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Abstract

The problem of preserving the privacy of individual entries of a database when responding to linear or nonlinear queries with
constrained additive noise is considered. For privacy protection, the response to the query is systematically corrupted with an
additive random noise whose support is a subset or equal to a pre-defined constraint set. A measure of privacy using the inverse
of the trace of the Fisher information matrix is developed. The Cramér-Rao bound relates the variance of any estimator of the
database entries to the introduced privacy measure. The probability density that minimizes the trace of the Fisher information
(as a proxy for maximizing the measure of privacy) is computed. An extension to dynamic problems is also presented. Finally,
the results are compared to the differential privacy methodology.

Key words: Privacy; Additive constrained noise; Fisher information.

1 Introduction

The constant state of connectedness has enabled the use
of new technologies, such as participatory sensing and
big-data analysis. These technologies can vastly improve
the efficiency of existing infrastructures with little in-
vestment. This has come at the price of the erosion of
privacy in the society. An example of this lack of privacy
is the potential use of data from smart electrical meters
by adversaries, such as criminals, advertising agencies,
and governments, for monitoring the presence and the
activities of occupants [2]. Other examples can include
the use of detailed travel data for traffic estimation in
intelligent transportation systems [3], privacy violations
caused by sharing information in distributed control sys-
tems [4], and privacy concerns in cloud computing and
control [5]. These concerns have therefore motivated an
urgent need for creating appropriate mechanisms that
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can protect the privacy of the individuals whose infor-
mation is stored in various databases. Specifically, it is
of interest to provide responses to queries from policy
makers on the aggregated data as accurately as possible
while not leaking the private information of the individ-
uals.

To combat these problems, the problem of preserving
the privacy of individual entries of a database using a
constrained additive noise is considered in this paper.
It is assumed that anyone, including an adversary, can
submit queries to a (trusted) server possessing the entire
database. The server returns a response to the query that
is systematically corrupted by an additive noise whose
support is a subset, or equal, to a desired constraint set.
The Cramér-Rao bound [6, p. 169] is then used to relate
the variance of the estimation error of unbiased estima-
tors of the database by adversaries from the provided
responses to the trace of the inverse of the Fisher infor-
mation matrix.

We start with finding a maximizer of the inverse of the
trace of the Fisher information matrix. This optimiza-
tion problem is nonconvex. It is proved that finding the
probability density function of the noise boils down to
solving a nonlinear partial differential equation, which
is complex in general, even for the simplest case (of lin-
ear queries and when the probability density of the noise
is independent of the content of the database). Thus,
we opt for maximizing a lower bound of the inverse of
the trace of the Fisher information matrix, which is the
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inverse of the trace of the Fisher information matrix
scaled by a constant. This is equivalent to minimizing
the trace of the Fisher information matrix. This opti-
mization problem is proved to be convex. It is shown
that the optimal noise distribution can be calculated by
solving a linear partial differential equation (that can be
sometimes further simplified with the aid of separation
of variables). These results are subsequently generalized
to the case where the support set of the noise distribution
is unbounded. Noting that, for unbounded sets, the so-
lution to the problem is to add a noise with infinite vari-
ance (because the trace of the Fisher information matrix
can be pushed to zero), the need for minimizing the trace
of the Fisher information (for ensuring privacy) is bal-
anced with the quality of the response (captured by the
variance of the additive noise). It can be shown that the
Gaussian noise is optimal if the noise is not constrained.
These results are demonstrated on three illustrative ex-
amples involving smart meter privacy, and computing
the average and variance of private databases.

The problem formulation and parts of the results are ex-
tended to dynamic estimation problems, where the ini-
tial condition of the system is assumed to be the variable
that needs to be kept private. This is motivated by a
traffic estimation problem in which the initial condition
of the system (modelling the vehicle) corresponds to the
location of driver’s house, which is private.

Finally, the optimal privacy-preserving policies of this
paper are compared with differentially-private policies
(specifically, the Laplace mechanism) and the optimal
privacy-preserving policies when using mutual informa-
tion as a measure of privacy. It is observed that the
optimal policies in the unconstrained-noise formulation
are also (ε, δ)-differentially private. Further, the optimal
policies in this paper coincide with the optimal privacy-
preserving policies when using mutual information as a
measure of privacy for the unconstrained case, thus in-
heriting strong information-theoretic guarantees.

A common approach for ensuring that the privacy of
participants in large databases (or rather the content of
the entries of the database owned by those participants)
is the application of differential privacy [4, 7–11]. Those
studies often advocate the addition of noises with slow-
decaying probability density functions to the response
of the queries submitted to the server. This is done so
that an adversary cannot accurately infer the private in-
formation of the individuals stored in the database. The
Laplace noise is frequently utilized in the differential pri-
vacy literature; see, e.g., [8,12]. However, other noise dis-
tributions are also common for achieving the differential
privacy, or variants thereof. This has prompted various
studies to seek the optimal noise distribution for differ-
ential privacy [13–15].

Although several information-theoretic interpretations
of differential privacy have been presented [16–18], the

available literature does not offer an operational mean-
ing for the concept as well as a systematic approach
for setting the differential privacy parameter (except a
broad sweep). Further, in practice, it may not be possi-
ble to use an additive noise with infinite support as the
noise might need to satisfy certain constraints, e.g., it
must belong to a bounded set for smart metering [19].

Application of differential privacy in control systems has
also gained attention recently. Differential private filter-
ing is discussed in [9], where releasing filtered signals
while respecting privacy of user data streams is consid-
ered. Distributed control of multi-agent systems in the
presence of privacy constraints is studied in [4]. An at-
tainable lower bound on the entropy of output is pre-
sented in the case where an additive noise is used to en-
sure differential privacy for discrete-time systems [20].
Differential privacy in the specific case of consensus-
seeking algorithms is also considered in [21–26]. A thor-
ough review of these results can be found in a recent
tutorial paper [27].

Differential privacy has also been successfully utilized
in numerical optimization. In [11], parameters of in-
dividual constraints in resource allocation problems is
kept private. Preserving the privacy of decisions and
cost functions in distributed optimizations is investi-
gated in [28,29]. Applications of differential privacy can
also be found in other related problems, such as machine
learning [30, 31], mechanism design [32, 33], and trans-
portation systems [34,35].

Recently, several studies have used mutual information
(or entropy) and the least mean square estimation error
as measures of privacy [36–42]. Similar to differential pri-
vacy literature, most results based on mutual informa-
tion do not provide an intuitive or interpretable bound
on the statistics of the estimation error by the adversary
(with the exception of [43] which uses rate distortion the-
ory to get an interpretable bound on the performance of
the adversary). They also require a priori assumptions
on the distribution of the database, which might not
be available in practice due to complexity and scale of
the database. The privacy results using the least mean
square estimation error also restrict the behaviour of the
adversary and assume the underlying random variables
are Gaussian, which might not be the case in practice as
well.

In [19], Fisher information is utilized as a measure of pri-
vacy to design privacy-preserving charging policies for
batteries in households with smart meters. In this paper,
those results are extended to develop a general frame-
work using Fisher information as a measure of privacy.
This paper extends [19] in the following ways. The results
of [19], in the language of this paper, are about releasing
all the entries of the database, i.e., the query submitted
to the server is an identity function. That very special
and restrictive case does not even cover linear queries,

2



let alone providing the optimal privacy-preserving pol-
icy for non-linear queries and dynamic estimation.

Finally, it is worth mentioning that the statistics commu-
nity has previously used Fisher information as a measure
of privacy [44, 45]. However, in those studies, minimiz-
ing the Fisher information to obtain privacy-preserving
policies over the set of density functions whose support
sets is appropriately constrained is not discussed.

The rest of the paper is organized as follows. The
problem formulation and some preliminary results are
presented in Section 2. The optimal privacy-preserving
probability density functions for the additive con-
strained noise are developed in Section 3. These results
are then generalized to dynamic estimation problems
in Section 4. The relationships between the presented
framework and the existing results in the literature are
discussed in more depth in Section 5. Finally, Section 6
concludes the paper and presents viable avenues for
future work.

2 Background and Problem Formulation

Let x ∈ X ⊆ Rn be a variable that should be kept
private, i.e., a database that is possessed by a (trusted)
server. This data is only available to the server. In what
follows, the vector x is assumed to be deterministic and
fixed, i.e., no prior is required nor available. Anyone,
including an adversary, can submit queries of the form
f(x) with f : Rn → Rm to the server. The server in
return provides a noisy response to the query given by

y = f(x) + w, (1)

where w ∈ W(x) ⊆ Rm denotes the noise that the server
adds to the data to protect the entries of the private
variable x. The following standing assumption is made.

Assumption 1 f is continuously differentiable.

In this paper, two specific families of constraints on the
support set of the additive noise W(x) are considered:

(i) the set W(x) is independent of x; or
(ii) the set W(x) takes the special form of {−f(x)} ⊕ Y

for some set Y ⊆ Rm.

Here, C ⊕B denotes the set {a+ b | a ∈ C, b ∈ B} for any
two sets C and B. The family of constraints following the
form of (i) models the case where the noise itself is con-
strained, e.g., the additive noise should be positive or
bounded. However, the family of constraints in (ii) cap-
tures the case where the output y must be constrained
inside the set Y. In what follows, we use W to denote
either of these families of constraints on the support set
of the additive noise.

Note that the server has the intention to respond as
accurately as possible to the query f(x) as this typi-
cally corresponds to statistical properties (e.g., mean) of
the database, which are valuable to, e.g., policy makers.
However, it does not want the entries of x (the private
data of the people) to be released online nor estimated.
Examples of applications where the server wants to pro-
vide accurate answers to the submitted queries while
keeping the entries of the database hidden can be found
in [46–48].

The server’s policy (which is the object of interest in
this paper) is the probability density function γ(·|x) :
W → R≥0 of the noise w, where R≥0 := {x ∈ R |x ≥ 0}.
This implies that P{w ∈ W ′ |x} =

∫
w′∈W′ γ(w′|x)dw′

for any Lebesgue-measurable setW ′ ⊆ W. In this paper,
it is desired to seek a policy γ that makes the problem
of inferring the private variable x difficult (according
to an appropriate measure described below). The set of
all admissible policies Γ is restricted according to the
following standing assumption.

Assumption 2 (i) γ(w|x) is such that P{w ∈ Rm \
W |x} = 0, (ii) γ(w|x) is twice continuously differen-
tiable in (w, x) overW ×X , and (iii) γ(w|x) = 0 for all
w ∈ ∂W.

Assumption 2 (i) ensures that, with probability one, the
noise is restricted to the set W, i.e., P{w ∈ W |x} = 1.
This is to ensure that the constraints on the noise or the
output are satisfied almost surely. Assumption 2 (ii) is
required for the use of the Cramér-Rao bound as well
as the use of results from calculus of variations for find-
ing the optimal probability density function. Finally, as
observed later in the paper, Assumption 2 (iii) is nec-
essary for the Cramér-Rao bound (see Proposition 1).
The latter part of this assumption is satisfied if the set
W is unbounded (as, in the limit, a probability density
function is always zero otherwise it does not integrate to
one). Note that, for bounded constraint sets W, the set
of probability density functions that are zero over ∂W
can approximate any probability density function arbi-
trarily closely. This is proved in [1].

Under the aforementioned policy of the server, the prob-
ability density of y for a given x is then equal to

p(y|x) = γ(y − f(x)|x), ∀y ∈ Y = {f(x)} ⊕W. (2)

Further, for any continuously differentiable function g :
Rn → R, the notation ∂g(x)/∂x is used to denote a
column vector containing the partial derivatives of the
function. For any multivariate function g(x), G(x) de-
notes its Jacobian, i.e., a matrix with the element in the
i-th row and the j-th column being equal to ∂gi(x)/∂xj .
Before stating the next preliminary result, the Fisher
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information matrix I(x) ∈ Rn×n is defined as

I(x)=

∫
y∈Y
p(y|x)

[
∂ log(p(y|x))

∂x

][
∂ log(p(y|x))

∂x

]>
dy.

(3)

The following results immediately follows from the use
of the Cramér-Rao bound providing a lower bound on
the adversary’s estimation error of the private variable
independent of the policy.

Proposition 1 Under Assumption 2, for any unbiased
estimate of x denoted by x̂(y), it holds that

E{‖x− x̂(y)‖22} ≥ Tr(I(x)−1), (4)

if I(x) is invertible. Furthermore, for any biased estimate
of x denoted by x̂(y) such that E{x̂(y)} = g(x), it holds
that

E{‖x− x̂(y)‖22} ≥Tr(G(x)>I(x)−1G(x))

+ ‖x− g(x)‖22, (5)

if I(x) is invertible.

Proof: The proof follows from the use of the Cramér-
Rao bound [6, p. 169].

Here, it is desirable to find a policy γ for the server that
makes estimation of x as difficult as possible. This can
be pursued through multiple avenues. When an unbi-
ased estimator of the database exists, following Propo-
sition 1, in order to make the task of inferring about x
from the measurement y difficult, the trace of the inverse
of the Fisher information matrix should be maximized.
However, if m < n, there may not exist any unbiased
estimator of the database x because there are more un-
knowns n than measurements m. In this case, the goal
becomes to maximize Tr(G(x)>I(x)−1G(x)). It can be
shown that

Tr(G(x)>I(x)−1G(x)) = Tr(I(x)−1G(x)G(x)>)

≥Tr(I(x)−1)λmin(G(x)G(x)>),
(6)

where, for any matrix, λmin(·) denotes its smallest eigen-
value. This inequality shows that, even if a biased esti-
mator is utilized, the trace of the inverse of the Fisher
information matrix can be maximized to preserve the
privacy of the entries of the database, albeit if G(x) as-
sumes full row rank for all x ∈ X ; otherwise the lower
bound in (6) is zero and maximizing Tr(I(x)−1) does
not result in any tangible privacy guarantee. Therefore,
the following assumption is made.

Assumption 3 G(x) is full row rank for all x ∈ X .

The sensibility of this problem formulation relies on the
validity of Assumption 3, which is in general difficult,
if not impossible, to check (see Example 2 for a case in
which this assumption can be easily checked). Assump-
tion 3 is not strictly-speaking necessary, at least for the
convexified problem discussed later (see Problem 2) as
the problem formulation can be alternatively motivated
by using a worst-case privacy guarantee. Consider the
case where, for any 1 ≤ i ≤ n, the server aims at pro-
tecting the content of xi even if all other entries of the
database x−i = (x1, . . . , xi−1, xi+1, . . . , xn) are leaked
(i.e., this is a worst-case analysis for privacy protection).
This is to ensure that even if the owners of all the other
entries of the database are colluding with the adversary,
they cannot extract the private data of an individual (to
a reasonable extent). To do so, let x̂i(y, x−i) denote an
unbiased estimator of xi based on y for a given x−i. By
fixing x−i as knowns, Proposition 1 can be used to de-
duce that

E{‖xi − x̂i(y, x−i)‖22} ≥ 1/Ii(x), (7)

where

Ii(x) =

∫
y∈Y

p(y|x)

[
∂ log(p(y|x))

∂xi

][
∂ log(p(y|x))

∂xi

]>
dy

with p(y|x) = γ(w − f(xi, x−i)|xi, x−i). Hence,

min
i

E{‖xi − x̂i(y, x−i)‖22} ≥ min
i

(1/Ii(x))

= 1/(max
i
Ii(x)).

Further, note that

max
i
Ii(x) ≤

n∑
i=1

Ii(x)

=

∫
y∈Y

p(y|x)
n∑
i=1

[
∂ log(p(y|x))

∂xi

]

×
[
∂ log(p(y|x))

∂xi

]>
dy

= Tr

(∫
y∈Y

p(y|x)

[
∂ log(p(y|x))

∂x

]
×
[
∂ log(p(y|x))

∂x

]>
dy

)
= Tr(I(x)).

Hence, it can be deduced that

min
i

E{‖xi − x̂i(y, x−i)‖22} ≥ 1/Tr(I(x)). (8)

This shows that, even for this stronger notion of privacy
(in the absence of Assumption 3), minimizing Tr(I(x))
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(instead of maximizing Tr(I(x)−1)) provides a reason-
able solution.

Before presenting the problem formulation, it should be
noted that maximizing Tr(I(x)−1) is not well-defined
when x is not known a priori. Therefore, instead, we
maximize the cost function

J :=

∫
x∈X

Tr(I(x)−1)p(x)dx, (9)

where p : X → R≥0 is a weight associated with x such
that p(x) 6= 0 for some set with non-zero Lebesgue mea-
sure (since otherwise J is identical to zero). Note that
p(x) is not a prior but a weight that captures how diffi-
cult the server wants the estimation of the database to
become for a given x. Note that it can always be assumed
that

∫
x∈X p(x)dx = 1. This is without loss of general-

ity as p(x) can be always scaled by
∫
x∈X p(x)dx > 0 to

achieve the equality. This is of course a design parame-
ter.

Problem 1 Find γ∗ ∈ argmaxγ∈Γ J .

Remark 1 (Well-Defined Problem Formulation)
Problem 1 is well-defined if the support set of the additive
noise W is bounded. If this is not the case, the optimal
solution is to push the variance of the additive noise to
infinity (as that pushes Tr(I−1) to infinity). Note that if
W is bounded, Tr(I−1) is also bounded. Hence, for the
case where W is unbounded, an additional term captur-
ing the quality of the provided response by the server can
be included in the utility function to ensure the existence
of non-trivial and implementable solutions. This case is
investigated later in the paper.

Remark 2 (Existence of Solutions) Investigating
existence of solutions to Problem 1 is a daunting task
due to the nature of the set Γ. In the remainder of
this section, a convex approximation of this problem is
presented. In this case, the necessary condition for opti-
mality is also sufficient. This allows us to formulate the
problem of finding (sub)optimal privacy-preserving poli-
cies as solving a linear partial differential equation with
Dirichlet boundary conditions. For the relaxed problem,
therefore, the existence of an optimal solution can be
cast as the existence of solutions to a linear partial dif-
ferential equation. For some cases, it is possible to find a
solution to the partial differential equation satisfying all
the boundary conditions (thus guaranteeing the existence
of solutions constructively).

Remark 3 (Data Processing Inequality) Mutual
information is often lauded as a measure of privacy
due to data processing inequality, i.e., additional ma-
nipulation of the transmitted messages based on ones
private information can only decrease the amount of the
leaked information. This is also considered a beneficial

property of the differential privacy, that is, additional
manipulations of the outcomes of a differentially pri-
vate policy cannot decreases the privacy guarantees of
the process [49]. This property also holds for the Fisher
information [50] pointing to that Tr(I(x)−1) can only be
increased upon further manipulations of the transmitted
response y.

Remark 4 (Side Channel Information) Privacy
studies, including the presented framework based on
Fisher information as well as those based on mutual
information and differential privacy, are often fragile to
admitting side channel information, e.g., measurements
of the private variable already available. In this paper’s
problem formulation, the primary goal is to maximize
E{‖x − x̂(y)‖22} (or its lower bound given by the Fisher
information) which clearly states that the adversary’s
estimator x̂(y) is only a function of y. The setup however
can be generalized following the same line of reasoning
to maximize E{‖x− x̂(y, z)‖22}, where z models the side
channel information. If the nature of the side-channel
information is not fully know, the server can attempt at
maximizing minυ(z|x) E{‖x − x̂(y, z)‖22}, where υ(z|x)
denoting the conditional probability of the side-channel
information given the state can vary over restricted set
of density functions. This is an interesting avenue for
future research.

Define the relaxed cost function

J :=

∫
x∈X

Tr(I(x))p(x)dx. (10)

Since maximizing J is difficult in general, the lower
bound n2J−1 can be maximized to achieve a sub-
optimal solution; the inequality follows from the appli-
cation of Proposition 5 in Appendix A. Before stating
the problem formulation, it is beneficial to note that
J is in fact a convex function of γ (over a subset of
Γ) and, thus, the new problem formulation is more
computationally feasible. This proof follows from the
convexity of the trace of the Fisher information ma-
trix. Note that the proof of the convexity of the Fisher
information for scalar random variables is widely avail-
able; see for example [51, pp. 80-81] and [52]. The proof
for the multivariate case can also be found in [19].
Define the support of a density function γ(·|x) as
supp(γ(·|x)) := {w ∈ W | γ(w|x) > 0}.

Assumption 4 γ(w|x) is such thatW\supp(γ(·|x)) has
a zero Lebesgue measure for all x ∈ supp(p).

Let Γ ⊆ Γ be the set of conditional probability density
functions satisfying Assumptions 2 and 4. The following
proposition shows that J is a convex function over Γ
(which is a convex set) and thus stationarity conditions
are necessary and sufficient for finding a minimizer of J
over Γ.
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Proposition 2 J is a convex function of the density
function γ over the set of density functions Γ.

Proof: The proof is similar to the one in [19] and is
thus omitted for the sake of space.

Similarly, Proposition 2 motivates us to search for the
minimizer of J over the set of all density functions γ(·|x)
that are at most over a measure-zero set equal to zero in
int(W), which satisfies the definition of Γ.

Problem 2 Find γ∗ ∈ argminγ∈Γ J .

As stated earlier, Problems 1 and 2 are both only
well-defined for bounded noise support sets W. For un-
bounded setsW, the solution to both problems is to add
a noise with infinite variance. By selecting, for instance,
a Gaussian noise with an arbitrarily large variance, the
trace of the Fisher information matrix can be pushed
towards zero (and the trace of its inverse towards in-
finity by Proposition 5 in Appendix A). To overcome
this problem, the quality of the provided response by
the server needs to be balanced with the guaranteed
privacy. To do so, a measure of quality of the response
can be defined as follows:

Q =

∫
x∈X

p(x)E{‖y − f(x)‖22 |x}dx

=

∫
x∈X

∫
w∈W

w>wγ(w|x)p(x)dx.

The smaller Q is, the better the quality of the provided
response to the query is. Note that the measure of qual-
ity Q is a convex function of γ since it is linear in the
probability density function. Now, the problem formu-
lation can be revised for unbounded constraint set W.

Problem 3 Find γ∗ ∈ argminγ∈Γ J + %Q, where % > 0

is a constant balancing the need for preserving privacy
with the quality of the provided response by the server.

An alternative problem formulation of the following form
can be presented in which a hard constraint on the qual-
ity of the response is enforced.

Problem 4 Find γ∗ ∈ argminγ∈Γ:Q≤ϑ J , where ϑ >

0 denotes the upper bound on performance degradation
caused by the additive noise.

In light of [53], Problems 4 and 3 are equivalent in the
sense that, for all % > 0, there exists ϑ > 0 such that
the solution of Problem 4 is a solution of Problem 3 and
vice versa.

With the problem formulations at hand, we are ready
to calculate the optimal policy of the server. This is the
topic of the next section.

3 Privacy-Preserving Policy

In this section, the solutions of the previously-stated
problem formulations is presented. We start with Prob-
lem 1. In this case, the solution is given in the following
the theorem for linear queries of the form f(x) = Cx
with C ∈ Rm×n and the case where γ(w|x) is indepen-
dent of x, e.g., when measurements of the database are
not available. Note that, in this case, the Fisher infor-
mation matrix can be simplified to

I(x) =

∫
y∈{Cx}⊕W

γ(y − Cx)

[
∂ log(γ(y − Cx))

∂x

]
×
[
∂ log(γ(y − Cx))

∂x

]>
dy

=

∫
w∈W

γ(w)C>
[
∂ log(γ(w))

∂w

][
∂ log(γ(w))

∂w

]>
Cdw.

In this case, I(x) is no longer a function of x and is
thus simply denoted by I. Further, it should be noted
that J = Tr(I−1) and J = Tr(I). Therefore, the solu-
tion of the problem in this case becomes independent of
the choice of p(x). Proving this results for more general
cases creates several complications without providing
more insight. The subsequent results are however proved
for nonlinear queries and general policies. The next the-
orem presents a necessary condition for the solution of
non-convex optimization problem in Problem 1.

Theorem 1 Let γ∗(w) denote a solution of Problem 1
for linear queries of the form f(x) = Cx over the set of
probability density functions that are independent of x.
Then, it satisfies the following conditions with u(w) =√
γ∗(w) and some constant µ ∈ R:

Tr(I−2C>D2u(w)C) + µu(w) = 0, w ∈ W,

u(w) = 0, w ∈ ∂W,

u(w) 6= 0, w ∈ intW,∫
w∈W u(w)2dw = 1.

(11)

Proof: The proofs are moved to the appendices to
avoid interrupting the flow of the presentation. See Ap-
pendix B.

Remark 5 In Theorem 1, µ denotes the Lagrange
multiplier associated with the equality constraint∫
w∈W u(w)2dw = 1 (to ensure that γ(w) = u(w)2 is a

probability density function). The conditions in (11) are
equivalent to the Karush–Kuhn–Tucker (KKT) condi-
tions for the infinite-dimensional optimization problem
in Problem 1. In the rest of the paper, for some specific
cases, the value of the multiplier is calculated explic-
itly. However, in general, the value of the multiplier
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should be iteratively changed (e.g., using the methods in
primal-dual optimization) to find the appropriate value.

Remark 6 (Complexity of the Solution) Note that
the partial differential equation in (11) is nonlinear be-
cause I in Tr(I−2C>D2u(w)C) is a function of u(w).
Further, Theorem 1 only provides a necessary condition,
i.e., the solution of Problem 1 satisfies (11) but the re-
verse does not necessarily hold. As mentioned earlier,
these difficulties stem from the complexity of maximizing
Tr(I−1), which is a non-concave cost function.

Following Remark 6, in the remainder of the paper, the
relaxed formulation in Problem 2 and its variants are
studied. In what follows, 1n denotes the n-dimensional
vector of ones. If the dimension n is clear from the con-
text, 1 is used instead of 1n. Further, F (x) denotes the
Jacobian of the multivariate function f(x), i.e., a matrix
with the element in the i-th row and the j-th column
being equal to ∂fi(x)/∂xj . The following theorem pro-
vides necessary and sufficient conditions for capturing
the solution of Problem 2.

Theorem 2 The solution of Problem 2 is given by
γ∗(w|x) = u(w, x)2, where u(w, x) satisfies

Tr

([
F (x)F (x)> F (x)

F (x)> I

]
D2u(w, x)

)

+L(w, x)


∂γ(w|x)

∂w

∂γ(w|x)

∂x

+µ(x)u(w, x)=0, w ∈ W,

u(w, x) = 0, w ∈ ∂W,

u(w, x) 6= 0, w ∈ intW,∫
w∈W u(w, x)2dw = 1,

(12)

for some mapping µ : X → R and

L(w, x):=

[
1

p(x)

∂p(x)

∂x

>
F (x)>+1>D2f(x)

1

p(x)

∂p(x)

∂x

>]
.

(13)

Further, all solutions (if multiple) satisfying (12) exhibit
the same cost.

Proof: See Appendix C.

Remark 7 Note that the partial differential equation
in (12) is often classified as a semi-linear equation in the
sense that it is linear in the partial derivatives (thus it is
a linear differential equation) but the coefficients can be
potentially non-linear functions of the independent vari-
able (which makes it “space” varying). Solving these par-
tial differential equations, in general, is a complex task
and out of the scope of this paper. In what follows, the

partial differential equation in (12) is solved for all scalar
(potentially nonlinear) queries in Corollary 5.

In what follows, the partial differential equation in (12)
is solved for three special cases explicitly to gain some
insight into the structure of the solution of Problem 2.

Example 1 (Smart Meter Privacy) Let the en-
ergy consumption of household k ∈ N := {1, . . . , n}
in a neighbourhood with n ∈ N houses be denoted by
xk ∈ R≥0. These variables can be aggregated into a vec-
tor to get x = [x1 · · · xn]>. Assume that the data is
stored on an online server so that it can be studied by
policy makers and academics. To avoid unintentionally
leaking the private details of the customers, the trusted
server in possession of the data adds an appropriate
noise to the outcome of the queries to which it responds.
Note that the additive noise should be somewhat re-
stricted as arbitrary corruptions might render the data
useless or unrealistic. For instance, adding a large neg-
ative noise can mask possibly wasteful behaviour of the
participants or, in extreme, can transform their com-
bined consumption negative, which might be physically
impossible if they do not generate any power using re-
newable energies. In the case where the server decides to
publicly release a sanitized version of the consumption
data, it must be assumed that f(x) = x andW = [w,w]n

with constants 0 < w ≤ w < +∞. The optimal privacy
preserving policy for this example is provided in the
following corollary. ♦

Corollary 1 Let n = m, p(x) = p, f(x) = x, and W =
[w,w]m with −∞ < w ≤ w < +∞. The solution of
Problem 2 is given by

γ∗(w|x)=

(
2

w−w

)m m∏
i=1

cos2

(
π

w−w

(
wi −

w+w

2

))
1w∈W .

Proof: See Appendix D.

It is expected that, by increasing w − w in Example 1,
it becomes easier to preserve the privacy of the server
because the response can be buried deeper within the
noise. Although adding more noise can improve the pri-
vacy, it also reduces the quality of the provided response
by the server. The trade-off between privacy and quality
is captured in the following corollary.

Corollary 2 For the optimal policy in Corollary 1, the
following statements hold:

(i) E{‖x − x̂(y)‖22} ≥ Tr(I−1) = κ(w − w)2 with a con-
stant κ > 0 for any unbiased estimate of x denoted by
x̂(y);

(ii) Q = m(w−w)2(2π2 − 3)/(6π2) ≈ 0.2827m(w−w)2.
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Proof: See Appendix E.

Corollary 2 shows that Q = (6π2κ/(2π2 − 3))Tr(I−1)
for the optimal policy-preserving policy. Changing any
parameter, such as w or w, that may increase the pri-
vacy guarantees inevitably degrades the quality of the
response. Therefore, as expected, privacy and quality are
conflicting criteria.

Example 2 (Computing Weighted Average) A
common query that users want to perform on large
databases is to calculate the weighted average of pri-
vate variables. However, the server in possession of the
data does not want the original data to be extracted
from the reported weighted average. This operation can
be modelled by f(x) = Cx, where C ∈ R1×n is such
that C1n = 1. The adversary, for instance, upon us-
ing the least square approach to find an estimate of the
database, gets x̂(y) = C†y, where C† denotes the Moore–
Penrose pseudoinverse of C, defined as C>(CC>)−1.
Assumption 3 holds in this example if C has a full row
rank, which is a reasonable assumption as otherwise the
measurements are not independent. Recalling that C is
not a full column rank matrix (i.e., it is only full row
rank and m < n), x̂(y) is not an unbiased estimator as
E{x̂(y)} = C†E{y} = C†Cx. For this estimator, it can
be deduced that

E{‖x− x̂(y)‖22} =‖(I − C†C)x‖22 + E{‖C†w‖22}
≥‖(I − C†C)x‖22 + Tr(I(x)−1(CC>)−1),

where the last inequality follows from the Cramér-
Rao bound in Proposition 1. Finally, it is also worth
saying that, in this case, Tr(I(x)−1(CC>)−1) =
Tr(I(x)−1)(CC>)−1 becausem = 1 (and thus (CC>)−1 ∈
R). This problem clearly fits the framework presented
in this paper. Here, the set W can be either bounded or
unbounded based on the situation. The optimal privacy
preserving policy for this example is provided in the
following corollary. ♦

Corollary 3 Let n ∈ N, m = 1, p(x) = p, f(x) = Cx,
and W = [w,w] with −∞ < w ≤ w < +∞. If C 6= 0,
the solution of Problem 2 is given by

γ∗(w|x) =
2

w − w
cos2

(
π

w − w

(
w − w + w

2

))
1w∈W .

(14)

Proof: See Appendix F.

Example 2 evidently fits the criteria of Corollary 3. It is
interesting to note that the choice of the weights in C
(so long as at least one of them is non-zero) is irrelevant.
The next corollary captures the effect of the weight p(x)
on the optimal privacy-preserving policy.

Corollary 4 Let n = m = 1, f(x) = x, andW = [w,w]
with −∞ < w ≤ w < +∞. The solution of Problem 2 is
given by

γ∗(w|x) =c(x) exp

(
− p′(x)

p(x)
(w + x)

)
× cos2

(
π

w − w

(
w − w + w

2

))
1w∈W

where

c(x) =

[ ∫ w

w

exp

(
− p′(x)

p(x)
(w + x)

)
× cos2

(
π

w − w

(
w − w + w

2

))
dw

]−1

.

Proof: See Appendix G.

Figure 1 illustrates the optimal privacy-preserving pol-
icy γ∗(w|x) in Corollary 4 versus w and x for the case
where the weighting function is p(x) ∝ exp(−x2) (top)
and p(x) ∝ exp(−x) (bottom) when w = 0 and w = 1.
For any mappings f and g, it is said that f(x) ∝ g(x)
if there exists constant c such that f(x) = cg(x). For
p(x) = exp(−x2), the policy is a function of x. However,
for p(x) = exp(−x), the policy is independent of x; this
can be attributed to that the ratio p′(x)/p(x) = −1 is
not a function of x.

Example 3 (Computing Variance) Another com-
mon query, beside the average of a set of private data
(see Example 2), is to calculate its statistical variance.
This operation can be done by the nonlinear query

f(x) =
1

n− 1

n∑
i=1

(
xi −

1

n

n∑
j=1

xj

)2

.

The optimal privacy preserving policy for this example is
provided in the following corollary. ♦

Corollary 5 Let n ∈ N, m = 1, p(x) = p, and W =
[w,w] with −∞ < w ≤ w < +∞. If f(x) 6= 0, the
solution of Problem 2 is given by (14).

Proof: See Appendix H.

Corollary 5 proves that the for scalar queries, i.e., when
m = 1, the nonlinearity of the query does not change the
distribution of the optimal additive noise. Therefore, the
optimal noise distributions for the averaging problem in
Example 2 and the variance calculation in Example 3
are the same.
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Fig. 1. Optimal privacy-preserving policy for non-uni-
form weighting functions p(x) ∝ exp(−x2) (top) and
p(x) ∝ exp(−x) (bottom).

Now, we are ready to study the case where the constraint
set is unbounded. We start by solving Problem 3 in the
next theorem.

Theorem 3 The solution of Problem 3 is given by
γ∗(w|x) = u(w, x)2, where u(w, x) satisfies

Tr

([
F (x)F (x)> F (x)>

F (x) I

]
D2u(w, x)

)

+L(w, x)


∂γ(w|x)

∂w

∂γ(w|x)

∂x


+(µ(x)−(%/4)w>w)u(w, x) = 0, w ∈ W,

u(w, x) = 0, w ∈ ∂W,

u(w, x) 6= 0, w ∈ intW,∫
w∈W u(w, x)2dw = 1,

(15)

for some mapping µ : X → R and L(w, x) is defined
in (13). Further, all solutions (if multiple) satisfying (15)
exhibit the same cost.

Proof: See Appendix I.

An explicit solution of Problems 3 and 4 for the case
where W = Rm is presented in the following corollary.
This case is of special interest as the optimal noise can
be compared with the density of the noise suggested in
the differential privacy literature, i.e., Laplace noise.

Corollary 6 Let W = Rm and p(x) = p. For linear
queries of the form f(x) = Cx with full row rank matrix
C, the solutions of Problems 3 and 4 is given by

γ∗(w|x) =
1√

(2π)m det(Σ)
exp

(
− 1

2
w>Σ−1w

)
,

where Σ = 2(CC>)1/2/
√
ρ for Problem 3 and Σ =

ϑ(CC>)1/2/Tr((CC>)1/2) Problem 4.

Proof: See Appendix J.

Corollary 6 simply states that, in this case, the opti-
mal noise is a (multivariate) Gaussian random variable
with covariance (CC>)1/2/

√
ρ. Note that the optimal-

ity of the Gaussian noise when minimizing the Fisher
information over noises with unbounded support set is
not in itself new [54]; however, its application in privacy-
preserving policies has not been considered previously.
Clearly, as % increases, i.e., the emphasis on the qual-
ity of the response to the query increases, the variance
of the noise decreases. In this framework, the optimal
noise distribution differs from the Laplace distribution,
which is a standard choice in the differential privacy lit-
erature [12]. Evidently, the weighted averaging setup in
Example 2 satisfies the conditions for results of Corol-
laries 6. For that example, the optimal noise can be sim-
plified into a Gaussian random variable with variance ϑ
(due to the scalar nature of the responses). Note that,
for this example, the optimal privacy-preserving policy
is again independent of the choice of the matrix C.

4 Extensions to Dynamic Estimation

In this section, the problem formulation is extended
by considering dynamic estimation problems for linear
time-invariant systems. Assume that

x[k + 1] = Ax[k], x[0] = x0,

where x[k] ∈ Rn is the state. The dynamics, for instance,
can capture the case where some entries of a database
are getting updated in real time or that the database
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contains the states of a physical system evolving through
time (e.g., position and velocity of a vehicle). Assume
that the initial state is deterministic and unknown to
the adversary. In each time step k ∈ {0, . . . , T} with T
denoting the time horizon, the user can submit a query
of the form Cx[k] to the server. The server responds by
returning

y[k] = Cx[k] + w[k],

where w[k] ∈ Rm is an additive noise introduced by the
server to keep the state private. Here, only the case where
the probability density function ofw[k] is independent of
the state (in the past and the future) is considered. Also
consider the case where the support of the noise density
is unrestricted. Evidently, the results can be extended to
the case where the support set of the noise is constrained
following the same line of reasoning as in Section 3.

Define wk := [w[0]> w[1]> · · · w[k]>]>. The policy of
the server is the probability density function of wT de-
noted by γ : Rn(T+1) → R≥0. This is the most general
policy that the server can employ. To keep the entries
of the database private, the server wants to increase the
covariance of the estimation error of the initial condi-
tion E{‖x̂0(yT ) − x0‖22}, where x̂0(yT ) denotes any un-
biased smoothing estimate of the state based on all the
received response aggregated into a single vector of the
form yT = [y[0]> y[1]> · · · y[T ]>]>. Note that yT =
ΨTx0 + wT , where ΨT := [C> (CA)> · · · (CAT )>]>.
The conditional density of yT for any x0 is given by
p(yT |x0) = γ(yT −ΨTx0). Now, the Cramér-Rao bound
(see Proposition 1) can used to show that

E{‖x̂0(yT )− x0‖22} ≥ Tr(I−1) ≥ (T + 1)2n2/Tr(I),

where

I =

∫
p(yT |x0)

[
∂ log(p(yT |x0))

∂x0

][
∂ log(p(yT |x0))

∂x0

]>
dyT

=

∫
1

γ(wT )
Ψ>T

[
∂γ(wT )

∂wT

][
∂γ(wT )

∂wT

]>
ΨTdwT

and the second inequality follows from Proposition 5 in
Appendix A. The quality of the response can also be
measured using

Q = E{‖yT −ΨTx0‖22 |x0} =

∫
w>T wT γ(wT )dwT .

The next theorem provides the optimal policy in the
sense of Problem 3 for this case.

Theorem 4 Let Ψ>T ΨT be invertible. The solution of (3)
for the dynamic estimation setup is given by γ∗ such that
P{wT = ΨT z} = 1 where z is distributed according to

the probability density function

p(z) =
1√

(2π)n det(Σ)
exp

(
− 1

2
z>Σ−1z

)
,

where Σ = 2(Ψ>T ΨT )−1/2/
√
%.

Proof: See Appendix K.

Notice that the noise distribution across time is not inde-
pendently and identically distributed (i.i.d.) across time.
The noise at time step k takes the form of CAkz. This
means that the server realizes a random variable z based
on the probability distribution in Theorem 4. Then it
adds z to the initial condition of the system and propa-
gates its effect in all future time steps.

Remark 8 The matrix Ψ>T ΨT , which is in fact equal to
the observability Gramian over {0, . . . , T}, is invertible
if the pair (A,C) is observable and T ≥ n. This follows
from observability of linear time-invariant systems [55,
p. 271] and the Cayley-Hamilton theorem [56, p. 141].

Example 4 (Traffic Crowd-Sensing with Privacy)
Consider the case where a vehicle is sharing its position
with a remote monitoring station in pursuit of estimat-
ing the state of the traffic on a road. The house of the
vehicle’s owner is on this road (which is conveniently
modelled by the real line) at s0 ∈ R. The vehicle trav-
els on the road with the constant velocity v0 ∈ R after
leaving the house. The dynamics of the vehicle is given by[

s[k + 1]

v[k + 1]

]
=

[
1 1

0 1

][
s[k]

v[k]

]
,

[
s[0]

v[0]

]
=

[
s0

v0

]
,

where s[k] and v[k], respectively, denote the position and
the speed of vehicle over time. The user (i.e., the remote
monitoring station) is interested in knowing the posi-
tion of the vehicle; therefore, it submits a query of the
form Cx[k] with C = [1 0]. According to Theorem 4,
the server (or the vehicle) needs to provide the response
y[k] = Cx[k] + CAkz, where, if T > 2, z is a zero mean
Gaussian random variable with covariance

Σ =
2
√
ρ

(Ψ>T ΨT )−1/2

=
2
√
ρ

[
T + 1 T (T + 1)/2

T (T + 1)/2 T (T + 1)(2T + 1)/6

]−1/2

.

The quality of the response becomes

Q =
1√
3ρ

(√
(T + 1)(2T 2 + T + 6−

√
∆)

+

√
(T + 1)(2T 2 + T + 6 +

√
∆)

)
,

10



where ∆ = 4T 4 + 4T 3 + 13T 2 − 12T + 36. This implies
that 1 Q = O(T

√
T/
√
ρ). On the other hand,

E{‖x̂0(yT )−x0‖22}=
4
√

3
√
ρ

(
1√

(T + 1)(2T 2 + T + 6−
√

∆)

+
1√

(T + 1)(2T 2 + T + 6 +
√

∆)

)
.

Thus,E{‖x̂0(yT )−x0‖22} = O(1/(T
√
T
√
ρ)). This shows

the privacy guarantee decreases with T . Therefore, to
keep the privacy guarantee constant, smaller ρ should
be used for larger horizons T (i.e., a lower emphasis on
preserving the quality of response must be placed). In
fact, ρ should be selected such that it scales according to
1/(T

√
T ) with T . Doing so, the quality of the response Q

depreciates according to O(T 3). ♦

5 Discussion

The choice of the Fisher information as a measure of pri-
vacy in this paper, motivated by the Cramér-Rao bound,
ensures that the privacy guarantees are applicable to a
wide range of adversaries in contrast to, e.g., [42] assum-
ing a least mean square error estimator as the adver-
sary. Further, the Cramér-Rao bound provides a clear
operational meaning for the measure of privacy. This
could be potentially lacking in differential privacy liter-
ature [8] and studies using mutual information and en-
tropy as a measure of privacy, e.g., [40]. However, in the
presence of a prior distribution for the data and pos-
sible correlations between the entries of the database,
privacy-preserving methods that do not use this addi-
tional information, such as the proposed method in this
paper and algorithms relying on differential privacy, can
underperform or break down [57], which is not the case
for method relying on mutual information.

The use of constrained additive noise in this paper sets
it apart from other studies in the literature that use an
additive noise whose distribution has an infinite support,
such as Laplace or Gaussian [4, 8–10, 12]. In the studies
where the optimal noise is investigated, the support of
the distribution is most often unrestricted, which again
gives rise to the Laplace or Gaussian distributions being
the optimal choices [15,40–42].

In the unconstrained case, the optimal noise distribu-
tion minimizing the Fisher information subject to a con-
straint on the degradation of the quality of the response
is proved to be Gaussian in fact 2 . This fact is at odds

1 We say f(x) = O(g(x)) if limx→∞ |f(x)/g(x)| = c <∞.
2 Note that by changing the measure of the quality of the
response (e.g., expection of the norm-1 of the additive noise),
one can get other noise density functions.

with the differential privacy literature [8]. Therefore, the
provided framework with the guarantees provided by use
of the Cramér-Rao bound is weaker than the differen-
tial privacy (both in requirements and guarantees). The
use of the Gaussian noise is however known to satisfy a
weaker variant of the differential privacy, referred to as
(ε, δ) differential privacy [9,58]. Further, noting that the
privacy-preserving policy in this paper and that of [40]
coincide in the unconstrained case, it is easy to see that
the presented framework also minimizes the mutual in-
formation while having the advantage of providing a bet-
ter operational meaning for the measure of privacy. This
observation can be intuitively explained by the intimate
relationship between Fisher information and mutual in-
formation [59,60].

This section is finished by exploring the relationship
between differential privacy and the proposed optimal
noise in more depth for the weighted averaging setup
in Example 2 with X = [x, x]n for some −∞ < x ≤
x < +∞. The corrupted response of the server is ε-
differentially private if P{Cx+w ∈ Y} ≤ eεP{Cx′+w ∈
Y} for all x, x′ ∈ X that only differ in one element and
all Lebesgue-measurable sets Y. The following proposi-
tion proves that differential privacy can be achieved by
an additive Laplace noise.

Proposition 3 For Example 2 with X = [x, x]n for
some −∞ < x ≤ x < +∞, the corrupted response
of the server is ε-differentially private if γ(w) =
1/(2b) exp (−|w|/b) with b = ε/[(x− x) maxi |ci|], where
ci is the i-th entry of C.

Proof: See Appendix L.

For the differentially private noise in Proposition 3, it
can be shown that Q = 2b2. Therefore, under the con-
straint Q = ϑ, one can achieve [(x − x)

√
ϑ/2 maxi ci]-

differential privacy. Further, it can be shown that for
differentially private noise in Proposition 3,

I = 2

∫ ∞
0

CC>

γ(w)

[
∂γ(w)

∂w

]2

dw =
CC>

b2
=

2CC>

ϑ
.

Therefore, for any unbiased estimator of x denoted by
x̂(y) under the noise density function in Proposition 3,
E{‖x− x̂(y)‖22} ≥ ‖(I−C†C)x‖22 +ϑ/(2(CC>)2). How-
ever, for the optimal noise in Corollary 6, it can be
shown that I = CC>/ϑ. Thus, for any unbiased estima-
tor of x denoted by x̂(y) under the noise in Corollary 6,
E{‖x−x̂(y)‖22} ≥ ‖(I−C†C)x‖22+ϑ/(CC>)2.Note that

sup
x∈[x,x]n

‖(I − C†C)x‖22 + ϑ/(CC>)2

‖(I − C†C)x‖22 + ϑ/(2(CC>)2)
= 1 + κ > 1,

where κ = 1/(1 + 2(CC>)2 maxx∈[x,x]n ‖(I − C†C)x‖22/ϑ).
Thus, for the same bound on the quality of response,
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Fig. 2. Let ϑ/((x − x) maxi |ci|) = 1. The white and gray
areas illustrate the regions for which the condition (16) is
satisfied and is not satisfied, respectively. Note that satisfy-
ing (16) for δ ≤ 1/2 implies that the noise distribution in
Corollary 6 is (ε, δ)-differentially private.

the optimal noise distribution in Corollary 6 provides a
privacy guarantee that is 1 + κ times stronger, albeit in
the sense of the error covariance E{‖x− x̂(y)‖22}.

For the differentially private noise in Proposition 3, it
can be shown that H(γ) = log2(e

√
2ϑ). For the opti-

mal noise in Corollary 6, H(γ∗) = log2(
√
e2πϑ). Inter-

estingly, H(γ∗) ≥ H(γ), which intuitively points to the
fact that, for some prior distributions on the entries of
the database, the optimal noise in Corollary 6 can po-
tentially provide stronger information theoretic guaran-
tees as well. This is not particularly surprising consider-
ing that the optimal noise for privacy in an information
theoretic setting is also proved to be Gaussian [40].

The corrupted response of server is (ε, δ)-differentially
private if P{Cx + w ∈ Y} ≤ eεP{Cx′ + w ∈ Y} + δ
for all x, x′ ∈ X that only differ in one element and all
Lebesgue-measurable sets Y. The following proposition
proves that differential privacy can be achieved by an
additive Gaussian noise.

Proposition 4 For Example 2 with X = [x, x]n for
some −∞ < x ≤ x < +∞, the corrupted response of
the server with noise distribution in Corollary 6 is (ε, δ)-
differentially private if δ ≤ 1/2 and

ϑ ≥ (x− x) max
i
|ci|
(√

2 ln(1/(2δ))

ε
+

1√
2ε

)
. (16)

Proof: See Appendix M.

In Figure 2, the white and gray areas illustrate the re-
gions for which the condition (16) is satisfied and is not
satisfied, respectively, when ϑ/((x − x) maxi |ci|) = 1.
Note that satisfying (16) for δ ≤ 1/2 (behind the dashed
line) implies that the noise distribution in Corollary 6 is
(ε, δ)-differentially private for the corresponding values
of ε and δ.

6 Conclusions and Future Work

In this paper, the problem of preserving the privacy of
individual entries of a database with constrained addi-
tive noise is investigated. A measure of privacy using the
Fisher information is developed. The optimal probabil-
ity density function that maximizes the measure of pri-
vacy is computed. It is shown that, in some cases, the
privacy-preserving policy of the server could potentially
be independent of the entries of the database. Further,
for scalar queries when the support set of the additive
noise is bounded, the nature of the query, e.g., its linear-
ity or content, does not play a role in the optimal addi-
tive noise for preserving the privacy of the database. For
unconstrained noises, Gaussian distribution seems to be
the optimal privacy-preserving policy if the quality of
the provided response is measured using the variance of
the additive noise employed by the server. Future work
can focus on dynamic nonlinear systems.
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A A Useful Inequality

Proposition 5 J ≥ n2J−1.

Proof: First, note that

Tr(I−1) =

n∑
i=1

1

λi(I)
≥ n2∑n

i=1 λi(I)
= n2Tr(I)−1,

where the inequality follows from the Jensen’s inequal-
ity [61, p. 25] and the facts that the mapping z 7→ 1/z
is convex over R≥0 and λi(I) ≥ 0 for all i (since I is
positive semi-definite). Further, it can be shown that∫
x∈X

Tr(I(x)−1)p(x)dx ≥ n2

∫
x∈X

Tr(I(x))−1p(x)dx

≥ n2

(∫
x∈X

Tr(I(x))p(x)dx

)−1

,

where the second inequality follows from the Jensen’s
inequality and the earlier observation that the mapping
z 7→ 1/z is convex over R≥0.

B Proof of Theorem 1

The variational derivative of Tr(I−1) needs to be calcu-
lated by introducing infinitesimal functional variations
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in the probability density function γ. Let δγ denote the
infinitesimal variations in γ. The variational derivative
(I)ij , the element of I in row i and column j, is denoted
by δ(I)ij . Using Theorem 5.2 in [62, p. 440], it can be
shown that

δ(I)ij =

∫
w∈W

[
1

γ(w)2

(∑
k

cki
∂γ(w)

∂wk

)(∑
`

c`j
∂γ(w)

∂w`

)
− 2

γ(w)

∑
k,`

ckic`j
∂2γ(w)

∂wk∂w`

]
δγ(w)dw,

where, for any matrix C, cij denotes the entry in the i-
th row and j-th column. Define δI to be a matrix where
the element in row i and column j is equal to δ(I)ij .
Using linear algebra, the variational derivative can be
rewritten in matrix form as

δI =

∫
w∈W

[
1

γ(w)2
C>
[
∂γ(w)

∂w

][
∂γ(w)

∂w

]>
C

− 2

γ(w)
C>D2γ(w)C

]
δγ(w)dw.

The variational derivative of Tr(I−1) can be calculated
as

δTr(I−1) = lim
ε→0

(Tr((I + εδI)−1)− Tr(I−1))/ε

= −Tr(I−1δII−1)

= −Tr(I−2δI).

Now, the Lagrangian can be constructed according to

L =Tr(I−1) + µ

(∫
w∈W

γ(w)dw − 1

)
=Tr(I−1) +

∫
w∈W

µγ(w)db− µ,

where µ ∈ R is the Lagrange multiplier corresponding
to the equality constraint

∫
w∈W γ(w)dw = 1. The nec-

essary condition for optimality is that the extrema must
make the variational derivative of L equal to zero. As a
result,∫

w∈W

[
Tr

(
I−2

[
1

γ(w)2
C>
[
∂γ(w)

∂w

][
∂γ(w)

∂w

]>
C

− 2

γ(w)
C>D2γ(w)C

])
− µ

]
δγ(w)dw = 0

for all δγ. This is only possible if

Tr

(
I−2

[
1

γ(w)2
C>
[
∂γ(w)

∂w

][
∂γ(w)

∂w

]>
C

− 2

γ(w)
C>D2γ(w)C

])
− µ = 0.

Introducing the change of variable γ(w) = u(w)2 results
in

µ+
4

u(w)
Tr(I−2C>D2u(w)C) = 0. (B.1)

If u(w) 6= 0 for all w ∈ int(W), (B.1) can be rewritten as

Tr(I−2C>D2u(w)C) + µ̄u(w) = 0, w ∈ int(W),

where µ̄ = µ/4. However, if u(w) = 0 for some w ∈
int(W), the equality in (B.1) cannot be satisfied with
any µ ∈ R.

C Proof of Theorem 2

First, noting that the cost function and the constraint
set are convex, the stationary condition (that the vari-
ational derivative is equal to zero) is sufficient for opti-
mality. Further, if multiple density functions satisfy the
sufficiency conditions, they all exhibit the same cost. In
the rest of the proof, this condition is rewritten in a sim-
pler forms. To do so, note that

I(x)=

∫
y∈{f(x)}⊕W

γ(y − f(x)|x)

[
∂ log(γ(y − f(x)|x))

∂x

]
×
[
∂ log(γ(y − f(x)|x))

∂x

]>
dy

=

∫
w∈W
γ(w|x)

[
F (x)>

∂ log(γ(w|x))

∂w
+
∂ log(γ(w|x))

∂x

]
×
[
F (x)>

∂ log(γ(w|x))

∂w
+
∂ log(γ(w|x))

∂x

]>
dw

=

∫
w∈W

1

γ(w|x)

[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]
×
[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]>
dw.

Thus,

Tr(I(x)) =

∫
w∈W

1

γ(w|x)

[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]>
×
[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]
dw.

As a result,

J =

∫
x∈X

∫
w∈W

p(x)

γ(w|x)

[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]>
×
[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]
dwdx.
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Following the result of [53], the Lagrangian can be con-
structed as

L =

∫
x∈X

∫
w∈W

p(x)

γ(w|x)

[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]>
×
[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]
dwdx

−
∫
x∈X

p(x)µ(x)

(∫
w∈W

γ(w|x)dw − 1

)
dx

=

∫
x∈X

∫
w∈W

p(x)

(
−µ(x)γ(w|x)

+
1

γ(w|x)

[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]>
×
[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

])
dwdx

+

∫
x∈X

µ(x)p(x)dx,

where µ : X → R is the Lagrange multiplier corre-
sponding to the equality constraint

∫
w∈W γ(w|x)dw = 1

for all x ∈ supp(p). Using Theorem 5.3 in [62, p. 440],
it can be seen that the extrema must satisfy (C.1) on
top of the next page. Introducing the change of variable
γ(w|x) = u(w, x)2 results in

µ(x) +
4

u(x,w)
Tr

([
F (x)F (x)> F (x)

F (x)> I

]
D2u(w, x)

)

+
4

u(x,w)
1>D2f(x)

∂u(w, x)

∂w

+
4

u(x,w)

1

p(x)

∂p(x)

∂x

> [
F (x)> I

]
∂γ(w|x)

∂w

∂γ(w|x)

∂x

 = 0,

for allw ∈ int(W) and x ∈ supp(p). Again, if u(w, x) 6= 0
for all w ∈ int(W) and x ∈ supp(p), it can be deduced
that

µ̄(x)u(w, x) + Tr

([
F (x)F (x)> F (x)

F (x)> I

]
D2u(w, x)

)
+ 1>D2f(x)

∂u(w, x)

∂w

+
1

p(x)

∂p(x)

∂x

> [
F (x)> I

]
∂γ(w|x)

∂w

∂γ(w|x)

∂x

 = 0,

where µ̄(x) = µ(x)/4. However, if u(w, x) = 0 for some
w ∈ int(W) and x ∈ supp(p), the equality cannot be
satisfied with any µ ∈ R.

D Proof of Corollary 1

In this proof, a solution of the form u(w, x) = u(w)
and µ(x) = µ is sought for the partial differential equa-
tion in (12). In this case, the partial differential equation
in (12) becomes

{
∇2u(w) + µu(w) = 0, w ∈ W,

u(w) = 0, w ∈ ∂W.
(D.1)

This is a special case of the time-independent Schrödinger
equation. This knowledge can be used to solve the
partial differential equation explicitly. Following [63],
the solution of (D.1) is unique. The rest easily follows
from showing that the provided density function satis-
fies the partial differential equation and its boundary
conditions.

E Proof of Corollary 2

First, we prove part (i). Allow u(w,w)(w) be such that
γ(w) = u(w,w)(w)2 with γ(w) denoting the solution of
Problem 2 in Corollary 1 for W = [w,w]. To emphasize
the fact that W is a function of w and w, in this proof,
the notation W(w,w) is used. Therefore,

I =

∫
w∈W(w,w)

[
∂u(w,w)(w)

∂w

][
∂u(w,w)(w)

∂w

]>
dw

=

∫
w∈W(w,w)

1

(w−w)m+2

[
∂u(0,1)(w′)

∂w′

]
w′=(w−w)/(w−w)

×
[
∂u(0,1)(w′)

∂w′

]>
w′=(w−w)/(w−w)

dw

=
1

(w − w)2

∫
w′∈W(0,1)

[
∂u(0,1)(w′)

∂w′

][
∂u(0,1)(w′)

∂w′

]>
dw′︸ ︷︷ ︸

:=κ

.

Now, we prove part (ii). To do so, note that

Q = Tr(E{ww>})
= Tr(E{(w − E{w})(w − E{w})>}) +m(w + w)2/4,

where the second equality follows from thatE{w}>E{w} =
m(w + w)2/4. Noting that wi is independent of wj for
the optimal policy in Corollary 1 results in

E{(w − E{w})(w − E{w})>}
= diag(E{(w1 − E{w1})2}, · · · ,E{(wm − E{wm})2}).
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p(x)

γ(w|x)2


∂γ(w|x)

∂w

∂γ(w|x)

∂x


>[
F (x)F (x)> F (x)

F (x)> I

]
∂γ(w|x)

∂w

∂γ(w|x)

∂x

+2

m∑
i=1

∂

∂wi

 p(x)

γ(w|x)
e>i

[
F (x)F (x)> F (x)

F (x)> I

]
∂γ(w|x)

∂w

∂γ(w|x)

∂x




+ 2p(x)

n+m∑
i=m+1

∂

∂xi

 1

γ(w|x)
e>i

[
F (x)F (x)> F (x)

F (x)> I

]
∂γ(w|x)

∂w

∂γ(w|x)

∂x




+ 2

n+m∑
i=m+1

∂p(x)

∂xi

 1

γ(w|x)
e>i

[
F (x)F (x)> F (x)

F (x)> I

]
∂γ(w|x)

∂w

∂γ(w|x)

∂x


+ p(x)µ(x)=0. (C.1)

Note that

E{(wi−E{wi})2} =

(
2

w − w

)∫ w

w

(
wi −

w + w

2

)2

× cos2

(
π

w − w

(
wi −

w + w

2

))
dwi

=
(π2 − 6)(w − w)2

12π2
.

F Proof of Corollary 3

In this proof, a solution of the form u(w, x) = u(w)
and µ(x) = µ is sought for the partial differential
equation in (12). In this case, it can be shown that
Tr(C>D2u(w)C) = u′′(w)Tr(C>C). Therefore, the
partial differential equation in (12) becomes the or-
dinary differential equation u′′(w) + µ̄u(w) = 0 for
w ∈ W with the boundary condition that u(w) = 0 for
all w ∈ ∂W, where µ̄ = µ/Tr(C>C). The differential
equation u′′(w) + µ̄u(w) = 0 admits a solution of the
form u(w) = α cos(

√
µ̄(w − β)) where α, β ∈ R are con-

stants depending on the boundary conditions. It should
be ensured that u(w) = u(w) = 0 since γ(w) = u(w)2

for w ∈ ∂W. Thus µ̄ > 0. Two distinct situations may
occur:

• @q ∈ Z such that
√
µ̄ = (2q+ 1)π/(w−w): To be able

to satisfy u(w) = u(w) = 0, it must be that α = 0. In
this case,

∫
w∈W u(w)2dw = 0, which contradicts the

requirement that
∫
w∈W γ(w)dw = 1.

• ∃q ∈ Z such that
√
µ̄ = (2q + 1)π/(w − w): In this

case, β = (w + w)/2. To ensure that u(w) 6= 0 for
all w ∈ int(W), select q = 0. Finally, to be able to
satisfy the equality constraint

∫
w∈W γ(w)dw = 1, pick

α =
√

2/(w − w).

Finally, note that since the cost function and the con-
straint set are convex, all the extrema are minimizers.

G Proof of Corollary 4

It can be shown that (12) becomes

Tr

([
1 1

1 1

]
D2u(w, x)

)
+
p′(x)

p(x)

[
∂u(w, x)

∂w
+
∂u(w, x)

∂x

]
+ µ(x)u(w, x) = 0.

Introducing the change of variable v = x+ w results in

∂2u(v, x)

∂v2
+
p′(x)

p(x)

∂u(v, x)

∂v
+ µ(x)u(v, x) = 0. (G.1)

Note that v must belong to [x+w, x+w]. To ensure that
u(v, x) = 0 on x+w and x+w (because u(w, x) = 0 on
∂W), µ(x) must be selected such that[

p′(x)

p(x)

]2

− 4µ(x) < 0,∀x ∈ supp(x).

Under this condition, the solution of the partial differ-
ential equation in (G.1) becomes

u(v, x) =α exp

(
− p′(x)

2p(x)
v

)
× cos

(√[
p′(x)

2p(x)

]2

− µ(x)(v − β)

)
.

Following the same line of reasoning as in the proof of
Corollary 3, it can be inferred that β = ((x+w) + (x+
w))/2 = x+ (w + w)/2 and√[

p′(x)

2p(x)

]2

− µ(x) =
π

w − w
.

This concludes the proof.
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H Proof of Corollary 5

The proof follows from the selection of u(w, x) = u(w)
and µ(x) = Tr(F (x)F (x)>)µ and following the same
line of reasoning as in Corollary 3.

I Proof of Theorem 3

Similarly, because the cost function and the constraint
set are convex, the stationarity condition is sufficient for
optimality. Further, if multiple density functions satisfy
the conditions, they all exhibit the same cost. In this
case, the Lagrangian can be constructed as

L =

∫
x∈X

∫
w∈W

p(x)

(
−µ(x)γ(w|x) + %w>wγ(w|x)

+
1

γ(w|x)

[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

]>
×
[
F (x)>

∂γ(w|x)

∂w
+
∂γ(w|x)

∂x

])
dwdx

+

∫
x∈X

µ(x)p(x)dx.

The rest of the proof follows the same line of reasoning
as in Theorem 2.

J Proof of Corollary 6

First, we present the solution of Problem 3. In this proof,
a solution of the form u(w, x) = u(w) and µ(x) = µ is
sought for the partial differential equation in (15). Note
that u(w) = α exp(−w>Σ−1w/4) satisfies the partial
differential equation (15) with µ = Tr(C>Σ−1C)/2
and Σ = 2(CC>)1/2/

√
ρ. Further to ensure that∫

w∈W u(w)2 = 1, select α = 1/(
√

(2π)m det(Σ)). Now,
we present the solution of Problem 3. This follows from
that for Problem 4 the duality gap is zero [53]. There-
fore, the constraint on the variance can be added to
the cost function using a Lagrange multiplier, which
transforms the problem into that of Problem 3. There-
fore, following Corollary 6, the solution is equal to
the density function of a zero-mean Gaussian random
variable. Finally, for Gaussian random variables, the
Fisher information is a decreasing function of the vari-
ance. Therefore, the Lagrange multiplier is set so that
the inequality constraint on the variance becomes ac-
tive. That means Tr(2(CC>)1/2/

√
ρ) = ϑ. As a result,

√
ρ = 2Tr((CC>)1/2)/ϑ.

K Proof of Theorem 4

Applying the result of Theorem 3 for linear query
functions and probability density functions that are
independent of the content of the server, the sufficient
condition of optimality comes from the solution to
the partial differential equation Tr(Ψ>TD

2u(wT )ΨT ) +
(µ − (%/4)w>T wT )u(wT ) = 0. Introduce the change

of variable wT = ΨT z for z ∈ Rn (recall that only
one solution for the partial differential equation needs
to be calculated). It can be shown that D2ū(z) =
D2u(ΨT z) = Ψ>TD

2u(wT )
∣∣
wT =ΨT z

ΨT . Therefore,

Tr(D2u(ΨT z)) + (µ − (%/4)z>Ψ>T ΨT z)u(ΨT z) =
0. Define ū(z) = u(ΨT z). Thus, Tr(D2ū(z)) +
(µ − (%/4)z>Ψ>T ΨT z)ū(z) = 0. The rest follows
from that ū(z) = α exp(−z>Σ−1z/4) satisfies this
partial differential equation. To do so, note that
Tr(D2ū(z)) = ū(z)Tr(Σ−1zz>Σ−1) − Tr(Σ−1)/2.
Therefore, µ = Tr(Σ−1)/2, Σ = 2(Ψ>T ΨT )−1/2/

√
%, and

α = 1/ 4
√

(2π)m det(Σ).

L Proof of Proposition 3

Note that

exp (−|y − Cx|/b)
exp (−|y − Cx′|/b)

= exp (|y − Cx′|/b− |y − Cx|/b)
≤ exp(|C(x− x′)|/b)
≤ exp((x− x) max

i
ci/b) = exp(ε),

where the first inequality follows from

|y − Cx′| = |(y − Cx′)− (y − Cx) + (y − Cx)|
≤ |(y − Cx′)− (y − Cx)|+ |y − Cx|
≤ |C(x′ − x)|+ |y − Cx|.

Therefore
∫
y∈Y exp (−|y − Cx|/b) dy ≤ exp(ε)∫

y∈Y exp (−|y − Cx′|/b) dy.

M Proof of Proposition 4

Let erfc(x) denote the complementary error function
defined as erfc(x) := 2√

π

∫∞
x

exp(−u2/2)du. Define

K̄ :=
√

2 log(1/(2δ)). Evidently, 2δ = exp(−K̄2/2).

From [64], it can be seen that δ ≥ (1/2)erfc(K̄/
√

2)

and, therefore,
√

2erfc−1(2δ) ≤ K̄. Note that

ϑ ≥ (x− x) max
i
|ci|
(√

2 ln(1/(2δ))

ε
+

1√
2ε

)
= (x− x) max

i
|ci|

1

2ε

(
2K̄ +

√
2ε

)
= (x− x) max

i
|ci|

1

2ε

(
K̄ +

√
(K̄ +

√
2ε)2

)
≥ (x− x) max

i
|ci|

1

2ε

(
K̄ +

√
K̄2 + 2ε

)
.

The above inequality in conjuction with [9] shows
that the Gaussian mechanism in Corollary 6 is (ε, δ)-
differentially private.
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