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Abstract

This paper presents a novel attitude estimator called the multiplicative exogenous Kalman filter. The estimator inherits the
stability properties of a nonlinear observer and the near-optimal steady-state performance of the linearized Kalman filter for
estimation in nonlinear systems. The multiplicative exogenous Kalman filter is derived in detail, and its error dynamics is
shown to be globally exponentially stable, which provides guarantees on robustness and transient performance. It is shown
in simulations and experiments to yield similar steady-state performance as the multiplicative extended Kalman filter, which
is the workhorse for attitude estimation today. The filter assumes biased angular rate measurements and two or more time-
varying vector measurements, and it estimates the attitude represented by the quaternion and the angular rate sensor bias.
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1 Introduction

Estimation of the attitude of a rigid body is an essential
part of many navigation systems, whether it is in ma-
rine, terrestrial, aerial, or extraterrestrial applications.
Solutions typically involve comparing nonparallel vec-
tor measurements in the rigid body’s body-fixed frame
to the corresponding known inertial vectors. Examples
of this can be found in satellites, which often navigate
by tracking known stars, and in marine, terrestrial, and
aerial applications, in which body-fixed measurements of
Earth’s gravitational and magnetic field are commonly
used. The principle behind attitude estimation from vec-
tor measurements is the relationship ri = R(qib)r

b where
a unit reference vector r is known in two frames, an iner-
tial frame denoted {i} and a body-fixed frame denoted
{b}. The two vectors only differ by the rotation R(qib),
here parametrized by the quaternion qib. With at least
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two nonparallel vector pairs (ri1, r
b
1) and (ri2, r

b
2), the at-

titude can be determined.

One of the first attitude estimation algorithms was the
TRIAD algorithm presented by Black [4], which finds
the rotation matrix explicitly for two nonparallel vec-
tor pairs. The main weakness of the TRIAD algorithm
is its sensitivity to noise. Bar-Itzhack and Harman [2]
improves on this by calculating a weighted average of
several different TRIAD solutions, but the achieved es-
timate is still not optimal in the sense of minimum vari-
ance. Wahba [31] posed the problem of finding the ro-
tation matrix Rbi that minimizes the cost function J =∑N
j=1 ‖rbj − Rbirij‖22 for N measurements. This problem

has received great interest and inspired many solutions.
For a review and comparison of several of these solu-
tions, see Markley and Mortari [22].

Attitude estimation often combine vector measurements
with angular rate measurements from an angular rate
sensor (ARS). These measurements are often corrupted
by a biased noise, which requires the estimation of an
ARS bias. The workhorse of nonlinear state estimation
is the extended Kalman filter (EKF). For attitude esti-
mation, both the additive EKF (AEKF) and the mul-
tiplicative EKF (MEKF) has received great attention
[20,33,34,17]. The AEKF expresses the quaternion cor-
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rection as an addition, which violates the quaternion
norm constraint if implemented naively. The MEKF ex-
presses the correction as a quaternion product, thus
maintaining the unit norm constraint. With the correct
accomodations, however, Shuster [26] showed that the
two methods are identical. In order to gain a unique rep-
resentation of the attitude error, the four-dimensional
multiplicative correction is often mapped to a represen-
tation of minimal degree, i.e. using three variables to
represent the three rotations. Other Kalman filter (KF)
solutions to the attitude estimation problem include the
unscented KF (UKF) [7], the the invariant EKF (IEKF)
[5], and the geometric EKF (GEKF) [1]. These have been
shown improve upon the performance of the MEKF.

Nonlinear observers (NLOs) have in recent years re-
ceived increasing attention for the attitude estimation
problem. They often come with global or semi-global sta-
bility properties that can be verified a priori, which gen-
erally lacks for the EKF-based methods. Salcudean [25]
presented an angular velocity observer with global con-
vergence properties. Thienel and Sanner [30] proposed
a nonlinear observer with globally exponentially stable
(GES) estimation of attitude and bias, provided con-
stant reference vectors, under a persistency-of-excitation
(POE) requirement. Later, this requirement was lifted
by e.g. Mahoney, Hamel, and Pfimlin [19] and Batista,
Silvestre, and Oliveira [3]. Observers for time-varying
reference vectors with semi-global stability results were
developed by Hua [12] and Grip et al. [10,11]. Batista,
Silvestre, and Oliveira [3] presented an attitude observer
using a single time-varying and persistently nonconstant
reference vector.

In Johansen and Fossen [13], a new way of using the
linearized KF is presented, called the exogenous KF
(XKF). This idea has been used in Johansen and Fossen
[14,15] on the position estimation problem with biased
range measurements, in Stovner et al. [28], Jørgensen et
al. [16], and Stovner, Johansen, and Schjølberg [29] for
underwater position estimation, and in Stovner and Jo-
hansen [27] for joint position and attitude estimation.
The XKF is explained conceptually in Section 2.1.

Scope and Contribution

In this paper, a novel GES quaternion-based attitude
and ARS bias filter is developed. Using a GES NLO and
building on the results of Johansen and Fossen [13], the
filter is developed and its global stability is proven. Be-
yond the theoretically guaranteed robustness and tran-
sient performance, the MXKF is both in simulations
and experiments shown to outperform the NLO and an
MEKF with identical tuning; The MXKF is shown to
have better steady-state performance than the NLO,
while better transient performance than, and at least as
good steady-state performance as, the MEKF.

Fig. 1. The general XKF structure [13].

2 Models and Preliminaries

2.1 Exogenous Kalman Filter

The XKF is in many ways similar to the EKF. The
EKF linearizes a nonlinear model about its own esti-
mate of the state of the system, and employs the linear
time-varying (LTV) Kalman filter (KF) on the linearized
model. When the estimate is close to the true state,
the linearization approximates the nonlinear model ac-
curately, which often yields near-optimal performance.
This, along with its simplicity, largely explains the suc-
cess of the EKF, which is proven by its extensive use in
various applications. A problem with the EKF is the lack
of proven stability in the general case. This is caused by
the feedback of the state estimate to the linearization,
which may increase rather than decrease the estimation
error in the correction step. The XKF remediates this
by linearizing the nonlinear model about an exogenous
signal, thus replacing the potentially destabilizing feed-
back with a feedforward from an auxiliary estimator.
The exogenous signal should be a globally stable, but
possibly suboptimal, state estimate. This cascade gains
two desired properties: the global stability of the auxil-
iary estimator and the near-optimality of the linearized
KF w.r.t. noise. The general XKF structure is shown in
Figure 1.

2.2 State and Error Representation

The north-east-down (NED) frame, denoted {n}, is as-
sumed to be an inertial frame. This implies that Earth’s
rotation is neglected and that the vehicle stays within
a limited area such that a local flat Earth approxima-
tion is accurate. The vehicle’s body-fixed (BF) frame,
denoted {b}, is the frame in which the ARS and vector
measurements are gathered. The interest of this paper
is to estimate the rotation from the BF to NED frame.
This attitude estimate defines a third coordinate frame,

the estimated BF (EBF) frame, denoted {b̂}. Lastly, the
MXKF relies on an exogenous signal, which is the state
estimate of the NLO. The NLO’s attitude estimate de-
fines the exogenous BF (XBF) frame, denoted {b̄}.
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In this paper, the attitude is respresented by the unit
quaternion q = [η; ε] where η is the scalar part, and
ε = [εx, εy, εz]

> is the vector part. For column vectors a
and b, the ;-notation denotes the vertical concatenation
[a; b] = [a>, b>]>. For a quaternion q, the corresponding
rotation matrix is R(q) = I + 2ηS(ε) + 2S2(ε) [9] where
S(x) is the skew symmetric matrix

S(ε) =


0 −εz εy

εz 0 −εx
−εy εx 0

 (1)

and I is the 3× 3 identity matrix. By 0n and 0n×m, we
denote n× n and n×m matrices of zeros, respectively.

For the coordinate frames denoted a, b, and c, a rotation
from c to a can be described by R(qac ) = R(qab )R(qbc) =
R(qab ⊗ qbc), where ⊗ denotes the Hamilton product

q1 ⊗ q2 =

[
η1η2 − ε>1 ε2

η1ε2 + η2ε1 − S(ε1)ε2

]
= q1η2 + Ψ(q1)ε2

(2)

and Ψ(q1) = [−ε>1 ; η1I − S(ε1)] for q1 = [η1; ε1] and
q2 = [η2; ε2]. The quaternions representing the rota-
tions from the BF, XBF, and EBF frames to the NED
frame are denoted qnb , qn

b̄
, and qn

b̂
, respectively. The true

ARS bias is denoted bb when it is decomposed in the BF
frame. When decomposed in their respective frames, the

MXKF’s and NLO’s bias estimates are denoted b̂b̂ and
b̄b̄, respectively.

The true attitude qnb and the estimates of it, qn
b̂

and qn
b̄

,

can be expressed by their scalar (η) and vector (ε) parts
qnb = [η; ε], qn

b̂
= [η̂; ε̂], and qn

b̄
= [η̄; ε̄], respectively. We

define the additive quaternion estimation error and the
bias estimation error of the MXKF as

q̃ , qnb − qnb̂ (3a)

b̃ , bb − b̂b̂ (3b)

respectively. Let the true state and the MXKF’s and
NLO’s state estimates be given by z = [qnb ; bb], ẑ =

[qn
b̂

; b̂b̂], and z̄ = [qn
b̄

; b̄b̄], respectively. Finally, the addi-

tive estimation error of the MXKF is defined as z̃ , z−ẑ.

Next, we define the multiplicative quaternion estimation
error of the MXKF as

δq =

[
δη

δε

]
, (qn

b̂
)−1 ⊗ qnb = qb̂b (4)

where (qn
b̂

)−1 = qb̂n = [η̂;−ε̂] is the unit quaternion in-

verse. Notice that definition (4) differs from the more
commonly used multiplicative quaternion error defini-

tion δq′ , qnb ⊗ (qn
b̂

)−1 [21]. This is done because δq = qb̂b
directly represents the goal of minimization, i.e. the dif-
ference between the EBF and BF frames. It is argued

that using δq = qb̂b is more intuitive than using δq′,
though it should neither influence the stability nor the
performance.

Representing three rotations by a 4-dimensional vector
is ambiguous and gives multiple solutions. Therefore, the
3-dimensional vector representation called the Modified
Rodrigues Parameter (MRP) is used. It is defined as [21]

δu ,
δε

1 + δη
(5)

and is widely used in MEKFs because it is a three-
parameter representation of the attitude that is only sin-
gular when δη = qn

b̂
>qnb = −1, i.e. when qn

b̂
= −qnb .

This corresponds to a 360◦ estimation error. Therefore,
by ensuring that the absolute estimation error is always
less than 360◦, i.e. δη > −1, one achieves a globally non-
singular attitude error representation. Also, as will be
shown later, the MRP relates linearly to the additive
quaternion error q̃. These two properties motivate the
choice of the MRP as the attitude error representation
of the MXKF. Lastly, we define the multiplicative esti-
mation error of the MXKF as δx , [δu; b̃].

2.3 Kinematic Model

The kinematics of the quaternion and bias are [21]

q̇nb = fq(z, t) =
1

2
Ξ(qnb )ωbnb =

1

2
Ω(ωbnb)q

n
b (6a)

ḃb = fb(t) = εb (6b)

where ωbnb is the true angular rate, bb is the slowly-
varying ARS bias, εb is a random process, and

Ξ(q) =

[
−ε>

ηI + S(ε)

]
,Ω(ωbnb) =

[
0 −ωbnb>

ωbnb −S(ωbnb)

]
(7)

We put the full state dynamics (6) in the compact form

ż = fz(z, t) =

[
fq(z, t)

fb(t)

]
(8)
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2.4 Measurement Equation

The measurement equation is

ybj = hj(z, y
n
j ) + εyj = R>(qnb )ynj + εyj (9)

for vector measurements j = 1, ...,M , where εyj is the
noise on measurement j. We concatenate (9) for all j
by writing yb = [yb1; ...; ybM ], yn = [yn1 ; ...; ynM ], εy =
[εy1; ...; εyM ], and h(z, yn) = [h1(z, yn1 ); ...;hM (z, ynM )]
which yields

yb = h(z, yn) + εy (10)

As mentioned in Section 1, two nonparallel vector mea-
surements are needed to determine the attitude at an
instant. This is stated by the following assumption.

Assumption 1 At least two reference vectors are non-
parallel, i.e., there exists a positive constant γ such that
|yn1 × yn2 | ≥ γ > 0.

The above assumption is sufficient for observability in
continuous time, but could nevertheless be relaxed. In
particular for a discrete-time implementation of the non-
linear observer and linearized KF, one can use standard
modifications to the gain and covariance updates to han-
dle multirate sampling and missing observations, see e.g.
Farrell [8].

The angular rate sensor provides the measurement
ωbnb,m = ωbnb + bb + εω where εω is a random process.

Now, we define the process noise vector εz , [εω; εb].

3 Multiplicative eXogenous Kalman Filter

3.1 Nonlinear Observer

Figure 2 shows the role of the NLO in the structure of the
MXKF. Any NLO estimating the attitude and ARS bias
with strong convergence properties can be used. Here,
the attitude observer from Grip et al. [11] is used, i.e.

˙̄Rnb̄ =R̄nb̄ S(ωbnb,m − b̄b̄) + σKPJ(R̄nb̄ , t) (11a)

˙̄bb̄ =Proj(b̄b̄,−kIvex(P(R̄nb̄
>
s KPJ(R̄nb̄ , t)))) (11b)

J(Rnb , t) =

3∑
j=1

(wnj −Rnbwbj)wbj> (11c)

wι1 =
yι1
‖yι1‖2

, wι2 =
S(yι1)yι2
‖S(yι1)yι2‖2

, wι3 =
S(yι1)2yι2
‖S(yι1)2yι2‖2

(11d)

where ι ∈ (n, b), KP is a symmetric positive-definite
gain matrix, kI is a strictly positive scalar gain, σ ≥ 1 is
a stability tuning factor, R̄n

b̄ s
is the matrix R̄n

b̄
with all

Nonlinear
Attitude
Observer

Linearised
Kalman Filter

ωb
nb,m, yn1 , ..., y

n
M

yb1, ..., y
b
M

z̄
ẑ

Fig. 2. The structure of the MXKF

its elements saturated between ±1, Proj is a projection
function that ensures ‖b̄b̄‖ ≤ M̄ for M̄ > M where M
is an a priori known upper bound on the ARS bias, i.e.
‖bb‖ < M , P(X) = 0.5(X +X>) for any square matrix
X, and vex(S(x)) = x. Note that R̄n

b̄
is not always on

SO(3), but it converges to SO(3). When R̄n
b̄

is projected
onto SO(3), the result is denoted Rn

b̄
.

Denote by Σ1 the dynamics of the estimation error
R(qnb )− R̄n

b̄
and bb− b̄b̄. Let qn

b̄
be extracted from Rn

b̄
in

such a way that it forms a continuous signal, and does
not jump between the two representation qn

b̄
and −qn

b̄
.

Proposition 2 The origin R(qnb ) − R̄n
b̄

= 03 and bb −
b̄b̄ = 0 of Σ1 is GES.

PROOF. Grip et al. [11] 2

3.2 Linearized Kalman Filter

In this section, the linearized KF of the MXKF is de-
rived. In Section 3.2.2, the dynamics and measurement
equations, expressed by the quaternion, are linearized.
The error dynamics of the linearized system expressed
by the quaternion is formed, which is of seventh order. In
Section 3.2.3, the seventh order error dynamics is trans-
formed to a sixth order representation. The linearized
KF is formulated with this representation. This makes
the KF less computationally demanding and makes it
possible to show stability of the system with straight-
forward time-varying observability analysis. For conve-
nience, the analysis is conducted in continuous time.

The internal structure of the linearized KF part of the
MXKF is shown in Figure 3.

When the attitude is correctly estimated, i.e. qn
b̂

= ±qnb ,

this leaves two possible additive quaternion errors q̃ = 0
and q̃ = 2qnb . Below, we resolve this amgibuity.

Definition 3 Define qnb
? as the one of qnb and −qnb that

is closest to qn
b̄

, i.e.

qnb
? ,

{
qnb , if qn

b̄
>qnb ≥ 0

−qnb , if qn
b̄
>qnb < 0

(12)
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Local
Linearisation

State Update

Mapping
R7 → R6

Covariance
Update

Kalman
Gain

z̄
Hz(t), Fz(t)

z̄, hz(z̄), fz(z̄)

ẑ

M(z̄, ẑ)

Hx(t, ẑ), Fx(t, ẑ)

Gx(t, ẑ)

P̂

K(t)

yn1 , ..., y
n
M , yb1, ..., y

b
M , ωb

nb,m

Fig. 3. A closer look at the linearized KF part of the MXKF.
The reset operation (26) is excluded for ease of presentation.

Now, we must also redefine q̃ , qnb
? − qn

b̂
, z , [qnb

?; bb],

and δq , (qn
b̂

)−1 ⊗ qnb ?.

3.2.1 Mapping from Additive to Multiplicative Error
State

Lemma 4 The additive error state z̃ can be mapped to
the multiplicative error state δx by the mapping

z̃ = M(z, ẑ)δx = (M(z̄, ẑ) + M̃(z, z̄))δx (13)

where

M(z̄, ẑ) =

[
Ψ(qn

b̄
) + Ψ(qn

b̂
) 04×3

03 I3

]
(14)

M̃(z, z̄) =

[
Ψ(qnb

?)−Ψ(qn
b̄

) 04×3

03 03

]
(15)

Moreover, the mapping approximation converges, i.e.
M(z̄, ẑ)→M(z, ẑ), as the NLO converges.

PROOF. In order to verify the mapping z̃ =
M(z, ẑ)δx, we insert (4) in (3a) twice to get q̃ =
qnb
? − qn

b̂
= qn

b̂
⊗ δq − qnb ? ⊗ (δq)−1. Further, we apply

(2) twice to get

q̃ = qn
b̂
δη + Ψ(qn

b̂
)δε− qnb ?δη + Ψ(qnb

?)δε (16)

(1 + δη)q̃ = (Ψ(qn
b̂

) + Ψ(qnb
?))δε (17)

q̃ = (Ψ(qn
b̂

) + Ψ(qnb
?))δu (18)

Noticing that q̃ = (Ψ(qn
b̂

+ qn
b̄

) + Ψ(qnb
?− qn

b̄
))δu verifies

the mapping using (13) and (15). From Proposition 2,
we know that R(qnb )− R(qn

b̄
) → 0, which together with

(12) means that qn
b̄
→ qnb

?. This proves that M̃(z, z̄)→ 0
exponentially. 2

3.2.2 Additive Estimation Error Model

As discussed in Section 2.1, the model given by (8) and
(10) is linearized about the exogenous signal z̄

fz(z, t) =fz(z̄, t) + Fz(t)(z − z̄) (19a)

+Gz(t)εz + χz(t)

hz(z, t) =hz(z̄, t) +Hz(t)(z − z̄) + εy + χy(t) (19b)

where χz(t) and χy(t) are the linearization errors, i.e.,
higher order terms in the linearization. From (6a) and
(6b), we see that Fz(t) and Gz(t) become

Fz(t) =
dfz(z, t)

dz

∣∣∣∣
z=z̄

=
1

2

[
Ω(ωbnb,m − b̄b̄) −Ξ(qn

b̄
)

03×4 03

]
(20)

Gz(t) =
dfz(z, t)

dεz

∣∣∣∣
z=z̄

=

[
− 1

2Ξ(qn
b̄

) 04×3

03 I3

]
(21)

Using equation (A.44) from Markley and Crassidis [21],
we find Hz(z̄) to be

Hz(t) =


2S(yb̄1)Ξ>(qn

b̄
) 03

...

2S(yb̄M )Ξ>(qn
b̄

) 03

 (22)

where yb̄j = R>(qn
b̄

)ynj . Notice that the dependency of
known bounded time-varying signals have been replaced
by dependency of time, t, in Fz(t), Gz(t), Hz(t), χz(t),
and χy(t).

We define an estimator

˙̂z ,fz(z̄, t) + Fz(t)(ẑ − z̄) (23a)

+M(z̄, ẑ)K(t)(y − ŷ)

ŷ ,hz(z̄, t) +Hz(t)(ẑ − z̄) (23b)

where the gain matrix K(t) is specified later.

Define ỹ , y− ŷ. Now, subtracting (23) from (19) yields
the additive estimation error model

˙̃z =Fz(t)z̃ −M(z̄, ẑ)K(t)ỹ +Gz(t)εz + χz(t) (24a)

ỹ =Hz(t)z̃ + εy + χy(t) (24b)

Inserting (24b) into (24a) yields the additive error dy-
namics

ΣA : ˙̃z = (Fz(t)−M(z̄, ẑ)K(t)Hz(t)) z̃ +Gz(t)εz (25)

+ χz(t)−M(z̄, ẑ)K(t) (εy + χy(t))

5



3.2.3 Transformation from Additive to Multiplicative
Error Dynamics

In this section, we transform the error dynamics from
R7 to R6. We begin by defining δq̌ = [δη̌; δε̌] , (qn

b̂
)−1⊗

qn
b̄

and δq̄ = [δη̄; δε̄] , (qn
b̄

)−1 ⊗ qnb ?. Later, it will be
required that qn

b̂
6= −qn

b̄
, and from (5) we must have

δη > −1. This is guaranteed by the following Lemma.

Lemma 5 The reset rule

ẑ ← z̄, if qn
b̂
>qnb̄ ≤ ε (26)

guarantees both that qn
b̂
6= −qn

b̄
and δη > −1+∆(ε) where

∆(ε) > 0 for an input ε > 0.

PROOF. Define δq̄ = [δη̄; δε̄] , (qn
b̄

)−1 ⊗ qnb ?, where
by (12) we have that δη̄ ≥ 0. From δq = δq̌ ⊗ δq̄, we get
δη = δη̄δη̌ − δε̄>δε̌. Since δη̄ ≥ 0 from (12) and δη̌ > ε
and ‖δε̌‖2 =

√
1− δη̌ <

√
1− ε from (26), we have that

δη ≥ −δε̄>δε̌ ≥ −‖δε̄‖2‖δε̌‖2 > −
√

1− ε = −1 + ∆(ε),
where ∆(ε) > 0 for ε > 0. 2

Lemma 6 The seventh order additive error dynamics
ΣA in (25) can be transformed by the approximate linear
mapping M(z̄, ẑ) to the sixth order multiplicative error
dynamics

Σ2 : δẋ =(Fx(ẑ, t)−K(t)Hx(ẑ, t))δx+ χx(ẑ, t) (27)

+Gx(ẑ, t)εz −K(t)εy + ζ(ẑ, δx, t)

where

Fx(ẑ, t) ,M†(z̄, ẑ)(Fz(t)M(z̄, ẑ)− Ṁ(z̄, ẑ)) (28a)

Gx(ẑ, t) ,M†(z̄, ẑ)Gz(t) (28b)

χx(ẑ, t) ,M†(z̄, ẑ)χz(t)−K(t)χy(t) (28c)

Hx(ẑ, t) , Hz(t)M(z̄, ẑ) (28d)

and (·)† denotes the Moore-Penrose pseudo-inverse op-
eration C† = (C>C)−1C>. Furthermore,

χx(ẑ, t) ≤ kχ||z − z̄‖22 (29a)

ζ(ẑ, δx, t) ≤ kζ‖z − z̄‖22 (29b)

PROOF. Differentiating (13) w.r.t. time yields

˙̃z =Ṁ(z̄, ẑ)δx+M(z̄, ẑ)δẋ+ ˙̃M(z, z̄, t)δx+ M̃(z, z̄)δẋ
(30)

δẋ =M†(z̄, ẑ)( ˙̃z − Ṁ(z̄, ẑ)δx− ˙̃M(z, z̄, t)δx− M̃(z, z̄)δẋ)
(31)

Defining M1 ,M1(ẑ, t) = I +M†(z̄, ẑ)M̃(z, z̄) and col-
lecting δẋ yields

δẋ =M−1
1 M†(z̄, ẑ)

(
˙̃z − Ṁ(z̄, ẑ)δx− ˙̃M(z, z̄, t)δx

)
.

(32)

It is straightforward to show that

det(M1) =
1 + δη + δη̄ + δη̌

2(1 + δη̌)
det

(
I +

S(δε+ δε̄+ δε̌))

(1 + δη + δη̄ + δη̌)

)
(33)

Since 1 + δη + δη̄ + δη̌ > ε + ∆(ε) and x>(I + A)x =
x>x > 0 ∀ x 6= 0 for any skew-symmetric matrix
A, det(M1) 6= 0 which means that M1 is invertible.
By the Sherman-Morrison-Woodbury formula [32], we

have that M−1
1 = I − M2, where M2 , M2(ẑ, t) =

(I + M†(z̄, ẑ)M̃(z, z̄))−1M†(z̄, ẑ)M̃(z, z̄). Now, insert-
ing (28) and expanding M−1

1 , we can rewrite (32) as

δẋ =M−1
1

(
(Fx(ẑ, t)−K(t)Hx(ẑ, t))δx+ χx(ẑ, t) (34)

+Gx(ẑ, t)εz −K(t)εy − ˙̃M(z, z̄, t)δx
)

(35)

δẋ =(Fx(ẑ, t)−K(t)Hx(ẑ, t))δx+ χx(ẑ, t) (36)

+Gx(ẑ, t)εz −K(t)εy + ζ(ẑ, δx, t) (37)

where ζ(ẑ, δx, t) , −M2((Fx(ẑ, t) − K(t)Hx(ẑ, t))δx +

χx(ẑ, t)+Gx(ẑ, t)εz−K(t)εy)−M−1
1

˙̃M(z, z̄, t)δx. Using
that Ψ>(qn

b̄
)Ψ(qn

b̂
) = Iδη̌ − S(δε̌), we find

(M>(z̄, ẑ)M(z̄, ẑ))−1 =

[
1

2(1+δη̌)I 0

0 I

]
(38)

and we see that M†(z̄, ẑ) exists whenever δη̌ = qn
b̂
>qn

b̄
6=

−1, i.e., when qn
b̂
6= −qn

b̄
, which is guaranteed by Lemma

5.

Due to the boundedness of z̄ and qn
b̂

and the smoothness

of fz, hz, Gz, and M̃ , there exist constants kζ , kχ > 0
such that χx(ẑ, t) < kχ||z − z̄‖22, ζ(ẑ, δx, t) < kζ‖z −
z̄‖22. 2

In the following, explicit expressions for the matrices
(28a), (28b), and (28d) are derived. From Markley and
Crassidis [21] we have that

d

dt
Ψ(qn

b̂
) =

1

2
Ω(ωbnb,m − b̂b̂)Ψ(qn

b̂
) (39)
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and similarly for Ψ(qn
b̄

). This is used in order to find

Fx(ẑ, t) =

[
F1(ẑ, t) F2(ẑ, t)

03 03

]
(40)

F1(ẑ, t) =
Ψ>(qn

b̄
) + Ψ>(qn

b̂
)

4(1 + δη̌)
Ω(b̂b̂ − b̄b̄)Ψ(qn

b̂
) (41)

F2(ẑ, t) = −
Ψ>(qn

b̄
) + Ψ>(qn

b̂
)

4(1 + δη̌)
Ξ(qnb̄ ) = −1

4
D1R(qnb̄ )

(42)

Here, Ψ>(qn
b̄

)Ξ(qn
b̄

) = R(qn
b̄

), Ξ(qn
b̄

) = Ψ(qn
b̄

)R(qn
b̄

), and

Ψ>(qn
b̂

)Ψ(qn
b̄

) = Iδη̌ − S(δε̌) have been used to find the

useful identities

(Ψ>(qnb̄ ) + Ψ>(qn
b̂

))Ξ(qnb̄ ) = DR(qnb̄ ) (43)

D , D(ẑ, t) = (1 + δη̌)I − S(δε̌) (44)

D1 , D1(ẑ, t) =
1

1 + δη̌
D = I − S(δǔ) (45)

where δǔ = δε̌/(1 + δη̌). Gx(ẑ, t) and Hx(ẑ, t) are found
to be

Gx(ẑ, t) =

[
− 1

4D1R(qn
b̄

) 04×3

03 I3

]
(46)

Hx(ẑ, t) =


2R>(qn

b̄
)S(yn1 )D> 03

...
...

2R>(qn
b̄

)S(ynM )D> 03

 (47)

and S(yb̄i ) = S(R>(qn
b̄

)yni ) = R>(qn
b̄

)S(yni )R(qn
b̄

) has
been used to find Hx(ẑ, t).

K(t) introduced in (23a) is the solution of the Riccati
equation with Fx(ẑ, t), Hx(ẑ, t), and Gx(ẑ, t), i.e.

K(t) =P (t)H>x (ẑ, t)R−1(t) (48a)

Ṗ (t) =Fx(ẑ, t)P (t) + P (t)F>x (ẑ, t) +Gx(ẑ, t)Q(t)G>x (ẑ, t)

− P (t)H>x (ẑ, t)R−1(t)Hx(ẑ, t)P (t) (48b)

where Q(t) = E(εzε
>
z ), R(t) = E(εyε

>
y ), and P (0) =

E(δx(0)δx(0)>) are covariance matrices.

3.2.4 Stability Analysis

Lemma 7 The pair (Fx(ẑ, t), Hx(ẑ, t)) is uniformly
completely observable (UCO) and (Fx(ẑ, t), Gx(ẑ, t)) is
uniformly completely controllable (UCC).

PROOF. First, we show observability of the pair
(Fx(ẑ, t), Hx(ẑ, t)) by employing Theorem 6.O12 in

Chen [6], which states that the pair (Fx(ẑ, t), Hx(ẑ, t))
is observable if and only if the observability codistri-
bution dO = [M0(ẑ, t); ...;Mn−1(ẑ, t)] has full rank
for all t, where M0(ẑ, t) = Hx(ẑ, t), Mm(ẑ, t) =
Mm−1(ẑ, t)Fx(ẑ, t) + (d/dt)Mm−1(ẑ, t) for m =
1, ..., n−1, and n is the dimension of the state space, i.e.
n = 6. Since both Hx(ẑ, t) and Fx(ẑ, t) are continuously
differentiable, the matrix dO can be formed. It suffices
to examine the column rank of dO1 = [M0(t);M1(t)]
because if it has full column rank, dO must have full
rank. We find dO1 to be

dO1 =

[
O1 03M×3

O2 O3

]
(49)

O1 =2(1 + δη̌)R>(qnb̄ )S1:MD
>
1 (50)

O3 =− 1 + δη̌

2
R>(qnb̄ )S1:MD

>
1 D1R(qnb̄ ) (51)

where S1:M = [S(yn1 ); ...;S(ynM )]. In order to ver-
ify that dO1 has full rank, it suffices to verify that
O1 and O3 have full rank, as proven by Meyer [23].
Therefore, we need not find O2. Through the identity
rank(O) = rank(O>O) for any matrix O, we examine
the ranks of O1 and O3:

rank(O1) =rank
(
− 4(1 + δη̌)2D1S

>
1:MS1:MD

>
1

)
(52)

rank(O3) =rank
(
− (1 + δη̌)2

4
R>(qnb̄ )D>1 D1

S>1:MS1:MD
>
1 D1R(qnb̄ )

)
(53)

The determinant ofD1 is det(D1(ẑ, t)) = 1+δǔ>δǔ > 0,
meaning that D1 always has full rank. Under Assump-

tion 1, S>1:MS1:M =
∑M
j=1 S

2(ynj ) also has full rank.
Since the product of square full rank matrices has full
rank and δη̌ > ε as guaranteed by (26), we know that
both O1 and O3 has full rank. Therefore, we know
that rank(dO1) = 6, which proves that the observ-
ability codistribution dO has full column rank. Thus,
(Fx(ẑ, t), Hx(ẑ, t)) is UCO.

In order to show that (Fx(ẑ, t), Gx(ẑ, t)) is UCC, we em-
ploy Theorem 6.12 of Chen [6] which states that if the
controllability codistribution dC = [K0(ẑ, t), ...,Kn−1(ẑ, t)],
where Km(ẑ, t) = Fx(t)Km−1(ẑ, t) + (d/dt)Km−1(ẑ, t)
and K0(ẑ, t) = Gx(ẑ, t), has full rank, then the pair
(Fx(ẑ, t), Gx(ẑ, t)) is UCC. Since Fx(ẑ, t) and Gx(ẑ, t)
are continuously differentiable and rank(Gx(ẑ, t)) = 6,
we have shown that (Fx(ẑ, t), Gx(ẑ, t)) is UCC. 2

Proposition 8 Consider the estimator defined by (11),
(23), and (26) and assume εz = 0, εy = 0. The equilib-

rium points R(qnb ) − R̄n
b̄

= 03, bb − b̄b̄ = 0, and δx = 0
of the cascaded error dynamics Σ1–Σ2 is GES for posi-
tive definite symmetric matrices P (0), Q, and R. Con-
sequently, the equilibrium point z̃ = 0 is GES.

7



PROOF. First we examine the case when no resets of
the form (26) occur. Under Proposition 2, Lemma 7,
(29), and choosing Q, R, and P (0) to be symmetric and
positive definite, Theorem 2.1 of Johansen and Fossen
[13] proves that the origin R(qnb )−Rn

b̄
= 0, bb − b̄b̄ = 0,

and δx = 0 of the cascaded error dynamics Σ1–Σ2 is
GES.

If resets occur, it is sufficient to prove that there will
only be a finite number of them, after the last of which
the above result will be true.

There exists a threshold ξ1 such that when δū < ξ1, there
exists a ξ2(‖δū‖2) such that if ‖δu‖2 < ξ2(‖δū‖2), no re-
sets can occur. That such a threshold exists is apparent
when ‖δū‖2 = 0⇒ δu = δǔ, and ‖δu‖22 ≥ (1− ε)/(1+ ε)
in order for a reset to occur. Therefore, ξ2(0) = (1 −
ε)/(1 + ε) and ξ2(‖δū‖2) > 0 ∀ ‖δū‖2 < ξ1. Let resets
occur at times tk, k = 0, 1, ... where k = 0 is the in-
dex of initialization and k > 0 are the indices of resets.
By Theorem 4.14 in Khalil [18], we have between resets
for the GES error dynamics Σ1–Σ2 that c1‖δx(t)‖22 ≤
V (δx(t)) ≤ c2‖δx(t)‖22 and V̇ (δx(t), t) ≤ −c3‖δx(t)‖22.
From the latter and −V (δx(t))/c2 ≥ −‖δx(t)‖22 we find∫

dV (δx(t))

V (δx(t))
≤
∫
−c3
c2

dt (54a)

V (δx(t)) ≤ V (δx(tk))e−
c3
c2

(t−tk) (54b)

‖δx(t)‖2 ≤ c‖δx(tk)‖2e−
c3
2c2

(t−tk) (54c)

where c =
√
c2/c1. Since c1 and c2 always can be cho-

sen strictly positive and bounded, respectively, c always
exists and is bounded. In order to prove that the num-
ber of resets is finite, we explore a claim about an infi-
nite number of resets. Since ‖δx̄‖2 is exponentially de-
caying, there must then come a k such that ‖δx̄(tk)‖2 =
‖δx(tk)‖2 ≤ ξ2(‖δx̄(t)‖2)/c. Since c ≥ 1, this means that
‖δx(tk)‖2 ≤ ξ2(‖δx̄(t)‖2), and clearly, the last reset has
occured. The claim is therefore false, and only a finite
number of resets can occur. Consequently, δx → 0 ex-
ponentially.

Since ‖δu‖2 = 0 ⇒ δq = [1, 0, 0, 0]> and qn
b̂

= qnb
? ⊗

(δq)−1, we know that ‖δu‖2 → 0 implies qn
b̂
→ qnb

?, and

consequently, that ‖δx‖2 → 0 implies ‖z̃‖2 → 0. This
concludes the proof. 2

4 Simulations and Experiments

Both the MXKF and MEKF discussed hereafter are im-
plemented as discrete time KFs 1 . The number of scalar
operations performed in the NLO, MXKF, and MEKF
implementations are represented in Table 1.

1 Code implementation of the MXKF can be found at
http://folk.ntnu.no/bardbakk/MXKF-Automatica/

Table 1
The number of scalar addition (A.), multiplication (M.), di-
vision (D.) subtraction (S.), and square root (Sq.) operations
performed in one time and measurement update of each es-
timator in their respective implementations. Available nor-
malized measurements have been assumed here.

A.+S. M. D. Sq.

NLO 149 220 12 4

MXKF 2 1998 2542 38 2

MEKF 2 1736 2204 30 2

NLO+MXKF 2 2147 2762 50 6

In this section, Euler angle errors are used to calcu-
late MAE values and display attitude error trajectories.
These have been found by extracting the Euler angles
from (qn

b̌
)−1qnb , where qn

b̌
is a placeholder for the NLO,

MXKF, and MEKF estimates and qnb is the true atti-
tude.

In the following comparison study, four estimators are in-
cluded: one aggressively tuned NLO (denoted NLO), one
conservatively tuned NLO, one MXKF linearized about
the former NLO, and a standard MEKF using the MRP
formulation. The former NLO serves as a linearization
point with fast convergence and the latter is included to
provide a fair comparison of steady-state performance.

4.1 Simulations

The simulated scenario is a rotating vehicle with
no translative motion. Accelerometer and magne-
tometer measurements, f bnb,m and mb

m respectively,
form vector pairs with the NED counterparts −gn =
[0; 0;−9.818] and mn = [0.3197; 0; 0.6926], respectively.

We define yn1 , −gn/‖gn‖2, yb1 , f bnb,m/‖f bnb,m‖2,

yn2 , mn/‖mn‖2, and yb2 , mb
m/‖mb

m‖2 where
yb1 = R>(qnb )yn1 + ε1, yb2 = R>(qnb )yn2 + ε2, ε1 ∼ N (0, σ2

1)
and ε2 ∼ N (0, σ2

2).

100 different 600 seconds long scenarios have been
simulated. The same attitude trajectory was used
in all simulations, which was generated by ωbnb =
[−0.1 cos(0.15t), 0.1 sin(0.10t),−0.1 cos(0.05t)]>. Fur-

thermore, bbars = [0.012;−0.021; 0.014]rad/s, b̄b̄ars(0) =

b̂b̂ars(0) = [0; 0; 0]rad/s, σ1 = 2 · 10−3, σ2 = 4 · 10−3,
and σω = 10−3rad/s. The NLO tuning parameters were
set to Kp = 10, kI = 0.02, and σ = 1 for the aggres-
sively tuned one and Kp = 1.5, kI = 0.02, and σ = 1
for the conservatively tuned one. For the MXKF and
MEKF, the true values of σ1, σ2, and σω were used in
addition to σb = 10−4, and the initial covariance matrix
was P (0) = blockdiag(I3, I3 · 10−7), where blockdiag(·)

2 The 6×6 matrix inversion in the calculation of the Kalman
gain is assumed to be performed by equations (13.65)–
(13.66a) of [24].
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Fig. 4. The 100 first seconds of the ARS bias estimation
errors averaged over the 100 simulations.

Table 2
MAE values describing the steady-state performance of the
estimators.

Roll (deg) Pitch (deg) Yaw (deg)

NLO 0.029 0.032 0.147

NLO 0.021 0.026 0.073

MXKF 0.007 0.007 0.021

MEKF 0.007 0.007 0.022

Table 3
MAE values describing the transient performance of the es-
timators.

Roll (deg) Pitch (deg) Yaw (deg)

NLO 0.065 0.062 0.174

NLO 0.410 0.161 0.583

MXKF 0.065 0.051 0.323

MEKF 0.173 0.092 1.357

forms a block diagonal matrix of its inputs. The esti-
mators were given the same initial estimate of attitude
and bias in each simulation, and the initial attitude was
randomly drawn from a uniform distribution between
−180◦ and 180◦. Both the IMU and estimators were
updated with 100Hz.

In Table 2 and 3, the steady-state and transient perfor-
mances are represented by mean absolute error (MAE)
values. The transient MAEs are calculated from the first
200 seconds of the simulations, and the steady-state
MAEs from the last 300 seconds. In Figure 4, the bias
trajectories for each estimator are shown. The above
mentioned attitude and bias errors are averaged over the
100 simulations.

Table 4
MAE values calculated from 50 seconds to the end of the
experiments.

Roll (deg) Pitch (deg) Yaw (deg)

NLO 0.705 0.714 4.276

NLO 0.484 0.497 4.109

MXKF 0.311 0.407 3.023

MEKF 0.330 0.417 2.748
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Fig. 5. This figure shows the error between the attitude tra-
jectories from Qualisys and NLO, MXKF, and MEKF.

4.2 Experiments

The experiments were conducted in the Marine Cyber-
netics Lab (MC-Lab) at NTNU, which contains a wa-
ter tank for experimental testing. It is equipped with
Qualisys Oqus Underwater camera system providing a
ground truth attitude estimate. The IMU used in the
experiments was an Xsens MTi-3, delivering accelerom-
eter, ARS, and magnetometer measurements at 25Hz,
the same rate with which the estimators were updated.
IMU calibration yielded the values gn, mn, σ1, σ2, and
σω described in Section 4.1, which naturally are also used
here. The tuning of the estimators in the experiments
were identical to the tuning in the simulations.

In Figure 5–6, the attitude, attitude error, and bias es-
timates from the experimental data are shown, respec-
tively.

5 Discussion

The small angle approximation commonly used in the
development of the MEKF is not used for the MXKF.
Instead, the XKF method ensures that all linearization
errors vanish as the NLO converges, yielding a global
stability result. However, this also increases the com-
putational burden of the algorithm, as Fx, Gx, and Hx

become more complex and an NLO is needed. Table
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Fig. 6. The bias estimates from experimental data.

1 shows an increase of approximately 25% in compu-
tational complexity when using the MXKF linearized
about the estimate from an NLO relative to the MEKF.

The linearization point provided by the NLO is used
directly in the MXKF design. Thus, the uncertainty of a
noisy linearization point is neglected. If the noise on the
NLO estimate is large, it might be beneficial to account
for the added uncertainty of the noisy linearization point
by scaling ofQ andR or adding appropriate noise terms
in the model. This is an interesting topic in the design
of XKFs generally, but outside the scope of this work.

The aggressively tuned NLO can be seen to achieve sig-
nificantly improved transient performance relative to
the conservatively tuned NLO without a similar dete-
rioration of steady-state performance. The largest per-
formance decrease can be seen in yaw. This is because
there is relatively little information about yaw in the
measurements as all of gn and most of mn are vertical
components, and thus, noise sensitivity increases. Still,
the performance difference is small enough to not affect
the performance of the MXKF, which is apparent from
the identical steady-state MAE values of the MXKF and
the MEKF. This makes the NLO of [11] a suitable aux-
iliary estimator in the MXKF.

The improved transient performance of the aggressively
tuned NLO is seen to yield significantly better transient
performance of the MXKF than of the MEKF. Com-
bined with the identical steady-state performance of the
MXKF and MEKF, this is an important result. It shows
that the tuning of the MXKF w.r.t. transient and steady-
state performance can be decoupled; tune the NLO for
fast convergence and the linearized KF for steady-state
performance.

The MXKF and MEKF inherit the near-optimality of
the linearized KF, which from Table 2 can be seen to
yield significantly better steady-state performance than
the NLO. Also, with the linearized KF, the reference

vector measurements are used directly and their noises
are tuned for individually. The NLO, on the other hand,
calculates (11c) and does not offer as intuitive tuning
w.r.t. measurement noise.

The experimental data is primarily meant to verify that
the estimators work in practice, as seen in Figure 5–6,
and not to provide a qualitative comparison of the es-
timators. It is still interesting to see that the MAE val-
ues of the MXKF and MEKF are lower than that of the
NLO, and that the MXKF does not seem to suffer greatly
from a less accurate linearization point. This confirms
the conclusions drawn from the simulations study.

Though higher performing KFs than the MEKF exists,
e.g. the UKF, IEKF, and GEKF, these have not been
included in this paper since a broad comparison study
is outside the scope of this work.

6 Conclusion

In this paper, the MXKF is presented. It is a novel KF-
based attitude filter employing an attitude representa-
tion of minimal degree and with global exponential sta-
bility. The MXKF was shown both in simulations and ex-
perimentally to have better transient performance than
and identical steady-state performance as the MEKF
with identical tuning. This is an important result, as it
improves the stability and transient performance of the
MEKF.
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