
Multi-StageDiscreteTime andRandomizedDynamic

AverageConsensus

Mauro Franceschelli a Andrea Gasparri b

aDepartment of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy.

bDepartment of Engineering, Roma Tre University, Rome, Italy.

Abstract

In this paper we propose a novel local interaction protocol which solves the discrete time dynamic average consensus problem,
i.e., the consensus problem on the average value of a set of time-varying input signals in an undirected graph. The proposed
interaction protocol is based on a multi-stage cascade of dynamic consensus filters which tracks the average value of the inputs
with small and bounded error. We characterize its convergence properties for time-varying discrete-time inputs with bounded
variations. The main novelty of the proposed algorithm is that, with respect to other dynamic average consensus protocols,
we obtain the next unique set of advantages: i) The protocol, inspired by proportional dynamic consensus, does not exploit
integral control actions or input derivatives, thus exhibits robustness to re-initialization errors, changes in the network size
and noise in the input signals; ii) The proposed design allows to trade-off the quantity of information locally exchanged by
the agents, i.e., the number of stages, with steady-state error, tracking error and convergence time; iii) The protocol can be
implemented with randomized and asynchronous local state updates and keep in expectation the performance of the discrete-
time version. Numerical examples are given to corroborate the theoretical findings, including the case where a new agent joins
and leaves the network during the algorithm execution to show robustness to re-initialization errors during runtime.

1 Introduction

The consensus problem, popularized by Olfati-Saber
et al. (2007) and many others, consists in the design of lo-
cal interaction rules for networks of dynamical systems,
i.e., agents, with the objective to drive their state vari-
ables towards a common value by exploiting only locally
available information. The literature on the consensus
problem has grown significantly in the past decade and
different scenarios and assumptions on the network
topology, the agents’ dynamical models and the nature
of the interactions have been explored. Regarding the
network topology, from the initial assumption of static
undirected graphs the problem formulation has been
successively extended to the case of dynamic (switching)
directed graphs, see the early works by Franceschelli
et al. (2009), Cai and Ishii (2012), Domı́nguez-Garćıa
and Hadjicostis (2011), and Montijano et al. (2015).
Regarding the agents’ dynamical model, from the initial
agents’ modeling as first order integrators, the problem

? This work was supported by the Italian Ministry of Research
and Education (MIUR) with the grant “CoNetDomeSys”, code
RBSI14OF6H, under call SIR 2014.
??https://doi.org/10.1016/j.automatica.2018.10.009

Email addresses: mauro.franceschelli@diee.unica.it
(Mauro Franceschelli), gasparri@dia.uniroma3.it
(Andrea Gasparri).

formulation has been generalized to the case of second
order integrators, higher order dynamics and nonlinear
dynamics Yu et al. (2010); Bauso et al. (2006) and many
others.

The consensus problem has proven fundamental for the
decentralization of a multitude of algorithms for net-
worked multi-agent systems. Typical applications con-
cern the design of distributed data-fusion and estima-
tion algorithms, as in the works by Cattivelli and Sayed
(2010) and Franceschelli and Gasparri (2014) or the de-
velopment of distributed clock-synchronization proto-
cols, see for instance the works by Carli et al. (2011) and
Garone et al. (2015).

In this paper we focus our attention on the problem of dy-
namic average consensus, which is a consensus problem
where the state variables of the agents are driven towards
the average of a set of external time-varying signals given
as input to the agents. Early pioneers of dynamic aver-
age consensus are, to the best of our knowledge, Spanos
et al. (2005). Their main idea was to consider the deriva-
tive of these inputs so that the average value of the state
variables in the network would track the average value of
the set of input signals. In their approach, noise added to
the input derivatives would disrupt the algorithm con-
vergence properties. Several works followed, which ex-
plored dynamic average consensus in different settings.
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Similar issues can be found also in nonlinear versions of
the dynamic average consensus protocols such as in Nos-
rati et al. (2012). Input derivatives are exploited also in
event-triggered approaches such as in Kia et al. (2015a)
which extends the dynamic average consensus problem
to networks with intermittent communications. Notably,
Zhu and Mart́ınez (2010), proposed a discrete time ver-
sion of dynamic average consensus exploiting finite dif-
ferences of the inputs instead of their derivatives. The
discrete time implementation is achieved at the expense
of a finite error in the consensus value which has been
characterized as function of the network parameters.

Another work particularly significant in the context of
dynamic average consensus is the one by Montijano et al.
(2014). The authors propose a discrete time dynamic av-
erage consensus algorithm which is able to achieve both
small steady state error and be robust with respect to
re-initialization errors by the addition of a “damping”
factor to mitigate past errors. In this paper, with respect
to Montijano et al. (2014), we do not exploit the finite
differences of order k of the inputs to achieve dynamic
average consensus. The proposed protocol exploits solely
knowledge of the time-varying magnitude of the inputs
and aims to the objective of achieving robustness to past
errors due to re-initialization, noise or else by not keep-
ing any memory of past states and exploiting only their
instantaneous value. This is in contrast with the work
by Montijano et al. (2014) which dampens past errors
by exploiting a so-called forgetting-factor in the agents’
dynamics.

Freeman et al. (2006), one of the earliest works in
the field, proposed proportional (P) and proportional-
integral (PI) dynamic consensus algorithms in continu-
ous time, which do not exploit input derivatives. Their
proposed P dynamic consensus algorithm is able to track
with finite error the average of the input signals while
the PI is able to achieve zero error for constant inputs.
The authors propose an error bound for their P dynamic
consensus algorithm which is proportional to the norm
of a weighted sum of the inputs and their derivatives,
thus being able to achieve tunable errors with resepct
to the magnitude and rate of change of the inputs. The
approach is able to achieve a trade-off between small
steady state error at the price of a large convergence
rate and vice-versa. In this paper we present the multi-
stage dynamic consensus algorithm which is composed
by a cascade of m stages of discrete-time proportional
dynamic consensus filters and show that its steady-state
error error for constant inputs decreases geometrically
with the number of stages while the tracking error with
respect to changes in the time-varying average of the
inputs increases only linearly with m, thus enabling an
appropriate tuning depending on the characteristics of
the inputs. Furthermore, our discrete-time approach
is designed to enable a randomized and asynchronous
version of the proposed algorithm which is provided.
In Freeman et al. (2006) it is also proposed a PI dy-
namic consensus algorithm to improve the performance

regarding the steady state error for constant inputs by
assuming that the sum of the co-state variables repre-
senting the integral part of algorithm is time-invariant.
This method allows to achieve zero steady state error, its
main disadvantage is a vulnerability to re-initialization
errors which may cause a persistent bias in the esti-
mation in the presence of networks with time-varying
size, noise or faulty agents. In this paper we propose a
method which avoids the vulnerabilities of dynamic con-
sensus algorithms based on integral control actions and
that can be implemented with randomized interactions.

In Bai et al. (2010), the authors propose an alternative
method for PI dynamic average consensus which is ro-
bust to re-initialization errors for given classes of time-
varying inputs such as ramps or sinusoids of known fre-
quency for which an estimator based on the internal
model principle can be designed. In this paper we provide
and characterize results for general time-varying inputs.

In Scoy et al. (2015) the proportional dynamic average
consensus algorithm has been improved significantly and
elegantly with respect to the work by Freeman et al.
(2006) and Bai et al. (2010). By exploiting a nonlinear
scheme for the local state update which involves a map-
ping from the reals to the torus the authors achieve ro-
bustness to initialization errors and exponential conver-
gence by assuming that the inputs are bounded and this
bound known, hence the main disadvantage of the algo-
rithm consists in not being able to address ramp inputs
or inputs with unknown upper bound due to the need
to exploit this bound for the correct tuning of the al-
gorithm. In this paper we propose a different approach
based on a cascade of modified P dynamic average con-
sensus algorithms which aims to improve the error per-
formance while retaining robustness to re-initialization
errors, we also design our algorithms to enable a ran-
domized and asynchronous implementation of the local
state update rule.

Another recent work dealing with the dynamic average
consensus problem is by Kia et al. (2015b). The authors
consider networks modeled by weight-balanced strongly
connected graphs and propose a PI algorithm which
tracks the average of the inputs with average errors and
is able to achieve zero error for special classes of inputs.
The authors propose a continuous time algorithm and
discuss how to choose a proper step-size for a discrete
time implementation. Initialization and re-initialization
errors are present only if the main assumption made by
authors is violated, that is if the graph structure is not
balanced at some instant of time thus introducing a bias
in the estimation even if the graph structure is corrected
after the fault, this scenario may occur if faulty agents
or faulty communication links are considered. The main
contribution of their work consists in dealing with time-
varying topologies, control with limited authority (satu-
ration of control variables), tunable rate of convergence
and a characterization of the privacy preservation prop-
erties of their algorithms.

A particularly interesting version of consensus algo-
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rithms is represented by gossip based algorithms. One of
the early proposers of these algorithms for the problem
of distributed averaging were Boyd et al. (2006). Gossip
algorithms consist in local interaction rules executed at
random instants of time with random neighbors in the
communication network. This scheme of interaction is
particularly convenient when implementing these algo-
rithms in large scale networks with possibly fast chang-
ing topologies because there is no need to synchronize
the state updates and the inherent parallelism of the lo-
cal interactions can be fully exploited. These algorithms
have been exploited in several applications which make
use of the average of a set of measurements or data, see
the work by Dimakis et al. (2010) and references therein
for an introduction to the topic.

Other approaches, such as the work by Habibi et al.
(2015), address the dynamic average consensus problem
in a randomized and asynchronous framework and are
based on the idea of implementing a pipeline in which
new instances of the gossip algorithm in Boyd et al.
(2006), with new and updated initial conditions, are ini-
tialized at each discrete instant of time while the older
instances output the current estimated average of the
set of network variables.

A different framework of gossiping has been proposed
by Ravazzi et al. (2015), the authors propose a method
to randomize affine dynamics (linear dynamics with in-
puts) and characterize the convergence properties based
on the ergodicity property of the considered stochastic
process. This allowed the authors to show that despite
the state variables do not converge to a limit, they con-
verge in distribution to a random variable with known
expected value. This expected value can be computed
by the agents by taking the time average of their own
state trajectory.

The main contribution of this paper is the design
of a local interaction protocol among agents of a net-
work to solve the dynamic average consensus problem,
i.e., achieve consensus on the time-varying average
of a set of discrete time signals ui(k) with average

ū(k) =

∑n

i=1
ui(k)

n which has a unique set of features
and advantages with respect to the state of the art.

Our basic idea is to consider a cascade ofmmodified pro-
portional dynamic average consensus filters to achieve
a small steady-state error by the design of the size of
the cascade and other tuning parameters while retaining
the robustness of approaches based on proportional dy-
namic consensus with respect to re-initialization errors
due to faults or changes in the network. We characterize
an explicit upper bound to the maximum tracking error
for time-varying inputs and propose a randomized and
asynchronous implementation of the algorithm. One of
the main results is that by increasing linearly the num-
ber of state variables exchanged locally among agents
we obtain a geometric reduction in steady state error .

The method proposed in this paper does not make use of
input derivatives that may be disruptive in the case the

input signals are affected by noise. This feature, together
with the absence of integral actions in the form of auxil-
iary variables, avoids the need of re-initialization in the
case new agents join or leave the network or faulty agents
influence the network disrupting the average value of
the network state. In addition, our proposed design al-
lows to trade-off convergence rate with steady-state er-
ror by choosing a proper number of stages in the cascade.
Finally, we propose an asynchronous and randomized
(gossip-like) version of the protocol and characterize in
expectation its convergence properties.

The rest of the paper is organized as follows. In Section 2,
some fundamental results on graph theoretic modeling of
multi-agent systems are reviewed. In Section 3, we pro-
pose the multi-stage discrete time dynamic average con-
sensus protocol and characterize some of its convergence
properties. In Section 4 a version of the proposed proto-
col which can be implemented according to a random-
ized and asynchronous pair-wise communication scheme
is detailed. In Section 5 numerical simulations are given
to corroborate the theoretical findings, while in Section 6
conclusive remarks are drawn and future work is dis-
cussed.

2 Preliminaries

In this section we review some preliminary results and
notation of graph theoretic modeling of multi-agent sys-
tems.

Consider a system of n agents whose network topology
can be described by an undirected graph G = (V,E),
where V = {1, . . . , n} is the set of agents, and
E ⊆ V × V is the set of edges: an edge ei,j exists be-
tween agents i and j if agent i interacts with agent j.
Note that, since the graph is undirected, the existence
of an edge ei,j ∈ E implies that ej,i ∈ E as well. Let
A be the n × n adjacency matrix of the graph G whose
elements are ai,j = 1 if the edge ei,j exists, i.e., ei,j ∈ E,
ai,j = 0 otherwise. Let Ni define the neighborhood of
agent i, that is the set of agents j for which ei,j ∈ E.
Let Di = |Ni|, denote the degree of the agent i, that is
the number of incident edges to agent i, and let us de-
note with D = diag(D1, . . . , Dn), a diagonal matrix for
which the i-th element on the main diagonal is the de-
gree of the i-th agent. Let L = D − A be the Laplacian
matrix which encodes the graph topology. Note that,
since graph G is undirected, the Laplacian matrix is sym-
metric by construction and thus all its eigenvalues are
real. Furthermore, for a connected graph, it has one null
eigenvalue with corresponding unique eigenvector equal
to the vector of ones, i.e., 1 ∈ Rn. In addition according
to the Gers̆chgorin disc Theorem, a Laplacian matrix
has all its eigenvalues located within [0, 2Dmax] where
Dmax is the maximum degree among the agents in the
graph. In the sequel, we will denote the eigenvalues of the
Laplacian matrix as λL,i ∈ σ(L), sorted by their mag-
nitude that is 0 = λL,1 < λL,2 ≤ . . . ≤ λL,n ≤ 2Dmax.
We assume that an upper bound to the maximum de-
gree Dmax is available to the agents in the network.
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Algorithm 1 Multi-Stage Dynamic Consensus Protocol

State of Agent i: xsi (k), for s = 1, . . . ,m,
xsi (0) = xsi0;
Input signal: ui(k), for i = 1, . . . , n;
Tuning parameters: α, ε ∈ R+, ε < 1

2Dmax
,

α < 1− εDmax;
Protocol execution: All agents repeat indefinitely
the next two operations, here reported for agent i:
• Gather xsj(k) for s = 1, . . . ,m and j ∈ Ni.
• Update state variables {xsi (k)}s=1,...,m as in eq. (1).

Finally, let us denote with ū the average value of a
vector u ∈ Rn, that is ū = 1

n

∑
i∈V ui.

3 Discrete Time Protocol

In this section we present a novel discrete time multi-
stage consensus protocol and characterize some of its
convergence properties. The proposed protocol is based
on a multi-stage cascade of damped consensus filters and
involves the local update of m variables based on the
states of each agent’s neighbors. More specifically, each
agent i has a state xi = [x1i , . . . , x

m
i ]T which evolves ac-

cording to the following update rule

x1i (k + 1) = x1i (k)−
∑
j∈Ni

ε
(
x1i (k)− x1j (k)

)
+ α

(
ui(k)− x1i (k)

)
,

x2i (k + 1) = x2i (k)−
∑
j∈Ni

ε
(
x2i (k)− x2j (k)

)
+ α

(
x1i (k)− x2i (k)

)
,

...

xmi (k + 1) = xmi (k)−
∑
j∈Ni

ε
(
xmi (k)− xmj (k)

)
+ α

(
xm−1i (k)− xmi (k)

)
,
(1)

where α, ε ∈ R are tuning parameters.

As detailed in Algorithm 1, to execute the protocol, the
generic agent i must send a message Mi composed by a
set of m local variables Mi =

{
x1i , x

2
i , . . . , x

m
i

}
. There-

fore, each agent needs only to have sufficient memory
storage capability to handle the reception of |Ni| mes-
sages {Mj}j∈Ni from each of its neighbors, i.e., a maxi-
mum of Dmax messages.

The evolution of the agents’ states in a network running
protocol (1) can be compactly represented in vector for-
mat as follows

x1(k + 1) =
(
I − εL

)
x1(k) + α

(
u(k)− x1(k)

)
,

x2(k + 1) =
(
I − εL

)
x2(k) + α

(
x1(k)− x2(k)

)
,

...

xm(k + 1) =
(
I − εL

)
xm(k) + α

(
xm−1(k)− xm(k)

)
.

(2)

3.1 Multi-Stage Steady State and Estimation Accuracy

We are now ready to characterize the steady state equi-
librium for the proposed Multi-Stage Dynamic Consen-
sus Protocol (1). In this regard, let us denote with x?(k)
the steady-state that the system would reach if the input
signal were held constant at u(k) for some sufficiently
long time, that is

x?(k) =
[
xm,?(k)T , . . . , x1,?(k)T

]T
, x?(k) ∈ Rnm×1,

were xs,?(k) ∈ Rn, with s = 1, . . . ,m represents the
equivalent steady-state of each single stage s of the cas-
caded consensus filter. Next, in Theorem 1 we charac-
terize the value of xs,?(k) as function of u(k).

Theorem 1 Consider a multi-agent system running Al-
gorithm 1. If the graph G is connected,α ∈ (0, 1− εDmax),

ε ∈
(

0, 1
2Dmax

)
, then it holds

xs,?(k) = (αI + εL)
−s
αsu(k). (3)

If u(k) is constant, then (3) is the steady-state value of
the s-th stage.

Proof :
See the proof in Appendix 7.1. �

Note that, for the sake of brevity in the sequel we will
assume that the conditions dictated by Theorem 1 are
always satisfied, that is the graph G is connected and

α ∈ (0, 1− εDmax) and ε ∈
(

0, 1
2Dmax

)
.

Now we characterize the relationship between xs,?(k)
and the time varying average of the input signals, ū(k).
This relationship gains the meaning of steady-state esti-
mation accuracy for the s-th stage of the protocol if the
inputs at some point become steady, i.e., constant, thus
allowing the system to reach a steady state.

Theorem 2 Consider a multi-agent system running Al-
gorithm 1 on a connected graph G withα ∈ (0, 1− εDmax),

ε ∈
(

0, 1
2Dmax

)
, β = α+ ελ2,L. It holds

‖ū(k) 1− xm,?(k)‖2 ≤
(
α

β

)m
‖û(k)‖2 , (4)

with û(k) = (u(k)− ū(k) 1). If u(k) is constant, then (4)
is the steady-state estimation error of the m-th stage.

Proof :

See the proof in Appendix 7.2 �

Notably, what (4) tells us is that having a cascade of m
systems with a proper choice of the parameters α and
m allows to reduce the distance from the steady-state
equilibrium of the m-th stage in the cascade and the
average of the input signals.
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3.2 Protocol Convergence Properties

We are now interested in characterizing the convergence
properties for the proposed algorithm for a generic in-
put u(k). The dynamics of the cascade of consensus fil-
ters of protocol (1) can be represented in a compact form
as

x(k + 1) = Ax(k) +Bu(k),

xm(k) = Cx(k),

where x(k) =
[
xm(k)T , . . . , x1(k)T

]T ∈ Rnm×1, matrix
A ∈ Rnm×nm is defined as

A =


I −Q αI 0 . . . 0

0 I −Q αI . . . 0

...
...

...
...

...
0 . . . 0 I −Q αI

0 . . . 0 0 I −Q

 , (5)

matrix Q ∈ Rn×n is defined as

Q = α I + εL, (6)

matrix B ∈ Rnm×n is defined as

B =


0
...
0
α I

 , (7)

and matrix C ∈ Rn×nm defined as

C = [ I 0 . . . 0 ] .

Let us now define the estimation error e(k) of the pro-
posed multi-stage cascade of consensus filters at time k
as

e(k) = x(k)− x?(k). (8)

with e(k) =
[
em(k)T , . . . , e1(k)T

]T ∈ Rnm×1. The next
proposition characterizes the error dynamics of the pro-
posed cascade of consensus filters.

Proposition 1 The dynamics of the error defined in (8)
can be expressed as

e(k + 1) = Ae(k) + δ?(k), (9)

with δ?(k) = x?(k)−x?(k+ 1) and the matrix A defined
as in eq. (5).

Proof :

See the proof in Appendix 7.3 �

We now characterize the convergence rate for the error
dynamics given in (9). In particular, motivated by the
results of Theorem 2, with no lack of generality we focus
only on the error em(k), that is the convergence rate

related to the m-th stage of the proposed multi-stage
cascade of consensus filters. To this end, let us recall that
em(k) = C e(k), and let us define the average error value
ēm(k) and the disagreement error vector êm(k) for the
m-th stage at time k as

ēm(k) =
1T em(k)

n
, (10)

and

êm(k) = em(k)− ēm(k)1 = P em(k), (11)

where P = (I− 11T

n ) is an orthogonal projection matrix.
In addition, let us write the estimation error em(k) of the
m-th stage as the combination of the natural response
emn (k) and the forced response emf (k) of the dynamical

system given in (9), that is

em(k) = emn (k) + emf (k).

We emphasise that in this context we refer to the natural
response of the error dynamics in (9) and not that of
protocol in (2). In particular, the natural response of
the error dynamics corresponds to the state trajectory
of the solution of eq. (9) due to the initial condition e(0)
with δ?(k) = 0 for all k ≥ 0, therefore the case in which
the input vector u(k) in (2) is constant at all times but
possibly different from zero. Similarly, we consider the
forced response of the error dynamics in (9) instead of
forced response of the protocol in (2). Now, let us define
δu(k) as

δu(k) = u(k)− u(k + 1) = δ̄u(k)1 + δ̂u(k), (12)

where δ̄u(k) is the average value of the vector δu(k), δ̂u(k)

is such that δu(k) = δ̄u(k)1 + δ̂u(k) with δ̂u(k)T1 = 0.

The following theorem provides an upper bound on the
norm of the natural response for the error dynamics
given in (9) which characterizes the convergence rate of
the algorithm.

Theorem 3 Consider a multi-agent system running Al-
gorithm 1. Then, for any initial condition e(0), the nat-
ural response of the error dynamics in (9) for the m-th
stage satisfies

‖emn (k)‖2 ≤ (1− α)k
km−1

(m− 1)!

1−
(

α
1−α

)m
1− α

1−α
emax(0),

where emax(0) = max
s∈{1, ...,m}

{‖es(0)‖2}.

Proof :

See the proof in Appendix 7.4. �

Now, a few observations are in order:
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• The convergence rate is geometric and determined by
the value of α. In addition, it is possible to reduce the
convergence rate to decrease the steady-state error.
• The cascade of m stages tuned with α = α′ is inher-

ently faster than a single stage implementation tuned
with α = (α′)m.

The following theorem provides a bound on the maxi-
mum of the average error value and of the norm of dis-
agreement error vector of the forced response for the er-
ror dynamics given in (9).

Theorem 4 Consider a multi-agent system running Al-
gorithm 1. For all k ≥ 0 the forced response of the error
dynamics of the m-th stage satisfies

|ēmf (k)| ≤ m

α
δ̄u,max, (13)

and

‖êmf (k)‖ ≤ m

β

(
α

β

)m
δ̂u,max, (14)

where ēmn (k) and êmn are defined respectively in (10)
and (11), β = α + ελL,2, δ̄u,max = max

k∈{0,∞}
|δ̄u(k)| and

δ̂u,max = max
k∈{0,∞}

‖δ̂u(k)‖2.

Proof :

See the proof in Appendix 7.5. �

The next corollary summarizes the results of Theorem 2,
Theorem 3,and Theorem 4 to compute the maximum
tracking error of Algorithm 1 for time-varying inputs.

Corollary 1 For all k ≥ 0 the maximum tracking er-
ror for the m-th stage of a multi-agent system running
Algorithm 1 is upper bounded by

max
i∈V
|xmi (k)− ū(k)| ≤ m

α
δ̄u,max

+
m

β

(
α

β

)m
δ̂u,max

+

(
α

β

)m
‖û(k)‖2

+ ‖emn (k)‖2 ,

(15)

where emn (k) is the vanishing natural response of the error
dynamics as in Theorem 3, β = α + ελL,2 and δ̄u,max,

δ̂u,max, û(k) are as defined in Theorem 2 and Theorem 4.
�

Now, a few observations are in order:

• The bound on the maximum tracking error is the sum
of four components: i) m

α δ̄u,max, which grows linearly
with m and is proportional to the worst case change

in the average value of the inputs; ii) m
β

(
α
β

)m
δ̂u,max,

which decreases geometrically with m and is propor-
tional to the worst case variation of the disagreement

vector; iii)
(
α
β

)m
‖û(k)‖2, which decreases geometri-

cally with m and is proportional to the disagreement

vector at time k; and iv) ‖emn (k)‖2, which decreases
geometrically with k and is the error due to the nat-
ural response of the the filter, which vanishes to zero
as k →∞ as characterized in Theorem 3.

• The proposed algorithm has its best performance in
the case in which the average of value of a large set
of inputs changes slowly with respect to the changes

of the single inputs, i.e., δ̄u,max << δ̂u,max and the
optimal choice of m is m > 1.

• For a fixed α, the parameter m can be increased to
reduce the steady-state error. However, a large m in-
troduces what can be described as a lagging effect or
time-delay in the error dynamics.

To better understand the role played the parameters α
and m in terms of convergence speed and steady-state
error, it should be noticed that the dynamical matrix A
is sub-stochastic with spectral radius strictly less then 1.
Therefore the norm of the error decreases monotonically
at each iteration for constant inputs. In particular, the
largest eigenvalue of the matrix A has algebraic multi-
plicity equal tom. Thus, in the worst case the natural re-

sponse vanishes to zero asO
(

(1− α)k km−1

(m−1)!

)
, as shown

in Theorem 3. This upper bound has a maximum at
k ≈ m−1

log( 1
1−α )

which grows linearly with m. Therefore, as

m is increased we can guarantee that the geometric rate
of convergence determined by (1−α)k starts to dominate
the other term only for k > m−1

log( 1
1−α )

. The optimal choice

of m to minimize the tracking error for a given specified
convergence rate and steady-state error depends on the

characteristics of the inputs, i.e., on δ̄u,max and δ̂u,max.
Figure 1 depicts how this small time-delay increases lin-
early with m in the case of a step-change for a constant
input value.

4 Asynchronous and Randomized Protocol

In this section we introduce an asynchronous and ran-
domized version (gossip-like, see Boyd et al. (2006)),
of the multi-stage protocol given in (1) and detailed in
Algorithm 1. Regarding the asynchronous setting, each
agent i has a state xi = [x1i , . . . , x

m
i ]T which evolves,

upon the (random) selection of a neighboring agent j,
according to the following protocol

x1i (k + 1) =
x1i (k) + x1j (k)

2
+

α̂

Di

(
ui(k)− x1i (k)

)
,

x2i (k + 1) =
x2i (k) + x2j (k)

2
+

α̂

Di

(
x1i (k)− x2i (k)

)
,

...

xmi (k + 1) =
xmi (k) + xmj (k)

2
+

α̂

Di

(
xm−1i (k)− xmi (k)

)
,

(16)
where α̂ ∈ R is a tuning parameter.

In particular, we show that the agents’ states in a net-
work running the protocol given in (16) as detailed in
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Algorithm 2 evolve in expectation with dynamics for-
mally equivalent to the multi-stage discrete time version
of the protocol.

Algorithm 2 Multi-Stage Asynchronous and Random-
ized Dynamic Consensus Protocol

State of Agent i: xsi (k), for s = 1, . . . ,m,
xsi (0) = xsi0;
Input signal: ui(k), for i = 1, . . . , n ;
Tuning parameters: α̂ ∈ R+, α̂ < 0.5;
Protocol execution: All agents repeat indefinitely
the next operations, here reported for agent i:
• Select uniformly at random one neighbor j ∈ Ni
• Gather {xsj(k)} for s = 1, . . . ,m.
•Update state variables {xsi (k)}s=1,...,m as in eq. (16).

We point out that Algorithm 2 exploits a directed in-
formation flow, i.e., the generic agent i gathers the
state information from its neighbors and updates its own
state without sending the information about its own
state to the neighbors at each iteration. Therefore, at
each instant of time, only a directed information flow
occurs thus simplifying the implementation of the pro-
posed protocol with UDP internet communication pro-
tocols among devices. On the other hand, the underlying
graph which encodes the available communication chan-
nels is undirected, i.e., information may flow in either
direction at different instants of time, this is captured by
the symmetry of the corresponding Laplacian matrix.

The evolution of the agents’ states in a network running
protocol (16) given in Algorithm 2 can be compactly
represented in vector format, for a given selection of an
edge (i, j), as follows

x1(k + 1) = Wijx
1(k) +

α̂

Di
eie

T
i u(k),

x2(k + 1) = Wijx
2(k) +

α̂

Di
eie

T
i x

1(k),

...

xm(k + 1) = Wijx
m(k) +

α̂

Di
eie

T
i x

m−1(k),

(17)

where the matrix Wij is defined as

Wij = I +
eie

T
j

2
− (1 + 2α̂/Di)eie

T
i

2
, (18)

with ei a vector whose generic element j is zero if j 6= i
and one if if j = i.

The following theorem characterizes the convergence
properties of the proposed m-th order asynchronous
and randomized dynamic consensus protocol described
in (16) (and (17)). Briefly, this result follows from the
application of (Ravazzi et al., 2015, Theorem 1), which

in turn requires to establish an equivalence (in ex-
pectation) with the m-th order discrete-time dynamic
consensus protocol described in Algorithm 1.

Theorem 5 Consider a multi-agent system that exe-
cutes Algorithm 2 with time varying inputs u(k). Let
α̂ ∈ (0, 0.5). If G is connected and the sequence of selected
edges is i.i.d. with uniform probability distribution, then
the expected value of the state variables of protocol (17)
evolves as follows

E [x(k + 1)] = E [A(k)]E [x(k)] + E [B(k)]u(k)

= AE [x(k)] +Bu(k)m
(19)

where matrix A and B defined as in eq. (5) and (7) with

parameters ε =
1

2|E|
and α =

α̂

|E|
.

Proof :

See the proof in Appendix 7.6 �

Next, we provide a further result whose proof is based
on the work by Ravazzi et al. (2015).

Theorem 6 Consider a multi-agent system that
executes Algorithm 2 with constant inputs u. Let
ū = 1

n

∑
i∈V ui denote the average value of vector u. Let

α̂ ∈ (0, 0.5). If G is connected and the sequence of selected
edges is i.i.d. with uniform probability distribution, then

• xm(k) converges in distribution to a random variable
xm∞ and this distribution is unique;

• it holds

lim
k→∞

E [xm(k)] = E [xm∞] = xm,?.

Proof :

See the proof in Appendix 7.7. �

5 Numerical Results

In this section we propose some numerical examples to
corroborate the theoretical results and show the perfor-
mance of the proposed methods.

We considered a network of N = 10 agents interact-
ing over a network topology described by an undirected
graph G = {V,E} with V = {1, . . . , N} and |E| = 38,
obtained as an Erdős-Rényi random graph with param-
eter p = 0.46

Numerical simulations of Algorithm 1 and Algorithm 2
have been performed with m = 10 stages and with a
choice of parameters ε and α such that Algorithm 1
simulates the expected value of the state of Algo-
rithm 2, according to the results of Theorem 5. In par-
ticular, by choosing α̂ = 0.1 for Algorithm 2, it holds

ε =
1

2|E|
= 0.0263 and α =

α̂

|E|
= 0.0132. Thus, we

choose the free parameters ε and α of Algorithm 1 as
computed above. This results in a slow down of Al-
gorithm 1 with respect to its potential to allow a fair

7
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Fig. 1. State evolution of Algorithm 1 (Discrete-time protocol) with respect to a step change to constant input values.
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Fig. 2. State evolution of Algorithm 2 (Asynchronous and randomized protocol) with respect to a step change to constant
input values.

comparison with Algorithm 2 which performs the up-
date of a single random node at each iteration instead of
an update that involves all nodes and their neighbors.
We point out that in a real scenario the requirement of
synchronicity of the updates of Algorithm 1 is a bottle-
neck in large scale network, thus making a randomized
and asynchronous implementation to be preferable. The
algebraic connectivity of the randomly generated graph
resulted to be λL,2 = 1.5494, thus according to Theo-
rem 2 we expect a steady-state error for constant inputs

equal to
(
α
β

)10
‖û‖2 = 7.69 · 10−7‖û‖2, where ‖û‖2 is

the disagreement vector of the inputs.

In Figure 1 and 2 we show the evolution of, respectively,
the first five stages of Algorithm 1 and Algorithm 2 exe-
cuted in parallel on the same network, inputs and initial

conditions. The simulations show how the algorithms
behave with respect to a step change to constant input
values. Only the average of the inputs is depicted in each
subfigure. The change in average value occurs at itera-
tion k = 45000. It can be seen that even a small number
of stages of the proposed algorithm is able to greatly re-
duce the steady-state error.

In Figure 3 we consider a set of inputs composed by si-
nusoids with the same frequency but with random phase
affected by noise. A comparison of the state evolution
of the tenth stage of Algorithm 1 and Algorithm 2 can
be seen, respectively, in the middle and right subfigures.
It can be seen that while the disagreement among the
agents’ state is negligible, the average value of the error
is finite and bounded.

In Figure 4 we consider a set of inputs composed by linear
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Fig. 3. Network inputs (left), tracking by Algorithm 1 (middle), tracking by Algorithm 2 (right).
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Fig. 4. Network inputs (left), tracking by Algorithm 1 (middle), tracking by Algorithm 2 (right).
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Fig. 5. Boolean random inputs. Instantaneous average of 100 random boolean inputs (left), tracking by Algorithm 1 (middle),
tracking by Algorithm 2 (right).

0 20000 40000 60000 80000 100000

Iteration number

0.3

0.35

0.4

0.45

0.5

0.55

0.6

T
en

th
 s

ta
ge

 s
ta

te
 v

al
ue

s

Average of input signals of agents 1 to 9

Average of input signals of agents 1 to 10

Node 10 joins the network

Node 5 leaves the network

Fig. 6. Time-varying number of nodes with constant inputs. At iteration k = 3.3 ·104 node 10 joins the network, at k = 6.7 ·104

node 5 leaves the network. Algorithm 1 shows robustness to changes in the network composition.

ramps with random angular coefficient chosen uniformly
at random in the interval [0, 1]. A comparison of the
state evolution of the tenth stage of Algorithm 1 and
Algorithm 2 can be seen, respectively, in the middle and
right subfigures.

In Figure 5 we show a numerical example that strongly
motivates the use of proposed algorithm design. We con-
sider a network of N = 100 agents and a set of boolean

inputs which takes {0, 1} values randomly at each instant
of time. It can be seen that the output of the multi-stage
consensus filter first experiences a transient due to its
initial condition and then, once it reaches the expected
value of the average of the boolean inputs, it appears to
be constant. It seems constant because changes in the in-
stantaneous average of the inputs are filtered out by the
”slow” dynamics (with respect to that of the inputs) of
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Fig. 7. State evolution of Algorithm 1 (Discrete-time protocol) tuned for high convergence rate with respect to a step change
to constant input values.

the consensus filter and because the random process has
a time-independent (constant) expected value. It is key
to note here that only the expected value of the average
of the inputs is constant, the actual instantaneous aver-
age of the inputs changes at each instant of time being
it the realization of a stochastic process. In this exam-
ple, our aim is to show that in this particular case the
algorithm is able to converge to the expected average
value filtering out the random changes of the inputs’ av-
erage with respect to their expected value. Furthermore,
this scenario intends to model what may occur during
the transient behavior of distributed optimization algo-
rithms such as the one in Franceschelli et al. (2016, 2018)
where the input signals represent the planned trajecto-
ries of the energy consumption of a large population of
thermostatically controlled loads, for instance electric
thermal systems such as domestic water heaters. It can
be seen that the proposed algorithms behave well despite
the erratic behavior of the inputs. In particular, while
the approach to discrete time dynamic average consensus
proposed in Montijano et al. (2014) and related works is
able to achieve great performance when the derivatives
of the inputs are available and these derivatives pre-
dict future samples with small errors, i.e., there exist a
model of the inputs, in this example (or in Franceschelli
et al. (2016, 2018)) the input derivatives are meaning-
less and our approach which considers input signals as
black boxes and does not exploit input derivatives seems
to show superior performance.
In Figure 6 we consider the case when a new node joins
the network during the execution of Algorithm 1. The
example considers 9 agents with constant inputs up to
iteration k = 3.3 · 104 when at that point agent 10 joins
the network, thus changing the average value of the input
signals despite no input of the original 9 agents changed.
At iteration k = 6.7 · 104 node 5 leaves the network, al-
tering again the average value of the input signals. It can
be seen that the proposed approach shows robustness
with respect to a time-varying number of nodes. In par-
ticular, since the proposed algorithm tracks the instan-
taneous average of the input signals with no memory of
their past values, a change in the number of nodes does
not have a significant effect on the convergence proper-
ties, which are preserved.
Finally, in Figure 7 we repeat a numerical simulation of

Algorithm 1 with the same scenario but different tuning
parameters to maximize convergence speed. We choose
α = 0.1 and ε = 0.1357. It can be seen that the number
of iterations is greatly reduced with respect to the sim-
ulation in Figure 1 which was provided to show a fair
comparison with the asynchronous and randomized ver-
sion of the algorithm.

6 Conclusions

In this paper we proposed a novel dynamic consensus
protocol which solves the dynamic average consensus
problem on a set of time-varying input signals in an
undirected graph. The proposed protocol is based on a
multi-stage cascade of dynamic consensus filters which
tracks the average value of the inputs with small and
tunable error. Simulation results have been provided to
corroborate the theoretical findings. The approach is ro-
bust with respect to re-initialization errors during run-
time or measurement noise in the inputs because, dif-
ferently from other dynamic consensus approaches, it
does not exploit integral control actions or input deriva-
tives. Furthermore, by tuning the number of stages of
the cascade, i.e., by increasing the information locally
exchanged at each state update, it is possible to tune the
steady-state error and the maximum tracking error thus
improving the performance with respect to proportional
dynamic consensus. In addition, we provided an asyn-
chronous and randomized version of the protocol which
has the same advantages of the discrete time version and
which exploits only directed interactions at each instant
of time.

Future work will be focused on characterizing the perfor-
mance of the protocol for networks with a time-varying
number of agents and its use for the estimation of the av-
erage aggregate power consumption of thermostatically
controlled loads in a scenario of distributed optimiza-
tion of their energy consumption for electric demand side
management applications.

7 Appendix

Fact 1 Let matrices A and Q be defined as in eqs. (5)

and (6), respectively. Let S = I−Q and
(
k
i

)
= 0 whenever
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i > k. The following holds

Ak =



(
k

0

)
Sk

(
k

1

)
Sk−1α

(
k

2

)
Sk−2α2 . . .

(
k

m− 1

)
Sk−m+1αm−1

0

(
k

0

)
Sk

(
k

1

)
Sk−1α . . .

(
k

m− 1

)
Sk−m+2αm−2

...
...

...
...

...

0 . . . 0

(
k

0

)
Sk

(
k

1

)
Sk−1α

0 . . . 0 0

(
k

0

)
Sk


.

�

Fact 2 Let us consider a matrix Ta,b ∈ Rm×m defined
as

Ta,b =


a b 0 . . . 0
0 a b . . . 0
...

...
...

...
...

0 0 . . . a b
0 0 . . . 0 a

 ,
with a ∈ (0, 1) and b ∈ (0, 1).

The following holds true for the matrix T ka,b

T ka,b =



(
k

0

)
ak
(
k

1

)
ak−1b

(
k

2

)
ak−2b2 . . .

(
k

m− 1

)
ak−m+1bm−1

0

(
k

0

)
ak

(
k

1

)
ak−1b . . .

(
k

m− 1

)
ak−m+2bm−2

...
...

...
...

...

0 . . . 0

(
k

0

)
ak

(
k

1

)
ak−1b

0 . . . 0 0

(
k

0

)
ak


,

The following holds true for the matrix (I − Ta,b)−1

(I − Ta,b)−1 =



1/a b/a2 b2/a3 . . . bm−1/am

0 1/a b/a2 . . . bm−2/am−1

...
...

...
...

...

0 . . . 0 1/a b/a2

0 . . . 0 0 1/a


.

Lemma 1 Let α ∈ (0, 1) and β ∈ (α, 1). It holds

∞∑
`=0

m−1∑
s=0

(
`

s

)
(1−β)`−sαs

(
α

β

)m−s
=
m

β

(
α

β

)m
. (20)

Proof :
Let us denote by y(k) ∈ R the output of the next linear
system

z(k + 1) = T1−β,α y(k) +Gα,β u,

y(k + 1) = C z(k + 1).
(21)

where z(k) ∈ Rm, u ∈ R is a constant input,
C = [1, 0, . . . , 0] ∈ Rm, T1−β,α is a matrix defined
according to Fact 2 and vector Gα,β is defined as

Gα,β =
[

(α/β)m . . . (α/β)s . . . (α/β)
]
.

Now by exploiting Fact 2, we can compute the forced
response of the system in eq. (21) as

y(k) = C

k−1∑
`=0

T k−`−11−β,α Gα,β u, (22)

which can be rewritten as

y(k) = u

k−1∑
l=0

m−1∑
s=0

(
k − l − 1

s

)
(1− β)k−l−1−sαs

(
α

β

)m−s
.

(23)
At this point by letting ` = k − l − 1, we obtain

y(k) = u

k−1∑
`=0

m−1∑
s=0

(
`

s

)
(1− β)`−sαs

(
α

β

)m−s
. (24)

Since for α ∈ (0, 1) and β ∈ (α, 1) the system in eq. (21)
is asymptotically stable, the steady state for a constant
input exists. We are now interested in computing the
steady state value obtained for k →∞, i.e.,

y(∞) = u

∞∑
`=0

m−1∑
s=0

(
`

s

)
(1− β)`−sαs

(
α

β

)m−s
, (25)

Since the system is asymptotically stable, such steady
state value can be computed as

y(∞) = C (I − T1−β,α)−1Gα,β u.

Now, by recalling the closed-form for the matrix
(I − T1−β,α)−1 from Fact 2, it holds

C (I − T1−β,α)−1Gα,β =

= C



1/β α/β2 α2/β3 . . . αm−1/βm

0 1/β α/β2 . . . αm−2/βm−1

...
...

...
...

...

0 . . . 0 1/β α/β2

0 . . . 0 0 1/β





(α/β)m

· · ·
(α/β)s

· · ·
(α/β)


,

(26)
which by means of some manipulations it can be rewrit-
ten as

C (I − T1−β,α)−1Gα,β =

m−1∑
s=0

αs

βs+1

αm−s

βm−s
. (27)
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Thus, the output of system eq. (21) at steady-state is

yβ(∞) = uC (I − T1−β,α)−1Gα,β = u
m

β

(
α

β

)m
.

(28)

By equating the steady-state value computed in eq. (25)
with that computed in eq. (28) and dividing both for the
constant input value u 6= 0 we find that

∞∑
`=0

m−1∑
s=0

(
`

s

)
(1− β)`−sαs

(
α

β

)m−s
=
m

β

(
α

β

)m
,

(29)

which proves the equality in eq. (20) in the statement of
this lemma.

7.1 Proof of Theorem 1

First, let us notice that α > 0 and L is symmetric and
positive semi-definite. From 2 we notice that the first
system (stage) can be written in a compact form as:

x1(k + 1) =
(
I − εL

)
x1(k) + α

(
u(k)− x1(k)

)
,

=
(
(1− α)I − εL

)
x1(k) + αu(k).

(30)

At this point, we notice that by construction the matrix
(1− α)I − εL is symmetric, thus all the eigenvalues are
real and have the following form

λi = 1− α− ελL,i, λL,i ∈ σ(L). (31)

At this point, by assuming α ∈ (0, 1− εDmax)

and ε ∈
(

0, 1
2Dmax

)
it follows that by construc-

tion the eigenvalues defined in (31) are such that
λi ∈ (0, 1), i ∈ {1, . . . , n}. Thus the asymptotic stabil-
ity of the dynamical system in (30) follows. Notably, the
same reasoning applies to the remaining m − 1 stages,
being the dynamical matrix identical for all stages. In
particular, the steady state equilibrium for the the first
system (stage) is

x1,? = (αI + εL)−1 αu. (32)

Since the system is a cascade, for s > 1 it holds that

xs,? = (αI + εL)−1 αxs−1,?. (33)

Thus, from eq. (32) and (33) we can easily compute the
equilibrium point of the s-th stage as

xs,? = (αI + εL)−s αs u.

Thus proving the statement. �

7.2 Proof of Theorem 2

To prove the result, let us recall that from Theorem 1
we know that the steady-state equilibrium for the s-th
stage is

xs,? = (αI + εL)−s αs u. (34)

The eigenvalues of the matrix (αI + εL)−s are:

λ̂i =

(
1

α+ ε λL,i

)s
, λL,i ∈ σ(L),

where λL,i denotes the i-th eigenvalue of matrix L, vi
the corresponding eigenvector and σ(L) the spectrum of
matrix L. If graph G is undirected and connected, L is
symmetric and has rank n−1 with a single one null eigen-
value with unitary geometric multiplicity. The eigenvec-
tor corresponding to the null eigenvalue has identical
elements. At this point, by recalling that for a sym-
metric matrix L the eigenvectors V = [v1, . . . , vn] are
orthonormal, i.e., V V T = I, and thus the matrix L can
be expressed as a linear combination of 1-dimensional
projections as L = V ΛLV

T =
∑n
i=1 λLvi v

T
i with

ΛL = diag[λL,1, . . . , λL,n], we have that (34) can be
rewritten as

xs,? = (αI + εL)−s αs u

= (αV I V T + εV ΛLV
T )−s αs u

=
(
V (αI + εΛL)V T

)−s
αs u

= V (αI + εΛL)−s V T αs u

=

n∑
i=1

(
1

α+ (ε λL,i)

)s
viv

T
i α

s u

=

n∑
i=1

(
α

α+ ε λL,i

)s
viv

T
i u

= ū1 +

n∑
i=2

(
α

α+ ε λL,i

)s
viv

T
i u,

(35)

where the fact (αI + εL)−11 = α−11 has been used.

By substituting the expression given in (35) for the
steady state equilibrium of the m-th stage as given
in (35) into ‖ū(k) 1− xm,?(k)‖2 and noticing that
û(k) = (u(k)− ū(k) 1) it holds

‖ū(k) 1− xm,?‖2 =

∥∥∥∥∥
n∑
i=2

(
α

α+ ε λL,i

)m
viv

T
i u(k)

∥∥∥∥∥
2

≤
(

α

α+ ε λL,2

)m ∥∥∥∥∥
n∑
i=2

viv
T
i u(k)

∥∥∥∥∥
2

,

(36)
At this point, by recalling that the matrix L is symmet-
ric, and thus the eigenvectors corresponding to different
eigenvalues must be orthogonal to each other, it follows
that vTi v1 = 0 for i ∈ 2, . . . , n with v1 = 1. Thus we
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obtain

‖ū(k) 1− xm,?‖2 ≤
(
α

β

)m
‖û(k)‖2 , (37)

thus proving the statement.

�

7.3 Proof of Proposition 1

To prove the statement of this proposition we manipu-
late the error at time k + 1 as follows

e(k + 1) = x(k + 1)− x?(k + 1)

= Ax(k) +Bu(k)− x?(k + 1)

= Ax(k) +Ax?(k)−Ax?(k) +Bu(k)

− x?(k + 1)

= Ae(k) +Bu(k) +Ax?(k)− x?(k + 1).
(38)

Since vector x?(k) represents the equilibrium point for
constant inputs and for any given u(k), it satisfies by
definition the next equality

x?(k) = Ax?(k) +Bu(k),

it follows that eq. (38) can be further simplified as

e(k + 1) = Ae(k) +Ax?(k) +Bu(k)− x?(k + 1)

= Ae(k) + x?(k)− x?(k + 1)

= Ae(k) + δ?(k).

thus proving the statement �

7.4 Proof of Theorem 3

Regarding the natural response of the error dynamics,
due to Fact 1, it holds

emn (k) = C Ake(0)

=

m−1∑
s=0

(
k

s

)
Sk−sαsem−s(0)

=

m−1∑
s=0

(
k

s

)
(I −Q)k−sαsem−s(0),

(39)

Now, let us define

emax(0) = max
s∈{0, ...,m−1}

{
‖em−s(0)‖2

}
= max
s∈{1, ...,m}

{‖es(0)‖2} ,
(40)

it holds

‖emn (k)‖2 =

∥∥∥∥∥
m−1∑
s=0

(
k

s

)
(I −Q)k−sαsem−s(0)

∥∥∥∥∥
2

≤
m−1∑
s=0

(
k

s

)∥∥(I −Q)k−sαsem−s(0)
∥∥
2

≤ km−1

(m− 1)!

m−1∑
s=0

∥∥(I −Q)k−s
∥∥
2
αs
∥∥em−s(0)

∥∥
2

≤ km−1

(m− 1)!

m−1∑
s=0

(1− α)k−sαs
∥∥em−s(0)

∥∥
2

≤ km−1

(m− 1)!
emax(0)

m−1∑
s=0

(1− α)k−sαs

≤ (1− α)k
km−1

(m− 1)!

1−
(

α
1−α

)m
1− α

1−α
emax(0),

thus proving the statement of the theorem. �

7.5 Proof of Theorem 4

Since α ∈ (0, εDmax) and ε ∈
(

0, 1
2Dmax

)
, the consid-

ered cascade of systems is asymptotically stable. Thus,
let us now consider the forced response of the error dy-
namics in eq. (9)

e(k) =

k−1∑
l=0

Ak−l−1δ?(l).

Thus, we have that em(k) can be written as

em(k) =

k−1∑
l=0

C Ak−l−1δ?(l). (41)

Due to Fact 1 from the Appendix, eq. (41) becomes

em(k) =

k−1∑
l=0

m−1∑
s=0

(
k − l − 1

s

)
(I −Q)k−l−1−sαsδm−s,?(l).

To simplify the notation, let ` = k − l − 1. We substi-
tute the summation in l for l = 0, . . . , k − 1 with the
summation in ` for ` = 0, . . . , k − 1 as follows

em(k) =

k−1∑
`=0

m−1∑
s=0

(
`

s

)
(I −Q)`−sαsδm−s,?(k − `− 1).

(42)
In order to analyze the average error value em(k) and
the disagreement error vector êm(k), let us now recall
that xs,?(k) can be written as

xs,?(k) = Q−sαsu(k),
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with s = 1, . . . ,m the index of the stage of the cascade
consensus filter. It follows that δs,?(k) can be equiva-
lently expressed as

δs,?(k) = Q−sαsu(k)−Q−sαsu(k + 1)

= Q−sαs (u(k)− u(k + 1))

= Q−sαsδu(k)

= Q−sαs
(
δ̄u(k)1 + δ̂u(k)

)
= α−sαsδ̄u(k)1 +Q−sαsδ̂u(k)

= δ̄u(k)1 +Q−sαsδ̂u(k),

(43)

with δu(k) = u(k)−u(k+1) and δu(k) = δ̄u(k)1+ δ̂u(k)

Regarding the average error value ēm(k), from (42) it
follows that it can be written as

ēm(k) =
1T

n

k−1∑
`=0

m−1∑
s=0

(
`

s

)
(I −Q)`−sαsδm−s,?(k − `− 1).

Now, since 1T (I −Q) = (1− α)1T it holds

ēm(k) =

k−1∑
`=0

m−1∑
s=0

(
`

s

)
(1− α)`−sαs

1T δm−s,?(k − `− 1)

n

=

k−1∑
`=0

m−1∑
s=0

(
`

s

)
(1− α)`−sαsδ̄u(k − `− 1).

where eq. (43) has been used. At this point, let
|δ̄u(k − ` − 1)| < δ̄u,max for all k, ` = 1, . . . ,∞, the
previous equation can be rewritten as

|ēm(k)| ≤ δ̄u,max
m−1∑
s=0

k−1∑
`=0

(
`

s

)
(1− α)`−sαs. (44)

Thus by eq. (44), we can establish that the maximum
error is bounded by the error for k at infinity, that is

|ēm(k)| ≤ δ̄u,max
m−1∑
s=0

∞∑
`=0

(
`

s

)
(1− α)`−sαs. (45)

At this point, by resorting to Lemma 1, we can compute
an upper bound for |ēm| as

|ēm(k)| ≤ m

α
δ̄u,max. (46)

Regarding the disagreement error vector êm(k), by sub-
stituting eq. (42) within eq. (11) and by noticing that

P (I −Q) = (I −Q)P and P 2 = P , we obtain

êm(k) =

m−1∑
s=0

k−1∑
`=0

(
`

s

)
(I −Q)`−sαsQ−(m−s)αm−s

δ̂u(k − `− 1),
(47)

where eq. (43) has been used again along with the fact

that Pδu(k) = δ̂u(k). Furthermore, by noticing that for
any p, q ∈ R+ the following holds

‖(I−Q)pQ−q δ̂u(`)‖2 ≤ (1−α−ελL,2)p (α+ελL,2)−q δ̂u,max,

by letting β = α + ελL,2, we have that eq. (47) can be
bounded as

‖êm(k)‖ ≤ δ̂u,max
m−1∑
s=0

k−1∑
`=0

(
`

s

)
(1− β)`−sαs

αm−sβ−(m−s),

(48)

Thus by eq. (47), we can establish that the maximum
error is bounded by the error for k at infinity, that is

‖êm(k)‖ ≤ δ̂u,max
m−1∑
s=0

∞∑
`=0

(
`

s

)
(1− β)`−sαs

αm−sβ−(m−s),

(49)

At this point, since due to Lemma 1 it holds

∞∑
`=0

m−1∑
s=0

(
`

s

)
(1− β)`−sαsαm−sβ−(m−s) =

m

β

(
α

β

)m
,

(50)
we find that an upper bound for |êm| is as follows

|êm(k)| ≤ m

β

(
α

β

)m
δ̂u,max. (51)

7.6 Proof of Theorem 5

We can represent each state update of Algorithm 2 as
follows:

x(k + 1) = A(k)x(k) +B(k)u(k)

xm(k) = Cx(k),

where x(k) =
[
xm(k)T , . . . , x1(k)T

]T
, A(k) ∈ Rnm×nm

is defined as (given that at iteration k agent i selects
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agent j for one iteration)

A(k) = Aij =



Wij
α̂

Di
eie

T
i 0 . . . 0

0 Wij
α̂

Di
eie

T
i . . . 0

...
...

...
...

...

0 . . . 0 Wij
α̂

Di
eie

T
i

0 . . . 0 0 Wij


,

matrix B(k) ∈ Rnm×n is defined as (given that agent i
is updating its state at iteration k)

B(k) = Bi =


0
...
0

α̂

Di
eie

T
i

 ,

and matrix C ∈ Rn×nm defined as

C = [ I 0 . . . 0 ] .

Since the edges (i, j) have uniform probability p to be
chosen, such that

∑
(i,j)∈E p = 1, it holds p = 1

|E| . We
now compute

E [A(k)] =
1

|E|
∑

(i,j)∈E

Aij .

First, we note that ∑
(i,j)∈E

eie
T
i = D,

and, by exploiting eq. (18), it holds

1

|E|
∑

(i,j)∈E

Wij =
1

|E|
∑

(i,j)∈E

I +
eie

T
j

2
− (1 + 2α̂/Di)eie

T
i

2

= I − 1

|E|

(
1

2
L+ α̂I

)
.

Then, by denoting ε =
1

2|E|
, α =

α̂

|E|
and

Q = α I + εL, (52)

it holds

E [A(k)] =



I −Q αI 0 . . . 0

0 I −Q αI . . . 0

...
...

...
...

...
0 . . . 0 I −Q αI

0 . . . 0 0 I −Q

 .

Thus, the dynamics of protocol (16) is in expectation
formally equivalent to that of protocol (1). If both matrix
A and E [A(k)] are Shur stable it holds that

E [x(k + 1)] = E [A(k)]E [x(k)] + E [B(k)]u(k)

= AE [x(k)] +Bu(k).

At this point, let us recall that the graph G is assumed
to be undirected and connected, thus matrix L and
I − Q are symmetric positive semi-definite. Therefore,
if ελn + α < 1, the system is Shur stable, i.e., with
eigenvalues strictly inside the unit circle. To prove
this, notice that with ε = 1

2|E| and α = α̂
|E| , since

|E| = trace(L) =
∑n
i=1 λi ≤ λn, it holds that ελn ≤ 1

2 .
Thus, if |E| > 2 by choosing α̂ ∈ (0, 0.5) the inequality
ελn + α < 1 is always satisfied. �

7.7 Proof of Theorem 6

To prove that xm(k) almost surely converges in distri-
bution to a unique invariant random variable x∞ we
exploit the results in Ravazzi et al. (2015). Briefly, in
that paper the authors characterized convergence in dis-
tribution for general randomized affine dynamics. Algo-
rithm 2 is a randomized version of Algorithm 1 which is
modeled by discrete time, Shur stable, affine dynamics
and the sequence of selected edges is i.i.d. with uniform
distribution. In the particular case of constant inputs,
the conditions of in Theorem 1 in Ravazzi et al. (2015)
are satisfied, thus xm(k) converges in distribution to a
random variable xm∞ and this distribution is unique and
it holds that

lim
k→∞

E [xm(k)] = E [xm∞] = xm,?.

�
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