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Abstract

This paper proposes an algorithm to estimate the parameters, including time delay, of continuous time systems based on instrumental
variable identification methods. To overcome the multiple local minima of the cost function associated with the estimation of a time delay
system, we utilise the useful redundancy technique. Specifically, the cost function is filtered through a set of low-pass filters to improve
convexity with the useful redundancy technique exploited to achieve convergence to the global minimum of the optimization problem.
Numerical examples are presented to demonstrate the effectiveness of the proposed algorithm.
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1 Introduction

The goal of system identification is to estimate the param-
eters of a model in order to analyse, simulate and/or con-
trol a system. In the time domain, there are two typical ap-
proaches to identify a system, i.e. discrete-time (DT) iden-
tification and continuous-time (CT) identification. For sev-
eral decades, DT identification has been dominant due to the
strong development of the digital computer. More recently,
estimation using continuous-time identification methods has
received much attention due to advantages such as provid-
ing insights to the physical system and being independent of
the sampling time [[15] [[17] [25]. For example, with irreg-
ular sampling time, the DT model becomes time-varying;
hence the DT system identification problem becomes more
difficult while for CT identification, the system is still time-
invariant. In reality, irregular sampling occurs in many cases,
e.g. when the sampling is event-triggered, when the mea-
surement is manual and also in the case of missing data [5].

In some CT identification problems, one wants to estimate
the system parameters and any unknown time delay, as
there exist many practical examples including, chemical pro-
cesses, economic systems, biological systems, that possess
time delays. It is important to estimate the delay accurately
since a poor estimate can result in poor model order selec-
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tion and inaccurate estimates of the system parameters.

There are many approaches to estimate a system time de-
lay [9]. A simple approach is to consider the impulse re-
sponse data, e.g. estimate the time delay by finding where
the impulse response becomes nonzero [10] or by noting
the delay where the correlation between input and output is
maximum [10] [11]. Another approach is to model the de-
lay by a rational polynomial transfer function using a Padé
or similar approximation and then estimate the time delay
as part of the system parameters [[1]] [2] [18]]. In [27] [6] [7],
the time delay and system parameters of a Multiple Input
Single Output CT system are estimated in a separable way
using an iterative global nonlinear least-squares or instru-
mental variable method.

Recently, a method of estimating the parameters and time
delay of CT systems has been suggested in [12] which is
based on a gradient technique. The parameters and the time
delay are estimated separately, i.e. when one is estimated, the
other is fixed which is then repeated in an iterative manner. In
this approach, the Simplified Refined Instrumental Variable
(SRIVC) method is used to estimate the parameters whilst
the time delay is estimated using the Gauss-Newton method.
In addition, due to the effects of multiple minima in the cost
function to be minimized for the time delay [20] [23] [8], a
low-pass filter is employed to increase convexity. As shown
in [8] [14]] [L3], a suitable low-pass filtering operation on the
estimation data can help to extend the global convergence
region of the cost function, hence improve the accuracy of
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the time delay estimate.

In this paper, we adopt the idea of using a low-pass filter
where instead of using only one filter, we suggest to use
multiple low-pass filters and incorporate the useful redun-
dancy technique [3] [4]. Useful redundancy is a technique
that was developed to avoid local minima when solving a
nonlinear inverse problem. The concept is to generate a fam-
ily of cost functions that have different local minima, but
share the same global minimum with the original cost func-
tion of the optimization problem. Whenever the algorithm
is trapped in a minimum, the solver path is switched to an-
other solver path in a way such that the minimum found
using the new solver path corresponds to a decrease in the
original cost function. This allows the algorithm to cross
local minima and converge to the global minimum, hence
improving the accuracy of the estimated parameters. For the
algorithm described in this paper, the multiple cost func-
tions are generated by filtering the original time delay cost
function through a number of low-pass filters with different
cut-off frequencies that span the system bandwidth.

The paper is organized as follows. Section 2 describes the
model setting and Section 3 recalls both the SRIVC algo-
rithm and the SRIVC-based time delay estimation using a
low-pass filter. Section 4 formulates the algorithm of the
new method and provides analysis on the effectiveness of
the proposed method. Section 5 presents numerical exper-
iments and results for both regular and irregular sampling
schemes. Finally, the conclusion will be drawn in Section 6.

2 Model setting

Consider a continuous-time linear, time invariant, single in-
put single output system,

x(t) = Go(p)u(t —10) =

with

B(p) =bop™ +b1p" ' + ...+ by,
Alp)=p"+ap" ' +.. +a,, n>m
where Ty is the time delay, u(¢), x(z) are the input and de-
terministic output of the system respectively and p is the
differential operator, i.e. p)x(r) = d'x(r)/dt'. In addition,
the following assumptions are made:
Assumption 2.1 Polynomials B(p) and A(p) are coprime.
Assumption 2.2 The system is asymptotically stable.

Assumption 2.3 The high frequency gain of Go(p) is 0, i.e.
Go(p) is strictly proper.

The deterministic output x(#;) is measured as y(f) in the
presence of noise, i.e.

y(te) = x(tx) +e(tx)- 2

Furthermore, we consider the sampling time of the input
u(t;) and output data y(z;) as either regular or irregular. The
time-varying sampling interval is denoted as,

hy =t —ty, k=1,2,...N—1, 3)

where N is the length of the data.

The objective of a CT system identification problem
is to estimate the time delay, Tp, and the parameters
ay,an,...,ay,bo,by,...,by of the CT model in (1), using the
measured input and output data, u(t;) and y(t)}_, respec-
tively.

3 Parameter and time delay identification of Continuous-
time models with SRIVC and filtering

There exists a large number of continuous time identifica-
tion methods see, for example, [17] [28]. In this paper, we
consider the Simplified Refined Instrumental Variable Con-
tinuous Time method (SRIVC), which is developed in the
literature by Young and Garnier [16][[L7][28]. We begin with
a basic description of the SRIVC method.

3.1 Traditional SRIVC method

To simplify the description we first assume the time delay
To is known. The SRIVC method can then be summarized
as follows.

From (1) and (2),

ﬁgi)y(”‘) = ig; u(ty — 7o) +e(t), 4)
which becomes,
A(p)ya(tx) = B(p)ua(tx — o) + e(ty), 5)

VA (tk) = ﬁy(lk), Up (lk — ’Co) = A(lp) u(tk — ’C()). (6)

From (5), a linear regression model can be formed as

W (1) = o (11, T0)0 + (i) (7)
where
on(te) = [ 1), =00, e, —yalte),
uilm)(tk—’t()), u&mil)(l‘k—fo) MA(Ik—‘C())],
e:[a15a27"'7an7b07b17"'7bm]T7 (8)
Wy dyale) @, _ dualti—"o)
ya (te) = o (tx — ) = —r



To solve the linear regression problem in (7), the SRIVC al-
gorithm uses an instrumental variable (IV) method. The in-
struments in the SRIVC method are chosen as the estimated
noise free outputs, i.e. the regressor becomes,

Ovlie) = (=4 00, =800, i,
ME‘WO (lk — ’CQ), u;m7]>(lk — ’CQ) .o Up (tk — ‘Co)]
where
1 B
fA(fk) = A(p))?(l‘k); )E(tk) = AEi; Lt(tk —’lT())7 (10)

with B(p) and A(p) estimates of B(p) and A(p).

3.2 Implementation of the CT filtering operation for irreg-
ular sampled data and arbitrary time delay

The SRIVC method can be used to estimate system param-
eters from regular sampled data as well as from irregular
sampled data. However, one difficulty in implementing the
SRIVC method for irregular sampled data in the presence
of an arbitrary time delay is the CT filtering operation, e.g.,

1
A(p)

ua(ty —7) = u(ty — 1), (11)

when 7 is an arbitrary time delay.
There are two reasons for this difficulty:

(1) u(zx —) is not available from the measured data,

(2) The digital simulation of u(f; —t) is generally per-
formed in state-space form hence, an equivalent
discrete-time state space representation of the CT state
space model needs to be computed. For irregular data,
as the sampling interval h(f;) is time-varying, the
computational load using standard methods, e.g. expm
in Matlab, to compute the transformation matrices will
be large.

As suggested in [12], the two problems mentioned above
can be solved as follows,

(1) u(tx —7) can be constructed from the neighbouring data
based on the inter-sample behaviour, e.g. zero-order-
hold (ZOH), first-order-hold (FOH), etc.

(2) To reduce the computational load, the time-varying
sampling interval is divided into two intervals: the first
interval is a multiple of a constant sampling period, the
second interval is the residual. The discretization ma-
trix of the first interval is pre-computed using a stan-
dard method and stored in an array. The discretization
matrix for the second interval is computed by a fast
approximation, e.g. the 4th order Runge-Kutta (RK4)
method. The final discretization matrix of the sampling
interval Ay is a product of the two matrices.

Specifically, convert the transfer function (TF) model
in (11) to the equivalent CT state-space model,

z(t—1)=F.z(t —1) + Gou(t — 1) (12)
up(t—1) =Hez(r — 7).
The equivalent DT state-space model will be,
Z(tk—H —’C) :F(hk)z(tk—’t) +M(tk) (13)
Uap (l‘k — ’C) = HCZ(tk — ’C)

where F(f), M(#;) are computed as follows,

(a) Denote 1y 1,1, (mk > 2) as ty — T, fry1 — T respec-
tively; #;,1 = 2,...,n — 1 as the transition time-
instants of u(¢) between # — T and #; — T; and
My = i1 — -

(b) Let A be a constant sampling period; my; be a
positive integer; 8;; > 0 such that:

hi; = my A+ 8](,,' < (mk,,‘ + DA.

(c) Compute F(mA),G(mA).

(d) Compute F(8;;),G(S,;) using, e.g. RK4.

(e) Finally, compute F(hy), M(z;) as follows,

F(hk) = Felu s

np—1 n—1
M) =Y, ] Fluj)Ghei)ultv),
o1 =it

with

F(hii) = F(my ;i A)F (8 ),
G (i) = F(my i A)G (8 i) + G(my iA).

Now that we can generate filtered signals of the irregular
sampled data, we describe the traditional SRIVC algorithm
[LO][L7][28] in Algorithm I.

ALGORITHM 1

Step 1. Initialization

(1) Create the stable state variable filter (SVF),

1

F(P):(prVF),,’ (14)

where @37 is chosen to be larger than or equal
to the bandwidth of the system.
(2) Filter y() and u(t; — t9) via the SVF to generate

derivatives of the signals, i.e. yXO (tk),yfl"*l) (t1)5 ey

YA (tk) and Ltgm) (tk — ’C()) s ugmil) (lk — ‘Co), ey UA (lk —
Tp) by using the method described in [[16].
(3) Use the least squares method to estimate the initial

parameters,




B = [ONDL] ' DNYy. (15)
with
Dy = [Qy(t1) ... On(tN)], {16)
Yy = 0) 3 (1) e,

where @y is defined in (8).

Step 2. Iterative estimation

for j = l:convergencd?]

(1) If the estimated TF model is unstable, reflect the
right half plane zeros of A(p,8/~!) into the left
half plane and construct the new estimate.

(2) Generate the instrumental variable,

B(p,&/7!

() = Ai(p,el N

u(te —%o). a7

(3) Filter the input u(t; — To), output y(7;) and the
instrumental variable £(#;) by the continuous time

filter |
F = X A, 18
c(p) A6 (18)

to generate the derivatives of these signals.

(4) Using the prefiltered data, generate an estimate 6/
using the IV method,

6/ = [¥n oy Pl (19)
where Wy is the IV matrix generated by the in-

strumental variables £(#;) and Py is the regres-
sion matrix,

(I)N = [(p};;(ll)

' . (20)
Py = [fn(n) - o ()],

where @y is defined in (9).

end

2 Convergence requires the relative error between the es-
timated parameters of two consecutive iterations to be less
than an € > 0 where € is a small value chosen to achieve the

desired accuracy.

3.3 SRIVC-based time delay estimation with filtering

A recently developed method [12] to estimate both the time
delay and parameters for the CT model (2) considers it as a
separable nonlinear least squares problem. The SRIVC al-
gorithm and the Gauss-Newton method are used in [12] to
estimate the system parameters and the time delay respec-

tively. In this problem the cost function for the time delay
estimation has multiple minima [12]], hence a low-pass filter
is utilized to extend the global convergence region [12] [[13]]
[L14]].

Let L(p) be a CT low-pass filter with cut off frequency
o%. Applying the filter L(p) to the linear regression (7), we
obtain

7 (p) = B (p)0+E(p), @1)
where p = [67 1] and  represents the signal y, u or e filtered
by L(p).

When the estimated parameter 9 is a function of T, i.€.

6(7) = [Zn(p) Dy (p)] " Pn(p)Tn, (22)

then the time delay T can be estimated as [12][21]],
% = arg minJy(t) = arg minf;v(p)|6:é(1)7 (23)
T T

with |
In(p) = méT(P)E(P)a (24)

where s is chosen to guarantee that at sample s, ; > T.

By using the Gauss-Newton method, the system parameters
and the time delay can be iteratively estimated,

A = (V2 ()] VN ()
ot =¥ ( AN DL (07,47 e (87,47 I (87),
, (25)

where w4/ is the step size and

Vin(¥) =&[&(p),

V2in(t) =&le, — el ey (el ep) 'l e,

Jg(p NN 2
g a(r)|p=pf:pG(p79’)u(T’)7 (26)

9e(p)

€9 = ae |p pi = _\P[Y\;(éj’%j)

The SRIVC-based time delay estimation with filtering [[12]
is summarized in Algorithm II.

ALGORITHM II

Step 1. Initialization

(1) Set the initial value 2°, the boundarlesﬂtmm,tmm,
A‘cml,El the cut-off frequency ®% of L(p), the cut-
off frequency of F(p), ®3'F, and a small positive
€ to indicate convergence.

(2) Based on the initial value
method to compute 6°.

20, use the SRIVC




(3) Compute V2/y(%°) and VJy (%) from (26).
Step 2. Iterative estimation
for j = l:convergence

(1) Compute A%/ using the filtered input/output data,
equation (26) and

A = — [V ()] Vi) @)

(2) (a) Compute ¥/ =%/ 4+ AW/ ‘
If ¥/ & [Tin, Tinan > let AT = A%/ /2 and re-
peat this step.
If |A%| < ATpiy, break.

(b) Estimate 6/"! using the SRIVC method and
time delay 2/*! from the filtered input/output
data.

(¢) Compute Jy (2. If Jy(#/T1) > Jy(2/), let
A% = A%/ /2 and return to (a).

(3) If Jy(&) —Jy(#/*1) > €, go to Step 1, else break.

end
Step 3. Refined parameter estimation

Repeat Step 2 with low-pass filter L(p) = 1.

& Tyin and Tpg, are boundaries for the delay, which are
known a priori, i.e. Tuin < To < Timax
b At,in is the limit value of the step size of the time delay

estimate using Gauss-Newton method.

Remark 3.1 The smaller the cut-off frequency L, the
larger the global convergence region. However, when @k is
chosen too small, information from the data is lost, which
affects the accuracy of the parameter estimation [12]. The
suggestion in [|12] is,

1
ok > ﬁbw, (28)

where bw is the bandwidth of the system Go(p) (rad/sec).

4 SRIVC-based time delay estimation with multiple fil-
tering and redundancy method

In this section, we propose a method that improves conver-
gence to the global minimum of the time delay optimiza-
tion problem using the useful redundancy technique [3[][4]].
The useful redundancy technique was developed to avoid lo-
cal minima when solving a non-linear inverse problem. As
stated in the previous section, the main problem in time de-
lay estimation is that the cost function Jy (p) possesses many
local minima [[12]. The filtering operation [14] described in
Section 3.3 can be employed in order to increase the global
convergence region of the cost function associated with the

time delay estimation. However, when the data is very noisy
or the initial value, 29, is located far from the global mini-
mum, using only one filter does not guarantee that the so-
lution of the optimization problem converges to the global
minimum.

To demonstrate how useful redundancy can be utilized in our
estimator, we first describe the useful redundancy technique.

4.1 The useful redundancy technique

We define the useful redundancy technique by quoting di-
rectly from [4].

Definition 1 [4]. Consider an optimization problem,

min Jo(p)-

Then it is called M-safely redundant if and only if the fol-
lowing conditions hold:

(1) There exists a finite M cost functions J; sharing the
same global minimum p* € R".

(2) There exists a solver (or an iterative scheme) ¢ and a
finite number of iterations r* € N such that for some
v€[0,1) and all p € P the following inequality holds,

Ny(p) = _min Ut (p.1) ~ho(p)] <0 (29)

where (") (p, J;) is the candidate solution obtained af-
ter r* iterations of ¢ using the cost function J; and start-
ing from the initial guess p. (]

The solver path (p,J;) is defined as the sequence of iterates
(Y (p,J;) for the solver ¢ when the cost function J; starts
from an initial guess p. Condition 2 means that for any initial
p, there always exists a solver path ¢ that corresponds to a
decrease in the original cost Jy after at most r* iterations. It
is proven in [4] that if an optimization problem is M-safely
redundant following from Definition 1, that convergence to
a global minimum is guaranteed.

An algorithm that describes the useful redundancy technique
is given in Algorithm III.

ALGORITHM I1II

Step 1. Initialization Choose an initial value p(©).
Step 2. Iterative estimation
for k=0:converge

(1) Seti=0 and failure =true
(2) While failure do
(a) Use the solver path (p,J;) starting from p(*),
find the corresponding minima ﬁ(k7i>.




(b) Compute
failure = (]O(é';(k»i)) > (1 —S)Jo(p(k))) B
(c) If failure then i = (i+ 1) mod M,

Else set k = k+1,p*) = gk,
End while

end

4 ¢ is a predefined small value that is chosen based on the
desired accuracy.

4.2 Theoretical results related to the time delay cost func-
tion

To construct an M-safely redundant optimization problem
for the estimation of the time delay, we need a cost function
Jo and multiple solver paths that satisfy the two conditions in
Definition 1. Here, the solver paths are generated by filtering
the time delay estimation error using a set of low-pass filters
with different cut-off frequencies. The cost function Jy is
formulated from these filtered cost functions such that there
always exists a solver path that corresponds to a decrease in
Jo after a finite number of iterations. Next we describe the
set of filters and the cost function Jy required to satisfy the
conditions in Definition 1.

Consider a continuous-time, linear, time-invariant SISO sys-
tem described by

(1) = Go(p)u(t —t0) +e(1). (30)
We make a further assumption on the noise e(?).

Assumption 4.1 e(t) is white random process uncorrelated
with u having intensity A.

For an estimate G(p,0) and 7, the estimation error €(z,0,7)
can be computed as,

€(2,0,7) = () — G(p,0)u(t —1). (31)

As mentioned in Section 3, the delay can be estimated
by minimizing the cost function J(6,t), where J(6,7) =
[ £(¢,0,7) dt. If the estimation error is filtered by the low-
pass filter L(p), then an estimate of 8 and T can be computed
by,

(6,%) = arg min J(0,1), (32)

where

f(e,c):/_mé(t,e,fcfdt :/m {L(p)e(t,e,‘t)}zdt

oo —o0

/w {L(p)[y(t) —G(p,0)u(t —1)] }zdt

—o0

(33)

which by Parseval’s theorem is equivalent to,

_ I re LN . —j
T6.1) =5 [ [1Go(je)e " — Gjw,0)e 17

(34)
X W, (@) + ¥y ()] |L(j0)| do,

with ¥, () the spectral density of u(¢) and the spectral den-
sity ¥, (@) = A follows from Assumption 4.1. If the transfer
function Go(p) is known; the input signal white noise, i.e.
¥, (o) = 1; and 8T = T — 1o, the cost function J(6,7) can be
written as,

_ 1 el . . .
J(8t) = gﬁ (11— 952 Gy eI 2

W, (@) +A||L(jw)*d
| X W, (@) + 1) L) do 5

_ L 0 -eostosaplation+ 2]

X |L(j0))|2dm.

Recall that we are concerned with how to choose a set of
filters and the cost function Jy such that the two conditions of
an M-safely redundant problem are satisfied. To satisfy the
first condition we need to ensure all the cost functions share
the same global minimum. The second condition requires
the filter set to be constructed such that for any initial value
of 07, there always exists a cost function whose solver path
corresponds to a decrease in the cost function Jy after a
finite number of iterations. Note that these conditions can
be checked if we know the locations of the global minimum
and the extrema, i.e. the minima and maxima of J (7).

First we establish a result for the location of the global
minimum of the (non)filtered delay cost function.

Theorem 4.1 Consider the system Go(p) as described in
(30). When . =0, Vot € R, ¥V low-pass filters L(p) # 0, such
that J(8t) > J(0), the equality J(8t) = J(0) occurs if and
only if 5t =0.

Proof. The proof of Theorem 4.1 is provided in Appendix
A.l.

Theorem 4.2 provides a result for the locations of the ex-
trema of the filtered cost function J(87).

Theorem 4.2 [f L(p) is selected such that L(p)Go(p) is an
ideal low-pass filter with cut-off frequency ®. rad/sec, then
the locations of the i'"* positive extrema of the time delay
cost function J(8t) can be approximated by,

< 2i+1 T.
ot ~ T. —
V=TT iy e

(36)

where T, = 2n/®, and i > 1. When i is even, the corre-
sponding extremum is a minimum and when i is odd, it is a
maximum.



Proof. The proof of Theorem 4.2 is provided in Appendix
A2.

Remark 4.1 From Theorem 4.2, the locations of the ex-
trema for the filtered cost function are known, hence the
global convergence region is,

; (37

corresponding to the distance from the maxima closest to
the global minimum.

The result of Remark 4.1 can be seen in Fig. 1, which pro-
vides the plot of J(8t) when @, = 27 (the constant A of the
integral in (35) is set to 0 here for simplicity).

Fig. 1. Plot of J(3t) when ., =271

4.3 Time delay estimation with the useful redundancy tech-
nique

Now we can specify a filter set that satisfies the two condi-
tions in Definition 1.

Condition 1: From Theorem 4.1, the first condition is satis-
fied for any set of low-pass filters as the global minimum of
all the filtered time delay cost functions occurs when &t = 0.

Condition 2: The second condition depends critically on the
choice of filters and cost function Jy. The filter set needs to
be chosen such that for any initial value of dt, there always
exists a cost function whose solver path corresponds to a
decrease in the cost function Jy after a finite number of
iterations.

To verify that condition 2 is satisfied, consider the necessary
and sufficient conditions. To satisfy the necessary condition,
we need to show that for any initial value 87y, there always
exists a path that has a minima location, 81, closer to the
global minimum w.r.t. 8t¢. For the sufficient condition, we
need to establish that Jy(8t1) < Jo(870).

First, we check the necessary condition. A simple choice is a
filter set L (p),k = 1,ny where the cut-off frequencies, 0k,
of Ly(p)Go(p) span from 1/ to 1 of the system bandwidth
(10>B> 1112] The cut-off frequencies are chosen based on
the corresponding periods, T, x, being linearly spaced, i.e.,

(1 — B)wa

Tc,k = Bwa + (k - 1)
ng—1

,  k=1ny, (38)

where Tp,, = 2n/bw, bw is the bandwidth of the system
Go(p) (rad/sec). This is due to the local minima of the filtered
cost function being linearly dependant on the period of the
cut-off frequency (Theorem 4.2).

Finally we need to prove the existence of such a filter set that
satisfies the necessary condition of Condition 2 in Definition
1.

Theorem 4.3 There exists a filter set Ly(p), k= 1,ny cho-
5/4—1/(57%)
3/4—1/(3n2)
ideal low-pass filters chosen with linearly spaced periods
such that the cut-off frequencies, ®.x, spanning from 1/ to
1 of the system bandwidth, i.e.

(Bf 1)wa
ny— 1

sen such that, ¥V B > , where Li(p)Go(p) are

Tep = PBTyw — (k—1) ;o k=1Llng, (39

where Ty, = 21/bw and T, j =21/ 0. k. Then,

Voty # 0,3Ly(p) : [E(Ly(p),0%0)| < [8%0],  (40)

where &(Ly(p),8%0) is the corresponding minimum found
using the filtered time delay cost function generated by L,(p)
with the initial delay 87.

Proof. The proof of Theorem 4.3 is provided in Appendix
A3.

Remark 4.2 From Theorem 4.3, we see that with the choice
of,
_ 2
B> 5/4—1/(5n )7
3/4—1/(3m?)

there always exists an ny, that can be computed by (A.8) in
Appendix A.3, that ensures the filter set defined in Theorem
4.3 satisfies the necessary part of Definition 1, Condition 2.

(41)

Remark 4.3 Note that (A.8) provides a loose lower bound.
It is possible to have a smaller value of ny and still obtain
a filter set that satisfies the necessary condition.

Remark 4.4 If Go(p) does not have resonant peaks then it
doesn’t matter if Go(p) is known or unknown, as any ideal

' From Remark 3.1, B is chosen < 10.



low pass filter Li(p) with bandwidth smaller than the band-
width of Go(p) will allow Li(p)Go(p) to approximate the de-
sired low pass filter behaviour. If Go(p) has resonant peaks
and the bandwidth of Ly(p) is chosen significantly smaller
than that of Go(p) then Ly(p)Go(p) will approximate the
desired low pass filter behaviour.

An empirical method can also be utilized to determine the
number of filters. For example, to check if a set of n filters
with the ratio B satisfies the necessary condition, we can
plot ny cost functions that follow from (A.2) in Appendix
A.2 and check the minima locations using (36) to see that
for any initial delay, 81y, there always exists a cost function
where the corresponding minima 87t; is found closer to the
global minimum with respect to 8ty. Fig. 2 shows a set of six
cost functions with the ratio B = 2 for a system bandwidth
of 2m rad/sec, i.e. the cut-off frequencies span from 1/2
to 1 (Hz). From the figure, we can see that for any initial
value of the time delay less than 15 sec, there always exists
a cost function where the minima is found closer to the
global minimum with respect to the initial delay. This can be
confirmed by computing the minima of all the cost functions
using (36) and observing the path to the global minimum.

Fig. 2. Plots of J(37) set of filters with linearly spaced periods

Note that in practice, as Go(p) is not known a priori, and
with the difficulty of implementing an ideal low-pass filter
with irregular data, the filters Ly (p) are implemented as But-
terworth filters with cut-off frequencies ®. . Due to this,
the extrema locations are not exactly those specified in (36).
We discuss the effect of this difference by first citing the
following theorem from [14], as a lemma.

Lemma 4.1 [|/4)] Consider a system with transfer function
F(s) = L(s)Go(s)e*™, let u be the input signal and w the
corresponding output signal of the system. Then we have the
following relationship,

J(8%) = 2[1(0) — 1 (87)] = 2vw (0)[1 — pw(81)],  (42)

where Y, (t) is the autocorrelation function of w(t) and

Pw(8T) = 1 (87) /% (0).

Proof. See proof in [14].

With respect to the model setting in (30), v,,(87) in Lemma
4.1 is the autocorrelation of the output of the system. Hence
from Lemma 4.1, for an input signal of Gaussian distributed
white noise, the filtered delay cost function J(8t) will have
the form,

np ny
J(81) = Y are P+ Y e cos(didt+yy), (43)
k=1 k=1

where by is the absolute value of the & real pole of
L(s)Go(s); cx and di are the absolute values of the real
and imaginary parts of the k”* complex pole of L(s)Go(s);
and weighting coefficients A are related to the magnitude
of the frequency response at the corresponding frequency.
Augmenting a low-pass filter L(s) to Go(s) obviously in-
troduces slow poles into the system and by choosing L(s)
to be a Butterworth filter, it inherently introduces complex
poles to the system. Hence, from (43), the filtered delay
cost function will exhibit a slightly underdamped response.
It can then be seen that the locations of the extrema of the
cost function are associated with the underdamped response
of the Butterworth filter. Hence, the augmentation of L(s)
with Go(s) when L(s) is implemented as a Butterworth
filter provides a cost function similar in nature to Fig. 1.

Next, to establish the sufficient condition, we need to derive
a cost function Jy that shares the same global minimum
with the filtered cost functions where the minimum path
corresponds to a decrease in Jy.

To analyse this condition, we take into consideration the
model error that is generated in the iterations when estimat-
ing the rational part of the system due to an inaccurate esti-
mate of the delay. Consider we have an estimate for the de-
lay, 1, then when estimating the rational component of (30),
we have the following relationship in the Laplace domain,

G(s) = Go(s)e 093, (44)

where G(s) is the estimate for the rational part of the system.
It is obvious that when % # 1, G(s) # Go(s). Hence there
always exists model error in estimating the rational part of
the system if T # Tp.

We now quantify the model error to understand the impact
of it on the cost function. Here, a model reduction technique
based on an identification method [19] is used to find a
rational transfer function G,(s). The idea is to generate a
noise-free data set from the system Go(s)e (=95, then use
the SRIVC method to obtain a rational system G,(s) that
has the same model order as the true system and satisfies
(44). For example, Fig. 3 shows the graphs of ten filtered
delay cost functions after including the model error for the
system G(s) = 2e73/(0.255> +-0.7s + 1).
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Fig. 3. Plot of J(%) for set of filters Ly (p) defined as in Theorem 3.

We now define the cost function Jj as,

1 ng _
Jo(dt) = — Y Ji(87), (45)

nf =1

o 0-80 .

b xk
1y(@) —E{y@)} 2"
mated system output when the filter Ly (s) is used. Note that

Ji(87) is the normalized version of the filtered cost function,

Ji(87).

where J;(57) (¢) is the esti-

The averaging is used to obtain a smooth decreasing cost
function Jy as there are always errors in the estimation due to
noise and model error. Fig. 4 shows the average normalized
mean square error for the ten filtered delay cost functions
shown in Fig. 3. It can be seen that Jy has the same global
minimum as the ten filtered cost functions. Also shown in
Fig. 4 is the minimum path through the filtered cost function
that corresponds to a decrease in Jy. Note that the ‘x’ in Fig.
4 corresponds to a switch between cost functions J;(81).

Fig. 4. Plot of the average normalized mean square error of the
filtered cost delay function (x: switching point, solid line: Jp).

Therefore, in summary, the M-safely redundant optimization
problem for the time delay estimation is defined as,

min Jo(c), (46)

with Jo(t) defined as in (45). The filter set consists of ny
Butterworth filters with cut-off frequencies, chosen such that
the corresponding periods are linearly spaced, that span from
5/4—1/(57%)
3/4—1/(3n2)
and ny is chosen using the methodology discussed in Section
4.3.

1/P to 1 of the system bandwidth where § >

4.4 Algorithm

The proposed algorithm utilizing useful redundancy with
multiple filters is described in Algorithm IV.

ALGORITHM 1V

Step 1. Initialization

(1) Select a set of low-pass filters as suggested in
Section 4.3.

(2) Set the boundaries Tyin, Tmax, ATmin, ATma "} and
the SVF cut-off frequency @>"%.

(3) Choose an initial value T of the time delay.

Step 2. Iterative estimation
for i=1:converge

(1) for k=1:ny
(a) Choose the low-pass filter Ly (p).
(b) Set the initial delay %7, as %,
(c) Use the SRIVC algorithm and Gauss-Newton
method as described in Algorithm II (without
Step 3) to estimate the time delay 7; .
(d) Compute Jo(%;x) (follows (45)).
end
(2) Choose 1; = argmin Jo(3;).
Tik

(3) If |(Ri —%i—1)/%i| > €, go to Step 1, else break. E]

end
Step 3. Refine parameter estimation

Repeat Step 2 with the low-pass filter L(p) =1 .

? Note that ATy, is used to constrain the increment AT
in the time delay estimation, i.e. when AV > ATyax, Set
AT = AT;qc. This is to ensure the Wolfe conditions are
satisfied at each iteration in the Gauss-Newton technique
[26].

b ¢ is a small value selected to obtain the desired accuracy.




5 Numerical Examples

In this section, we demonstrate the effectiveness of the al-
gorithm through numerical examples. These examples are
commonly used in the literature [12] [16] [24] and act as
defacto benchmarks to compare the performance between
different CT system identification algorithms.

5.1 Case l

Case 1 considers the second order system used in [12], i.e.

2e 88

Gls)= — 2 47
)= 05 075 11 @7

In this example, we consider two sampling schemes for the
input and output data.

(1) Regular (uniform) sampling: The excitation input sig-
nal is a PRBS (pseudo-random binary sequence) of
maximum length. The sampling time is 50ms, the num-
ber of stages in the shift register is 10 and the number
of samples, N = 4000.

Irregular (nonuniform) sampling: The input excitation
signal is a PRBS of maximum length. The number of
stages in the shift register is 10 and the clock period is
0.5s. The input and output data are sampled at an ir-
regular time instant #;, with a sampling interval A uni-
formly distributed as, A ~ U[0.01,0.09](s). The real-
ization of Ay is randomized for each run. The number
of samples, N = 4000.

@

The additive output disturbance is Gaussian distributed white
noise with zero mean designed to give Signal to Noise Ratios
(SNR) of 5dB and 15dB. The SNR is defined as,

P,
SNR = 10log—,
Pe

with P, and P, the average power of the noise-free output
x(t) and the disturbance noise e(#;) respectively.

The system order is assumed known a priori (order 2). The
frequency ®>¥" is chosen as 1 (rad/sec) which is same as
the value used in [12]]. To evaluate the algorithm, the time
delay is initialized from different values 2° = 0,1,3,5,7,9
(similar to the experiment in [12]) and also from a random
value drawn from a uniform distribution U|0,9](s).

For the two sampling schemes, 100 different data sets are
generated for each noise level. The system parameters and
time delay are estimated using both the algorithm described
in [12] and the algorithm proposed in this paper:

e First we consider the algorithm developed in [[12]]: The
cut off frequency of the filter is chosen as 1/10 of the
system bandwidth as suggested in [12]. For regular data,
the command ‘tdsrive’ from the CONTSID toolbox [22] is
used to estimate the time delay and the system parameters.
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e For the multiple filtering algorithm utilizing the useful re-
dundancy technique as proposed in this paper, the number
of filters is set to 10 and the cut off frequencies, chosen
based on linearly spaced periods, of the filters span from
1/10 to 1 of the system bandwidth. The order of the But-
terworth filter is set to 10.

For both algorithms, the time delay boundaries Ty, Tiax
are set to 0 and 15 seconds respectively. The maximum
number of iterations for the Gauss-Newton method (Step 2
in Algorithm II and IV) is set to 10. The threshold, €, to
determine convergence is set to 1073,

We consider the estimated time delay to be the global min-
imum when the relative error, €,, is less than 1%, i.e.
T—1
e, — [T Tl

x 100%,
To

(48)

where 1 and 1 are the estimated delay and the true system
delay respectively.

Fig. 5 contains plots of the 10 cost functions corresponding
to the filters used in the useful redundancy method. It can be
seen that they all share the same global minimum, however
they all possess different local minima.
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Fig. 5. Case 1: Cost functions of the 10 filters.

Fig. 6 presents a plot of Jy, for a single dataset, showing the
trajectory of the time delay estimate when the sampled data
is regular and the SNR is 15dB. The algorithm is started with
the initial value of the time delay, 2 = 0. The ‘*’ in Fig.
6 represents the algorithm switching to another solver path.
The algorithm stops when the condition in Algorithm IV is
satisfied for the threshold € = 1073, i.e. when the relative
errog in the time delay between consecutive iterations is
107,

Next we demonstrate the effectiveness of the proposed al-
gorithm by showing the global convergence of 100 datasets
with different initial values for the delay. The results are
provided in Tables 1 and 2 where they are also compared to
results from the existing method [12]. Note that the results
presented here for the existing method are different to those



Table 1

Global convergence as a percentage of 100 Monte Carlo simulations for case 1

Sampling Existing method [12] Proposed method

scheme Initial delay 0Os Is 3s Ss 7s 9s 0Os 1s 3s 5s 7s 9s
Regular SNR = 5dB | 65% | 100%| 100% 97% | 100%| 100%| 100%| 100%| 100%| 100%| 100%| 100%
sampled data  ["qNp _15qB | 69% | 89% | 92% | 99% | 100%| 100% 100%| 100%| 100%| 100%| 100% 100%
Ireqular | SNR=5dB | 1% | 1% | 0% | 17% | 100%] 90% | 100%| 100%] 100%] 100% 100%| 100%
sampled data  "oNp _1SqB | 1% | 0% | 7% | 18% | 100%| 89% | 100%| 100%| 100%| 100% 100% 100%

100

Fig. 6. Case 1: The original cost function and time delay estimate
trajectory for a single dataset (x: switching point, solid line: Jy).

achieved in [[12] as we chose a larger bound on the delay. In
[12], T,nax Was set to 10 seconds while here, it is set to 15
seconds.

Table 2
Global convergence as a percentage of 100 Monte Carlo simula-
tions for case 1 with a randomly selected initial delay

Sampling SNR Existing Proposed
scheme method [12] method
Regular 5dB 90% 100%
sampled data [ 545" g7, 100%

Irregu]ar 5dB 40% 100%
sampled data [ 54 41% 100%

The results presented in Tables 1 and 2 show that the pro-
posed method, which utilizes the useful redundancy tech-
nique, performs much better than the existing method [12]
irrespective of the initial delay. When the initial delays are
close to the true system delay, the global convergence per-
centage is high, i.e. approximately 100% for both algo-
rithms. However, when the initial delays are poorly selected,
the global convergence percentage is low for the existing
method, e.g. with the initial delay = 0, the percentage con-
vergence for the existing method [[12] is less than 1% while
the proposed method achieves 100% global percentage con-
vergence for both SNRs and the two sampling schemes.
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5.2 Case 2: Rao-Garnier test system

In this section, we consider a system based on the Rao-
Garnier continuous time benchmark [[16]],

_ (—6400s+ 1600)e 8¢

G(s) = .
() = 775551 40857 1 4165 1 1600

This system is linear, non-minimum phase with complex
poles and a time delay. As with case 1, the experiment is con-
ducted using both regular and irregular sampling schemes.
For each sampling scheme, the input excitation signal is a
PRBS of maximum-Ilength. In the regular sampling case, the
sample time is 10ms, the number of stages in the shift regis-
ter is 10, the number of samples, N = 8000. For the irregu-
lar sampling, the number of stages in the shift register is 10
and the clock period is 0.5s. The input and output data are
sampled at an irregular time instant #;, where the sampling
interval & is uniformly distributed as, i ~ U[0.01,0.05](s).
The number of samples, N = 4500.

We consider two SNR levels: 5dB and 15dB. The frequency
(Df.VF is chosen as 25 rad/sec, which is approximately the
bandwidth of the system. Again, the initial values for the
time delay, 1°, are selected as 0,1,3,5,7,9 as well as a ran-
dom value from the uniform distribution U[0,9](s). The de-

lay boundaries Ty,in, Tmax are set to 0 and 15 sec respectively.

For the existing method, the cut off frequency of the filter is
chosen as 1/10 of the system bandwidth. For the proposed
method, the cut off frequencies of the filters, chosen based
on linearly spaced periods, span from 1/10 to 1 of the sys-
tem bandwidth and the number of filters used is 15. The
order of the Butterworth filters is set to 10. The maximum
number of iterations for the Gauss-Newton method (Step 2
in Algorithm II and IV) is 10. The threshold, €, for conver-
gence is 1073,

For comparison, 100 different data sets are generated for
each noise level of each sampling scheme.

A graph showing the trajectory of a time delay estimate is
plotted in Fig. 7 for a single data set. Switching between
cost functions is indicated by ’+’. Note that, if only one fil-
ter were to be used, there is a high chance of convergence



Table 3

Global convergence as a percentage of 100 Monte Carlo simulations for Case 2

Sampling Existing method [12] Proposed method
scheme Initial delay 0Os 1s 3s 5s 7s 9s 0Os Is 3s Ss 7s 9s
Regular | SNR=5dB | 1% | 52% | 22% | 43% | 76% | 68% | 99% | 99% | 99% | 99% | 99% | 99%
sampled data - ["oNR = 15dB | 0% | 60% | 6% | 28% | 70% | 69% | 100%| 100%| 100%| 100%| 100% 100%
lregular | SNR=5dB | 8% | 16% | 23% | 26% | 66% | 48% | 100% 100%| 100%] 100%| 100%] 100%
sampled data ~ ["gNR = 15dB | 9% | 10% | 19% | 27% | 55% | 50% | 100%| 100%| 100%| 100%| 100% 100%

Fig. 7. Case 2: The original cost function and time delay estimate
trajectory for a single data set (x: switching point, solid line: Jy)

to a local minima. However, by using the useful redundancy
technique, the proposed algorithm can avoid the local min-
ima and converge to the global minimum.

Table 4
Global convergence as a percentage of 100 Monte Carlo simula-
tions for case 2 with a randomly selected initial delay

Sampling SNR Existing Proposed
scheme method [[12] method
Regular 5dB 52% 99%
sampled data "5 g™ 46q, 100%
Irregular 5dB 48% 100%
sampled data |5 4 21% 100%

The numerical results of the experiments are provided in
Table 3 and 4. We can see that for both sampling schemes, the
proposed method based on the useful redundancy technique
performs much better as compared to the existing method.
For all the initial values of delay used in this experiment, the
existing method [[12] never convergences 100% to the global
minimum. However the proposed method utilizing useful
redundancy still achieves a very high global convergence
percentage, i.e. mostly 100% with any initial delay for both
SNRs and sampling schemes.
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6 Conclusion

The paper presents a new algorithm to estimate the param-
eters and time delay of a continuous-time system from reg-
ularly and irregularly sampled data. The idea is based on
Instrumental Variable methods and employing the useful re-
dundancy technique to enhance the global convergence by
generating multiple cost functions by filtering the data sev-
eral times. The paper also develops theoretical results related
to the minima locations of the filtered delay cost function
and the choice of filters to ensure the algorithm can converge
to a global minimum. Numerical results show a significant
improvement in the global convergence rate of the time de-
lay estimation as compared to existing methods irrespective
of the SNR.
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A Appendix
A.1  Proof of Theorem 1

Proof A.1 From (35), when A = 0, J(8t) becomes,

J(dt) = %/m(l fcos(w81:))|G0(ju))L(jw)|2dw.
- (A.1)
Vot € R, ® > 0, we have

1 —cos(wdt) >0, Vor,
Go(j®)L(jw)|* >0, Vo.

Therefore, J(8t) > 0, V&t € R, ® > 0. Note that J(0) =0,
hence we have J(8t) > J(0), V&t € R, ® > 0. The equal-
ity occurs when L(jo) =0, Yo or Go(jo) =0, Yo or
cos(®d1)) =1, Y. As the system Go(p) and the filter L(p)
are not 0 (condition of Theorem 1), the equality only occurs
when cos(®d1)) = 1, Vo, hence &t = 0. O

A.2  Proof of Theorem 2

Proof A.2 If L(s) is selected such that L(s)Go(s) is an ideal
low-pass filter with cut-off frequency ®., then J(3t) be-
comes,

_ 1 ®©c .
HM:—/\FEW%M%
21 J-o. (A2)
20, 2sin(®.01)
= -+ C‘7
v ot

l o )2
h =— A|L do.
where C o oM L(jo)| do

The minima and maxima of J(8t) occur at the roots of,

dJ(31)

20 cos(®.07)dt — sin(®, 1)

= (A3)

dort o



From (A.3), we can see that the extrema of J(8t) are also
the extrema of the function sinc(®.0t). However, the minima
of J(8t) will be the maxima of sinc(®.3t) and the maxima
of J(8t) will be the minima of sinc(®.8t). Note that for the
function sinc(®.8t), the locations of the i’ (i > 1) positive
extremum OT can be approximated by,

= I, n 1
¢ (i+ z)mo,
2 (A4)
~2i+1T7 T,
T4 Qi+)r

where T, is the corresponding period of the cut-off frequency
O.. The minima occurs when i is odd and the maxima occurs
when i is even.

Therefore, for J(8t), the positive extrema can also be ap-
proximated using (A.4), the only difference is that the min-
ima of J(8t) occurs when i is even and the maxima occurs
when i is odd. (I

A.3  Proof of Theorem 3

Proof A.3 Here we use the positive extrema locations of
the time delay cost function in (36). Since the filtered time
delay cost function J(8) is an even function, we only need
to prove the theorem for 8ty > 0.

Denote S’C;",i” as the i'* positive minimum of the filtered time
delay cost function J(8t) generated by the filter Li(p); 51:{‘,2”‘

as the i’h_positive maximum of the filtered time delay cost
Sfunction J(8t) generated by the filter Ly(p). From Theorem
4.2, they can be computed by,

S min :4i+1T . Tc,k+1
i,k+1 4 ck+1 (4l+])n27
4i+1 1 B—1
= — —k——|T;
- (4i+1)n2)<B knf—1> bw AS)
Smax _ 4i_1T Tc,k—H ’
‘Ci,k+1 - T c,k+1 —ma
4i—1 1 B—1
_Hl By,
(=3 (41'—1)7:2)([3 np—1/""

From (A.5), for any filter Ly(p), we have the following prop-
erty,
VieZ".

Sy < S < dune,, (A.6)

Consider the two following cases:

Case 1: &ty < 81’1””1" then from (A.6), we have, E(L; (p), 619)

0, which is smaller than 8ty as 0tg # 0. Therefore,
(L1 (p). %) < 51, O
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Case 2: 01y > S’c’l"_“lx. Denote iy such that,

S’c}’;“f” < 81p < St

ig,1 lO € NJO 2 2. (A7)

Now consider a filter set Ly(p),k = 1,ny defined as in The-
orem 4.3, with,
ng>(1/M+B-2)/(1/M—1), nyeN, (A.8)
where
 dig—3—4/((4ig—3)1?)
~ dig—1—4/((4ip— 1)n2)’
We need to prove the filter set satisfies the condition in (40).

First, we prove that the filter set Ly(p),k = 1,ns has the
following property,

(A9)

S max S min
0T g1 = T,

where i=1,ip—1,k=1,ny—1.
From (A.8),

ny 1/M+B—2
- 1 /M-1

(B—1)/(n,—1) (4.10)

B—(ny—2)(B—1)/(ny—1)°

=M<1-

Note that, as p > 1,

B0/ =), B=1/(rs~1)

B B—B-1)/(ns—1)
B-=1)/(ns—1)
B—(ny=2)B—1)/(ns—1)

(A.11)

1-—

>1-—

From (A.10) and (A.11),

B=D/ =1

S Ty (R y ey

(A.12)

where k = 1,ny — 1, hence, combining (A.9) and (A.12),

B—k(B—1)/(ny—1) _ 4io—3—4/((4ig—3)7%)
B—(k—1)(B—1)/(ny—1) = dig— 1 —4/((4ig— 1)m2)’

(A.13)
where k=1,ny—1.
Next, consider the function
4x+1—4/((4x+1)n?
flx)= /( ™) (A.14)

T dx+3—4/((4x+3)m2)’

Taking the derivative w.r.t. x of (A.14),



9f (x)
ox
o 16 16(4x+3) 64/t
A A T A e I
(4 +3) 4/ (x4 3)m))°
16 16(4x+1) 64/n*
(A +3)m? (e +3) 0 (x4 1) (4x+3)
((4x+3)—4/((4x 4 3ym)
Now Vx > 1,
9f (x)
ox
16 16(4x+1) 64/n*
C (4x+3)m2 (4x+3)2m%  (4x+1)2(4x+3)
((4x+3)—4/((4x+3)7t2)>2
16 16 64/
C (Ax+3)m (4x+3)m  (4x+1)2(4x+3)
((4x+3) —4/((4x+3)7£2))2
16 64
- _TIm2 1757 >0

((4x+3)—4/((4x + 322’

Hence, f(x) is an increasing function for x > 1, so we have,

f(io— 1) Zf(i),iz 1,ip— 1, or,

4ip—3 —4/((4ip — 3)n?)
4ip—1 —4/((4i() — l)TCZ)
- 4i+1—4/((4i+1)?)
~ 4i+3-4/((4i+3)n2)’

(A.15)

i=T1,ip— 1.

From (A.13) and (A.15),

B—k(B—1)/(nf—1) di+1—4/((4i+1)m?)
B—(k—1)(B—1)/(nf—1) ~— 4i+3—4/((4i+3)n?)’
where i=1,ig— 1,k = 1,ny — 1, which can be rewritten as,

4i+3 1 B—1
— —k
5 @) 6-5=0)
4i+1 1 B—1 (A.16)
> — —(k=1)——
> (55 @) (B0 =)
fori=1lip—1,k=1,nr—1
From (A.16) and (A.5), we conclude,
S =T, i=Tio— Lk=Tn;—1. (A17)
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Now, we will prove that 517"’” > 517{'””, i=1,ip. Similar to
the previous analysis, it’s trivial to show that,

S—4/(5%) _ 4i+1—4/((4i+ 1))
3=4/() = 4= 1= 4/((4i— 1))

5-4/(5%)
3-4/(3m%)

VieZt

As B> therefore, for Vi € 7%,

(4;'717@)[32 (4i+1—ﬁ).

Then by multiplying with Ty,,, we have,

81:'”‘”‘ >ttt Vie 7t

Lngo

(A.18)

Lastly, we show that for any filter set Ly(p),k = 1,ns defined
as in Theorem 4.3 withny > (1/M+B—2)/(1/M—1),ns €

N W8ty £ 0,3L,(p) : E(Ly (), 5%0) < 5.

Case 2-A: o .

S’Cmml 1 <01 < S’Cmax (A.19)
From (A.6) and (A.19), it is obvious that E(Li(p),d%)) =
5‘5’" 11> and S’C””” 1.1 < 0%, hence §(Ly(p),8t) < 8.

|
Case 2-B:
8 <0ty < 8’5"“" (A.20)
From (A.5) we see that, Vz €z,
Sr;”,’l; < 817:",’1’; 1 <...< 51:"”" < 81:;"1‘", (A.21)
hence,
St < ot o1 < < S . (A22)
Now combining (A.18) and (A.20),
B, < Bl
we have, o
Sr?glfl_’nf < BT() < STZ;MI 1 (A23)

Considering (A.22) and (A.23), there always exists a value
q > 2 such that 81:””” g < ot < 81:””” Following from

0o—1l,g—1"
(A.17), we have 817””" < 5’5{(’)"2‘. Therefore,

io—1,g—1
;g’" 1q <0 < 81:’"‘”‘ (A.24)
Combining (A.6) and (A.24),
E(Lg(p),8t0) = &1, . (A.25)
therefore, &(L,(p),070) < 810. O
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