i.e.,

vseg = arg min MSEg(P(n)).
neQ

Under Assumption 1, there exists a compact set

QcCQ (A.24)

containing 7; such that 0 < di < [[P(n)]| < d2 < o0

for all n € Q. Then by Lemma B4 in Appendix B, to
prove fisgg — 7, as N — oo, it suffices to show that

MSEg(P(n)) converges to Wy (P(n), X, 6y) almost surely
and uniformly in Q, as N — oo.
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It follows from (A.14) and (A.13) that

SEg(P(n)) — Wy (P, X, 60)
=0'Z1 + 20" Tr(25) — o°Tr(Z3), (A.25)
Zy =08 STT(N?(@T®)"2)S 10y — oF P~ T2 P10,
Zy =%"'p7lel - N2RTIPTIRTT (A.26)
Z3y=—N?R'P~}oT®)"'Pp~ TR T,

For the term Z;, we have

Zy =00 (S7T — P~T)Y(N?*(@T®)"2)S 16,
+ 0t PT(N2(@T®) 2 — 73S,
+olP~Ty=2(S7 — P~ Hh, (A.27)

where

St pt=_g*s(@TP) Pl (A.28)

Note that ®T®/N — ¥ implies that | N(®T®)71|| =
Op(1). Then further noting that di < ||P(n)|| < d2 and
IS~ < [(P()) =l < 1/dy for n € Q, we have Z;
converges to zero almost surely and uniformly in Q. For
the term Z5, we have

SpiyT - N*ROIPTIRTT
=S ' -NR HPISTI 4 NRIPTHET -NRTT).
Noting NR™' — X~! and [NR™! — 71| = 0,(1)
yields that Zs converges to zero almost surely and uni-
formly in Q. Finally, by noting (#7®)~! — 0 as N — oo
it is easy to see that Zs also converges to zero almost

surely and uniformly. Making use of these facts shows
that MSEg(P(n)) converges to Wy (P(n),%,6p) almost

surely and uniformly in €2 and hence, by Lemma B4,
vsEg — 7, as N — oo almost surely.

Secondly, we prove that 7jsg — 75 as N — oo and the
proof is similar to that of fsgg — 75 as N — oo. Define

Fsa(P(n) 2 N?(Fsg(P(n)) — > Tr((@7@)71)).
Then, we have

Nse = argmin Z sg(P(n)). (A.29)

neN

It follows from (A.15) that

Fsg(P()) — Wy(P,%,00) = 0 21 + 20" Tx(2),
Zi=(0"5)TS TN (@7 D) 2519 —gf PTR2P g
Zy=x"1P7 'yt - NRT'PTIN(®TD) L

For the terms Z] and ZJ, we have

7y =(0% — 6p)" S~IN? (@7 P) 25198
+0L (s T- P T)N?(@T®)"25 1915



+ 9§P*T(N2(q>Tc1>)*2 ~272) 5719

+OTP TR (57 - p)ets

+olp~Ty=2p- (9 ) (A.30)
Zy=(2"'=NR ") P'e!

+NR'PHET - N(@T®)TY).  (A31)

Then, noting that 95 — gy, S—1 — P~1, N(®7®)~!
“LNR™! — ¥71 almost surely as N — oo, and
INR™L| = 0,(1), 0% = 0,(1), and dy < [|P(n)] <
da, |S() 7 < [|(P(m))~*]| < 1/dy, for € ©, one can
show that each term of (A.30) and (A.31), and thus both
Z} and Z! converge to zero almost surely and uniformly

in Q. Therefore, Zs4(P(n)) converges to W, (P, %, )

almost surely and uniformly in Q. It then follows from
Lemma B4 that 7js; — 73 almost surely as N — oo.

The proof of (73) and (74) can be done similarly and thus
is omitted. The first order optimality conditions of ng, ny,
and 7g can be derived in a similar way as Proposition 4
and thus is omitted. This completes the proof.

A.6  Proof of Theorem 2

We first prove that ||vseg — (wn)-

77;” =0y
Noting (A.14), the i-th elements of the gradient vectors
of MSEg(P(n)) and W,(P(n),X,0y) with respect to n
are, respectively, for 1 <1 < p,

OMSEg(P(n)) 42T @ T Ty 2057
— = P _90*°N*“H [OR0)] —0
OR™!
2n2m (OB oo e
+2aNTr( 50 R )
-1
OWy(P0), 2:00) _ g yag7 p-ry2 00y
on; om;
LOP~ 1
— 4 -

2% TT(E - ) (A.32)
Usingtheidentity%L:—R_lg—ffiR_l 2R_18§m R,
we see their difference is
ONSEg(P(n)) _OW,(P(n),.00) _ . ,

_ { =20 (T1+Tr(T
8771 8771 0'( 1+ ( 2))7
T aT (2 T a2y 05
where T1 = 07 S~ (N?(07®)2) 5o
T
e OP7L
_QgP Ty—2 am 0o,
71 —_
To= 1P o NP pigrengT
on; o
Noting [IN(@T®)~! =51 = 0,(0n), ||[S~' - PV =

Op(1/N). 1% = % || = Op(U/N), [[R10T®|| =
0,(1/N), [NE-'—51]| = 0,3, and ds < | Pn)]| <

d2 and ||S(n) 7| < [[(P(n)) 71| < 1/d; for n € Q yields
IT1] = Op(wn), [Tr(T2)| = Op(wn) (A.33)

15

uniformly in Q, where Q is defined in (A.24). Therefore,
we have

OWy(P(n)
an

H OMSEg(P(n))

on 72’90)“20

p(TN)

uniformly for any 7 € Q. Since fusgg and 7y minimize
MSEg(P) and Wy (P, %, 6y), respectively, we have

OMSEg(P(n)) ‘ _ 0 ang M), 5.0) 1 _
877 n:;I\MSEg 877 N="g
It follows that
OMSEg(P
g( (77)) ‘ _ Op(w]v)-
on n="Ng

In addition, by using (A.32), th

e (i,j)-element of the
Hessian matrix of W, (P(n), X, 0) is

aQWg(P(n)a Ev 90)
OniOn;

92p-1
In;on;

2p—1
_ 2U4Tr(2*18 r 2*1).
on;on;

0P~ 0P~
877j 8771

=204l P~y 2 0o + 20467 0o

(A.34)

The Hessian matrix % of MSEg(P(n)) is

omitted here for simplicity. Then, it can be shown that
_PWy(P(n), %, 0o)
non™

9*MSEg(P(n))
= 1
H ononT H o (1)
uniformly for any 1 € Q. Applying the Taylor expansion

to %ép(")) yields

_ OMSEg(P(n)) _ 5M5Eg(P(77))‘
877 77:;7\1\/18Eg 877 n=ng
9*MSEg(P(n)) - .
+W‘n:ﬁ(nMSEg — 1),

where 7 lies between fyisgg and 7;.
Clearly,

62W9(P(77)7 X, 90)
ononT

= Op(l)-

n=ng

Then under Assumption 2, we have BonT

n=ng
is positive definite. For sufficiently large N, 7 would be

close to 7,. In this case, we also have ononT

n=n



is positive definite. Then it follows that

NMSEg — 77;
_ (azmg(—’?(n)) ’ )‘1 OMSEg(P(n))
onon™ = on n=ng
=0,(1)0p(wn) = Op(wn).

O, (pn) and the proof is
). By (A.15),

Now, we prove |[fjsg — 15 || =
similar to that of ||vseg — 73|l = Op(@wn

the i-th element of gradient vector of Fg,(P(n)) is
T P 1
8</Sg( (77)) :20,4(@15)T57TN2((I)T(1))72 oS é\LS
oni O
OR™!
2 A72
+20°N Tr( an, ) (A.35)

. . . -1 — —1 —
Using the identity % =—0?R™! %R L we see

O Fss(P(n))  OWy(P(n),%, 00)
om; om;

-1
where Y} = (@S)TS*TNQ@T(I))*Qag—éLS
yi

= 20’4T/1 + 2U4Tr(T’2)

op—1
—or'p Ty 29
0 on; 0
_16P—1E_1 B NR_laP—l

on; om;

(A.36)

T, =% NR™

Since ®T®/N — ¥ and v(t) is a white noise, we
have [|fUS — gf = O,(1/v/N). Then noting that
IN(@T®)~" — _1|| = 0 p(On), 571 = P =
Op(1/N), | fgsm - am = 0,(1/N), oy =
0,6, and [VR-1] = 0,1, 199] = 0,(1), and
dy < [P(n)|| < dg and [|S(n) "M < [(P() 7| < 1/dy
for n € Q, yields

T =max (O, (1/VN),
|T‘T(T12)|:OP(6N)7

Op(1/N), 0, (0n)) = Op(n),

uniformly in Q. It follows that

0Fsg(P(n)) _ OWy(P(1),3,00)| _
H on - o H = Op(pn)
uniformly for any 1 € Q. This implies
0F sg(P
DZePO)| 0y (A37)
n n="g

Similarly, one can obtain the Hessian matrix of
F3s(P(n)) and can show that

O*Wy(P(n), %, 60)
onon™

H P FTsg(P(n)

—— H = 0,(1) (A.38)

uniformly for any n € Q. Applying the Taylor expansion

of w shows
i
0= a?Sg(P(n))’ _ 6?Sg(P(77))’
on n=nss on n=ng
9°MSEg(P(n)) _ .
W ‘n:;(nMSEg - 77g)7

where 7) lies between 7jsg and 7. For sufficiently large
N, we have

7/7\Sg - 77;
_ (32?&«;(13(77)) ‘ )—1 0F s4(P(n))
onon™T  In=n on n=n;
=0,(1)O0p(un) = Op(pn).

The proof of (76) and (77) can be done in a similar way
and thus is omitted. This completes the proof.

Appendix B

This appendix contains the technical lemmas used in the
proof in Appendix A.

B.1  Matriz Differentials and Related Identities

This section introduces the differentiation of a function
f(X) where X is a matrix. It is assumed that X has no
special structure, i.e., that the elements of X are inde-
pendent. For convenience and readability, the formulas
used in the paper are stated in the following lemmas.

Lemma B1 (Petersen € Pedersen, 2012) Assume that
b is a column vector, and A, B and X are matrices with
compatible dimensions. Then we have

% — (A+ AT)Xbb" (B.39)
% — _x-TpTx-T (B.40)
w _xT (B.41)
8(2(7;)“ = —(X DX (B.42)
%))‘;_IB) = —(X'BAX 1T (B.43)
aﬂ(A)giXTAT) — ATAX(B+BT).  (B.44)

where (+);; denotes the (i, j)th element of a matriz.

Lemma B2 Suppose that both A and B are positive
semidefinite. If Tr(AB) = 0, then AB = 0.



Proof. Let us denote the symmetric square root factor-
ization of A by Az . Thus the trace property implies

Tr(AB) =Tr(A% A2 B2 B?)
—Tr(A*B*B>A?%) = || A* B3| = 0.

This derives that A2Bz = 0. Pre-multiplying by Az
and post-multiplying by B? entails AB = 0. [

Lemma B3 We have the following identities:

Zij(A)ijJij = A, (B.45)
Y — 0" = 02Q 7Y, (B.46)
gvs — % = 52 (0T d) eTQ Y, (B.47)
A(Iy + BA)™' = (I, + AB) ' A, (B.48)
TQ 1o =81, oTQ 'y = §19S, (B.49)
TQ T ' =5"T(@T®) 151, (B.50)
dTQTQ 'Yy =S T (0Td) 1519, (B.51)

(B.52)
Qs srr s o
—ap =Y QTJQe, (B.53)
7‘9(};]3)” =o*P TR J;RTPT, (B.54)

where J;; is a matriz whose (i, j)-element is one and zero
for all other elements.

Proof. The identities (B.45)—(B.52) can be verified by
a straightforward calculation. Using (B.42) gives

Q1) 72 AQ™1)ij 0Qap
8P5t N b aC?ab 8Pst

== > Q7@ ey ®us(@ s
a,b

= @) (@)@
a,b
=—(®"Q M)u(Q T ®);1,

which implies (B.53). While (B.54) can be proved in a
similar way. [

B.2  Convergence Result for Extremum Estimators

Lemma B4 (Ljung, 1999, Theorem 8.2) Assume that

1) M(n) is a deterministic function that is continuous
inn € and minimized at the set

D =argmin M (n)={nln € Q, M(n)=min M(n')}
neqQ n’' €N

where Q is a compact subset of RP.
2) A sequence of functions { My (n)} converges to M (n)
almost surely and uniformly in Q as N goes to co.
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Then fny = argmingcq Mn(n) converges to D almost
surely, namely,

inf ||9n — 7|l = 0, as N — oo.
€D
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